
The BUCKY Object-Relational Benchmark �

Michael J. Careyy, David J. DeWitty, Je�rey F. Naughtony

Mohammad Asgariany, Paul Brownz, Johannes E. Gehrkey, Dhaval N. Shahy

Abstract

According to various trade journals and corporate market-
ing machines, we are now on the verge of a revolution|
the object-relational database revolution. Since we believe
that no one should face a revolution without appropriate
armaments, this paper presents BUCKY, a new benchmark
for object-relational database systems. BUCKY is a query-
oriented benchmark that tests many of the key features of-
fered by object-relational systems, including row types and
inheritance, references and path expressions, sets of atomic
values and of references, methods and late binding, and
user-de�ned abstract data types and their methods. To
test the maturity of object-relational technology relative to
relational technology, we provide both an object-relational
version of BUCKY and a relational equivalent thereof (i.e.,
a relational BUCKY simulation). Finally, we briey dis-
cuss the initial performance results and lessons that resulted
from applying BUCKY to one of the early object-relational
database system products.

1 Introduction

The addition of object-relational features to relational data-
base systems, which currently dominate the database mar-
ketplace, is arguably the most striking advance in RDBMS
functionality since relational database systems were �rst in-
troduced approximately 20 years ago [Sto96]. Many of the
major players in the RDBMS industry have begun shipping
either released products or early beta releases with some de-
gree of object-relational functionality, and the rest are hint-
ing that they will soon do the same. In addition, several
companies, including both startups as well as established

�Work supported by Informix, NCR; also by ARPA through order

#017 monitored by the US Army Research Laboratory under Con-
tract DAA 7307-92-6-Q509, by NASA under contracts #USRA-5555-

17, #NAG-3895, #NAGW-4229, and by NSF Award IRI-9157357.
Michael Carey's current address: IBM Almaden Research Center.

Dhaval Shah's current address: Cisco Systems, Inc.
yComputer Sciences Department, University of Wisconsin-

Madison, fcarey,dewitt,naughton,ma,johannes,dhavalg@cs.wisc.edu
zInformix Corporation, brown@illustra.com

database vendors, have begun o�ering full object-relational
database systems (or \universal servers," in RDBMS trade
journal and advertising-speak). It is clear to most observers
of the database industry that the new functionality o�ered
by object-relational database systems will be of considerable
bene�t to their users, but surprisingly little is known about
the performance implications of using these features. As a
step towards rectifying this situation, we have de�ned and
implemented the BUCKY1 Benchmark.

1.1 BUCKY Objectives

In designing BUCKY, our objective has been to test the
key features that add the \object" to \object-relational"
database systems. There are �ve areas of object-relational
query performance tested by BUCKY:

1. Queries involving row types with inheritance.

2. Queries involving inter-object references.

3. Queries involving set-valued attributes.

4. Queries involving methods of row objects.

5. Queries involving ADT attributes and their methods.

We discuss our rationale for choosing these features in detail
in Section 2. Briey, though, our philosophy was (a) to
focus on the essential primitive di�erences between object-
relational and relational database systems, and (b) to avoid
testing functionality that is shared between object-relational
and traditional relational systems, since that functionality
is already tested by existing relational benchmarks (e.g., the
Wisconsin Benchmark or TPC C and D)

The BUCKY Benchmark consists of an object-relational
schema, a data generation program, and a set of queries over
this schema. In this paper, we describe the BUCKY bench-
mark and discuss the sorts of insights that it can provide
into object-relational DBMS performance. We have, in fact,
run BUCKY on several existing systems, but the still-fresh
memories of our OO7 benchmarking experience [CDN93,
CDKN94] have curbed our appetite for trying to publish
benchmark results for commercial systems. In addition, in
our opinion, while the industry is on the verge of a \ood"
of object-relational functionality, it is still somewhat early
to try and publish meaningful comparative results.

One of the interesting implications of object-relational
database systems is that, as compared to relational systems,

1
Benchmark of Universal or Complex Kwery Ynterfaces



object-relational technology greatly expands the space of al-
ternatives available to a schema designer. For example, one
can use an inheritance hierarchy or a set of independent ta-
bles; one can use inter-object references or key/foreign-key
pairs; one can use set-valued attributes or store the elements
of the logically embedded sets in a separate table with a for-
eign key \linking" them to their parent tuple. Moreover,
this relational vs. object-relational design space expansion
also applies to methods of ADTs and row objects in some
cases. For example, what is logically a method on a row
object can sometimes just be directly expressed in all rel-
evant SQL queries rather than having a separate method.
Similarly, what is logically an ADT with a set of associated
methods can sometimes be expressed by \de-encapsulating"
the ADT's internal structure into attributes of the contain-
ing SQL row types and converting the ADT's methods into
expressions in SQL queries (at least for simple ADTs). Put
di�erently, an application developer has a choice of just how
\object-relational" to make the database and application
code (i.e., of just how far to go in terms of utilizing the new
features o�ered by these systems).

One of the goals of the BUCKY benchmark is to examine
the performance tradeo�s between the di�erent design alter-
natives o�ered in the brave new world of object-relational
databases. Accordingly, in addition to the object-relational
BUCKY schema, load program, and query set, we have also
de�ned a relational BUCKY schema that is semantically
equivalent (note Section 5.9) to the object-relational schema,
implemented an appropriate load program, and de�ned a
set of relational queries that are semantically equivalent to
BUCKY's object-relational queries. By implementing both
versions of the benchmark on one system|which is possi-
ble since, by de�nition, an object-relational database system
supports full relational DDL and DML|one can compare
and contrast the two approaches within a common software
framework. This comparison is also important for another
reason; the results of this comparison can provide insight
into the relative maturity of object-relational (versus rela-
tional) query optimizers and runtime systems.

1.2 Preview of Paper

In the remainder of this paper, we will explain the ratio-
nale behind the design of the BUCKY benchmark, describe
its schema, and present the object-relational and relational
versions of the BUCKY query suite. As we go, we will dis-
cuss the sorts of lessons that can be learned from running
BUCKY { some pertaining to the particular system being
tested, with others pertaining to the general state of object-
relational DBMS technology today { and we will present
some preliminary results obtained by running BUCKY on
the Illustra O/R DBMS. It is our hope that the BUCKY
benchmark will serve as a tool both for driving and for
measuring the improvements that will be needed to make
object-relational technology a commercial success.

2 BUCKY Design Rationale

The features tested in BUCKY match the growing consen-
sus in the database �eld as to what constitutes an object-
relational system. One well-known exposition of this con-
sensus appears in Stonebraker's book [Sto96]. Stonebraker
lists four features that must be added to a relational DBMS
in order for it to be considered an object-relational DBMS:

1. Inheritance.

2. Complex object support.

3. An extensible type system (ADTs).

4. Triggers.

Both the list of features tested by BUCKY and Stone-
braker's list contain inheritance as their �rst item. The sec-
ond through fourth items in the BUCKY feature list (ref-
erences, object methods, and set-valued attributes) map to
the second and third items in Stonebraker's list, although
the mapping is not one-to-one. In more detail, each of refer-
ences, object methods, and set-valued attributes can be con-
sidered part of complex object support; set-valued attributes
also contribute to an extensible type system. The last item
in the BUCKY list of tested features, ADT support, maps
to the third item in Stonebraker's list. Finally, we di�er on
the last item in his list|the BUCKY benchmark includes no
trigger tests. While we agree that advanced trigger support
is a very important feature in a DBMS, we think that it is
orthogonal to whether or not a system is object-relational
(so we leave trigger benchmarking to others).

