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Abstract attribute$ on which distance functions are not naturally

- . . _defined. Recently, the problem of clustering categorical data
Clustering is an important data mining problem. Most of the ear“%rtarted receiving interest [GKR98, GRS99]

work on clustering focussed on numeric attributes which have a . .
natural ordering on their attribute values. Recently, clustering dataAs an example, consider the MUSHROOM dataset in the

with categorical attributes, whose attribute values do not havePgPular UCI Machine Learning repository [CBM98]. Each
natural ordering, has received some attention. However, previd@le in the dataset describes a sample of gilled mushrooms
algorithms do not give a formal description of the clusters theysing twenty two categorical attributes. For instance céye
discover and some of them assume that the user post-processe<ater attribute can take values from the dom@brown, buff,
output of the algorithm to identify the final clusters. cinnamon, gray, green, pink, purple, red, white, yeljovit

In this paper, we introduce a novel formalization of a cluster fds hard to reason that one color is “like” or “unlike” another
categorical attributes by generalizing a definition of a cluster fa@olor in a way similar to real numbers.
numerical a_ttributes. We then describ_e a very fast summarization-An important characteristic of categorical domains is that
pased algorithm called CACTUS that discovers exat_:tl)_/ such_clust%y typically have a small number of attribute values. For
in the data. CACTUS has two important characteristics. First, t ample, the largest domain for a categorical attribute of

algorithm requires only two scans of the dataset, and hence is v M dataset in the UCI Machine Learning repository consists
fast and scalable. Our experiments on a variety of datasets show

CACTUS outperforms previous work by a factor3fo 10. Second, o100 attribute valugs (for gn att”bu,te of thaandlglts' .
CACTUS can find clusters in subsets of all attributes and can thggt_aseo' Categorlcgl _att”bu'[efs with large domain sizes
perform a subspace clustering of the data. This feature is importiically do not contain information that may be useful for
if clusters do not span all attributes, a likely scenario if the numb&Fouping tuples into classes. For instance,@stomerld
of attributes is very large. In a thorough experimental evaluation, v@dtribute in the TPC-D database benchmark [Cou95] may
study the performance of CACTUS on real and synthetic datasetsconsist of millions of values; given that a record (or a set
of records) takes a certaibustomerld value (or a set of

. values), we cannot infer any information that is useful for
1 Introduction classifying the records. Therefore, it is different from the age
or geographical location attributes which can be used to group

Clustering is an important data mining problem. The goal Qustomers based on their age or location or both. Typically,

F:Iustermg, in general, is tO.dISCOVGI’ dgnse and sparse reg'?&ﬂ%tions contain 0 to 50 attributes; hence, even though the
in a dataset. Most previous work in clustering focusse

; ) . -~~~ Size of each categorical domain is small, the cross product
on numerical data whose inherent geometric properties ¢ . : S

. ) . : of all their domains and hence the relation itself can be very
be exploited to naturally define distance functions between

. ) Jarge.
oints. However, many datasets also consist of cate OI‘ICB.F . . o
P y 9 n this paper, we introduce a fast summarization-based

Supporied by a Microsoft Graduate Fellowship, algorithm calleq CACTUS for clugteripg categorical fjata.

iSupported by an IBM Graduate Fellowship. QACTUS exploits the .smaI_I domain sizes of categorical .at—

*This research was supported by Grant 2053 from the IBM corporatiortfibutes. The central idea in CACTUS is that summary in-
formation constructed from the dataset is sufficient for dis-
covering well-defined clusters. The properties that the sum-
mary information typically fits into main memory, and that
it can be constructed efficientiytypically in a single scan of
the datasetresult in significant performance improvements:

L Attributes whose domain is totally ordered are calgineric whereas
attributes whose domain is not ordered are catiggorical
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a factor of3 to 10 times over one of the previous algorithmsthey have in the dataset. Starting with each tuple in its own
Our main contributions in this paper are: cluster, they repeatedly merge the two closest clusters till the
required number (sayy) of clusters remain. Since the com-

1. We formalize the concept of a cluster over categoricglexity of the algorithm iscubicin the number of tuples in
attributes (Section 3). the dataset, they cluster a sample randomly drawn from the

ataset, and then partition the entire dataset based on the clus-

ers from the sample. Beyond that the set of all “clusters”

together may optimize a criterion function, the set of tuples in

3. We then extend CACTUS to discover clusters in sul§@ch individual cluster is not characterized.
spaces, especially useful when the data consists of a large
number of attributes (Section 5). 3  Definitions

4. In an extensive experimental study, we evaluate CAH this section, we formally define the concept of a cluster
TUS and compare it with earlier work on synthetic an@Ver categorical attributes, and other concepts used in the
real datasets (Section 6). remainder of the paper. We then compare the class of clusters

allowed by our definition with those discovered by STIRR.

2. We introduce a fast summarization-based algorithm CA!
TUS for clustering categorical data (Section 4).

2 Related Work 3.1 Cluster Definition

In this section, we discuss previous work on clustering Catgyitively, a cluster on a set of numeric attributes identifies
gorical data. The EM (Expectation-Maximization) algorithny «jense region” in the attribute space. That is, the region
is a popular iterative clustering technique [DLR77, CS96L,qists of a significantly larger number of tuples than
Starting with an initial clustering model (a mixture model) fog, yecteq. We generalize this intuitive notion for the class of
the data, it iteratively refines the model to fit the data bett‘?{yper—rectangular clusters to the categorical dorain.

