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Abstract

We address the problem of bias in split vari-
able selection in classification tree construc-
tion. A split criterion is unbiased if the se-
lection of a split variable X is based only on
the strength of the dependency between X
and the class label, regardless of other char-
acteristics (such as the size of the domain
of X); otherwise the split criterion is biased.
Our work makes the following four contribu-
tions: (1) We give a definition that allows us
to quantify the extent of the bias of a split
criterion, (2) we show that the p-value of any
split criterion is a nearly unbiased criterion,
(3) we give theoretical and experimental ev-
idence that the correction is successful, and
(4) we demonstrate the power of our method
by correcting the bias of the gini gain.

1. Introduction

Split variable selection is one of the main components
of classification tree construction. The quality of the
split selection criterion has a major impact on the qual-
ity (generalization, interpretability and accuracy) of
the resulting tree. Many popular split criteria suffer
from bias towards predictor variables with large do-
mains (White & Liu, 1994; Kononenko, 1995).

Consider two predictor variables X; and X whose
association with the class label is equally strong (or
weak). Intuitively, a split selection criterion is unbi-
ased if on a random instance the criterion chooses both
X and X» with probability 1/2 as split variables. Un-
fortunately, this is usually not the case.

There are two previous meanings associated with
the notion of bias in decision tree construction: an
anomaly observed by Quinlan (1986), and the differ-
ence in distribution of the split criteria applied to dif-
ferent predictor variables (White & Liu, 1994). In this
paper, we start in Section 3 by giving a precise, quanti-
tative definition of bias in split variable selection. By

extending the studies by White and Liu (1994) and
Kononenko (1995), we quantify in an extensive exper-
imental study the bias in split selection for the case
that none of the predictor variables is correlated with
the class label.

Section 4 contains the heart of our paper. Assume that
we use split criterion s(D, X) to calculate the quality
q of predictor variable X as split variable for train-
ing dataset D. Consider the the p-value p of value g,
which is the probability to see a value as extreme as the
observed value ¢ in the case that X is not correlated
with the class label. In Section 4.1, we prove that
choosing the variable with the lowest p-value results
in a split selection criterion that is nearly unbiased —
independent of the initial split criterion s. Since previ-
ous criteria such as 2 and G? (Mingers, 1987) and the
permutation test (Frank & Witten, 1998) are p-values,
our theorem explains why x?, G2, and the permutation
test are virtually unbiased. We continue in Section 4.2
by computing a tight approximation of the distribu-
tion of Breiman’s gini index for k-ary splits which
gives us a theoretical approximation of the p-value of
the index. We demonstrate in Section 5 that our new
criterion is nearly unbiased.

Note that the general method that we propose is sim-
ilar in spirit but different from the work of Jensen and
Cohen (2000) on the problems with multiple compar-
isons in induction algorithms. The bias in split selec-
tion for discrete variables is not due to multiple com-
parisons, but rather due to inherent statistical fluctu-
ations as we explain in Section 3.

2. Preliminaries

In this section we introduce some notation and de-
scribe several popular split selection criteria.

2.1 Split Selection

Let D be the training dataset consisting of N data-
points. We consider without loss of generality the se-
lection of the split variable at the root node of the



classification tree. Let X be a predictor variable,
let {z1,...,2,} be the domain of X, and let N; be
the number of data-points in the dataset D for which
X =z;forie{l,..,n}. Let {c1,...,cr} be the domain
of the class label C, and let .S; be the number of train-
ing records in D for which C' = ¢; for j € {1,..,n}.
Denote by A;; the number of data-points for which
X =2; NC =¢;. Also let p;, j€{1,..,k} be the prior
probability to see class label ¢; in the dataset D. Ob-
viously the following normalization constraint holds:
Z?:] pj = 1.

Using the notation we just introduced, we can form
a contingency table for dataset D as shown in Fig-
ure 1. We call the numbers on the last column and
the last row marginals since they obey the following
marginal constraints: » ., N; = N, Y0 A;; = S;,
and E?Zl A;j = N;. Using the contingency table
we have the following maximum likelihood estimates:
P[X:l‘l] = NZ/N, b = P[C:Cj] = S]‘/N, P[C:
Cj A X:.’Ei] = A”/N and P[C:Cj|X:.’Ei] = A”/J\fZ

Note that this contingency table contains the sufficient
statistics for split selection criteria that make univari-
ate splits (Gehrke et al., 1998); thus given the table,
any split selection criterion can compute the quality of
X as split variable.

