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1 Introduction

Computer science as an academic discipline began in the 1960’s. Emphasis was on
programming languages, compilers, operating systems, and the mathematical theory that
supported these areas. Courses in theoretical computer science covered finite automata,
regular expressions, context-free languages, and computability. In the 1970’s, the study of
algorithms was added as an important component of theory. The emphasis was on making
computers useful. Today, a fundamental change is taking place and the focus is more on
applications. There are many reasons for this change. The merging of computing and
communications has played an important role. The enhanced ability to observe, collect,
and store data in the natural sciences, in commerce, and in other fields calls for a change
in our understanding of data and how to handle it in the modern setting. The emergence
of the web and social networks as central aspects of daily life presents both opportunities
and challenges for theory.

While traditional areas of computer science remain highly important, increasingly re-
searchers of the future will be involved with using computers to understand and extract
usable information from massive data arising in applications, not just how to make com-
puters useful on specific well-defined problems. With this in mind we have written this
book to cover the theory likely to be useful in the next 40 years, just as an understanding
of automata theory, algorithms, and related topics gave students an advantage in the last
40 years. One of the major changes is the switch from discrete mathematics to more of
an emphasis on probability, statistics, and numerical methods.

Early drafts of the book have been used for both undergraduate and graduate courses.
Background material needed for an undergraduate course has been put in the appendix.
For this reason, the appendix has homework problems.

This book starts with the treatment of high-dimensional geometry. Modern data in
diverse fields such as information processing, search, machine learning, etc., is often rep-
resented advantageously as vectors with a large number of components. This is so even
in cases when the vector representation is not the natural first choice. Our intuition
from two or three dimensional space can be surprisingly off the mark when it comes to
high-dimensional space. Chapter 2 works out the fundamentals needed to understand the
differences. The emphasis of the chapter, as well as the book in general, is to get across
the mathematical foundations rather than dwell on particular applications that are only
briefly described.

The mathematical areas most relevant to dealing with high-dimensional data are ma-
trix algebra and algorithms. We focus on singular value decomposition, a central tool in
this area. Chapter 3 gives a from-first-principles description of this. Applications of sin-
gular value decomposition include principal component analysis, a widely used technique
which we touch upon, as well as modern applications to statistical mixtures of probability
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densities, discrete optimization, etc., which are described in more detail.

Closely tied to analysis of graph structures is the analysis of random walks on those
structures. The stationary distributions of such walks are important for applications rang-
ing from web search to the simulation of physical systems. The underlying mathematical
theory of such random walks, as well as connections to electrical networks, forms the core
of Chapter 4 on Markov chains.

One of the surprises of computer science over the last two decades is that some domain-
independent methods have been immensely successful in tackling problems from diverse
areas. Machine learning is a striking example. Chapter 5 describes the foundations of
machine learning, both algorithms for optimizing over given training examples, as well
as the theory for understanding when such optimization can be expected to lead to good
performance on new, unseen data, including important measures such as the Vapnik-
Chervonenkis dimension.

The field of algorithms has traditionally assumed that the input data to a problem
is presented in random access memory, which the algorithm can repeatedly access. This
is not feasible for modern problems. The streaming model and other models have been
formulated to better reflect this. In this setting, sampling plays a crucial role and, in-
deed, we have to sample on the fly. In Chapter 6 we study how to draw good samples
efficiently and how to estimate statistical and linear algebra quantities, with such samples.

Another important tool for understanding data is clustering, dividing data into groups
of similar objects. After describing some of the basic methods for clustering, such as the
k-means algorithm, Chapter 7 focuses on modern developments in understanding these,
as well as newer algorithms and general frameworks for analyzing different kinds of clus-
tering problems.

Central to our understanding of large structures, like the web and social networks, is
building models to capture essential properties of these structures. The simplest model
is that of a random graph formulated by Erdös and Renyi, which we study in detail in
Chapter 8, proving that certain global phenomena, like a giant connected component,
arise in such structures with only local choices. We also describe other models of random
graphs.

Chapters 9 and 10 also covers graphical models and belief propagation, ranking and
voting, sparse vectors, and compressed sensing. Wavelets, which are an important method
for representing signals across a wide range of applications, are also discussed in Chapter
11 along with some of their fundamental mathematical properties. The appendix includes
a wealth of background material.