After an indeterminate number of iterations, it terminates at 4As an illustrative example, the regioh 2] x [2,4] x [3, 5]

Iocglly optim'al ;olution: The EM algorithm assumes that thr"?1ay correspond to a cluster in the 3-d space spanned by three
entire data fits into main memory and hence is not scalabjg, yeric attributes. In general, the class of rectangular regions
We now discuss two previous scalable algorithms STIRR audy, e expressed as the cross product of intervals. Since
ROC.:K for clustgrlng categorical datq. . . domains of categorical attributes are not ordered, the concept
Gibson etal. introduce STIRR, an iterative algorithm base} o, jnterval does not exist. However, a straightforward
on non-h_near dynamical systems [GKRQS]' They represepl neralization of the concept of an interval to the categorical
each attribute value as a weighted vertex in a graph. Multigle i is aset of attribute values Consequently, the

Copies by, . .., bm, cglled'bahsms of r:h's set of weighted gonerajization of rectangular regions in the numeric domain
vertices are maintained; the weights on any given VertgX .aieqorical domain is the cross product of sets of attribute
may differ across basinsb; is called theprincipal basin; ., es. We call such regioimsterval regions

by, ..., bm are callednon-principalbasins. Starting with a Intuitively, a cluster consists of a significantly larger

f.et of v(;/e |ght_|s o]r: al(; ver.t|cgs (in T:l gas(;ng), the sylstem Kumber of tuples than the number expected if all attributes
lterated” untl afixe p,o'n_t IS reached. Gibson et al- argUgere independent. In addition, a cluster also extends to as
that when the f'.XEd point |s.reached, the weights in one %rrge a region as possible. We now formalize this notion
more of the basmbg, - bm |sglate t_WO groups o.f.attrlbu.te for categorical domains by first defining the notion of a tuple
values on each attribute: the first with large positive weigh longingto a region, and then treipportof a region, which
and the second W't.h ST“.a” negatlv_e vvgghts, and that thqg‘?he number of tuples in the dataset that belong to the region.
groups correspond intuitively to projections of clusters on the

attribute. However, the automatic identification of such sefs,

. . . >~Definition 3.1 Let A,,..., A, be a set of categorical at-
of closely related attribute values from their weights requUIrGShtes with domainsD, D, respectively. Let the

a non-trivial post-processing step; such a post-processi@gtasetD be a set of tuples where each tuplet ¢ D, x

step was not addressed in their work. Moreover, the post- «D,. We callS = S, x - - x S, aninterval regionif for

processing step will also determine what “clusters” are outpyy, . (1 n}, S; C Di. Leta; € D; anda; € D;,i £ j
P e (A (2 7 ] g .

Also, as we show in Section 3.2, certain classes of clusters H&esupportop (s, a;) of the attribute value pali, o, ) with
(2} 1y ]

not discovered by STIRR. ! i
. . respect taD is defined as follows:
Guha et al. introduce ROCK, an adaptation of an agglom- P

erative hierarchical clustering algorithm, which heuristically def _ _
optimizes a criterion function defined in terms of the number op(ai,a;) = |{t € D : t.A; = a; andt. A; = a;}|
of “links” between tuples [GRS99]. Informally, the number of “Classes of clusters that correspond to arbitrarily shaped regions in the

links between two tuples is the number of common neighrﬁoorgumeric domain cannot be generalized as cleanly to the categorical domain
because the categorical attributes do not have a natural ordering imposed on
3Given asimilarity function two tuples in the dataset are said to beheir domains. Therefore, we only consider the class of hyper-rectangular

neighborsif the similarity between them is greater than a certain threshold.regions.




Atuplet = (t.Ay,...,t.A,) € D is said tobelongto the We now extend our notion of similarity to attribute value
regionS if for all i € {1,...,n}, t.A; € S;. Thesupport pairs on the same attribute. Lef,a; € D; andz € D;.

op(S) of § is the number of tuples i that belong taS. If (a1,z) and (a2, z) are strongly connected the@,,a»)
_ . are “similar” to each other with respect té;. The level
If all attributes A, ..., A, are independent and the atof similarity is the number of such distinct attribute values

tribute values in each attribute are equally likely (henceforth¢ D;. We now formalize this intuition.

referred to as thattribute-independence assumpfijdinen the

expected suppof[op(S)] of aregionS = Sy x --- x S, is Definition 3.4 Let a;,a; € D;. The similarity 77 (ay, as)
|D| . M As before, the expected Support(af’ a].) betweena1 and a9 with respect tOAJ (] ;é Z) is defined as

Dulx--x Dl 1 . . follows.

Elop(a;,a;)]is|D|- BT, - Since the datasé? is under-

stood from the context, we writg(S) instead ofop(S), and 49 (a4, as) def {z € D; : 0*(a1,x) > 0ando™(az, ) > 0}
o(a;, aj) instead ofop(a;,a;). Finally, we note that the at-
tribute independence assumption can be modified to take an)é ) ) . )
prior information into account; e.g., the marginal probabilities S€/0W: we define the summary information which we need
of attribute values. later to describe the CACTUS algorithm. The summary in-

Intuitively, o (a;, a;) captures the co-occurence, and hend@rmation is of two types: (1inter-attribute summaries and
the similarity, of attribute values; anda;. Valuesa; and (2) intra-attribute summaries. The inter-attribute summaries
’ 7 g 7

a; are said to bestrongly connectedf their co-occurrence consist of all strongly connected attribute value pairs where

J . . . .
(0(ai,a;)) is significantly higher (by some factes) than the each pair has attribute values from different attributes; the
value expected under the attribute-independéntile now intra-attribute summaries consist of similarities between at-
definec* to formalize this intuition, and then give a formalifiPute values of the same attribute.

definition of a cluster. Definition 3.5 Let A,,...,A, be a set of categorical at-

tributes with domain®,, ..., D, respectively, and leD be

a dataset. Thénter-attribute summary;; is defined as:
def

Definition 3.2 Let a; € D;, a; € D;j, anda > 1. The
attribute values; anda; arestrongly connectedith respect

to D if O-D(aia a/j) > % The fUnCtiomB(ai,a]’) is EIJd:f {EU : 17] € {17 s ,TL},?: 7& .]} where
defined as follows: =
we | oplaisay), if aianda; are {(ai,a;,05(ai,a;)) : a; € Dy, a; € Dj, ando},(a;,a;) > 0}
oh(ai,a;) = strongly connected ) ) ) ]
0, otherwise Theintra-attribute summary;; is defined as:

S s i€ {1,...,n} andi # j} where
LetS; C D; andS; C Dy, i # j, be two sets of attribute s def
values. An elemend; € S; is strongly connected witly; if, ©
forall z € Sj, a; andz are strongly connectedS; andsS;  {(a;1, ain, ¥ (ai1, ai2)) : i1, aiz € Di, andy? (a1, as)) > 0}
are said to be strongly connected if eaghe S; is strongly

connected withS; and eachu; € S; is strongly connected ) )
with S;. 3.2 Discussion

We now compare the class of clusters allowed by our
definition with the clusters discovered by STIRR. For the

Definition 3.3 Fori = 1,...,n, letC; C D, |Cs] > 1, comparison, we generate test data using the data generator
anda > 1. ThenC = (Ci,...,Cy) is aclusterover developed by Gibson et al. for evaluating STIRR [GKR98].
{A1,..., A, } if the following three conditions are satisfied\we consider three datasets shown in Figures 1, 2, and 3.