Some might question the value of de�ning a benchmark
that only tests the object extensions in object-relational sys-
tems. After all, there are many aspects to overall applica-
tion performance; the query performance of object exten-
sions is only a part of the story. We agree. However, our
goal for BUCKY was to provide a benchmark that is as
speci�c as possible yet still captures the essence of what
is missed by other, existing benchmarks. Object-relational
systems provide a superset of relational functionality, so ex-
isting relational benchmarks (e.g., the Wisconsin, TPC-A
through TPC-D, and Set Query benchmarks [Gra93]) can
and should be used to test the relational subset of a given
object-relational DBMS. Another important feature that we
have also placed outside the scope of BUCKY, often the
focus for OODB systems, is client-side \pointer traversal"
performance. It is likely that application tools will provide
this same kind of functionality on top of object-relational
systems (inspired by wrapper tools for relational systems
like those from Persistence and Ontos). Given the architec-
ture of a typical object-relational system, the performance
of such tools would be more a function of a caching layer on
top of the DBMS than of the DBMS itself. Also, this func-
tionality is well-tested by existing OODBMS benchmarks
(e.g., OO1 [CS92] and OO7 [CDN93]). Thus, BUCKY does
not attempt to test navigational program performance.

Finally, it should also be noted that, due to their ex-
tensible nature, object-relational database systems can be
\customized" to provide specialized solutions designed for
speci�c application domains or data types. This is perhaps
best embodied by Illustra/Informix's \Data Blade" archi-
tecture, where for example one can buy a \sequence" data
blade, a \GIS" data blade, or a \text" data blade. IBM has
a corresponding family of \Database Extenders," and Ora-
cle has a family of \Application Cartridges" with a similar
purpose. We regard these data type-speci�c extensions as
targets for their own benchmarks|the Sequoia 2000 bench-
mark is an example of such a benchmark for GIS data man-
agement systems|therefore, domain-speci�c testing is also
outside the scope of the BUCKY benchmark. Results from
BUCKY will provide insight into the base performance of an
O/R DBMS, shedding light on its resulting ability to do well
on a domain-speci�c benchmark, but domain-speci�c per-
formance will also depend heavily on the quality of the par-
ticular data structures and algorithms employed in a given
prepackaged solution.



Enrolled

Courses

Department Staff

Instructor

TA Professor

Person

EmployeeStudent

coursesOffered

dept

CourseSectionsections

course

worksIn

teaches

teacher

major

employees

advisor

student

section

hasTaken

students

advisees

majors

chair

Figure 1: Schema Structure for BUCKY Benchmark.

3 BUCKY Database Description

The database for the BUCKY benchmark is modeled after a
university database application. Figure 1 gives a graphical
sketch of the schema. The lines in the �gure from Person to
Student, Person to Employee, Student to TA, Employee to
Sta�, Employee to Instructor, Instructor to TA, and Instruc-
tor to Professor represent inheritance among types. The re-
maining lines represent relationships between instances of
types, and are labeled on each end with the name by which
the relationship is known at that end. Though BUCKY is
designed to be run on an object-relational system, as we
mentioned earlier, it can also be run on a relational system
by appropriately mapping its object features onto relational
features. In this section we discuss the key features of both
versions of the BUCKY schema in order to make sure that
their designs are clear; details of each version can be found
in the Appendices.

3.1 Inheritance

Using object-relational DDL, the natural way to model the
information in BUCKY about university people is by having
an inheritance hierarchy rooted at a person type. Thus, the
object-relational BUCKY has a root row type called Per-
son t that contains the attributes common to all university-
a�liated people. Person t has two subtypes, Student t and
Employee t, that add student- and employee-speci�c infor-
mation. Employee t has two subtypes, Sta� t and Instruc-
tor t, that add information speci�c to non-instructional sta�
and instructors, respectively. Finally, there are two sub-
types of Instructor t, namely TA t and Professor t, as well;
TA t is also a subtype of Student t (providing a test case
for multiple inheritance). In a BUCKY database, there are
no instances of the non-leaf (super) types, so these are like
\abstract classes" in C++ parlance; only the leaf types ac-
tually have instances. What this means, for example, is

that every instructor will either be a teaching assistant or
a professor. In addition to these types, each of them has a
corresponding table to hold its instances (i.e., Person t has
the Person table, Employee t has the Employee table, Stu-
dent t has the Student table, and so on), and these tables are
contained in a table/sub-table hierarchy that mirrors that
of the type hierarchy. A complete SQL3-style description
of the object-relational BUCKY schema is given in the full
paper (tt http://www.cs.wisc.edu/~naughton/bucky.html).

Since there is no direct way to model inheritance in re-
lational DDL, we created a separate table for each non-
abstract type in the hierarchy (Employee, Instructor, Stu-
dent, and TA), repeating their common �elds in each ta-
ble de�nition. We felt this was the most natural mapping
to use; a complete DDL description for this version of the
BUCKY schema is given in the full paper. An alternative
would have been to have a single table with the union of
all the attributes in the hierarchy plus a type tag, with null
values in attributes that do not apply to a particular row.
However, we were worried that this approach would end up
wasting too much space (depending on how null attributes
are represented by the system). Another alternative would
have been to use a \vertically decomposed" schema, where
each subtype has a corresponding table that contains the
key for its least speci�c supertype(s)'s table (e.g., Person,
for Employee) plus only those attributes unique to the type
(e.g., the Employee table under this scheme would have just
four attributes: id, from Person, plus dateHired, status,
and worksIn). However, we were concerned that this ap-
proach would require too many joins to reassemble objects.
(It would be interesting to experiment with these other two
mapping alternatives in the future.)

3.2 References

Another salient feature of object-relational DDL is its direct
support for inter-object references. Among its attributes,



the Student t type denotes a student's major using a refer-
ence to a row of type Department t:

CREATE ROW TYPE Student_t (
...
major Ref(Department_t),
...

)
UNDER Person_t;

The department row type has a corresponding \inverse"
reference to the set of students majoring in that department:

CREATE ROW TYPE Department_t (
...
majors Set(Ref(Student_t)),
...

);

It should be noted that the presence of such inverse sets
is not strictly required, as the student/major relationship is
fully captured by the reference contained in the Student t
type. However, we included this set in BUCKY anyway, as
it is in the \spirit" of object-relational data modeling, which
encourages the representation of (binary) relationships in a
bi-directional manner. Unfortunately, unlike some OODB
systems, which allow users to tell the system about the in-
verse nature of relationships of this sort, we are not aware
of any current O-R product that has DDL support for mak-
ing such assertions. SQL3 provides no such support either
| in fact, support for collection-valued attributes was very
recently moved out of SQL3. We retain them in BUCKY
because current O-R products do provide support for them,
and we therefore expect them to reappear as an SQL object
extension in the not-too-distant future.

In relational DDL, the relationship is modeled as a key/
foreign key pair:

CREATE TABLE Student (
...
majorDept Integer REFERENCES Department,
...

);

CREATE TABLE Department (
...
deptNo Integer NOT NULL PRIMARY KEY,
...

);

Since the relational model doesn't support set-valued at-
tributes, there is no analogy in the relational case to the
majors set in the object-relational schema's Department t
type. The relationship is less \directional" in the relational
case, as reconstructing it via a query involves writing a join
clause (s.majorDept = d.deptNo) that has no inherent di-
rectionality.

3.3 Sets

Another di�erence between the object-relational BUCKY
schema and the relational version is the availability of set-
valued attributes for storing sets of instances of base data
types. For example, in object-relational BUCKY, the type
de�nition for Person t includes an attribute kidNames of
type Set(Varchar(10)); it contains a set of strings, where
each one is the name of one of the person's children. In
the relational model, since there are no nested sets, this is

modeled by adding an additional Kids table with an id at-
tribute, which is a foreign key referencing the Person table,
plus a kidname attribute, which is the string name of one of
the referenced person's children.