X[ & ... ¢ ... Ci
T A11 Alj Alk N1
S, ... 5 ... S | N

Figure 1. Contingency table for a generic dataset D and
generic predictor variable X.

2.2 Split selection criteria

Let us briefly define some popular split criteria using
the maximum likelihood estimates of probabilities de-
scribed in the previous section.

x? Statistic. Used in (Mingers, 1987):

Gini Gain. Defined in (Breiman et al., 1984) as
n k
AgE S PX=2]) PlC=¢|X=x]
i=1 j=1

Information Gain. Defined in (Quinlan, 1986) as:
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Gain Ratio. Defined in (Quinlan, 1986) as:
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G? Statistic. Used in (Mingers, 1987):

G* 2. N-IGlog, 2 (5)

3. Bias in Split Selection

In this section we introduce formally the notion of bias
in split variable selection for the case that there is no
correlation between predictor variables and the class
label (i.e., the predictor variables are unpredictive of
the class label). We then show that three popular split
selection criteria are biased towards predictor variables
with large domains.

3.1 A Definition of Bias

In order to study the behavior of the split criteria for
the case where there is no correlation between a pre-
dictor variable and the class label we formalize the
following setting;:



Null Hypothesis: For every i € {1,..,n}, the
random vector (A;1,...,A;) has the distribution
Multinomial(N;, p1, ..., k).

Intuitively, the Null Hypothesis assumes that for each
value of the predictor variable, the distribution of
the class label results from pure multi-face coin toss-
ing, thus the distribution of the class label obeys
a multinomial distribution. Since . | A;; = Sj,
the random vector (Si,...,Sk) has the distribution
Multinomial(N, py, . .., pk)-

We now give a formal definition of the bias. Let s be a
split criterion, and let s(D, X) be the value of s when
applied to dataset D. Usually the split variable selec-
tion method compares the values of the split criteria
for two variables and picks the one with the biggest
corresponding value for predictor attribute X.! Now
let D be a random dataset whose values are distributed
according to the Null Hypothesis. Thus s(D, X) is now
a random variable that has a given distribution under
the Null Hypothesis. Define the probability that split
selection method s chooses predictor variable X; over
X5 as follows:

Py(X1,X5) ¥ Pls(D, X1) > s(D, X5)].  (6)

We can now define the bias of the split criterion be-
tween X; and X, as the logarithmic odds of choosing
X over X5 as a split variable when neither X; nor X5
is correlated with the class label, formally:

. Py (X1, X5)
Bias(X1, X5) =1 = ). 7
las( 1, 2) Oglo (1 _Ps(Xl,XQ) ( )
When the split criterion is wunbiased, then

Bias(X1,X5) = logy(0.5/(1 —0.5)) = 0. The
bias is positive if s prefers X; over X5 and negative,
otherwise. Bigger value of |Bias(X;, Xs)| indicate
stronger bias, and we desire split criteria with values
of the bias as close to 0 as possible.

Our notion of bias is inherently statistical in nature,
and it reflects the intuition that under the Null Hy-
pothesis the split criterion should have no preference
for any predictor variable. There have been several at-
tempts to define bias in split variable selection. Quin-
lan’s Gain Ratio (Quinlan, 1986) was designed to cor-
rect for an anomaly that he observed, but as we will
show in Section 3.2, the Gain Ratio merely reduces
the bias, but it does not remove it. White and Liu
(1994) point out that Quinlan’s definition of the bias
is non-statistical in nature; their definition of the bias
is based on the distribution of the split criterion for

'For the case when smaller values of the split criterion
are preferable, we can use —s as split criterion.

predictor variables with the same number of values. It
is harder to use in practice since it implies a test of the
equality of two distributions instead of two numbers as
in our case. Loh and Shih (1997) introduce a notion of
bias whose formalization coincides with our definition.

