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Abstract

Clustering is an important data mining problem. Most of the earlier
work on clustering focussed on numeric attributes which have a
natural ordering on their attribute values. Recently, clustering data
with categorical attributes, whose attribute values do not have a
natural ordering, has received some attention. However, previous
algorithms do not give a formal description of the clusters they
discover and some of them assume that the user post-processes the
output of the algorithm to identify the final clusters.

In this paper, we introduce a novel formalization of a cluster for
categorical attributes by generalizing a definition of a cluster for
numerical attributes. We then describe a very fast summarization-
based algorithm called CACTUS that discovers exactly such clusters
in the data. CACTUS has two important characteristics. First, the
algorithm requires only two scans of the dataset, and hence is very
fast and scalable. Our experiments on a variety of datasets show that
CACTUS outperforms previous work by a factor of3 to 10. Second,
CACTUS can find clusters in subsets of all attributes and can thus
perform a subspace clustering of the data. This feature is important
if clusters do not span all attributes, a likely scenario if the number
of attributes is very large. In a thorough experimental evaluation, we
study the performance of CACTUS on real and synthetic datasets.

1 Introduction

Clustering is an important data mining problem. The goal of
clustering, in general, is to discover dense and sparse regions
in a dataset. Most previous work in clustering focussed
on numerical data whose inherent geometric properties can
be exploited to naturally define distance functions between
points. However, many datasets also consist of categorical
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attributes1 on which distance functions are not naturally
defined. Recently, the problem of clustering categorical data
started receiving interest [GKR98, GRS99].

As an example, consider the MUSHROOM dataset in the
popular UCI Machine Learning repository [CBM98]. Each
tuple in the dataset describes a sample of gilled mushrooms
using twenty two categorical attributes. For instance, thecap
color attribute can take values from the domainfbrown, buff,
cinnamon, gray, green, pink, purple, red, white, yellowg. It
is hard to reason that one color is “like” or “unlike” another
color in a way similar to real numbers.

An important characteristic of categorical domains is that
they typically have a small number of attribute values. For
example, the largest domain for a categorical attribute of
any dataset in the UCI Machine Learning repository consists
of 100 attribute values (for an attribute of thePendigits
dataset). Categorical attributes with large domain sizes
typically do not contain information that may be useful for
grouping tuples into classes. For instance, theCustomerId
attribute in the TPC-D database benchmark [Cou95] may
consist of millions of values; given that a record (or a set
of records) takes a certainCustomerId value (or a set of
values), we cannot infer any information that is useful for
classifying the records. Therefore, it is different from the age
or geographical location attributes which can be used to group
customers based on their age or location or both. Typically,
relations contain10 to 50 attributes; hence, even though the
size of each categorical domain is small, the cross product
of all their domains and hence the relation itself can be very
large.

In this paper, we introduce a fast summarization-based
algorithm called CACTUS2 for clustering categorical data.
CACTUS exploits the small domain sizes of categorical at-
tributes. The central idea in CACTUS is that summary in-
formation constructed from the dataset is sufficient for dis-
covering well-defined clusters. The properties that the sum-
mary information typically fits into main memory, and that
it can be constructed efficiently|typically in a single scan of
the dataset|result in significant performance improvements:

1Attributes whose domain is totally ordered are callednumeric, whereas
attributes whose domain is not ordered are calledcategorical.
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a factor of3 to 10 times over one of the previous algorithms.
Our main contributions in this paper are:

1. We formalize the concept of a cluster over categorical
attributes (Section 3).

2. We introduce a fast summarization-based algorithm CAC-
TUS for clustering categorical data (Section 4).

3. We then extend CACTUS to discover clusters in sub-
spaces, especially useful when the data consists of a large
number of attributes (Section 5).

4. In an extensive experimental study, we evaluate CAC-
TUS and compare it with earlier work on synthetic and
real datasets (Section 6).

2 Related Work
In this section, we discuss previous work on clustering cate-
gorical data. The EM (Expectation-Maximization) algorithm
is a popular iterative clustering technique [DLR77, CS96].
Starting with an initial clustering model (a mixture model) for
the data, it iteratively refines the model to fit the data better.
After an indeterminate number of iterations, it terminates at a
locally optimal solution. The EM algorithm assumes that the
entire data fits into main memory and hence is not scalable.
We now discuss two previous scalable algorithms STIRR and
ROCK for clustering categorical data.

Gibson et al. introduce STIRR, an iterative algorithm based
on non-linear dynamical systems [GKR98]. They represent
each attribute value as a weighted vertex in a graph. Multiple
copies b1; : : : ; bm, called basins, of this set of weighted
vertices are maintained; the weights on any given vertex
may differ across basins.b1 is called theprincipal basin;
b2; : : : ; bm are callednon-principalbasins. Starting with a
set of weights on all vertices (in all basins), the system is
“iterated” until a fixed point is reached. Gibson et al. argue
that when the fixed point is reached, the weights in one or
more of the basinsb2; : : : ; bm isolate two groups of attribute
values on each attribute: the first with large positive weights
and the second with small negative weights, and that these
groups correspond intuitively to projections of clusters on the
attribute. However, the automatic identification of such sets
of closely related attribute values from their weights requires
a non-trivial post-processing step; such a post-processing
step was not addressed in their work. Moreover, the post-
processing step will also determine what “clusters” are output.
Also, as we show in Section 3.2, certain classes of clusters are
not discovered by STIRR.

Guha et al. introduce ROCK, an adaptation of an agglom-
erative hierarchical clustering algorithm, which heuristically
optimizes a criterion function defined in terms of the number
of “links” between tuples [GRS99]. Informally, the number of
links between two tuples is the number of common neighbors3

3Given a similarity function, two tuples in the dataset are said to be
neighborsif the similarity between them is greater than a certain threshold.

they have in the dataset. Starting with each tuple in its own
cluster, they repeatedly merge the two closest clusters till the
required number (say,K) of clusters remain. Since the com-
plexity of the algorithm iscubic in the number of tuples in
the dataset, they cluster a sample randomly drawn from the
dataset, and then partition the entire dataset based on the clus-
ters from the sample. Beyond that the set of all “clusters”
together may optimize a criterion function, the set of tuples in
each individual cluster is not characterized.