3.4 Abstract Data Types

One of the key features of the O-R paradigm is an abstract
data type (ADT) facility that enables users to de�ne their
own data types for columns of tables. These user-de�ned
types can then be used in SQL commands, just like the
built-in (system-de�ned) types, and users can also de�ne
their own functions to operate on ADT instances. To test
this facility, the BUCKY schema includes a data type called
LocationAdt which is equivalent to the following C++ class
de�nition:

class LocationAdt {
private:
int lat;
int lon;

public:
int extract_latitude() { return(lat); }
int extract_longitude() { return(lon); }
float distance(LocationAdt& loc)
{ return(sqrt((this->lat - loc->lat)**2 +

(this->lon - loc->lon)**2)); }
}

Currently, di�erent object-relational database systems
take di�erent approaches to supporting such ADTs. Some
provide SQL3-style \value ADTs", where the structural con-
tent of an ADT is de�ned in SQL using a row-de�nition-like
syntax, thus declaring its internal structure to the DBMS.
Others provide \black box ADTs" instead, where the DBMS
is given nothing more than total size information for each
ADT. In the relational BUCKY schema, where no ADT sup-
port is assumed, we simply un-encapsulate the LocationAdt
type; each of its two data elements becomes a �eld in each
of the relational tables that has a LocationAdt �eld in its
corresponding object-relational table (i.e., in Department,
Sta�, Professor, Student, and TA).

3.5 Methods

Most object-relational systems allow functions to be written
either in SQL (for relatively simple functions) or in an ex-
ternal language like C or C++ (for more complicated func-
tions). To test both avors, BUCKY includes some func-
tions written each way. The Person row object type and
each of its subtypes have a salary function, and these func-
tions are written in SQL. The three LocationAdt functions
are written in C (but any external language is acceptable
here). For the salary function, BUCKY demands late bind-
ing. E.g., for Employees that are Professors, the following
function is called to compute their overall salary based on
their 9-month academic year salary plus their degree of sum-
mer support:

CREATE FUNCTION salary(p Professor_t)
RETURNS numeric
RETURN p.AYSalary * (9 + p.monthSummer) / 9.0;

The de�nitions for each of BUCKY's SQL functions are
given in the full paper, as are the SQL function signatures for
each of the methods of LocationAdt. Since most SQL-based
relational DBMSs do not provide an equivalent of ADTs or



Parameter Description Table Cardinalities
Parameter Value Table Cardin.
NumStudents 50000 Student 50000
NumDepts 250 Department 250
TAsPerDept 100 TA 25000
Sta�PerDept 100 Sta� 25000
ProfsPerDept 100 Professor 25000
KidsPerPerson 2.5 Kids 116759
CoursesPerDept 50 Course 12500
SectionsPerCourse 2 CourseSection 50000
SemestersPerSection 2 Enrolled 150000
StudentsPerSection 20
CoursesPerStudent 2

Figure 2: Parameter setting for populating the BUCKY
database.

ADT functions, the relational version of the BUCKY bench-
mark stores the location data in two columns of the a�ected
tables (as described above) and performs the salary com-
putations directly in the relational versions of BUCKY's
ADT test queries (which has the obvious disadvantage of
de-encapsulating the details of the salary computations).

4 Experimental Setup

In this section, we explain how a target system should be set
up in order to run BUCKY and obtain meaningful numbers.

The queries in the benchmark should be run \cold", that
is, with the bu�er pool being empty. Moreover, in enviro-
ments where database pages can be cached in the operating
system's �le bu�ers, the �le system cache should be cold as
well. To ush the database bu�er pool between queries, a
huge table that is not used in the benchmark queries can be
scanned. To ush the Unix bu�er pool, a huge �le that is
not a part of the database should be scanned. We found in
our experimentation that we were indeed able to generate
repeatable query running times this way, so this strategy is
e�ective. (This can be veri�ed by running queries 10 times
with ushing; the 10th time should match the �rst if no
signi�cant data caching is occurring between queries.)

The (self-explanatory) parameter settings shown in Fig-
ure 2 are to be used for populating the BUCKY database; we
show both the parameter values and the resulting table sizes
(in terms of the number of rows). While this is a relatively
small data set, we have found it to be su�cient for generat-
ing interesting ORDBMS performance results and tradeo�s
given the current state of the technology.

A few of the attribute value distributions are important
to the BUCKY queries, so we mention them here. The kids
for each person are generated by, for each person, (1) gen-
erating a number x between 0 and 99, then adding kids
\girlnamex" and \boynamex", then (2) with probability 1=4
generating another kid with name \girlnamey", where y is
randomly chosen between 100 and 1000, then with probabil-
ity (1=4)2 choosing another such girlname, etc. This means
that everyone has at least one boy and girl, and that the
boy and girl share the same numeric su�x on their names;
25% of the people have one additional girl, 12.5% have two
additional girls, and so on.

The birth dates are uniformly distributed between 1940
and 1991. Salaries are more complex, since each subclass of
Employee represents the salary in a di�erent way (i.e., Sta�
have an annualSalary, TAs have a monthly salary and a per-
cent time, and Professors have a 9-month salary plus some

number of summer months). We generated these numbers
so that Query 5, which asks for all employees making over
$96000, returns about 5% of the Employees in the database.

Of course, indices should be created on the data in order
to speed up the queries as much as possible. The strategy for
creating indices should be to look at the benchmark, query
by query, to determine (for each query) what indices will
potentially improve their performance. It is legal to create
the indices after the data has been bulk-loaded, so as not
to slow down bulk-loading, and to report the bulk-loading
time separately from the index creation time.

5 BUCKY Queries and Preliminary Results

This section describes the BUCKY benchmark's query set.
As described earlier, we will present two sets of queries that
should be run against the system|one set that exercises its
object-relational (O-R) capabilities, and another set that
uses just the relational subset of the system. As we describe
each BUCKY query, we also explain its role in the bench-
mark.

5.1 SINGLE-EXACT: Exact-Match Over One Table

Find the address of the sta� member with id 6966.

This is a simple exact-match lookup. The relational and
O-R versions of this query look the same:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Staff e WHERE e.id = 6966;

This �rst test mainly serves to provide a performance
baseline that can be helpful when interpreting results of later
queries.

5.2 HIER-EXACT: Exact-Match Over Table Hierarchy

Find the address of the employee with id 6966.

In O-R SQL, this query|which must search the Em-
ployee table and its subtables|simply looks like:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Employee e WHERE e.id = 6966;

In relational SQL, searching all these types requires to
explictly union the relational schema's separate tables, yield-
ing:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Staff e WHERE e.id = 6966

UNION ALL
SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Professor e WHERE e.id = 6966

UNION ALL
SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM TA e WHERE e.id = 6966;

This tests the e�ciency of the O-R system's handling of
queries over subtable hierarchies, measuring the impact of
the system's approach to scanning and indexing over hier-
archies.



5.3 SINGLE-METH: Method Query Over One Table

Find all Professors who make more than 150000
per year.

In O-R SQL, the query involves invoking the salary method
(whose body is written in SQL):

SELECT p.name, p.street, p.city, p.state, p.zipcode
FROM Professor p WHERE salary(p) >= 150000;

In relational SQL, there is no salary method, so the query
is instead:

SELECT p.name, p.street, p.city, p.state, p.zipcode
FROM Professor p
WHERE (p.AYSalary * (9 + p.MonthSumer) / 9.0)

>= 150000;

This test establishes the e�ciency of the O-R system's
approach to indexing on function results (as compared to
indexing on stored relational attributes).

5.4 HIER-METH: Method Query Over Table Hierarchy

Find all Employees who make more than 96000
per year.