3.2 Experimental Demonstration of the Bias

We performed an extensive experimental study to
demonstrate the bias according to our definition in
Section 3.1. We generated synthetic training datasets
with two predictor variables and two class labels. We
chose n1 = 10 different variable values for predictor
variable X; and ny = 2 different variable values for
predictor variable X5.2 We varied N, the size of the
training database from 10 and 1000 records in steps of
40 records, and we varied the value of the prior prob-
ability p; of the first class label exponentially between
0 and 1/2. Since all split criteria are invariant to class
labels permutations, the graphs depicting the bias are
symmetric with respect to p; = 1/2; we present here
the part of the graphs with p; < 1/2. To estimate
Ps(X1, X5), we performed 100000 Monte Carlo trials
in which we generated random training databases dis-
tributed according to the Null Hypothesis (thus the
standard error of all our measurements is smaller than
0.0016). Exactly the same random instances were used
for all split criteria.

The results of our experiments are shown in Figures
2 to 6. Figure 2 shows the bias of the gini gain,
Figure 3 shows the bias of the information gain, Fig-
ure 4 shows the bias of Quinlan’s gain ratio, Figure 5
shows the bias of the p-value of the y2-test accord-
ing to the x? distribution (with n — 1 degrees of free-
dom), and Figure 6 shows the bias of the p-value of
the G*?-statistics according to the x? distribution (with
n — 1 degrees of freedom). The x2-distribution with
n — 1 degrees of freedom has to be used since there are
2n entries in the contingency table with n marginal
constraints (25:1 A;; = N;) and the additional con-
straint that S;/N is used as an estimate for p;.

For values of p; between 1072 and 1/2 both the gini
gain and the information gain show a very strong bias
(X is chosen 10'8% = 63 times more often than X»),
the gain ratio is less biased (X is chosen 10°% = 6.3
times more often than X5), but the bias is still signif-
icant. The x? test is basically unbiased in this region
except for really small values of N. The G2 test is un-
biased for large values of N and for p; close to 1/2, but

2Due to space limitation, we cannot present the full
scope of experiments we performed. Results from experi-
ments with different values for n1 and ns were qualitatively
similar.



Figure 2. The bias of the gini gain.

Bias
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Figure 3. The bias of the information gain.

the bias is noticeable in important border cases that
are relevant in practice (for example for p; = 1072 and
N = 1000, the bias has value 0.20).

For values of p; between 10~* and 1072, the gini
gain, the information gain, and the gain ratio start
having less and less bias. Both the x? and the G?
criterion have a preference towards variable variables
with few values, the bias gets as low as -0.2 (corre-
sponds to 1.58 odds) when p; N = 1. The maximum
negative bias corresponds to datasets that on average
have a single data-point with class label ¢;. We post-
pone the explanation of this phenomenon to Section 5.
The region where p; < 10~ corresponds to training
datasets where no record has class label ¢; (all records
have the same class label). In this case the gini gain,
the information gain, and the gain ratio have value
0, whereas the x? and G? criteria have value 1, inde-
pendent of the split variable. In our experiments, we
tossed a fair coin in case that the split criterion returns
the same value for variables X; and X5, thus the bias
is basically 0.

Figure 4. The bias of the gain ratio.

Bias
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Figure 5. The bias of the p-value of the x2-test (using a
x2-distribution).

One surprising insight from our experiments is that the
bias for the gini gain, the information gain, and the
gain ratio do not vanish as IV gets arbitrary large. In
addition, the bias does not seem to have a significant
dependency on p; as long as all entries in the contin-
gency table for variable X; are moderately populated.

We obtained similar results for different variable do-
main sizes. The bias is more pronounced for bigger
differences in the domain sizes of X; and X5. When
the domain sizes are identical (n; = n2), the bias is
almost nonexistent. These facts suggest that the size
of the domain is the most significant factor that in-
fluences the behavior under the Null Hypothesis. This
conclusion, for the gini gain, is supported by the the-
oretical formulas in Section 4.2.