3 Definitions
In this section, we formally define the concept of a cluster
over categorical attributes, and other concepts used in the
remainder of the paper. We then compare the class of clusters
allowed by our definition with those discovered by STIRR.

3.1 Cluster Definition

Intuitively, a cluster on a set of numeric attributes identifies
a “dense region” in the attribute space. That is, the region
consists of a significantly larger number of tuples than
expected. We generalize this intuitive notion for the class of
hyper-rectangular clusters to the categorical domain.4

As an illustrative example, the region[1; 2]� [2; 4]� [3; 5]
may correspond to a cluster in the 3-d space spanned by three
numeric attributes. In general, the class of rectangular regions
can be expressed as the cross product of intervals. Since
domains of categorical attributes are not ordered, the concept
of an interval does not exist. However, a straightforward
generalization of the concept of an interval to the categorical
domain is a set of attribute values. Consequently, the
generalization of rectangular regions in the numeric domain
to categorical domain is the cross product of sets of attribute
values. We call such regionsinterval regions.

Intuitively, a cluster consists of a significantly larger
number of tuples than the number expected if all attributes
were independent. In addition, a cluster also extends to as
large a region as possible. We now formalize this notion
for categorical domains by first defining the notion of a tuple
belongingto a region, and then thesupportof a region, which
is the number of tuples in the dataset that belong to the region.

Definition 3.1 Let A1; : : : ; An be a set of categorical at-
tributes with domainsD1; : : : ;Dn, respectively. Let the
datasetD be a set of tuples where each tuplet: t 2 D1 �
� � � �Dn. We callS = S1� � � � �Sn aninterval regionif for
all i 2 f1; : : : ; ng, Si � Di. Let ai 2 Di andaj 2 Dj , i 6= j.
Thesupport�D(ai; aj) of the attribute value pair(ai; aj) with
respect toD is defined as follows:

�D(ai; aj)
def
= jft 2 D : t:Ai = ai andt:Aj = ajgj

4Classes of clusters that correspond to arbitrarily shaped regions in the
numeric domain cannot be generalized as cleanly to the categorical domain
because the categorical attributes do not have a natural ordering imposed on
their domains. Therefore, we only consider the class of hyper-rectangular
regions.



A tuple t = ht:A1; : : : ; t:Ani 2 D is said tobelongto the
regionS if for all i 2 f1; : : : ; ng, t:Ai 2 Si. The support
�D(S) of S is the number of tuples inD that belong toS.

If all attributesA1; : : : ; An are independent and the at-
tribute values in each attribute are equally likely (henceforth
referred to as theattribute-independence assumption) then the
expected supportE[�D(S)] of a regionS = S1 � � � � � Sn is
jDj � jS1j�����jSnjjD1j�����jDnj

. As before, the expected support of(ai; aj)

E[�D(ai; aj)] is jDj � 1
jDij�jDjj

. Since the datasetD is under-
stood from the context, we write�(S) instead of�D(S), and
�(ai; aj) instead of�D(ai; aj). Finally, we note that the at-
tribute independence assumption can be modified to take any
prior information into account; e.g., the marginal probabilities
of attribute values.

Intuitively, �(ai; aj) captures the co-occurence, and hence
the similarity, of attribute valuesai andaj . Valuesai and
aj are said to bestrongly connectedif their co-occurrence
(�(ai; aj)) is significantly higher (by some factor�) than the
value expected under the attribute-independence.5 We now
define�� to formalize this intuition, and then give a formal
definition of a cluster.

Definition 3.2 Let ai 2 Di, aj 2 Dj , and� > 1. The
attribute valuesai andaj arestrongly connectedwith respect
toD if �D(ai; aj) > � � jDj

jDij�jDjj
. The function��D(ai; aj) is

defined as follows:

��D(ai; aj)
def
=

8<
:

�D(ai; aj); if ai andaj are
strongly connected

0; otherwise

Let Si � Di andSj � Dj , i 6= j, be two sets of attribute
values. An elementai 2 Si is strongly connected withSj if,
for all x 2 Sj , ai andx are strongly connected.Si andSj
are said to be strongly connected if eachai 2 Si is strongly
connected withSj and eachaj 2 Sj is strongly connected
with Si.

Definition 3.3 For i = 1; : : : ; n, let Ci � Di, jCij > 1,
and � > 1. ThenC = hC1; : : : ; Cni is a cluster over
fA1; : : : ; Ang if the following three conditions are satisfied.
(1) For all i; j 2 f1; : : : ; ng; i 6= j, Ci andCj are strongly
connected. (2) For alli; j 2 f1; : : : ; ng, i 6= j, there exists
noC 0

i � Ci such that for allj 6= i, C 0
i andCj are strongly

connected. (3) The support�D(C) of C is at least� times
the expected support ofC under the attribute-independence
assumption.

We callCi the cluster-projectionof C onAi. C is called
a sub-clusterif it satisfies conditions (1) and (3). A clusterC
over a subset of all attributesS � fA1; : : : ; Ang is called a
subspace clusteronS; if jSj = k thenC is called ak-cluster.

5Because a deviation of2 or 3 times the expected value is usually
considered significant [BD76], typical values of� are between2 and3.

We now extend our notion of similarity to attribute value
pairs on the same attribute. Leta1; a2 2 Di andx 2 Dj .
If (a1; x) and (a2; x) are strongly connected then(a1; a2)
are “similar” to each other with respect toAj . The level
of similarity is the number of such distinct attribute values
x 2 Dj . We now formalize this intuition.