The query returns about 18% of the Sta�, TA, and Professor
objects (13191 tuples). The salaries of professors are uni-
formly distributed between 30K and 129K and the salary of
tas are uniformly distributed between 10K and 19K (sigh!).
In O-R SQL, the query is again a clean-looking call to the
salary function; recall that the implementation of this func-
tion is di�erent for the various employee subtypes:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Employee e WHERE salary(e) >= 96000;

In relational SQL, the method computation must be embed-
ded in the query, which again involves an explicit union:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Staff e
WHERE e.annualSalary >= 96000 UNION ALL
SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Professor e
WHERE (e.AYSalary * (9 + e.MonthSummer) / 9.0)

>= 96000 UNION ALL
SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM TA e
WHERE (apptFraction * (2 * e.semesterSalary))

>= 96000;

This tests the O-R system's handling of indexing on func-
tion results in the presence of a table hierarchy.

5.5 SINGLE-JOIN: Relational Join Query

Find all Sta� with the same birthdate who live in
an area with the same zipcode

This is a fairly traditional relational join. In O-R SQL,
this looks as follows (the oid predicate prevents each satis-
fying sta� member pair from appearing twice):

SELECT s1.id, s1.name, s1.city,
s2.id, s2.name, s2.city

FROM Staff s1, Staff s2
WHERE s1.birthDate = s2.birthDate AND

s1.zipcode = s2.zipcode AND s1.oid < s2.oid;

The relational SQL query is almost identical (with ids
instead of oids):

SELECT s1.id, s1.name, s1.city,
s2.id, s2.name, s2.city

FROM Staff s1, Staff s2
WHERE s1.birthdate = s2.birthdate AND

s1.zipcode = s2.zipcode AND s1.id < s2.id;

This is the baseline test for join processing, hopefully ver-
ifying that the O-R query is just as e�cient as the relational
query for regular joins.

5.6 HIER-JOIN: Relational Join Over Table Hierarchy

Find all persons with the same birthdate who live
in the same zipcode aera.

This is the same query, but over the hierarchy. In O-R
SQL, it looks like:

SELECT p1.id, p1.name, p1.city,
p2.id, p2.name, p2.city

FROM Person p1, Person p2
WHERE p1.birthDate = p2.birthDate AND

p1.oid < p2.oid AND p1.zipcode = p2.zipcode;

In relational SQL, Query HIER-JOIN is ten-way union
query; each of the ten arms of the union consists of a join be-
tween a pair of the tables that hold subtypes of Person (Pro-
fessors, Students, TAs and Sta�) in the relational database.
(Due to the length of this query, its statement is not shown.)

This test investigates the e�ciency of the O-R system's
handling of joins between table hierarchies.

5.7 SET-ELEMENT: Set Membership

Find all Sta� who have a child named \girl16."

The kidName values in the database are such that this
query returns about 2% percent of the Sta� objects (495
people). In O-R SQL, this query is simple; it just tests for
membership of 'girl16' in the nested kidName set:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Staff e WHERE 'girl16' IN e.kidNames;

In relational SQL, this query involves a join with the
table needed to normalize this data in the relational case;
the DISTINCT clause in the relational version is needed to
force the same semantics as in the O-R query, where each
Sta� tuple will be output at most once:

SELECT DISTINCT e.name, e.street, e.city,
e.state, e.zipcode FROM Staff e, Kids k

WHERE e.id = k.id AND k.kidName = 'girl16';

This query tests the O-R system's handling of nested
sets. As we have mentioned, nested sets have recently been
eliminated from SQL3; we are leaving this query in the
benchmark because vendors support it and we think users
want it. A select/join is required in the relational case, so if
the O-R system supports indexing on set-valued attributes,
it has an opportunity to win here.



5.8 SET-AND: And'ed Set Membership

Find all Sta� who have children named \girl16"
and \boy16."

This query also returns about 2% percent of the Sta�
objects. In O-R SQL, this query is straightforward:

SELECT e.name, e.street, e.city, e.state, e.zipcode
FROM Staff e
WHERE 'girl16' IN e.kidNames

AND 'boy16' IN e.kidNames;

In relational SQL, this query again involves joins:

SELECT DISTINCT e.name, e.street, e.city,
e.state, e.zipcode

FROM Staff e, Kids k1, Kids k2
WHERE e.id = k1.id AND e.id = k2.id AND

k1.kidName = 'girl16' AND k2.kidName = 'boy16';

This is a slightly more complex test of the O-R system's
handling of queries involving nested set attributes.

5.9 1HOP-NONE: Single-Hop Path, No Selection

Find all student/major pairs

This is the �rst of BUCKY's path expression test queries.
It returns all students and teaching assistants (75000 persons
in all).

In O-R SQL, this query is easily written as:

SELECT s.id, s.name, s.state, s.major->dno,
s.major->name, s.major->building

FROM Student s;

In relational SQL, it becomes a union of two joins:

SELECT s.id, s.name, s.state,
d.dno, d.name, d.building

FROM Department d, Student s
WHERE s.majorDept = d.deptNo UNION ALL
SELECT s.id, s.name, s.state,

d.dno, d.name, d.building
FROM Department d, TA s
WHERE s.majorDept = d.deptNo

This tests the e�ciency of the O-R system at processing
queries that involve path expressions. A well-implemented
O-R system should be able to handle the O-R and relational
cases with more or less equal e�ciency.

We need to point out here that, strictly speaking, O-R
path expressions are equivalent to relational systems' left
outer joins, not inner joins. Despite this, we explicitly chose
to use regular joins in the relational case. The reason for this
decision is that, as was mentioned in Section 3, we know that
the BUCKY database contains no dangling relationships.
Given this knowledge about the database, we have simply
written the given query in its most convenient and natural
form in each case (i.e., using the most natural O-R and
relational formulations).

It is also important to notice that the relational version
of this query explicitly encodes more \information" than
the object-relational version, as the relational version names
both the source and target tables of the relationships in-
volved in this query. In the object-relational case, the infor-
mation about which tables contain the target objects of ref-
erences is instead encoded in the schema as reference scope
information (as mentioned in Section 3). (In fact, the SQL3

committee recently voted to remove unscoped reference from
the standard; we will see one reason for this when we exam-
ine the performance results that we obtained by running
BUCKY on an object-relational product that pre-dates this
decision.)

5.10 1HOP-ONE: Single Hop Path, One-Side Selection

Find the majors of students named
\studentName9000".

This query pairs students and department with a selec-
tion on student name.

In relational SQL, the query looks like this:

SELECT s.id, s.name, d.deptNo, d.name
FROM Student s, Department d
WHERE s.majorDept = d.deptNo AND

s.name = 'studentName9000'
UNION ALL

SELECT s.id, s.name, d.deptNo, d.name
FROM TA s, Department d
WHERE s.majorDept = d.deptNo AND

s.name = 'studentName9000';

Note that the union is necessary since a student may either
be a TA or a \regular" student.

In O-R SQL, there are two ways to express this. The
�rst, variant A, starts the query from the students and fol-
lows the path to their major department, which looks like:

SELECT s.id, s.name, s.state,
s.major->dno, s.major->name,
s.major->building

FROM Student s WHERE s.name = 'studentName9000';

The second, variant B, starts from the departments and
follows their (sets of) pointers toward the department's ma-
jors. This is a selection on the target of a set-valued refer-
ence, and is a bit obtuse due to the SQL3 \everything in the
FROM clause is a table" view of the world:

SELECT m->id, m->name, m->state,
d.dno, d.name, d.building

FROM Department d, TABLE(d.majors) t(m)
WHERE m.majors->name = 'studentName9000';

Variant A tests the O-R system's handling of short path
expressions with predicates on the originating table. Vari-
ant B tests the O-R system's e�ciency at handling queries
involving nested sets of references. (It is also a case where
inverse relationships, if supported, could be exploited very
e�ectively due to the nature of the selection predicate.)