(1) Foralli,j € {1,...,n},i # j, C; andC; are strongly Each dataset consists 0000 tuples. DS1 and DS2 have
connected. (2) Forall,j € {1,...,n}, i # j, there exists two attributes DS3 has three attributes where each attribute
no C; D C; such that for allj # i, C; andC; are strongly consists ofL00 attribute values. These tuples are distributed
connected. (3) The suppor(C) of C'is at leasta times  over all attribute values on each attribute according to the
the expected support @ under the attribute-independenceitribute-independence assumption. We control the location
assumption. and the size of clusters in each dataset by distributing an
We call C; the cluster-projectiorof C' on A;. C'is called additional number of tupless{ of the total number in the
asub-clusteif it satisfies conditions (1) and (3). A clustér dataset) in regions designated to be clusters thus increasing
over a subset of all attributeS C {4,,...,A4,} is called a their supports above the expected value under the attribute-
subspace clustean S; if |S| = k thenC'is called a-cluster  independence assumption. In Figures 1, 2, and 3, the cluster-
projection of each cluster is shown within an ellipse. The
5Because a deviation f or 3 times the expected value is usuallyPoundaries of the cluster-projections (ellipses) of a cluster are
considered significant [BD76], typical values@fare betweer2 and3. connected by lines of the same type (e.g., solid, dashed etc.).




0
o (o]
9 9
R
7 078 s
° 9 9/ 9 AR D i
| = R [ I
7~ NN : HEEAN H ! H H
i |

10,7 7TTTTTI0 10 | 10
17 B b Lo
N 19 s 19
19\ 19 18 ol s
20 | 20! 2 o 0, o
9 ! 9 ' % | % | 9 : 99.: 99 :
Figure 1. DS1 Figure 2: DS2 Figure 3: DS3
0 o\ 0
\
\
\
|
o o o o Lo
9 - 9
|
7 10 b 107
° ° ) ° P | [
10,7 10,7 0 -~ 10 /% P | P
b o ) | i \
o Co : L L
o o 17~ - 19 . 19\ 19
19 . 19 . 18 19 . } } )
20 ! 20! : 2 2 | 2 2 |
0 ! %! %0 | 99 | % 1 % ! 9 !

Figure 4: DS1:STIRR's O/P Figure 5: DS2:STIRR's O/P Figure 6: DS3:STIRR’s O/P

We ran STIRR on the datasets shown in Figures 1, 2, and 3,
and manually selected the basin that assigns positive and
negative weights respectively to attribute values in different

N . g 2 Awrt.B | Bwrt.C | Cwrt. B
cluster-prOJectlon§. To identify the cluster prOchtlons, we , o 41,002 by bs2 23
observed the weights alloqated py STIRR and isolated twoaz . a1,a3:2 by, bs:2 )
groups such that the weights in each group have large 3 2 ar,as:2 b2, b3:2
magnitude and are close to each other. The cluster-projection® by *%3 as,as:2
identified by STIRR are shown in Figures 4, 5, and 6. 8y 5 *Cy as,a4:2

STIRR recognized the cluster-projections @81 on the A B C a3, a4:2
first non-principal basindg) for every attribute (as shown
in Figure 4). When run on the datasBXS2 the first Figure 7:X1, Figure 8:3;;

non-principal basini) on A; identifies the two groups:
{0,...,9} and {10,...,17} (as shown in Figure 5). The
second non-principal basihs) on A, identifies the following

.tWO groups- {0,...,6} and {7,...,17}. Thu§, no basin should be valid classes of clusters, and our cluster definition
identifies the overlap between the cluster-projections. It ma

be possible to identify such overlaps through a non-trivial po cludes these classes. CACTUS correctly discovers all

processing step. However, it is not clear how many basi%1e implanted clusters from the datas@$1 DS2 and

are required and how to recognize that cluster—projection%a Thus, our definition of a cluster and hence CACTUS,
%ich discovers all clusters allowed by our definition, seems

. . C W

overlap from the weights on attrlbgte valyes. We. behevt% identify a broader class of clusters than that discovered
that any such post-processing step itself will be similar to tfbe STIRR. Since it is not possible to characterize clusters
CACTUS algorithm. The result of running STIRR on the y ' P

datasetDS3 is shown in Figure 6. STIRR merged the tWOdlscovered by STIRR, we could not construct any example

s . : datasets from which CACTUS does not retrieve the expected
cluster-projections on the second attribute, possibly because L .
o . . clusters and STIRR does. However, it is possible that such
one of the cluster-projections participates in more than ofie )
ypes of clusters exist.

cluster.