The bias for the gini gain, the information gain, and
the gain ratio comes from the fact that under the Null
Hypothesis the value of the split criterion is not exactly
zero. The values of s(X,D) monotonically increase
with n, the size of the domain of X, and variables with



Figure 6. The bias of the p-value of the G*-test (using a
x2-distribution).

more values tend to have larger values of s(X, D) due
to the fact that the counts in the contingency table
have bigger statistical fluctuations. The bias is thus
due to the inability of traditional split criteria to ac-
count for these normal statistical fluctuations. In the
next section, we will present a technique that allows
us to remove the bias from existing split criteria.

4. Correction of the Bias

In Section 4.1, we present a general method for remov-
ing the bias of any arbitrary split criterion. We then
show in Section 4.2 how our method can be used to
correct the bias inherent in the gini gain.

4.1 A General Method for Bias Removal

Let us first give some intuition behind our method.
We observed in Section 3.2 that the expected value
of several split criteria under the Null Hypothesis de-
pends on the size of the domain of the predictor vari-
ables. Assume that the value of the split criterion for
variable X7 is v1 (X2 and wva, respectively). Instead
of comparing v; and vy directly (and incurring a bi-
ased variable selection), we compute the p-value py,
the probability that the value of the split criterion is
as extreme as v; under the Null Hypothesis (and we
compute po, analogously). We then choose the split
variable with the lower p-value. The remainder of this
section is devoted to a formal proof that the p-value
of any split criterion is virtually unbiased under the
assumption that the Null Hypothesis holds.

Let X and Xy be two identically distributed random

variables (i.e., Vx € Dom(X) : p, def PIX =z] =
P[Xp =z]), and let Y and Yg be two other identi-

cally distributed random variables. Define Cx () ef

1-P[Xp <z]=1-3, ., P, and define Cy (y) anal-
ogously. Let A “ max, P[X =z] + max, P[Y =y].

Lemma 1 Let X and Y be two independent discrete
random wvariables. Then Yy € [0,1]:P[Cx(X) <
Cy(Y)]+~vP[Cx(X)=Cy(Y)] € (1/2—-A,1/2+A).

Proof:
P = P[Cx(X) < Cy(Y)]

=> > I(Cx(z) < Cy()P[X=xAY =y]
oy (8)

x y
=22 T\ 2w > vy | pary
x y 2! y'
where I(-) is the indicator function.

For a fixed z, let y,, be the biggest value of y € Dom(Y")
such that °, _, por > 2, ., py still holds. Equation
8 then can be rewritten as follows:

7’=szi:py 9)

On the other hand using the definition of y, we have:

z Ya
szz - Zpy > 0,and (10)
o

Yy
T Yz
> P =Y by < pyr < maxp, (11)
! Y

where p,+ is the smallest y € Dom(Y) such that y >
yz- The previous two inequalities imply:

T Ya x
sz’ - m?jlxpy < Zpy < sz’ (12)
! Y !

Multiplying by p,, summing up on z and using the
result of Equation 9 we obtain:

Dope D pe—maxp SP<Y ped pe (13)
x z’ z x’

To further simplify, let X' be a random variable with
the same distribution as X. We then obtain:

T
Yovey po = 1@ <2)PX'=a' A X=1]
) o1,
:P[XSX]=§—§P[X:X]
1 1,
_E_igpm

(1l 1 11,
5 Waxp;, 5 — 5 minp,

(14)

2



Using Equations 13 and 14 we get:

1 1 1
E—mfxpz—mjxpy<73<§—§mzinpz (15)

If the roles of x and y are switched we obtain:

1 11
3 ~A<POx(X) > Cy(Y)] < 5 — gminp,, (16)
Yy

which implies:

1 1 1
5 + Eminpy < P[Cx(X)<Cy(Y)] < 3 +A, (17
Yy

thus

AP PO =Cr (M) <L +A (1

O

According to Lemma 1, if the p-value of a criterion
is used to decide the split variable, the probability
of choosing one variable over another is not farther
than A from % In practice, even for small sizes of the
dataset, any split criterion has a huge number of pos-
sible values and the probability of the criterion to take
on a value is much smaller than %, thus A ~ 0, and the
p-value is a virtually unbiased split criterion. Thus we
can guarantee that the p-value of any split criterion
s is unbiased under the Null Hypothesis, as long as
s does not take on a single value with a significantly
large probability.