Definition 3.4 Let a1; a2 2 Di. The similarity 
j(a1; a2)
betweena1 anda2 with respect toAj (j 6= i) is defined as
follows.


j(a1; a2)
def
= jfx 2 Dj : �

�(a1; x) > 0 and��(a2; x) > 0gj

Below, we define the summary information which we need
later to describe the CACTUS algorithm. The summary in-
formation is of two types: (1)inter-attributesummaries and
(2) intra-attributesummaries. The inter-attribute summaries
consist of all strongly connected attribute value pairs where
each pair has attribute values from different attributes; the
intra-attribute summaries consist of similarities between at-
tribute values of the same attribute.

Definition 3.5 Let A1; : : : ; An be a set of categorical at-
tributes with domainsD1; : : : ;Dn respectively, and letD be
a dataset. Theinter-attribute summary�IJ is defined as:

�IJ
def
= f�ij : i; j 2 f1; : : : ; ng; i 6= jg where

�ij
def
=

f(ai; aj ; �
�
D(ai; aj)) : ai 2 Di; aj 2 Dj ; and��D(ai; aj) > 0g

The intra-attribute summary�II is defined as:

�II
def
= f�jii : i; j 2 f1; : : : ; ng andi 6= jg where

�jii
def
=

f(ai1; ai2; 

j(ai1; ai2)) : ai1; ai2 2 Di; and
j(ai1; ai2)) > 0g

3.2 Discussion
We now compare the class of clusters allowed by our
definition with the clusters discovered by STIRR. For the
comparison, we generate test data using the data generator
developed by Gibson et al. for evaluating STIRR [GKR98].
We consider three datasets shown in Figures 1, 2, and 3.
Each dataset consists of100000 tuples. DS1 andDS2 have
two attributes,DS3 has three attributes where each attribute
consists of100 attribute values. These tuples are distributed
over all attribute values on each attribute according to the
attribute-independence assumption. We control the location
and the size of clusters in each dataset by distributing an
additional number of tuples (5% of the total number in the
dataset) in regions designated to be clusters thus increasing
their supports above the expected value under the attribute-
independence assumption. In Figures 1, 2, and 3, the cluster-
projection of each cluster is shown within an ellipse. The
boundaries of the cluster-projections (ellipses) of a cluster are
connected by lines of the same type (e.g., solid, dashed etc.).
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We ran STIRR on the datasets shown in Figures 1, 2, and 3,
and manually selected the basin that assigns positive and
negative weights respectively to attribute values in different
cluster-projections. To identify the cluster projections, we
observed the weights allocated by STIRR and isolated two
groups such that the weights in each group have large
magnitude and are close to each other. The cluster-projections
identified by STIRR are shown in Figures 4, 5, and 6.

STIRR recognized the cluster-projections forDS1 on the
first non-principal basin (b2) for every attribute (as shown
in Figure 4). When run on the datasetDS2, the first
non-principal basin (b2) on A1 identifies the two groups:
f0; : : : ; 9g and f10; : : : ; 17g (as shown in Figure 5). The
second non-principal basin (b3) onA1 identifies the following
two groups: f0; : : : ; 6g and f7; : : : ; 17g. Thus, no basin
identifies the overlap between the cluster-projections. It may
be possible to identify such overlaps through a non-trivial post
processing step. However, it is not clear how many basins
are required and how to recognize that cluster-projections
overlap from the weights on attribute values. We believe
that any such post-processing step itself will be similar to the
CACTUS algorithm. The result of running STIRR on the
datasetDS3 is shown in Figure 6. STIRR merged the two
cluster-projections on the second attribute, possibly because
one of the cluster-projections participates in more than one
cluster.

From these experiments, we observe that STIRR fails
to discover the following classes of clusters: (1) clusters
consisting of overlapping cluster-projections on any attribute,
(2) clusters where two or more clusters share the same cluster-
projection. However, intuitively, these two classes of clusters
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should be valid classes of clusters, and our cluster definition
includes these classes. CACTUS correctly discovers all
the implanted clusters from the datasetsDS1, DS2, and
DS3. Thus, our definition of a cluster and hence CACTUS,
which discovers all clusters allowed by our definition, seems
to identify a broader class of clusters than that discovered
by STIRR. Since it is not possible to characterize clusters
discovered by STIRR, we could not construct any example
datasets from which CACTUS does not retrieve the expected
clusters and STIRR does. However, it is possible that such
types of clusters exist.

4 CACTUS
In this section, we describe our three-phase clustering algo-
rithm CACTUS. The central idea behind CACTUS is that a
summary of the entire dataset is sufficient to compute a set



of “candidate” clusters which can then be validated to deter-
mine the actual set of clusters. CACTUS consists of three
phases:summarization, clustering, and validation. In the
summarization phase, we compute the summary information
from the dataset. In the clustering phase, we use the sum-
mary information to discover a set of candidate clusters. In
the validation phase, we determine the actual set of clus-
ters from the set of candidate clusters. We introduce a hy-
pothetical example which we use throughout the paper to
illustrate the successive phases in the algorithm. Consider
a dataset with three attributesA;B, andC with domains
fa1; a2; a3; a4g, fb1; b2; b3; b4g, andfc1; c2; c3; c4g, respec-
tively. Let the strongly connected attribute value pairs be as
shown in Figures 7 and 8.

4.1 Summarization Phase

In this section, we describe the summarization phase of
CACTUS. We show how to efficiently compute the inter-
attribute and the intra-attribute summaries, and then describe
the resource requirements for maintaining these summaries.

Categorical attributes usually havesmalldomains. Typical
categorical attribute domains considered for clustering consist
of less than a hundred or, rarely, a thousand attribute values.
An important implication of the compactness of categorical
domains is that the inter-attribute summary�ij for any pair
of attributesAi andAj fits into main memory because the
number of all possible attribute value pairs fromAi andAj
equalsjDij � jDj j. For the rest of this section, we assume
that the inter-attribute summary of any pair of attributes fits
easily into main memory. (We will give an example later
to support this assumption, and to show that typically inter-
attribute summaries for many pairs of attributes together fit
into main memory.) However, for the sake of completeness,
we extend our techniques in Section 5 to handle cases where
this trait is violated. The same argument holds for the intra-
attribute summaries as well.