5.11 1HOP-MANY: One-Hop Path, Many-Side Selection

Find all students majoring in Department 7.

In relational SQL there is again only one version:

SELECT s.id, s.name, d.deptNo, d.name
FROM Student s, Department d
WHERE s.majorDept = d.deptNo

AND d.name = 'deptname7'
UNION ALL

SELECT s.id, s.name, d.deptNo, d.name
FROM TA s, Department d
WHERE s.majorDept = d.deptNo

AND d.name = 'deptname7';



Again, there are two ways to express this in O-R SQL.
The �rst, variant A, starts from departments and follows
the path to students; this is a selection on the source of a
set-valued reference:

SELECT m->id, m->name, m->state,
d.dno, d.name, d.building

FROM Department d, TABLE(d.majors) t(m)
WHERE d.name = 'deptname7'

The second, variant B, starts from students and follows
the path toward their major departments. This is a selection
on the target of a scalar reference, which in O-R SQL looks:

SELECT s.id, s.name, s.state, s.major->dno,
s.major->name, s.major->building

FROM Student s WHERE s.major->name = 'deptname7';

Variant B tests the O-R system's handling of queries
with path expressions whose target table is restricted by a
predicate. With the selection predicate on the path's target
table rather than its originating table, an O-R system that
handles path queries naively|e.g., to failing to make use of
scope information, or failing to reorder path expressions like
joins|will likely do poorly on this test. As with the previous
test, inverse relationship exploitation is possible (and can be
advantageous) on this test.

5.12 2HOP-ONE: Two-Hop Path, One-Side Selection

Find the semester, enrollment limit, department
number, and department name for all sections of
courses taught in room 69.

In O-R SQL there are many ways to express this query.
Like Query 2HOP-NONE, it involves a join of three tables.
We can start to follow references either from course sections,
courses, or departments. We chose not to start with courses
since it seemed unlikely (i.e., awkward) for a user to express
the query that way. In variant A, we start from course sec-
tions and follows the path through Course to Department.
This is a selection on the source of a two-hop chain of scalar
valued references. Variant A is thus quite simple-looking:

SELECT x.semester, x.noStudents,
x.course->dept->dno, x.course->dept->name

FROM CourseSection x WHERE x.roomNo = 69;

The second O-R variant starts from departments and
follows the path through course to course sections. This is
a selection on the target of a two-hop chain of set-valued
references. Variant B looks like:

SELECT x->semester, x->noStudents, d.dno, d.name
FROM Department d, TABLE(d.coursesOffered) t1(c),

TABLE(c.sections) t2(x)
WHERE x->roomNo = 69;

In relational SQL, there is only one variant:

SELECT x.semester, x.roomNo, d.deptNo, d.name
FROM CourseSection x, Course c, Department d
WHERE x.deptNo = c.deptNo

AND x.courseNo = c.courseNo
AND c.deptNo = d.deptNo AND x.roomNo = 69;

This tests the O-R system's handling of path queries with
longer paths.

5.13 ADT-SIMPLE: Simple ADT Function

Find the latitudes of all sta� members.

We now turn our attention to testing ADT support,
starting with the very simple case of a query that has a
function invocation in its SELECT list. In object relational
SQL, the query looks like

SELECT extract_latitude(s2.place)
FROM Staff s2;

In relational SQL, where the ADT has been \unencap-
sulated," we have:

SELECT e.latitude
FROM Staff e;

This tests the e�ciency of the O-R system's function dis-
patch mechanism (versus the e�ciency of retrieving stored
data).

5.14 ADT-COMPLEX: Complex ADT Function

For each Sta� member, �nd the distance between
him and the sta� member with id 6966.

This query applies a more complex ADT function; in
object relational SQL, it looks like:

SELECT distance(s1.place, s2.place)
FROM Staff s1, Staff s2 WHERE s1.id = 6966 ;

In relational SQL, the computation must be spelled out
completely in SQL:

SELECT SQRT((s1.latitude - s2.latitude)*
(s1.latitude - s2.latitude)

+ (s1.longitude - s2.longitude)*
(s1.longitude - s2.longitude))

FROM Staff s1, Staff s2 WHERE s1.id = 6966;

This again tests the O-R system's function dispatch me-
chanism, but this time it does so versus a case where the
relational case's expression is quite complex.

5.15 ADT-SIMPLE-EXACT: Exact-Match on an ADT

Find the ids of the Sta� who live at latitude of
34 and a longitude of 35

In this query, we are looking for a particular point, which
is an exact match. In object relational SQL, the query looks
like

SELECT s.id
FROM Staff s WHERE s.place = LocationADT(34, 35);

In relational SQL, it looks like:

SELECT s.id
FROM Staff s
WHERE s.latitude = 34 AND s.longitude = 35;

This tests the O-R system's e�ciency at handling an
exact match query involving an ADT (which requires ADT
indexing support).



5.16 ADT-COMPLEX-RANGE: Range on Complex ADT
Function

Find the ids and names of Sta� whose ids are
less then 1500 and are at a distance of 500 units
from each other.

We now try a more complex ADT query, which in O-R
SQL is:

SELECT s1.id, s1.name, s2.id, s2.name
FROM Staff s1, Staff s2
WHERE distance(s1.place, s2.place) < 500
AND s1.id < 1500 AND s2.id < 1500
AND s1.id < s2.id;

In relational SQL, it looks like:

SELECT s1.id, s1.name, s2.id, s2.name
FROM Staff s1, Staff s2
WHERE SQRT((s1.latitude - s2.latitude)*

(s1.latitude - s2.latitude) +
(s1.longitude - s2.longitude)*
(s1.longitude - s2.longitude)) < 500

AND s2.id < 1500 and s1.id < s2.id
AND s1.id < 1500;

This tests the O-R system's e�ciency at handling a range
query involving an ADT.

5.17 Other Queries Considered

In addition to the queries described here, we also consid-
ered including a number of other test queries. However,
these other queries were eliminated because, when running
BUCKY against an actual O-R system, we found that their
results simply reinforced those that we already presented.
The other queries that we tested include: SINGLE-RANGE
(Range Query Over Single Table) and HIER-RANGE (Range
Query Over Table Hierarchy), whose results were similar to
the corresponding exact-match queries; SET-OR (Or'ed Set
Membership), the results of which were similar to the other
set queries; 1HOP-BOTH (Single-Hop Path, Double-Ended
Selection), whose results were essentially predictable based
on the corresponding pair of single-ended selections; 2HOP-
NONE (Two-Hop Path, No Selection), 2HOP-MANY (Two-
Hop Path, Many-Side Selection), and 2HOP-BOTH (Two-
Hop Path, Double-Ended Selection), which largely reinforced
the corresponding single-hop query results; and, �nally, ADT-
SIMPLE-RANGE (Range on Simple ADT Function), which
produced results similar to those of ADT-SIMPLE-EXACT.

6 Initial BUCKY Results and Lessons

In this section, we briey describe our preliminary experi-
ence in applying the BUCKY benchmark to an actual sys-
tem { one of the early object-relational products. The sys-
tem that we tested is Illustra, now owned by Informix.

6.1 Loading the BUCKY Database

A big di�erence between implementing BUCKY in the re-
lational and object-relational models arose when generating
and bulk-loading the input �les for the database. Doing this
was much harder for object-relational data due to the pres-
ence of references. Basically, O-R systems make querying
simpler by preconnecting objects according to relationships
declared in the schema; while queries indeed become more

concise in most cases, we quickly discovered that loading
becomes both more complex and more time-consuming as a
result.