Using the above fact, a general method to remove the
bias in split variable selection consists of two steps.
First, we compute the value v of the original split cri-
teria s on the given dataset. Second, we compute the
p-value of v under the Null Hypothesis and we select
the variable with the smallest p-value as the split vari-
able.

The above method requires the computation of the
p-value of a given criterion. We can distinguish four
ways in which this can be accomplished.

e Exact computation. Use the exact distribution of
the split criterion. The main drawback is that this
is almost always very expensive; it is reasonably
efficient only for n = 2 and k = 2 (Martin, 1997).

e Bootstrapping. Use Monte Carlo simulations with
random instances generated according to the Null
Hypothesis. This method was used in by Frank
and Witten (1998); its main drawback is the high
cost of the the Monte Carlo simulations.

e Asymptotic approximations. Use an asymptotic
approximation of the distribution of the split cri-
terion (e.g., use the x2-distribution to approxi-
mate the x2-test (Kass, 1980) and the G*-statistic
(Mingers, 1987)). Approximations often work
well in practice, but they can be inaccurate for
border conditions (e.g., small entries in the con-
tingency table).

e Tight approximations. Use a tight approximation
of the distribution of the criterion with a nice dis-
tribution. While conceptually superior to the pre-
vious three methods, such tight approximations
might be hard to find.

4.2 A Tight Approximation of the Gini Gain

In this section we give a tight approximation of the
distribution of the gini gain, and we use our approx-
imation in combination with Lemma 1 to compose a
new unbiased split criterion.

Note that the p-value of the gini gain can be well
approximated if the cumulative distribution function
(c.d.f) of the distribution of the gini gain can be
well approximated (since the p-value=1-c.d.f.). We
experimentally observed by looking at the shape of
the probability distribution function of the gini gain
that it is very close to the shape of distributions from
the gamma family.? Our experiments show that the
Gamma distribution — using the expected value and
variance of the gini gain as distribution parameters
(which completely specify a gamma distribution) — is
a very good approximation of the distribution of the
gini gain. In the remainder of this section, we will
show how to compute exactly the expected value and
the variance of the gini gain under the Null Hypothe-
sis, and we will use these values for a tight approxima-
tion of the gini gain with the Gamma distribution.

As mentioned in Section 2, the contingency table de-
scribed in Section 2 contains the sufficient statistics
for the computation of the gini gain. Thus in order
to analyze the distribution of the gini gain, it is suf-
ficient to look at the distribution of the entries in the
contingency table. Consider a given fixed set of param-
eters N, n, k, N;,i€{l,..,n}, and p;, je{1,..,k}. If
the Null Hypothesis holds, the A;;’s and S;’s are ran-
dom variables with multinomial distributions (see Sec-
tion 3). Using the definition of the gini gain (Equa-
tion 2), linearity of expectation, the fact that the A4;;’s
and S;’s have multinomial distributions, and the nor-
malization constraint on the p;’s, we get the following

3Due to limited space, we have omitted results from
these experiments in this paper.



formula for the expectation E(Ag) of the gini gain
under the Null Hypothesis:

" EAQ) E(S;
(S5

2|H

zn: ipj(1 —pj + Nipj)
N;

ZIH

i

B ij(l —pj+ ij))

N (19)

1
N ("Pj(l—Pj) + Np;

—Pj(l—Pj) -

n—1 k
_ 2
= 1—2 Dj

! j=1

HM»

Np3)

so the expected value of the gini gain is indeed linear
in n as observed by White and Liu (1994).

Computation of the the variance Var (Ag) of the gini
gain results in the following formula:*

Var (Ag) =

Note that our formulas for the expected value and the
variance of the gini gain under the Null Hypothesis
are not approximations, but exact values. To find the
right parameters of the suitable gamma distribution
with the same expected value and same variance as
the gini gain, we use the fact that E(T'(a,6)) = af
and Var (I'(a,0)) = af?, thus a = E(Ag)?/Var (Ag)
and § = Var (Ag) /E(Ag). Approximating the p-value
of gini gain with the p-value of this distribution we
obtain:

E(Ag)?
Var (Ag)’

p-value(Ag,) =1 - Q ( Age Var (Ag)> ;

E(Ag)
(21)

“Due to space constraints we omitted the proof of this
result.