4.1.1 Inter-attribute Summaries

We now discuss the computation of the inter-attribute sum-
maries. Consider the computation of�ij , i 6= j. We initialize
a counter to zero for each pair of attribute values(ai; aj) 2
Di � Dj , and start scanning the datasetD. For each tuple
t 2 D, we increment the counter for the pair(t:Ai; t:Aj).
After the scan ofD is completed, we compute�� by set-
ting to zero all counters whose value is less than the threshold
�ij = � � jDj

jDij�jDjj
. Thus, counts of only the strongly con-

nected pairs are retained. The number of strongly connected
pairs is usually much smaller thanjDij � jDj j. Therefore, the
set of strongly connected pairs can be maintained in special-
ized data structures designed for sparse matrices [DER86].6

We now present a hypothetical example to illustrate the
resource requirements of the simple strategy described above.
Consider a dataset with50 attributes each consisting of100

6In our current implementation, we maintain the counts of strongly
connected pairs in an array and do not optimize for space.

attribute values. Suppose we have100 MB of main memory
(easily available on current desktop systems). Assuming that
each counter requires4 bytes we can maintain counters for
2500 (= 100�106

100�100�4 ) attribute pairs simultaneously. With50
attributes, we have to evaluate1225 attribute pairs. Therefore,
we can compute all inter-attribute summaries together in
just one scan of the dataset. The computational and space
requirements here are similar to that of obtaining counts of
pairs of items while computing frequent itemsets [AMS+96].

Quite often, a single scan is sufficient for computing�IJ .
In some cases, we may need to scanD multiple times|
each scan computing�ij for a different set of(i; j) pairs.
The computation of the inter-attribute summaries is CPU-
intensive, especially when the number of attributesn is high,
because for each tuple in the dataset, we have to increment
n(n�1)

2 counters. Even if we require multiple scans of the
dataset, the I/O time for scanning the dataset goes up but the
total CPU time|for incrementing the counters|remains the
same. Since the CPU time dominates the overall summary-
construction time, the relative increase due to multiple scans
is not significant. For instance, consider a dataset of1 million
tuples defined on50 attributes, each consisting of100 attribute
values. Experimentally, we found that the total time for
computing the inter-attribute summaries of the dataset with1
million tuples is1040 seconds, whereas a scan of the dataset
takes just28 seconds. Suppose we partition all the1225 pairs
of attributes into three groups consisting of408, 408, and
409 pairs respectively. The computation of the inter-attribute
summaries of attribute pairs in each group requires a scan
of the dataset. The total computation time will be around
1096 seconds, which is only slightly higher than computing
the summary in one scan.

4.1.2 Intra-attribute Summaries

In this section, we describe the computation of the intra-
attribute summaries. We again exploit the characteristic
that categorical domains are very small and thus assume
that the intra-attribute summary of any attributeAi fits in
main memory. Our procedure for computing�jii reflects the
evaluation of the following SQL query:

Select T1:A; T2:A; count(�)
From �ij as T1(A,B),�ij as T2(A,B)
Where T1.A6= T2.A and T1.B = T2.B
Group by T1.A, T2.A
Having count > 0;

The above query joins�ij with itself to compute the set of
attribute value pairs ofAi strongly connected to each other
with respect toAj .7 Since�ij fits in main memory the self-
join and hence the computation of�jii is very fast. We will
observe in the next section that, at any stage of our algorithm,
we only require�jii for a particular pair of attributesAi and

7For an exposition of join processing, see any standard textbook on
database systems, e.g., [Ram97].



Aj . Therefore, we compute�jii, (j 6= i), for each(i; j) pair
whenever it is required.

Consider the example shown in Figure 7. (We use the
notation�XY to denote the inter-attribute summary between
attributesX and Y .) The inter-attribute summaries�AB ,
�BC , and�AC correspond to the edges between attribute
values in the figure. The intra-attribute summaries�BAA,
�CBB , �BCC are shown in Figure 8.

4.2 Clustering Phase

In this section, we describe the two-step clustering phase
of CACTUS that uses the attribute summaries to compute
candidate clusters in the data. In the first step, we analyze
each attribute to compute all cluster-projections on it. In the
second step, we synthesize, in a level-wise manner, candidate
clusters on sets of attributes from the cluster-projections on
individual attributes. That is, we determine candidate clusters
on a pair of attributes, then extend the pair to a set of three
attributes, and so on. We now describe each step in detail.

4.2.1 Computing Cluster-Projections on Attributes

Let A1; : : : ; An be the set of attributes andD1; : : : ;Dn be
their domains. The central idea for computing all cluster-
projections on an attribute is that a clusterhC1; : : : ; Cni
over the set of attributesfA1; : : : ; Ang induces a sub-cluster
over any attribute pair(Ai; Aj), i 6= j. In addition, the
cluster-projectionCi onAi of the clusterC is the intersection
of the cluster-projections onAi of 2-clusters over attribute
pairs (Ai; Aj), j 6= i. For example, the cluster-projection
fb1; b2g on the attributeB in Figure 7 is the intersection
of fb1; b2; b3g (the cluster-projection onB of the 2-cluster
hfb1; b2; b3g; fc1; c2gi) andfb1; b2g (the cluster-projection on
B of the2-clusterhfa1; a2; a3; a4g; fb1; b2gi). We formalize
the idea in the following lemma.

Lemma 4.1 LetC = hC1; : : : ; Cni be a cluster on the set of
attributesfA1; : : : ; Ang. Then,
(1) For all i 6= j, i; j 2 f1; : : : ; ng, hCi; Cji is a sub-cluster
over the pair of attributes(Ai; Aj).
(2) There exists a setfCji : j 6= i andhCji ; C

i
ji is a 2-cluster

over(Ai; Aj)g such thatCi = \j 6=iC
j
i .