Our approach to loading was to �rst generate external
data �les that were then loaded into the database system
using its bulk-loading facility. We did this for portability
and uniformity reasons: the load �les are generated by a
stand-alone C++ program, and hence can be used by any-
one, ensuring that others will be able to use the exact same
input data set. These �les can then be bulk-loaded into
any DBMS (perhaps after some minor syntactic tweaking to
match the �eld and tuple delimiters used by the particular
DBMS's bulk-loading facility).

Our approach to loading was straightforward for the re-
lational BUCKY database, but proved much more di�cult
in the object-relational case. To see why, consider generat-
ing the load �le for the Students table. Each student has,
among other things, an associated major. For relational
systems, the data for a particular student simply includes
the department id of the student's major department; as a
result, when generating the Department load �le, we don't
need to know who the department's majors are, as this in-
formation is already captured in the Student table and can
be recovered later using join queries. In contrast, consider
generating the load �les for the same two tables (Student
and Department) in the object-relational case. First, rather
than holding the key of the major department, the student
data must now include the OID (object identi�er) of the
student's major department. Unfortunately, since the ma-
jor department object has not yet been created, there is no
way to know what this OID may eventually be. Current
O-R systems address this problem by allowing the use of a
surrogate for the department object at load time; this sur-
rogate is a temporary, external OID that the system later
replaces with the actual OID later during the loading pro-
cess. Although providing support for such surrogate OIDs
makes bulk-loading possible, the problem of generating and
managing surrogate OIDs when preparing the data for bulk-
loading is far from trivial.

To illustrate the \joys" of loading an O-R database, sup-
pose we are now generating the Department data �le. When
we come to the 4095th department object, it must include a
reference to each student that has this department as a ma-
jor. We can use the surrogate OIDs of the student objects;
the set of surrogates for this particular department might
be 56, 157, 3100, the surrogates for the 56th, 157th, and
3100th students. Unfortunately, this means that we must
remember the association between these students and their
departments from the time when we generate the students
until the time when we generate their corresponding depart-
ments. If we are working with a large database, the number
of such associations can be huge, making the data structure
needed to store these associations larger than memory. At
best, paging of this data structure would make data gen-
eration impossibly slow; at worst, its size will exceed the
available swap space and the program won't �nish running
at all. Note that interchanging the generation order of the
Department and Student tables won't help, as there is a
cyclic dependency between them.

To solve this problem, we used a C++ program that
generates relational load �les, followed by a series of smaller
C++ programs, awk programs, and calls to the Unix sort
and join utilities to munge this output into an object-re-
lational load �le. As mentioned above, the relational load
�les include information about which rows are related to
which other rows by using key-foreign key pairs; for exam-



Query R O-R
SINGLE-EXACT 0.23 0.28
HIER-EXACT 0.25 0.40
SINGLE-METH 3.58 0.67
HIER-METH 11.49 18.73
SINGLE-JOIN 11.25 11.33
HIER-JOIN 140.1 187.2
SET-ELEMENT 5.8 23.7
SET-AND 2.5 24.0
1HOP-NONE 50.9 95.0/39.7
1HOP-ONE 0.30 0.29/0.26
1HOP-MANY 2.32 23.96/6.26
2HOP-ONE 4.95 2.12/1.74
ADT-SIMPLE 5.97 6.43
ADT-COMPLEX 9.43 5.92
ADT-SIMPLE-EXACT 0.20 0.24
ADT-COMPLEX-RANGE 39.6 22.5

Figure 3: Measured times in seconds for BUCKY queries.
(Path expression results shown as UNSCOPED/SCOPED
pairs of times).

ple, the relationship between a given Student row and its
corresponding major Department is represented by storing
the department's key in the student tuple. The load mung-
ing programs have to replace this representation by putting
a reference to the Student tuple in the \majors" set of the
Department row and a reference to the Department tuple
in the Student row. This can be accomplished by joining
the Department and Student class, and then �lling in the
references with surrogate OIDs instead of writing out joined
tuples. This process was implemented as a sort-merge join
using the Unix \sort" and \join" utilities. We used a simi-
lar approach for the other references in the BUCKY schema
as well. It is worth noting that much of this e�ort would
have been unnecessary if object-relational database systems
(and SQL3!) supported the notion of bi-directional rela-
tionships { we could then have declared the students' major
and departments' majors attributes to be inversely related,
explicitly linking the data in only one direction (as in the
relational case), leaving it to the system to �ll in the reverse
direction.

Finally, the amount of loading work (I/O and CPU time)
that must be done by the system is greater in the O-R case
as well, as the O-R system must assign each object a real
OID and then replace all uses of that object's surrogate OID
with the newly assigned real OID [WN94, WN95]. This
extra work was dramatically visible in the loading times that
we saw when preparing the BUCKY database; loading took
many times longer in the object-relational case (even when
the \munging" time required to prepare the O-R input �les
was excluded).

6.2 Running the BUCKY Queries

In describing the BUCKY queries in Section 5, we indicated
briey what each one was intended to test. Here we present
preliminary results that were obtained by running BUCKY
on version 3.2 of Illustra, a �rst-generation O-R database
system product. The results reported here were measured
at Informix; they took the initial Illustra implementation
of BUCKY produced at the University of Wisconsin and
improved it in several ways. Some of the improvements that
they made over our initial version (in addition to using a

faster hardware platform!) were to create proper function
indexes and to load all ADT functions statically (rather than
dynamically) into the engine prior to running the benchmark
queries. Table 3 lists both the relational (R) and object-
relational (O-R) BUCKY results.

For queries SINGLE-EXACT and SINGLE-JOIN, which
are just relational queries over one table, the R and O-R
times are essentially identical, as one would expect. The
O-R times for the corresponding queries HIER-EXACT and
HIER-JOIN are somewhat worse than the relational times.
These di�erences are due to an O-R query optimizer bug
(the optimizer sometimes fails to correctly choose an index-
based plan in the presence of a table hierarchy) in the version
of Illustra on which we ran the tests.

We now turn to the method queries SINGLE-METH and
HIER-METH. Comparing the R and O-R times for query
SINGLE-METH shows the large gains that O-R support for
indices on functions can provide. The O-R system is able
to execute this query by doing an index lookup on the em-
ployee salary function, whereas the complexity of the query
predicate in the relational case (where the predicate essen-
tially includes an in-query expansion of the O-R function
body) forces a query plan that involves a sequential scan.
The same performance advantage for O-R should be seen
for HIER-METH, but it isn't; instead, the O-R time is ac-
tually worse in this case. This is also due to the optimizer
bug mentioned above (which causes the plan based on the
functional index to be missed).

Next we look at the set queries, SET-ELEMENT and
SET-AND. In both cases, the relational version { which in-
volves a join { is signi�cantly faster than the O-R version,
showing that the O-R system's handling of nested sets could
be improved.

We now come to the path queries. Two O-R times are
shown for 1HOP-NONE. The �rst O-R time (95.0 seconds)
is worse than the relational time (50.9 seconds) and re-
sulted from writing the O-R query using a path expression.
The reason for the lower O-R performance is that this sys-
tem does not yet support scoped references2, as the sys-
tem was built before the notion of scoped references was
added to SQL3. Thus, although the system knows from the
schema that the �eld s.major points to an object of type
DepartmentObj, it has no way of knowing that the target
object is in the Department table. Consequently, it has to
revert to what amounts to a nested-loops join (scanning the
Student table and following the major pointer for each stu-
dent tuple). Since it is of questionable fairness to compare
the performance of an explicitly scoped relational join with
an unscoped pointer join, we also include another O-R time
(39.7 seconds) in the table. This time was obtained by sim-
ulating what an O-R system with support for scoped refer-
ences would do by explicitly rewriting the path query as an
explicit OID-join (i.e., as a join between the Student and
Department tables, just like the relational query but with
a join predicate of s.major = d.oid). Doing so led to an
O-R time that beat the corresponding relational time (due
to a better query plan being selected by the optimizer in the
second O-R case than in the relational case).