where Ag, is the actual value for gini computed on
the given dataset and Q(z,y) = I'(z,y)/I'(z) is the
regularized incomplete gamma function. We call this
new criterion the Gamma correction. From Equa-
tions 19, 20 and 21 it is easy to see that the correction
depends only on n, N, and the N;’s and p;’s

Note that there is a very important numerical preci-
sion problem associated with the above formula. Even
for moderate correlation between a predictor variable
and the class label, the value of the second term in
Equation 21 approaches 1 very rapidly (by far exceed-
ing the precision of the processor). Thus the computed
value of the p-value is 0 in this case, seemingly limiting
the usefulness of our criterion for the case that corre-
lations between a predictor variable and the class label
are present. This “non-discrimination” anomaly was
also observed by Kononenko (1995).

For our criterion, we can avoid this problem by di-
rectly computing the logarithm of the p-value using a
series expansion.® In this fashion, values of the log-
arithm of the p-value (which can be used instead of
the p-value since the logarithm is a monotonically in-
creasing function) can be computed accurately even
for datasets with millions of records and very strong
correlations.

The computational complexity of our new criterion is
O(n+ k) since we have to compute the sum of inverses
of the N;’s and p;’s; all other factors can be computed
in time O(1), including the logarithm of the incomplete
regularized gamma function. Thus our new criterion
can be computed very efficiently in practice.®

5. Experimental Evaluation

In this section we will show experimental evidence that
our theoretical corrections behave well in practice. To
evaluate the bias of the gamma correction of the gini
gain we repeated the experiment from Section 3. The
bias of our correction of the gini gain as a function of
N and p; is depicted in Figure 7. As can be observed
by comparing Figures 5 and 7, the bias for the cor-
rected gini gain and the y2-test are practically iden-
tical for all values of p; and N. Also, for p; between
10=* and 1072 all the statistical methods are biased
towards predictor variables with small n in precisely

"We used the implementation of the incomplete gamma
function in the Statistics package ANA (Shine & Strous,
2001)

50n a Pentium III 933MHz the computation of the in-
complete regularized gamma function takes 155us. This is
also the time to compute the contingency table for 14000
samples in the most favorable case (one predictor variable
and highly optimized code for this special case).



Figure 7. Bias of the p-value of the gini gain using the
gamma correction

the same way. As mentioned in Section 3, the most ex-
treme bias is obtained for p; = 1/N. In this case the
probability to see exactly one data-point with class la-
bel ¢ is N% (1 — %)N_l ~ e~!. The margin A from
the Lemma in Section 4 is at least 2e~! ~ 0.73 which
means that the exact correction (using the exact dis-
tribution of the split criteria) can have any bias. Thus
around p; = 1/N we cannot expect any of the statis-
tical methods to be perfectly unbiased.

Note that for small entries in the contingency table
the x2-distribution is a poor approximation of the y2-
test. (We observed that for this case the expected
value according to the y2-distribution is correct, but
the variance is overestimated.) In the case that a pre-
dictor variable is not correlated with the class label,
the overestimation of the variance does not seem to
matter (but this might not be the case when correla-
tions are present).

To summarize our experiments, the gamma correction
of the gini gain and the x? criterion have very good
behavior under the Null Hypothesis. The G? criterion
behaves well if class labels are almost equiprobable but
some bias is present if this is not the case. The gini
gain, the information gain, and the gain ratio have
significant biases towards variables with more values.

6. Conclusions

This paper addresses the fundamental problem of bias
in split variable selection in classification tree construc-
tion. Our contribution is (1) a general method to prov-
ably remove the bias introduced by categorical vari-
ables with large domains and (2) an the application
of our method to the removal of the bias for the gini
gain.

Previous work for some split criterions suggests that
removal of the bias by the usage of p-values improves
the quality of the split when correlations are weak and
in the same time preserves the good behavior for strong
correlations (Mingers, 1987; Frank & Witten, 1998).
This suggests that bias removal in general is useful in
practice. We consider the work described in this paper
an initial step in a potentially interesting direction. In
future work we intend to thoroughly investigate, both
theoretically and experimentally, the properties of the
proposed correction of the split criteria for the case
when correlations are present.
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