Lemma 4.1 motivates the following two-step approach. In
the firstpairwise cluster-projectionstep, we cluster each at-
tributeAi with respect to every other attributeAj , j 6= i to
find all cluster-projections onAi of 2-clusters over(Ai; Aj).
In the secondintersectionstep, we compute all the cluster-
projections onAi of clusters overfA1; : : : ; Ang by inter-
secting sets of cluster-projections from2-clusters computed
in the first step. However, the problem of computing cluster-
projections of2-clusters in the pairwise cluster-projection step
is at least as hard as the NP-completecliqueproblem [GJ79].8

8A clique in Gj

i
is a set of vertices that are connected to each other by

edges with non-zero weights. Given a graphG = hV;Ei and a constantJ ,
the clique problem determines ifG consists of a clique of size at leastJ .
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Figure 9: Extendingfa1; a2g w.r.t. B

The following lemma formalizes the computational complex-
ity. The proof is given in the full paper [GGR99].

Lemma 4.2 Let Ai andAj be two attributes. The problem
of computing all cluster-projections onAi of 2-clusters over
(Ai; Aj) is NP-complete.

To reduce the computational complexity of the cluster-
projection problem, we exploit the following property which,
we believe, is usually exhibited by clusters in the categorical
domain. If a cluster-projectionCi on Ai of one (or more)
cluster(s) is larger than a fixed positive integer, called the
distinguishing number(denoted�), then it consists of a small
identifying set|which we call thedistinguishing set|of
attribute values such that they will nottogetherbe contained
in any other cluster-projection onAi. Thus, the distinguishing
set distinguishesCi from other cluster-projections onAi.
Note that a proper subset of the distinguishing set may still
belong to another cluster-projection, and that two distinct
clusters may share an identical cluster-projection (as in
Figure 1).

We believe that the distinguishing subset assumption holds
in almost all cases. Even for the most restrictive version,
which occurs when the distinguishing number is1 and all
cluster-projections of the set of clusters are distinct, the as-
sumption only requires that each cluster consist of a set of
attribute values|one on each attribute|that does not belong
to any other cluster. For the example in Figure 7, the sets
fa1g or fa2g identify the cluster-projectionfa1; a2g on the
attributeA. We now formally state the assumption.

Distinguishing Subset Assumption:Let Ci andC 0
i each of

size greater than� be two distinct cluster-projections on the
attributeAi. Then there exist two setsSi andS0i such that

jSij � �; Si � Ci; jS
0
ij � �; S0i � C 0

i ; andSi 6� C 0
i ; S

0
i 6� Ci

We call� thedistinguishing number.

Pairwise Cluster-Projections
We compute cluster-projections onAi of 2-clusters over the
attribute pair(Ai; Aj) in two steps. In the first step, we find
all possible distinguishing sets (of size less than or equal to�)
onAi. In the second step, we extend with respect toAj some



of these distinguishing sets to compute cluster-projections on
Ai. Henceforth, we write “cluster-projection onAi” instead
of a “cluster-projection onAi of a2-cluster over(Ai; Aj).”

Distinguishing Set Computation: In the first step, we rely on
the following two properties to find all possible distinguishing
sets onAi. (1) All pairs of attribute values in a distinguishing
set are strongly connected; that is the distinguishing set forms
aclique. (2) Any subset of a distinguishing set is also a clique
(monotonicity property). These two properties allow a level-
wise clique generation similar to the candidate generation in
apriori [AMS+96]. That is, we first compute all cliques of
size2, then use them to compute cliques of size3, and so on
until we compute all cliques of size less than or equal to�.

Let Ck denote the set of all cliques of size equal tok. We
give an inductive description of the procedure to generate the
setCk. The base caseC2 whenk = 2 consists of all pairs
of strongly connected attribute values inDi. These pairs can
easily be found from�jii. The setCk+1 is computed from the
setCk (k � 2) by “joining” Ck with itself. The join is the sub-
set join|used in the candidate generation step of the frequent
itemset computation in the apriori algorithm [AMS+96]. We
also remove all the candidates inCk+1 that contain a proper
k-subset not inCk (a la subset pruning in apriori).

Extension Operation: In the second step, we “extend” some
of the candidate distinguishing sets computed in the first
step to compute cluster-projections onAi of 2-clusters on
(Ai; Aj). The intuition behind the extension operation is
illustrated in Figure 9. Suppose we want to extendfa1; a2g on
A with respect toB. We compute the setfb1; b2g of attribute
values onB strongly connected withfa1; a2g. We then extend
fa1; a2g with the set of all other valuesfa3; a4g onA that is
strongly connected withfb1; b2g.

Informally, the extension of a distinguishing setS � Di
adds toS all attribute values inDi that are strongly connected
with the set of all attribute values inDj that S is strongly
connected with. We now introduce the concepts ofsibling set,
subset flag, and theparticipation countto formally describe
the extension operation.

Definition 4.1 LetAi andAj be two attributes with domains
Di andDj . Let CSji be the set of cluster-projections onAi
of 2-clusters over(Ai; Aj). Let DSji be a set of candidate
distinguishing sets, with respect toAj , on attributeAi. The
sibling setSij of Si 2 DSji with respect to the attributeAj is
defined as follows:

Sij = faj 2 Dj : for all ai 2 Si; �
�(ai; aj) > 0g

jSji j is called thesibling strengthof Si with respect toAj .
The subset flagof Si 2 DSji with respect to a collection of
setsCs is said to beset(to 1) if there exists a setS 2 Cs such
thatSi � S. Otherwise, the subset flag ofSi is not set.
Theparticipation countof Si 2 DSji with respect toCs is the
sum of the sibling strengths with respect toAj of all supersets
of Si in Cs.

Informally, the subset flag and the participation count serve
the following two purposes. First, a cluster-projection may
consist of more than one distinguishing set inDSji . Therefore,
if we extend each set inDSji a particular cluster-projection
may be generated several times, once for each distinguishing
set it contains. To avoid the repeated generation of the
same cluster-projection, we associate with each distinguishing
set a subset flag. The subset flag indicates whether the
distinguishing set is a subset of an existing cluster-projection
in CSji . Therefore, if the subset flag is set then the
distinguishing set need not be extended. For the example
shown in Figure 7, the distinguishing setsfa1g andfa2g on
A can both be extended to the cluster-projectionfa1; a2g.
Second, the distinguishing subset assumption applies only to
cluster-projections of size greater than�. Therefore, a clique
of size less than or equal to� may be a cluster-projection on
its own even though it may be a subset of some other cluster-
projection. To recognize such small cluster-projections, we
associate a participation count with each distinguishing set.
If the participation count of a distinguishing set with respect
to CSji is less than its sibling strength then it may be a small
cluster-projection.