Alternatively, we could have implemented an unscoped
join in the relational system. One way to do this would
be to replace the \major" attribute with a pair of attributes
(tableName, majorDept) then \decode" this pair of attributes
in a client application. This would be impossibly slow; we

2It supports only unscoped references, which are strictly more

powerful but also much more costly in terms of performance in some
cases, as we will see here.



didn't test it because we have no notion of a client applica-
tion anywhere else in the benchmark.

The next path query is 1HOP-ONE. Recall that for the
select-join queries, we looked at two ways of expressing each
query in O-R SQL; this is because given our schema there are
two directions in which to follow each relationship. These
two variants are not the source of the pair of numbers in
Figure 3; as mentioned previously, the two numbers in the
�gure are due to the scoped/unscoped option.

In the case of 1HOP-ONE, the O-R times shown are for
variant A, where the query is written as a path expression
going from students to departments. The two O-R times and
the relational time are all more or less identical due to the
fact that the three cases all allow the selective student name
predicate to be applied �rst; in this case, the lack of scope
information is not a problem. Variant B, which traverses the
relationship in the opposite direction using the department's
set of majors, is not shown. Illustra's times were slower in
this case because it uses nested sets and unscoped references,
so there was no point in including these times (though they
should be included in tests of systems that support scoped
references and nested sets); note that a join-based rewrite of
variant B would be the same as that for variant A. Lastly,
note that inverse relationship information would allow a sys-
tem to choose to use forward-traversal plans rather than set-
traversal plans when appropriate, which would help here,
but neither current O-R systems or SQL3 provide any such
support.

For the next query, 1HOP-MANY, the results shown are
for variant B, the reference traversal variant; as for query
1HOP-ONE, we omit the times for the variant that traverses
through a set of unscoped references, but plan on including
it in the benchmark when systems provide scoped references.
The relational time for the path variant of 1-HOP-MANY
is better than both O-R times here. In the unscoped case,
the lack of scope information forces the system to apply the
selection last, so the unscoped path query cost is high here.
The OID-join version performs much better, though still not
as well as the relational version in this case.

The last path query is 2HOP-ONE; again, we show only
the forward path traversal results, omitting the traversal
in the reverse (set of reference) direction. This query once
again involves unscoped references, but O-R performance is
quite good despite this due to the highly selective predicate
on roomNo. In this case, the relational version is slower than
both of the O-R versions of the query.

The last group of queries involves use of ADTs and their
functions. The ADT-SIMPLE results show a slight overhead
for function invocation in the O-R case, as the function body
is extremely simple, while the results for ADT-COMPLEX
show that ADT function performance beats relational ex-
pression evalution for more complex functions. The O-R and
R times are essentially identical for query ADT-SIMPLE-
EXACT. Finally, the O-R time is better for query ADT-
COMPLEX-RANGE; it is clear that the O-R system can
take advantage of the ADT in this case.

6.3 Reporting the Bottom Line

In our previous benchmarks, we have avoided the idea of
boiling an entire benchmark down to a single number, but
it is too much fun not to compress the results somehow.
We still believe that a full set of results is by far the best
performance pro�le of a system, but as a challenge to im-
plementors of O-R systems everywhere, we are de�ning two
bottom-line metrics for the BUCKY Benchmark:

1. The BUCKY O-R E�ciency Index.

This number measures the relative performance of the
system's O-R and relational functionality. It is de�ned
to be G(OR)=G(R), where G(OR) is the geometric
mean of all object-relational test times and G(R) is
the geometric mean of all relational test times.

2. The BUCKY O-R Power Rating.

This measures the absolute performance of the sys-
tem's O-R functionality, and is simply 100:0=G(OR).

The O-R Power Rating is useful only when comparing
two object-relational systems|if systemA has a higher pow-
er rating than system B, then system A is in some sense
\faster" than B. The O-R e�ciency index, in contrast, is in-
teresting within a single system. For Illustra, if we omit the
set-valued attribute and set-of-reference queries (the ones
that have recently been dropped from SQL3), and use the
OID-join encoding of the scoped reference queries, the O-R
e�ciency index is 0:9.

We anxiously await the �rst O-R system that can get
an O-R e�ciency rating < 1:0 based on reporting times
for all of the queries (without rewrites), indicating that it
successfully ran the full O-R version of the BUCKY queries
faster than the relational version. For anyone who would like
to try, the loading programs and queries are freely available
from the database area at the UW CS department web site
(http://www.cs.wisc.edu/~naughton/bucky.html).

7 Conclusions

In this paper, we have presented BUCKY, a benchmark
for object-relational database systems. BUCKY is a query
benchmark that tests the object features o�ered by object-
relational systems, including row types and inheritance, ref-
erences and path expressions, sets of atomic values and of
references, methods and late binding, and user-de�ned ab-
stract data types and their methods. To help evaluate the
current state of the O-R art, we presented both object-
relational BUCKY and a relationally mapped simulation
thereof, and we strongly advocate running both versions
against the same O-R engine. We discussed the lessons that
we learned by running BUCKY on an early O-R product;
the results highlighted a number of issues related both to
current products and to object-relational technology (a la
SQL3) in general.

While we expect the BUCKY benchmark to continue
to evolve, our initial BUCKY experience, in a nutshell, in-
dicates that object-relational technology is a double-edged
sword today. For the most part, the queries are much more
naturally and concisely expressible using the power of the
object-relational model and SQL extensions. However, at
least today, this greater expressive power does not come
for free. For example, we found that loading an object-
relational database is far more challenging than loading an
information-equivalent relational database; inverse relation-
ship support would have helped here. In addition, the new
SQL language features that O-R systems o�er|such as ref-
erences, sets, inheritance, methods, and ADTs|provide new
implementation challenges for implementors of DBMS en-
gines. We saw that a number of the BUCKY queries cur-
rently run faster on the relational version of BUCKY, par-
ticularly those involving sets, and we clearly saw one of the
reasons that SQL3 advocates the exclusive use of scoped
references whenever possible.



Stonebraker refers to object-relational technology as \the
next great wave" [Sto96], and it is clear from the activity in
the industry that this wave is starting to wash over us to-
day. It is our hope that BUCKY will be useful over the next
few years as this wave continues|both for customers of this
technology, so they can tell when O-R systems are ready for
deployment in their applications, and for its developers, to
provide a forcing function for improving the current state
of the art. To this end, we have o�ered two BUCKY per-
formance metrics|the O-R E�ciency Index, for comparing
O-R and relational implementations of BUCKY, and the
O-R Power Rating, for comparing O-R systems.

References

[CDKN94] Michael J. Carey, David J. DeWitt, Chander
Kant, and Je�rey F. Naughton. A status report
on the OO7 OODBMS benchmarking e�ort. In
Proceedings of the ACM OOPSLA Conference,
pages 414{426, Portland, OR, October 1994.

[CDN93] Michael J. Carey, David J. DeWitt, and Jef-
frey F. Naughton. The OO7 benchmark. In Pro-
ceedings of the 1993 ACM-SIGMOD Conference
on the Management of Data, Washington D.C.,
May 1993.

[CS92] R. Cattell and J. Skeen. Object operations
benchmark. ACM Transactions on Database
Systems, 17(1), March 1992.

[Gra93] Jim Gray. The Benchmark Handbook. Morgan
Kaufmann, San Mateo, CA, 1993.

[Sto96] Michael Stonebraker.
Object-Relational Database Systems: The Next
Wave. Morgan Kaufmann, 1996.