From these experiments, we observe that STIRR fall
to discover the following classes of clusters: (1) clustersi CACTUS
consisting of overlapping cluster-projections on any attributhy this section, we describe our three-phase clustering algo-
(2) clusters where two or more clusters share the same clustehm CACTUS. The central idea behind CACTUS is that a
projection. However, intuitively, these two classes of clustessimmary of the entire dataset is sufficient to compute a set



of “candidate” clusters which can then be validated to detattribute values. Suppose we hav@ MB of main memory
mine the actual set of clusters. CACTUS consists of thréeasily available on current desktop systems). Assuming that
phases: summarization clustering andvalidation In the each counter requiresbytes we can maintain counters for
summarization phase, we compute the summary informatiosoo (= %) attribute pairs simultaneously. Wit

from the dataset. In the clustering phase, we use the sustributes, we have to evalualt225 attribute pairs. Therefore,
mary information to discover a set of candidate clusters. e can compute all inter-attribute summaries together in
the validation phase, we determine the actual set of clygst one scan of the dataset. The computational and space
ters from the set of candidate clusters. We introduce a higquirements here are similar to that of obtaining counts of
pothetical example which we use throughout the paper pairs of items while computing frequent itemsets [AVES].
illustrate the successive phases in the algorithm. ConsideQuite often, a single scan is sufficient for computifgy.

a dataset with three attribute$, B, and C' with domains |n some cases, we may need to sdanmultiple times—
{a1,a2,a3,a4}, {b1,bs,b3,b4}, and{ci, c2,¢3,ca}, respec- each scan computing;; for a different set of(i, j) pairs.
tively. Let the strongly connected attribute value pairs be ahe computation of the inter-attribute summaries is CPU-

shown in Figures 7 and 8. intensive, especially when the number of attributés high,
o because for each tuple in the dataset, we have to increment
4.1  Summarization Phase n(n—1)

—-— counters. Even if we require multiple scans of the
In this section, we describe the summarization phase @itaset, the I/0 time for scanning the dataset goes up but the
CACTUS. We show how to efficiently compute the intertotal CPU time—for incrementing the countersremains the
attribute and the intra-attribute summaries, and then descriene. Since the CPU time dominates the overall summary-
the resource requirements for maintaining these summariegonstruction time, the relative increase due to multiple scans

Categorical attributes usually hasmalldomains. Typical is not significant. For instance, consider a datasétrofilion

categorical attribute domains considered for clustering consisples defined o0 attributes, each consisting 10 attribute
of less than a hundred or, rarely, a thousand attribute valugglues. Experimentally, we found that the total time for
An important implication of the compactness of categoricgbmputing the inter-attribute summaries of the dataset with
domains is that the inter-attribute summaty; for any pair million tuples is1040 seconds, whereas a scan of the dataset
of attributesA; and 4; fits into main memory because thetakes jus28 seconds. Suppose we partition all 25 pairs
number of all possible attribute value pairs frofpand 4;  of attributes into three groups consisting 4418, 408, and
equals|D;| - |D;|. For the rest of this section, we assume(9 pairs respectively. The computation of the inter-attribute
that the inter-attribute summary of any pair of attributes fitsummaries of attribute pairs in each group requires a scan
easily into main memory. (We will give an example latebf the dataset. The total computation time will be around

to support this assumption, and to show that typically inter)96 seconds, which is only slightly higher than computing
attribute summaries for many pairs of attributes together fife summary in one scan.

into main memory.) However, for the sake of completeness,

we extend our techniques in Section 5 to handle cases wherd.2 Intra-attribute Summaries

this trait is violated. The same argument holds for the intrgy this section, we describe the computation of the intra-

attribute summaries as well. attribute summaries. We again exploit the characteristic

. . that categorical domains are very small and thus assume
4.1.1  Inter-attribute Summaries that the intra-attribute summary of any attribute fits in

We now discuss the computation of the inter-attribute surfain memory. Our procedure for Computiﬁéi reflects the

maries. Consider the computationXf;, i # j. We initialize  evaluation of the following SQL query:

a counter to zero for each pair of attribute valgesa;) €

D; x Dy, and start scanning the datadet For each tuple Select 7T1.4,T2.4,count ()

t € D, we increment the counter for the pdirA;,t.4;). From ¥,; as TL(A,B),%;; as T2(A,B)

After the scan ofD is completed, we compute* by set- Where T1.A#T2.Aand T1.B=T2.B

ting to zero all counters whose value is less than the threshdgoup by T1.A, T2.A

Kij = a - %. Thus, counts of only the strongly con-Having  count > 0;

nected pairs are retained. The number of strongly connected

pairs is usually much smaller thdd;| - |D;|. Therefore, the ~ The above query joinE;; with itself to compute the set of

set of strongly connected pairs can be maintained in speciitribute value pairs ofi; strongly connected to each other

ized data structures designed for sparse matrices [DER86]with respect tad;.” SinceX;; fits in main memory the self-
We now present a hypothetical example to illustrate thein and hence the computation Bf; is very fast. We will

resource requirements of the simple strategy described abmigserve in the next section that, at any stage of our algorithm,

Consider a dataset with0 attributes each consisting @00 we only requireX?, for a particular pair of attributed; and

k3

6ln our current implementation, we maintain the counts of strongly 7For an exposition of join processing, see any standard textbook on
connected pairs in an array and do not optimize for space. database systems, e.g., [Ram97].



A;. Therefore, we computﬁ{i, (j # 1), for each(i, j) pair B
whenever it is required.

Consider the example shown in Figure 7. (We use the
notationX xy to denote the inter-attribute summary between
attributesX andY.) The inter-attribute summaries 4p,
Ypc, and ¥ ¢ correspond to the edges between attribute
values in the figure. The intra-attribute summare§,,
255, B are shown in Figure 8.
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4.2  Clustering Phase
In this section, we describe the two-step clustering phase Figure 9: Extendingai, a2} w.r.t. B
of CACTUS that uses the attribute summaries to compute
candidate clusters in the data. In the first step, we analyﬁeie following lemma formalizes the computational complex-
each attribute to compute all cluster-projections on it. In the glem . P P
o ! . Q’ The proof is given in the full paper [GGR99].
second step, we synthesize, in a level-wise manner, candidafe

clusters on sets of attributes from the cluster-projections @Rmma 4.2 Let 4. and A, be two attributes. The problem
. 7 ] .

individual attributes. That is, we determine candidate clustegs computing all cluster-projections o#; of 2-clusters over
on a pair of attributes, then extend the pair to a set of thrgg, A;) is NP-complete
79 J .

attributes, and so on. We now describe each step in detail.