Algorithm 4.1 Extend(DSji ;�ij )
/* Output: CSji */
/* Initialization */
CSji = �

Reset the subset flags and the participation counts of all
distinguishing sets inDSji to zero

foreachSi 2 DSji
if the subset flag ofSi is not set then

ExtendSi toCSi
Set the subset flags and increment by the sibling

strength ofSi the participation counts of all subsets
of CSi in DSji .

end /*if*/
end /*for*/
Identify and add small cluster-projections (of size� �) toCSji

The pseudocode for the computation ofCSji is shown in Al-
gorithm 4.1. Below, we describe each step in detail.

Initialization: The first two steps initialize the procedure:
we setCSji = �, and the subset flags and their participation
counts of all distinguishing sets inDSji to zero.
Extending Si: Let Sji be the sibling set ofSi with respect to
Aj . LetCSi be the sibling set ofSji with respect toAi. Then,
we extendSi to the cluster-projectionCSi . AddCSi to CSji .
Prune subsets ofCSi : SupposeCSi was extended fromSi.
Then, by definition, subsets ofCSi cannot be the distinguish-
ing sets of other cluster projections onAi. Therefore, we set
(to 1) all subset flags of subsets ofCSi (includingSi) in DSji .
The participation count of each of these subsets is also in-
creased byjSji j|the sibling strength ofSi.



Identifying small cluster-projections: While extending dis-
tinguishing sets, we only choose sets whose subset flags are
not set. We check if each unextended distinguishing setSi
whose subset flag is set can be a small (of size less than�)
cluster-projection. If the participation count ofSi equals its
sibling strength, thenSi cannot be a cluster-projection on its
own. Otherwise,Si may be a cluster-projection. Therefore,
we addSi to CSji .

Note that the computation of cluster-projections onAi
requires only the inter-attribute summary�ij and the intra-
attribute summary�jii. Since�ij and �jii fit into main
memory, the computation is very fast.

Intersection of Cluster-projections

Informally, the intersection step computes the set of cluster-
projections onAi of clusters overfA1; : : : ; Ang by succes-
sively joining sets of cluster-projections onAi of 2-clusters
over attribute pairs(Ai; Aj), j 6= i. For describing the proce-
dure, we require the following definition.

Definition 4.2 Let S1 andS2 be two collections of sets of
attribute values onAi. We define theintersection joinS1uS2
betweenS1 andS2 as follows:S1 u S2

def
=

fs : 9s1 2 S1 ands2 2 S2 such thats = s1\s2 andjsj > 1g

Let CSji be the set of cluster-projections onAi with respect
to Aj , j 6= i. Let j1 = 1 if i > 1, elsej1 = 2. Starting
with S = CSj1i , the intersection step executes the following
operation for allk 6= i.

S = S u CSki ; if k 6= i

The resulting setS is the set of cluster-projections onAi of
clusters overfA1; : : : ; Ang. Besides being a main-memory
operation, the number of cluster-projections onAi with re-
spect to any other attributeAj is usually small; therefore, the
intersection step is quite fast.

Further optimizations are possible over the basic strategy
described above for computing cluster projections. For
instance, we can combine the computation ofCSji and that of
CSij because, for each cluster-projection inCSji , we compute
its sibling set which is a cluster-projection inCSij . However,
we do not consider such optimizations because the clustering
phase takes a small fraction (less than10%) of the time taken
by the summarization phase. (Our experiments in Section 6
confirm this observation.)

4.2.2 Level-wise Synthesis of Clusters

In this section, we describe the synthesis of candidate clus-
ters from the cluster-projections on individual attributes (com-
puted as described in Section 4.2). The central idea is that a

cluster on a set of attributes induces a sub-cluster on any sub-
set of the attributes (monotonicity property). The monotonic-
ity property follows directly from the definition of a cluster.
We also exploit the fact that we want to compute clusters over
the set of all attributesfA1; : : : ; Ang. Informally, we start
with cluster-projections onA1 and then extend them to clus-
ters over(A1; A2), then to clusters over(A1; A2; A3), and so
on.

Let Ci be the set of cluster-projections on the attributeAi,
i = 1; : : : ; n. Let Ck denote the set of candidate clusters
defined over the set of attributesA1; : : : ; Ak. Therefore,
C1 = C1. We successively generateCk+1 from Ck until
Cn is generated orCk+1 is empty for somek + 1 < n.
The generation ofCk+1 from Ck proceeds as follows. Set
Ck+1 = �. For each elementck = hc1; : : : ; cki 2 Ck, we
attempt to augmentck with a cluster projectionck+1 on the
attributeAk+1. If for all i 2 f1; : : : ; kg, hci; ck+1i is a sub-
cluster on(Ai; Ak+1)|which can be checked by looking up
�i(k+1)|we augmentck to ck+1 = hc1; : : : ; ck+1i and add
ck+1 to Ck+1.

For the example in Figure 7, the computation of the set
of candidate clusters proceeds as follows. We start with
the setfa1; a2g on A. We then find the candidate2-cluster
fhfa1; a2g; fb1; b2gig over the attribute pair(A;B), and then
the candidate3-cluster fhfa1; a2g; fb1; b2g; fc1; c2gig over
fA;B;Cg.

4.3 Validation
We now describe a procedure to compute the set of actual
clusters from the set of candidate clusters. Some of the
candidate clusters may not have enough support because some
of the2-clusters that combine to form a candidate cluster may
be due to different sets of tuples. To recognize such false
candidates, we check if the support of each candidate cluster
is greater than the required threshold. Only clusters whose
support onD passes the threshold requirement are retained.