[WN94] Janet L. Wiener and Je�rey F. Naughton. Bulk
loading into an oodb: A performance study. In
Proceedings of the 20th International Conference
on Very Large Data Bases, pages 120{131, San-
tiago, Chile, August 1994.

[WN95] Janet L. Wiener and Je�rey F. Naughton. Bulk
loading revisited. In Proceedings of the 21th
International Conference on Very Large Data
Bases, Zurich, Switzerland, August 1995.

A Object-relational BUCKY Schema

-- Row types and their tables

CREATE ROW TYPE PersonObj (
id Integer, name Varchar(20),
street Varchar(20), city Varchar(10),
state Varchar(20), zipcode Char(5),
birthDate Date,
kidNames Set(Varchar(10)),
picture Char(100),
place LocationAdt

);
CREATE TABLE Person OF ROW TYPE PersonObj ...;

CREATE ROW TYPE StudentObj (
studentId Char(10),
major Ref(DepartmentObj),

advisor Ref(ProfessorObj),
hasTaken Set(Ref(EnrolledObj))

) UNDER PersonObj;
CREATE TABLE Student

OF ROW TYPE StudentObj UNDER Person ...;

CREATE ROW TYPE EmployeeObj (
DateHired Date,
status Integer, salary Real virtual,
worksIn Ref(DepartmentObj)

) UNDER PersonObj;
CREATE TABLE Employee

OF ROW TYPE EmployeeObj UNDER Person ...;

CREATE ROW TYPE StaffObj (
annualSalary Integer

) UNDER EmployeeObj;
CREATE TABLE Staff

OF ROW TYPE StaffObj UNDER Employee ...;

CREATE ROW TYPE InstructorObj (
Teaches Set(Ref(CourseSectionObj))

) UNDER EmployeeObj;
CREATE TABLE Instructor

OF ROW TYPE InstructorObj UNDER Employee ...;

CREATE ROW TYPE ProfessorObj (
AYSalary Integer, monthSummer Integer,
advisees Set(Ref(StudentObj))

) UNDER InstructorObj;
CREATE TABLE Professor

OF ROW TYPE ProfessorObj UNDER Instructor ...;

CREATE ROW TYPE TAObj (
semesterSalary Integer, apptFraction Real

) UNDER InstructorObj, StudentObj;
CREATE TABLE TA

OF ROW TYPE TAObj UNDER Instructor, Student ...;

CREATE ROW TYPE CourseObj (
cno Integer, name Varchar(20),
dept Ref(DepartmentObj),
credits Integer,
sections Set(Ref(CourseSectionObj))

);
CREATE TABLE Course OF ROW TYPE CourseObj ...;

CREATE ROW TYPE CourseSectionObj (
course Ref(CourseObj),
semester Integer, textbook Varchar(20),
noStudents Integer, building Varchar(10),
roomNo Integer,
teacher Ref(InstructorObj),
students Set(Ref(EnrolledObj))

);
CREATE TABLE CourseSection

OF ROW TYPE CourseSectionObj ...;

CREATE ROW TYPE DepartmentObj (
dno Integer, name Varchar(20),
building Varchar(10), budget Integer,
coursesOffered Set(Ref(CourseObj)),
chair Ref(ProfessorObj),
employees Set(Ref(EmployeeObj)),
majors Set(Ref(StudentObj)),
place LocationAdt



);
CREATE TABLE Department

OF ROW TYPE DepartmentObj ...;

CREATE ROW TYPE EnrolledObj (
student Ref(StudentObj),
section Ref(CourseObj),
grade Char(2)

);
CREATE TABLE Enrolled

OF ROW TYPE EnrolledObj ...;

-- Salary function for employee types

CREATE FUNCTION salary(e EmployeeObj)
RETURNS Real AS RETURN (0);

CREATE FUNCTION salary(i InstructorObj)
RETURNS Real AS RETURN (0);

CREATE FUNCTION salary(p ProfessorObj)
RETURNS Real AS RETURN
(p.AYSalary * (9 + p.monthSummer) / 9.0);

CREATE FUNCTION salary(s StaffObj)
RETURNS Real AS RETURN (s.annualSalary);

CREATE FUNCTION salary(t TAObj)
RETURNS Real AS
RETURN (t.apptFraction * 2 * t.semesterSalary);

-- ``Black box'' location ADT and functions

CREATE ABSTRACT DATA TYPE LocationAdt (...);

CREATE FUNCTION extract_latitude(l LocationAdt)
RETURNS Integer AS ...;

CREATE FUNCTION extract_longitude(l LocationAdt)
RETURNS Integer AS ...;

CREATE FUNCTION distance(l1 LocationAdt,
l2 LocationAdt)

RETURNS Real AS ...;

B Relational BUCKY Schema

-- Relational tables

CREATE TABLE Staff (
id Integer NOT NULL PRIMARY KEY,
name Varchar(20),
street Varchar(20),
city Varchar(10),
state Varchar(20),
zipcode Char(6),
birthDate Date,
picture Char(100),
latitude Integer,
longitude Integer,
dept Integer REFERENCES Department,
DateHired Date,
status Integer,
annualSalary Integer

);

CREATE TABLE Professor (
id Integer NOT NULL PRIMARY KEY,
name Varchar(20),
street Varchar(20), city Varchar(10),
state Varchar(20), zipcode Char(6),
birthDate Date, picture Char(100),
latitude Integer, longitude Integer,
dept Integer REFERENCES Department,
DateHired Date, status Integer,
AYSalary Integer,
MonthSummer Integer

);

CREATE TABLE Student (
id Integer NOT NULL PRIMARY KEY,
name Varchar(20),
street Varchar(20), city Varchar(10),
state Varchar(20), zipcode Char(6),
birthDate Date, picture Char(100),
latitude Integer, longitude Integer,
studentNo Integer,
majorDept Integer REFERENCES Department,
advisor Integer REFERENCES Professor

);

CREATE TABLE TA (
id Integer NOT NULL PRIMARY KEY,
name Varchar(20),
street Varchar(20), city Varchar(10),
state Varchar(20), zipcode Char(6),
birthDate Date, picture Char(100),
latitude Integer, longitude Integer,
studentId Integer,
majorDept Integer REFERENCES Department,
advisor Integer REFERENCES Professor,
worksIn Integer REFERENCES Department,
DateHired Date, status Integer,
semesterSalary Integer, apptFraction Real

);

CREATE TABLE Department (
deptNo Integer NOT NULL PRIMARY KEY,
name Varchar(20),
building Varchar(10), budget Integer,
chair Integer REFERENCES Professor,
latitude Integer, longitude Integer

);

CREATE TABLE Course (
deptNo Integer NOT NULL REFERENCES Department,
courseNo Integer NOT NULL,
name Varchar(20), credits Integer,
PRIMARY KEY (deptNo, courseNo)

);

CREATE TABLE CourseSection (
deptNo Integer NOT NULL,
courseNo Integer NOT NULL,
sectionNo Integer NOT NULL,
instructorId Integer, semester Integer,
textbook Varchar(20), noStudents Integer,
building Varchar(10), roomNo Integer,
PRIMARY KEY (deptNo, courseNo, sectionNo),
FOREIGN KEY (deptNo, courseNo) REFERENCES Course

);



CREATE TABLE Enrolled (
studentId Integer NOT NULL REFERENCES Student,
deptNo Integer NOT NULL,
courseNo Integer NOT NULL,
sectionNo Integer NOT NULL,
semester Integer, grade Char(2),
FOREIGN KEY (deptNo, courseNo, sectionNo)

REFERENCES CourseSection
);

CREATE TABLE Kids (
id Integer NOT NULL, kidName Varchar(10)

);