To reduce the computational complexity of the cluster-
4.2.1  Computing Cluster-Projections on Attributes projection problem, we exploit the following property which,
Let A,,..., A, be the set of attributes arit,,...,D, be we believe, is usually exhibited by clusters in the categorical
their domains. The central idea for computing all clustedomain. If a cluster-projectiod’; on A; of one (or more)
projections on an attribute is that a clustgr;,...,C,) cluster(s) is larger than a fixed positive integer, called the
over the set of attribute§A4,, ..., A, } induces a sub-cluster distinguishing numbefdenoteds), then it consists of a smalll
over any attribute paifA4;,A;), i # j. In addition, the identifying set-which we call thedistinguishing set-of
cluster-projectiorC; on A; of the clustelC is the intersection attribute values such that they will ntiigetherbe contained
of the cluster-projections or; of 2-clusters over attribute in any other cluster-projection afy;. Thus, the distinguishing
pairs (4;,A;), j # i. For example, the cluster-projectionset distinguishe<”; from other cluster-projections od;.
{b1,b2} on the attributeB in Figure 7 is the intersection Note that a proper subset of the distinguishing set may still
of {b1,bs,b3} (the cluster-projection ol of the 2-cluster belong to another cluster-projection, and that two distinct
({b1,b2,b3},{c1,c2})) and{by, b2} (the cluster-projection on clusters may share an identical cluster-projection (as in
B of the 2-cluster({ai, as,as, as}, {b1, b2})). We formalize Figure 1).

the idea in the following lemma. We believe that the distinguishing subset assumption holds
in almost all cases. Even for the most restrictive version,
Lemma4.lLetC = (C4,...,C,) be a cluster on the set ofwhich occurs when the distinguishing numberlisand all
attributes{ A;, ..., A,}. Then, cluster-projections of the set of clusters are distinct, the as-
(1) Foralli # 3,4, € {1,...,n}, (C;,C;) is a sub-cluster sumption only requires that each cluster consist of a set of
over the pair of attributeg4;, 4;). attribute values-one on each attributethat does not belong
(2) There exists a SQIC{ 1§ # Z‘and(Cg,C]i> is a 2-cluster to any other plustc_ar. For the exam.ple_in Figure 7, the sets
over(A;, A;)} such thaC; = ﬂj;ﬁin- {a,} or {a>} identify the cluster-projectiofa;,a-} on the

attribute A. We now formally state the assumption.

Lemma 4.1 motivates the following two-step approach. In. =~ . ,
the firstpairwise cluster-projectiorstep, we cluster each at-Distinguishing Subset Assumption:Let C; andC; each of

tribute A; with respect to every other attributé;, j # i to size greater thar be two distinct cluster-projections on the
find all cluster-projections orl; of 2-clusters ove(A;, A;). attributeA;. Then there exist two sef; andS; such that

In the §econdntersectlonstep, we compute all the .clu:~:ter-|5i| < kS CCi|S!| < k,S! C Cl,andS; ¢ C.,S! ¢ Ci
projections onA; of clusters over{A4,,...,A,} by inter-

secting sets of cluster-projections fra¥clusters computed We callx thedistinguishing number

in the first step. However, the problem of computing cluster-

projections oR-clusters in the pairwise cluster-projection stefPairwise Cluster-Projections

is at least as hard as the NP-complatgueproblem [GJ79F  We compute cluster-projections ofy of 2-clusters over the

8A clique in gg' is a set of vertices that are connected to each other ba'tmbl‘Ite pairA;, A;) in two steps. In the first step, we find

edges with non-zero weights. Given a graph= (V, £) and a constan, al possible distinguishing sets (of size |§SS than or equa) to
the clique problem determinesgfconsists of a clique of size at leat on A;. In the second step, we extend with respect jasome




of these distinguishing sets to compute cluster-projections oninformally, the subset flag and the participation count serve
A;. Henceforth, we write “cluster-projection ofy” instead the following two purposes. First, a cluster-projection may
of a “cluster-projection oml; of a2-cluster overA;, A;).” consist of more than one distinguishing seDif?. Therefore,

Distinguishing Set Computation: In the first step, we rely on if we extend each set iS; a particular cluster-projection
the following two properties to find all possible distinguishingnay be generated several times, once for each distinguishing
sets ond;. (1) All pairs of attribute values in a distinguishingset it contains. To avoid the repeated generation of the
set are strongly connected; that is the distinguishing set forg&me cluster-projection, we associate with each distinguishing
aclique (2) Any subset of a distinguishing set is also a cliqueet a subset flag. The subset flag indicates whether the
(monotonicity property These two properties allow a level-distinguishing set is a subset of an existing cluster-projection
wise clique generation similar to the candidate generationilh CS;.  Therefore, if the subset flag is set then the
apriori [AMSt96]. That is, we first compute all cliques ofdistinguishing set need not be extended. For the example
size2, then use them to compute cliques of sizend so on Shown in Figure 7, the distinguishing sefts; } and{a»} on

until we compute all cliques of size less than or equal.to A can both be extended to the cluster-project{an, a}.

Let C;, denote the set of all cliques of size equaktowe Second, the distinguishing subset assumption applies only to
give an inductive description of the procedure to generate teléister-projections of size greater thanTherefore, a clique
setC. The base cas€, whenk = 2 consists of all pairs Of size less than or equal tomay be a cluster-projection on
of strongly connected attribute valuesZn. These pairs can its own even though it may be a subset of some other cluster-
easily be found front?,. The seCC;, is computed from the Projection. To recognize such small cluster-projections, we
setC}, (k > 2) by “joining” Cy, with itself. The join is the sub- associate a participation count with each distinguishing set.
set join—used in the candidate generation step of the frequéhthe participation count of a distinguishing set with respect
itemset computation in the apriori algorithm [AMS6]. We 1O CS7 is less than its sibling strength then it may be a small
also remove all the candidates(h.,; that contain a proper cluster-projection.
k-subset not irC, (a la subset pruning in apriori).