After setting the supports of all candidate clusters to zero,
we start scanning the datasetD. For each tuplet 2 D,
we increment the support of the candidate cluster to whicht

belongs. (Because the set of clusters correspond to disjoint
interval regions,t can belong to at most one cluster.) At
the end of the scan, we delete all candidate clusters whose
support in the datasetD is less than the required threshold:�

times the expected support of the cluster under the attribute-
independence assumption.

By construction, CACTUS discovers all clusters that satisfy
our cluster definition, and hence the following theorem holds.

Theorem 4.1 Given that the distinguishing subset assump-
tion holds, CACTUS finds all and only those clusters that sat-
isfy Definition 3.3.

5 Extensions
In this section, we extend CACTUS to handle unusually
large attribute value domains as well as to identify clusters
in subspaces.



5.1 Large Attribute Value Domains

Until now, we assumed that the domains of categorical
attributes are such that the inter-attribute summary of any pair
of attributes and the intra-attribute summary of any attribute
fits in main memory. For the sake of completeness, we modify
the summarization phase of CACTUS to handle arbitrarily
large domain sizes.

Recall that the summary information only consists of
strongly connected pairs of attribute values. For large domain
sizes, the number of strongly connected attribute value pairs
(either from the same or from different attributes) relative to
the number of all possible attribute value pairs is very small.
We exploit this observation to collapse sets of attribute values
on each attribute into a single attribute value thus creating a
new domain of smaller size. The intuition is that if a pair of
attribute values in the original domain are strongly connected,
then the corresponding pair of transformed attribute values
are also strongly connected, provided the threshold for strong
connectivity between attribute values in the transformed
domain is the same as that for the original domain.

Let Ai be an attribute with an unusually large domainDi.
Without loss of generality, letDi be the setf1; : : : ; jDijg. Let
M < jDij be the maximum number of attribute values per
attribute so that the inter-attribute summaries and the intra-
attribute summaries fit into main memory. Letc = d jDij

M
e.

We constructD0
i of sizeM from Di by mapping for a given

x 2 f0; : : : ;M�1g, the set of attribute valuesfx�c+1; : : : ; x�
c+ cg to the valuex+ 1. Formally,

D0
i = ff(1); : : : ; f(jDij)g; wheref(i) = b

i

k
c+ 1

We set the threshold for the strong connectivity involving
attribute values inD0

i as if Di was being used. We then
compute the inter-attribute summaries involvingAi using the
transformed domainD0

i. For each attribute valuea0i 2 D0
i

that participates in a strongly connected pair(a0i; aj) (aj 2
Dj , j 6= i), we expanda0i to the set of all attribute values
fa0i � c + 1; : : : ; a0i � c + cg � Di that map intoa0i and form
the pairs(a0i � c+1; aj); : : : ; (a

0
i � c+ c; aj). We then scan the

datasetD to count the supports of all these pairs, and select
the strongly connected pairs among them; they constitute the
inter-attribute summary�ij .

The number of new pairs whose supports are to be counted
is less than or equal toc � j�ij j where j�ij j represents the
number of strongly connected pairs inDi �Dj . If this set of
pairs is still larger than main memory, we can repeat the above
transformation trick. However, we believe that such repeated
application will be rare.

5.2 Clusters in Subspaces

CACTUS does not discover clusters in subspaces for the
following reason. The orderA1; : : : ; An in which cluster-
projections on individual attributes are combined may not be
the right order to find a subspace clusterC. For instance, ifC
spans the subspace defined by a set of attributesfA2; A3; A4g

(when n � 4) then the level-wise synthesis described in
Section 4.2.2 will not findC.

The extension to find subspace clusters exploits the mono-
tonicity property of subspace clusters. That is, a cluster
in a subspaceS induces a subcluster on any subset ofS.
The monotonicity property again motivates the apriori-style
level-wise synthesis of candidate clusters from the cluster-
projections on individual attributes. The algorithm differs in
two ways from the algorithm to find clusters over all attributes.
The first difference is that we do not restrict that a cluster-
projection on an attribute should participate in2-cluster with
every other attribute. The second difference is in the proce-
dure for generating the set of candidate clusters. We now dis-
cuss both differences.

We skip the intersection of cluster-projections on each
attributeAi with respect to every other attributeAj (j 6= i)
for the following two reasons. First, a cluster in subspace
S may not induce a2-cluster on a pair of attributes not
in S, and hence the intersection of cluster-projections on
an attribute inS with respect to every other attribute may
return an empty set. Second, the intersection may cause
the loss of maximality (condition (2) in Definition 3.3) of
a subspace cluster. For instance, a cluster-projection onAi
with respect toAj corresponds to a2-cluster over(Ai; Aj)
which, by definition, is a subspace cluster; truncating such a
cluster-projection in the intersection step will no longer yield
a maximal cluster on(Ai; Aj).

In the candidate generation algorithm, we letCk denote the
set of candidate clusters defined on any set ofk-attributes
(not necessarilyfA1; : : : ; Akg). Otherwise, the candidate
generation proceeds exactly as in Section 4.2.2. The reason
is that a subspace cluster onk attributes may not always be in
the firstk attributes.

For a clusterc 2 Ck in a subspace consisting ofk attributes,
the above candidate generation procedure examines2k� (k+
1) candidates. Depending on the value ofk (say, larger than
15), the number of candidate clusters can be prohibitively
high. The problem of examining a large number of candidate
clusters has been addressed by Agrawal et al. [AGGR98].
They use theminimum description lengthprinciple to prune
the number of candidate clusters. Their techniques apply
directly in our scenario as well. Therefore, we do not address
this problem; instead, we refer the reader to the original
paper [AGGR98].

6 Performance Evaluation

In this section, we show the results of a detailed evaluation
of the speed and scalability of CACTUS on synthetic and
real datasets. We also compared the performance of CAC-
TUS with the performance of STIRR.9 Our results show that
CACTUS is very fast and scalable; it outperforms STIRR by
a factor between3 and10.