Algorithm 4.1 Extend(DS?, £;;)
Extension Operation: In the second step, we “extend” some* Qutput: CS{ */
of the candidate distinguishing sets computed in the firstinitialization */
step to compute cluster-projections @ of 2-clusters on CS{ =¢
(A;,A;). The intuition behind the extension operation iReset the subset flags and the participation counts of all
illustrated in Figure 9. Suppose we want to extéad, a, } on distinguishing sets i®S? to zero
A with respect taB. We compute the sgb;, b2} of attribute  foreachs; ¢ DSI

values onB strongly connected wita, , a» }. We then extend if the subset flag of; is not set then

{a1,a,} with the set of all other valuegzs, a4} on A that is ExtendS; to C

strongly connected witfib, , b, }. Set the subset flags and increment by the sibling
Informally, the extension of a distinguishing setC D; strength ofS; the participation counts of all subsets

adds taS all attribute values irD; that are strongly connected of CS in DS .

with the set of all attribute values i®; thatS is strongly end J4if*/ ‘

connected with. We now introduce the conceptsibfing sef  end /*for*/

subset flagand theparticipation countto formally describe |dentify and add small cluster-projections (of sizex) to CS?
the extension operation.

Definition 4.1 Leté andA; be two attributes with domains The pseudocode for the computaﬂor(’&ﬂ” is shown in Al-
D; andD;. LetCS; be the set of cluster-projections oh  gorithm 4.1. Below, we describe each step in detail.
of 2-clusters over(Az,A ). Let DS’ be a set of candidate

distinguishing sets, with respectﬁ), on attribute4;. The |nitialization: The first two steps initialize the procedure:
sibling setSl of S; € DSJ with respect to the attributé; is  we setCSJ = ¢, and the subset flags and their participation

defined as follows: counts of all distinguishing sets iRS? to zero.
szj ={a; € D; : foralla; € S;,0*(a;,a;) > 0} Extending S;: Let S] be the sibling set o; with respect to
o o _ A;. LetC? be the sibling set af? with respect ta4;. Then,
|S| is called thesibling strengtiof .S; with respect ta4;. we extends; to the cluster- prOjectlod'S Add C* to CSJ

The subset flag)f S; € DSJ with respect to a collection of Prune subsets ofCS Supposdjg was extended frons
setsC; is said to beset(to 1) if there exists a se¥ € C; such  Then, by definition, subsets ¢f° cannot be the distinguish-
thatS; C S. Otherwise, the subset flag 8f is not set. ing sets of other cluster projections dn. Therefore, we set
Theparticipation counf S; € DS’ with respect t, is the (10 1) all subset flags of subsets 6f (including$;) in DS?.

sum of the sibling strengths with respecl%tg)of all supersets The participation count of each of these subsets is also in-
of S; in Cs. creased byS?|—the sibling strength of;.



Identifying small cluster-projections: While extending dis- cluster on a set of attributes induces a sub-cluster on any sub-
tinguishing sets, we only choose sets whose subset flags satof the attributesrjonotonicity property The monotonic-
not set. We check if each unextended distinguishingSset ity property follows directly from the definition of a cluster.
whose subset flag is set can be a small (of size less#hanWe also exploit the fact that we want to compute clusters over
cluster-projection. If the participation count §f equals its the set of all attribute§A;,..., A,}. Informally, we start
sibling strength, thet$; cannot be a cluster-projection on itswith cluster-projections on; and then extend them to clus-
own. OtherwiseS; may be a cluster-projection. Thereforeters over(A;, A, ), then to clusters oveiA, , A,, A3), and so
we addS; toCS?. on.
Let C; be the set of cluster-projections on the attribdte
Note that the computation of cluster-projections dn i = 1,...,n. LetC* denote the set of candidate clusters

requires only the inter-attribute summaty; and the intra- defined over the set of attributes,;,..., Ax. Therefore,
attribute summany?,. Since 3;; and ¥, fit into main C' = Ci. We successively generafé** from C* until
memory, the computation is very fast. C™ is generated oC**! is empty for somek + 1 < n.

The generation of **! from C* proceeds as follows. Set
Intersection of Cluster-projections Ck+1 = ¢. For each element® = (ci,...,c;) € CF, we

Informally, the intersection step computes the set of clustéttempt to augment® with a cluster projection..; on the
projections on4; of clusters ove{ Ay, ..., A,} by succes- attributeAy.,. Ifforalli € {1,...,k}, (ci,cr11) is @ sub-
sively joining sets of cluster-projections ofy of 2-clusters cluster on(A;, Ax4.1)—which can be checked by looking up
over attribute pair§A;, A;), j # i. For describing the proce- Zi(k+1)—We augment* to c*** = (c;,..., 1) and add
dure, we require the following definition. L to CF L
For the example in Figure 7, the computation of the set

Definition 4.2 Let S; and S, be two collections of sets of Of candidate clusters proceeds as follows. We start with
attribute values onl;. We define théntersection joinS; 1S, the set{a;,a2} on A. We then find the candidacluster
betweensS, ands, as follows:S; M S, < {{a1, aQ}, {b1,b2})} over the attribute paif4, B), and then

the candidate3-cluster {({a1,as}, {b1,b2}, {c1,c2})} over

{s:3s; € S ands, € S, such that = s; Ns, and|s| > 1} {4, B,C}

4.3 Validation

We now describe a procedure to compute the set of actual
clusters from the set of candidate clusters. Some of the
candidate clusters may not have enough support because some
8f the 2-clusters that combine to form a candidate cluster may
be due to different sets of tuples. To recognize such false
S=Sncs ifk+#£i pandidates, we check if t.he support of each candidate cluster
b’ is greater than the required threshold. Only clusters whose

The resulting sef is the set of cluster-projections o of support onD passes the threshold requirement are retained.
clusters over{ A, ..., A,}. Besides being a main-memory After setting the supports of all candidate clusters to zero,
operation, the number of cluster-projections dpwith re- W€ Start scanning the datasbt For each tuple € D,

spect to any other attributé; is usually small; therefore, the W€ increment the support of the candidate cluster to which
intersection step is quite fast. belongs. (Because the set of clusters correspond to disjoint

interval regions,t can belong to at most one cluster.) At
Further optimizations are possible over the basic stratefjj end of the scan, we delete all candidate clusters whose

described above for computing cluster projections. FgHPPOrtin the datasé? is less than the required threshotd:
instance, we can combine the computatioﬂﬁf and that of times the expected support of the cluster under the attribute-

; i independence assumption.

* because, for each cluster-projectior€ifi!, we compute n . . .
,CSJ_ ) o prol i ,rﬂﬁl i P By construction, CACTUS discovers all clusters that satisfy
its sibling set which is a cluster-projectiondi&’;. However,

. AL our cluster definition, and hence the following theorem holds.
we do not consider such optimizations because the clustering

phase takes a small fraction (less thafi) of the time taken Theorem 4.1 Given that the distinguishing subset assump-
by the summarization phase. (Our experiments in Sectioriign holds, CACTUS finds all and only those clusters that sat-
confirm this observation.) isfy Definition 3.3.

Let CS{ be the set of cluster-projections a with respect
to A;, j # i. Letj; = 11if ¢ > 1, elsej; = 2. Starting
with § = CS7', the intersection step executes the followin
operation for allk # i.

4.2.2 Level-wise Synthesis of Clusters 5 Extensions

In this section, we describe the synthesis of candidate clus- this section, we extend CACTUS to handle unusually
ters from the cluster-projections on individual attributes (confarge attribute value domains as well as to identify clusters
puted as described in Section 4.2). The central idea is thahaubspaces.



5.1 Large Attribute Value Domains (whenn > 4) then the level-wise synthesis described in

Until now, we assumed that the domains of categoricgection 4.2.2 will not find”.
attributes are such that the inter-attribute summary of any pairThe extension to find subspace clusters exploits the mono-
of attributes and the intra-attribute summary of any attributenicity property of subspace clusters. That is, a cluster
fits in main memory. For the sake of completeness, we modify a subspaces induces a subcluster on any subsetSof
the summarization phase of CACTUS to handle arbitrarilfhe monotonicity property again motivates the apriori-style
large domain sizes. level-wise synthesis of candidate clusters from the cluster-
Recall that the summary information only consists dirojections on individual attributes. The algorithm differs in
strongly connected pairs of attribute values. For large domdwo ways from the algorithmto find clusters over all attributes.
sizes, the number of strongly connected attribute value pairge first difference is that we do not restrict that a cluster-
(either from the same or from different attributes) relative tprojection on an attribute should participate2ieluster with
the number of all possible attribute value pairs is very smagivery other attribute. The second difference is in the proce-
We exploit this observation to collapse sets of attribute valuggre for generating the set of candidate clusters. We now dis-
on each attribute into a single attribute value thus creatingcass both differences.
new domain of smaller size. The intuition is that if a pair of We skip the intersection of cluster-projections on each
attribute values in the original domain are strongly connecteattribute A; with respect to every other attributg; (j # @)
then the corresponding pair of transformed attribute valués the following two reasons. First, a cluster in subspace
are also strongly connected, provided the threshold for stroSgmay not induce &-cluster on a pair of attributes not
connectivity between attribute values in the transformeéd S, and hence the intersection of cluster-projections on
domain is the same as that for the original domain. an attribute inS with respect to every other attribute may
Let A; be an attribute with an unusually large dom@in return an empty set. Second, the intersection may cause
Without loss of generality, [eD; be the se{1,...,|D;|}. Let the loss of maximality (condition (2) in Definition 3.3) of
M < |D;| be the maximum number of attribute values pea subspace cluster. For instance, a cluster-projectiod;on
attribute so that the inter-attribute summaries and the intnaith respect to4; corresponds to &-cluster over(A;, 4;)
attribute summaries fit into main memory. Let= [%1. which, by definition, is a subspace cluster; truncating such a
We constructD; of size M from D; by mapping for a given cluster-projection in the intersection step will no longer yield
xz € {0,..., M—1},the setof attribute valudg:-c+1,...,z- amaximal cluster oi4;, 4;).

¢ + c} to the valuer + 1. Formally, In the candidate generation algorithm, wedétdenote the
. set of candidate clusters defined on any sek-afttributes
D; ={f(1),..., f(IDi])}, wheref (i) = L%J +1 (not necessarily{A;, ..., A}). Otherwise, the candidate

generation proceeds exactly as in Section 4.2.2. The reason

We set the threshold for the strong connectivity involvinlfr]th‘?‘taSUbSPace cluster brattributes may not always be in

attribute values inD} as if D; was being used. We thenthe firstk attributes.

compute the inter-attribute summaries involvidgusing the ~ Foracluster € C* in a subspace consisting bttributes,

transformed domairD;. For each attribute valug, € D, the above candidate generation procedure exaraiesk +

that participates in a strongly connected paif, ;) (a; € 1) candidates. Depending on the valuekofsay, larger than

Dj, j # i), we expandu to the set of all attribute values15), the number of candidate clusters can be prohibitively

{al-c+1,...,d, - c+c} C D; that map intoa; and form high. The problem of examining a large number of candidate

the pairga’, - ¢+ 1, a;),..., (a} - c+¢c,a;). We then scan the clusters has been addressed by Agrawal et al. [AGGR98].

datasetD to count the supports of all these pairs, and seleEhey use theminimum description lengthrinciple to prune

the strongly connected pairs among them; they constitute the number of candidate clusters. Their techniques apply

inter-attribute summary; ;. directly in our scenario as well. Therefore, we do not address
The number of new pairs whose supports are to be countbi$ problem; instead, we refer the reader to the original

is less than or equal te - |Z;;| where|X;;| represents the paper [AGGR98].

number of strongly connected pairsih x D;. If this set of

pairs is still larger than main memory, we can repeatthe abo®  Performance Evaluation

transformation trick. However, we believe that such repeated

application will be rare. In this section, we show the results of a detailed evaluation
of the speed and scalability of CACTUS on synthetic and
5.2 Clusters in Subspaces real datasets. We also compared the performance of CAC-

CACTUS does not discover clusters in subspaces for th&/S with the performance of STIRROur results show that
following reason. The orded, ..., A, in which cluster- CACTUS s very fast and scalable; it outperforms STIRR by
projections on individual attributes are combined may not iefactor betwees and10.