9We intend to compare CACTUS and ROCK after our ongoing implemen-
tation of ROCK is complete.
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Figure 10: Time vs. #Tuples Figure 11: Time vs. #Attributes Figure 12: Time vs. #Attr-values

First Author First Author (contd.) Second Author Second Author (contd.)
Katz, Stonebraker, Wong Ceri, Navathe Katz, Wong Ceri, Navathe
DeWitt, Hsiao Abiteboul, Grumbach DeWitt, David Vianu, Grumbach
DeWitt, Ghandeharizadeh Korth, Levy DeWitt, Ghandeharizadeh Silbershatz, Levy
Kanellakis, Beeri, Vardi Agrawal, Gehani Abiteboul, Beeri Jagadish, Gehani
Ramakrishnan, Beeri Chen, Hua, Su Beeri, Srivastava Su, Chen, Chu
Bancilhon, Kifer Chen, Hua, Lam Ramakrishnan, Kim Su, Lee
Afrati, Cosmadakis Collmeyer, King, Shemer Papadimitriou, Cosmadakis Collmeyer, Shemer
Alonso, Barbara, GarciaMolina Copeland, Lipovski, Su GarciaMolina, Barbara Su, Lipovski, Copeland
Devor, Elmasri Cornell, Dan, Iyer, Yu Devor, ElMasri, Weeldreyer Yu, Dias
Barsolou, Keller, Wiederhold Chang, Gupta Keller, Wiederhold Lee, Cheng
Barsalou, Keller, Shalom Fischer, Griffeth, Lynch Keller, Wiederhold Griffeth, Fischer

Table 1:2-clusters on the pair of first author and second author attributes

6.1 Synthetic Datasets

We first present our experiments on synthetic datasets. The
test datasets were generated using the data generator devel-
oped by Gibson et al. [GKR98] to evaluate STIRR. (See Sec-
tion 3.2 for a description of the data generator.) We set the
number of tuples to1 million, the number of attributes to10
and the number of attribute values for each attribute to100.
In all datasets, the cluster-projections on each attribute were
[0; 9] and [10; 19] (as shown in Figure 1). We fix the value
of � at 3, and the value of the distinguishing number� at 2.
For STIRR, we fixed the number of iterations to be10|as
suggested by Gibson et al. [GKR98].

CACTUS discovered the clusters in the input datasets
shown in Figures 1, 2, and 3.

Figure 10 plots the running time while increasing the
number of tuples from1 to 5 million. Figure 11 plots the
running time while increasing the number of attributes from
4 to 50. Figure 12 plots the running time while increasing
the number of attribute values from50 to 1000 while fixing
the number of attributes at4. While varying the number of
attribute values, we assumed that until500 attribute values,
the inter-attribute summaries would fit into main memory; for
a larger number of attribute values we took the multi-layered
approach described in Section 5. In all cases, CACTUS is3
to 10 times faster than STIRR.

6.2 Real Datasets

In this section, we discuss an application of CACTUS to a
combination of two sets of bibliographic entries. The results
from the application show that CACTUS finds intuitively
meaningful clusters from the dataset thus supporting our
definition of a cluster.

The first set consists of7766 bibliographic entries for arti-
cles related to database research [Wie] and the second set con-
sists of30919 bibliographic entries for articles related to The-
oretical Computer Science and related areas [Sei]. For each
article, we use the following four attributes: the first author,
the second author, the conference or the journal of publication,
and the year. If an article is singly-authored then the author’s
name is repeated in the second author attribute as well. The
sizes of the first author, the second author, the conference, and
the year attribute domains for the database-related, the theory-
related, and the combined sets aref3418; 3529; 1631; 44g,
f8043; 8190; 690; 42g, andf10212; 10527; 2315; 52g respec-
tively. We combined the two sets together to check if CAC-
TUS is able to identify the differences and the overlap be-
tween the two communities. Note that for these domains,
some of the inter-attribute summaries and the intra-attribute
summaries|especially those involving the first author and the
second author dimensions|do not fit in main memory. How-
ever, we choose this particular dataset because it is easier to
verify the validity of the resulting clusters (than for some other



ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Record
ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMP, LIBTR, SICOMP, TCS, TR
PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCT, SICOMP, STOC

Table 2: Cluster-projections on Conference w.r.t. the First Author

publicly available datasets, e.g., the MUSHROOM dataset
from the UCI Machine Learning repository).

Table 5.1 shows some of the2-clusters on the first au-
thor and the second author attribute pair. We only present
the database-related cluster-projections to illustrate that CAC-
TUS identifies the differences between the two communities.
We verified the validity of each cluster-projection by querying
on theDatabase Systems and Logic Programmingbibliogra-
phy at the web site maintained by Michael Ley [Ley]. Sim-
ilar cluster-projections identifying groups of theory-related
researchers as well as groups that contribute to both fields
also exist. Due to space constraints, we show some cluster-
projections corresponding to the latter two types in the full
paper [GGR99].

Table 2 shows some of the cluster-projections on the con-
ference attribute computed with respect to the first author
attribute. The first row consists exclusively of a group of
database-related conferences, the second consists exclusively
of theory-related conferences, and the third a mixture of both
reflecting a considerable overlap between the two communi-
ties.

7 Conclusions and Future Work

In this paper, we formalized the definition of a cluster when
the data consists of categorical attributes, and then introduced
a fast summarization-based algorithm CACTUS for discover-
ing such clusters in categorical data. We then evaluated our
algorithm against both synthetic and real datasets.

In future, we intend to extend CACTUS in the following
three directions. First, we intend to relax the cluster definition
by allowing sets of attribute values on each attribute which are
“almost” strongly connected to each other. Second, motivated
by the observation that inter-attribute summaries can be in-
crementally maintained under addition and deletion of tuples,
we intend to derive an incremental clustering algorithm from
CACTUS. Third, we intend to “rank” the clusters based on a
measure of interestingness, say, some function of the support
of a cluster.
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