the right order to find a S_UbSpace C|US([EI’FO.I' instance, it” 9We intend to compare CACTUS and ROCK after our ongoing implemen-
spans the subspace defined by a set of attrifidgsAs, A4}  tation of ROCK is complete.
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Figure 10: Time vs. #Tuples Figure 11: Time vs. #Attributes Figure 12: Time vs. #Attr-values
First Author First Author (contd.) Second Author Second Author (contd.
Katz, Stonebraker, Wong Ceri, Navathe Katz, Wong Ceri, Navathe
DeWitt, Hsiao Abiteboul, Grumbach DeWitt, David Vianu, Grumbach
DeWitt, Ghandeharizadeh Korth, Levy DeWitt, Ghandeharizadeh | Silbershatz, Levy
Kanellakis, Beeri, Vardi Agrawal, Gehani Abiteboul, Beeri Jagadish, Gehani
Ramakrishnan, Beeri Chen, Hua, Su Beeri, Srivastava Su, Chen, Chu
Bancilhon, Kifer Chen, Hua, Lam Ramakrishnan, Kim Su, Lee
Afrati, Cosmadakis Collmeyer, King, Shemer| Papadimitriou, Cosmadakis Collmeyer, Shemer
Alonso, Barbara, GarciaMolina Copeland, Lipovski, Su || GarciaMolina, Barbara Su, Lipovski, Copeland
Devor, Elmasri Cornell, Dan, lyer, Yu Devor, EIMasri, Weeldreyer Yu, Dias
Barsolou, Keller, Wiederhold | Chang, Gupta Keller, Wiederhold Lee, Cheng
Barsalou, Keller, Shalom Fischer, Griffeth, Lynch || Keller, Wiederhold Griffeth, Fischer

Table 1:2-clusters on the pair of first author and second author attributes

6.1 Synthetic Datasets 6.2 Real Datasets

_ _ . In this section, we discuss an application of CACTUS to a
We first present our experiments on synthetic datasets. Tdiinbination of two sets of bibliographic entries. The results
test datasets were generated using the data generator dgMgih the application show that CACTUS finds intuitively

oped by Gibson et al. [GKR98] to evaluate STIRR. (See Segreaningful clusters from the dataset thus supporting our
tion 3.2 for a description of the data generator.) We set tlyfinition of a cluster.

numbher of tuples tfd million, th? nun;ber of sttribgtes W The first set consists at766 bibliographic entries for arti-
and the number of attribute values for each attributéd o5 rejated to database research [Wie] and the second set con-

In all datasets, the cluster-projections on each attribute Wefigys 0130919 bibliographic entries for articles related to The-
[0,9] and[10, 19] (as shown in Figure 1). We fix the value, otical computer Science and related areas [Sei]. For each
of a at 3, and the value of the distinguishing numbeat 2.

i . ) article, we use the following four attributes: the first author,
For STIRR, we fixed the number of iterations to & -as b second author, the conference or the journal of publication,
suggested by Gibson et al. [GKR93].

and the year. If an article is singly-authored then the author’s
CACTUS discovered the clusters in the input datasef@me is repeated in the second author attribute as well. The
shown in Figures 1, 2, and 3. sizes of the first author, the second author, the conference, and
. . ) o ) the year attribute domains for the database-related, the theory-
Figure 10 plots the running time Whlle increasing theajated, and the combined sets 4l18, 3529, 1631, 44},
number of tuples from to 5 million. Figure 11 plots the {8043,8190, 690, 42}, and{10212, 10527, 2315, 52} respec-
running time while increasing the number of attributes froqi\,e|y_ We combined the two sets together to check if CAC-
4 to 50. Figure 12 plots the running time while increasingrys is able to identify the differences and the overlap be-
the number of attribute values froéd to 1000 while fixing  tween the two communities. Note that for these domains,
the number of attributes &t While varying the number of some of the inter-attribute summaries and the intra-attribute
attribute values, we assumed that ustiD attribute values, symmaries-especially those involving the first author and the
the inter-attribute summaries would fit into main memory; fogecond author dimensionslo not fit in main memory. How-
a larger number of attribute values we took the multi-layeregdye; we choose this particular dataset because it is easier to

approach described in Section 5. In all cases, CACTUS isyerify the validity of the resulting clusters (than for some other
to 10 times faster than STIRR.



ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Record
ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMP, LIBTR, SICOMP, TCS,(TR
PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCT, SICOMP, STOC

Table 2: Cluster-projections on Conference w.r.t. the First Author

publicly available datasets, e.g., the MUSHROOM datas@MS*96] Rakesh Agrawal,

from the UCI Machine Learning repository).

Table 5.1 shows some of theclusters on the first au-
thor and the second author attribute pair. We only present
the database-related cluster-projections to illustrate that CAC-
TUS identifies the differences between the two communities.

We verified the validity of each cluster-projection by queryinﬁs

on theDatabase Systems and Logic Programniiiigliogra- Dre]
phy at the web site maintained by Michael Ley [Ley]. Sim-
ilar cluster-projections identifying groups of theory-related
researchers as well as groups that contribute to both fieli8
also exist. Due to space constraints, we show some cluster-
projections corresponding to the latter two types in the fuffouss]
paper [GGR99].

Table 2 shows some of the cluster-projections on the cdf>%l
ference attribute computed with respect to the first author
attribute. The first row consists exclusively of a group of
database-related conferences, the second consists exclusively
of theory-related conferences, and the third a mixture of bo
reflecting a considerable overlap between the two communi
ties.

MO8

ERS6]

[DLR77]
7  Conclusions and Future Work

In this paper, we formalized the definition of a cluster whesGRro9)

the data consists of categorical attributes, and then introduced

a fast summarization-based algorithm CACTUS for discover-

ing such clusters in categorical data. We then evaluated our

algorithm against both synthetic and real datasets. [GJ79]
In future, we intend to extend CACTUS in the following

three directions. First, we intend to relax the cluster definition

by allowing sets of attribute values on each attribute which are

“almost” strongly connected to each other. Second, motivatEsKR98]

by the observation that inter-attribute summaries can be in-

crementally maintained under addition and deletion of tuples,

we intend to derive an incremental clustering algorithm from

CACTUS. Third, we intend to “rank” the clusters based on a

measure of interestingness, say, some function of the supp&frS99l

of a cluster.
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