A word about notation in the book. To help the student, we have adopted certain
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notations, and with a few exceptions, adhered to them. We use lower case letters for
scalar variables and functions, bold face lower case for vectors, and upper case letters
for matrices. Lower case near the beginning of the alphabet tend to be constants, in the
middle of the alphabet, such as i, j, and k, are indices in summations, n and m for integer
sizes, and x, y and z for variables. If A is a matrix its elements are aij and its rows are ai.
If ai is a vector its coordinates are aij. Where the literature traditionally uses a symbol
for a quantity, we also used that symbol, even if it meant abandoning our convention. If
we have a set of points in some vector space, and work with a subspace, we use n for the
number of points, d for the dimension of the space, and k for the dimension of the subspace.

The term “almost surely” means with probability one. We use lnn for the natural
logarithm and log n for the base two logarithm. If we want base ten, we will use log10 .

To simplify notation and to make it easier to read we use E2(1− x) for
(
E(1− x)

)2
and

E(1−x)2 for E
(
(1− x)2

)
. When we say “randomly select” some number of points from a

given probability distribution, independence is always assumed unless otherwise stated.
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2 High-Dimensional Space

2.1 Introduction

High dimensional data has become very important. However, high dimensional space
is very different from the two and three dimensional spaces we are familiar with. Generate
n points at random in d-dimensions where each coordinate is a zero mean, unit variance
Gaussian. For sufficiently large d, with high probability the distances between all pairs
of points will be essentially the same. Also the volume of the unit ball in d-dimensions,
the set of all points x such that |x| ≤ 1, goes to zero as the dimension goes to infinity.
The volume of a high dimensional unit ball is concentrated near its surface and is also
concentrated at its equator. These properties have important consequences which we will
consider.

2.2 The Law of Large Numbers

If one generates random points in d-dimensional space using a Gaussian to generate
coordinates, the distance between all pairs of points will be essentially the same when d
is large. The reason is that the square of the distance between two points y and z,

|y − z|2 =
d∑
i=1

(yi − zi)2,

can be viewed the sum of d independent samples of a random variable x that is distributed
as the squared difference of two Gaussians. In particular, we are summing independent
samples xi = (yi − zi)

2 of a random variable x of bounded variance. In such a case, a
general bound known as the Law of Large Numbers states that with high probability, the
average of the samples will be close to the expectation of the random variable. This in
turn implies that with high probability, the sum is close to its expectation.

Specifically, the Law of Large Numbers states that

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ ≥ ε

)
≤ V ar(x)

nε2
. (2.1)

The larger the variance of the random variable, the greater the probability that the error
will exceed ε. Thus the variance of x is in the numerator. The number of samples n is in
the denominator since the more values that are averaged, the smaller the probability that
the difference will exceed ε. Similarly the larger ε is, the smaller the probability that the
difference will exceed ε and hence ε is in the denominator. Notice that squaring ε makes
the fraction a dimensionless quantity.

We use two inequalities to prove the Law of Large Numbers. The first is Markov’s
inequality that states that the probability that a nonnegative random variable exceeds a
is bounded by the expected value of the variable divided by a.
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Theorem 2.1 (Markov’s inequality) Let x be a nonnegative random variable. Then
for a > 0,

Prob(x ≥ a) ≤ E(x)

a
.

Proof: For a continuous nonnegative random variable x with probability density p,

E (x) =

∞∫
0

xp(x)dx =

a∫
0

xp(x)dx+

∞∫
a

xp(x)dx

≥
∞∫
a

xp(x)dx ≥ a

∞∫
a

p(x)dx = aProb(x ≥ a).

Thus, Prob(x ≥ a) ≤ E(x)
a
.

The same proof works for discrete random variables with sums instead of integrals.

Corollary 2.2 Prob
(
x ≥ bE(x)

)
≤ 1

b

Markov’s inequality bounds the tail of a distribution using only information about the
mean. A tighter bound can be obtained by also using the variance of the random variable.

Theorem 2.3 (Chebyshev’s inequality) Let x be a random variable. Then for c > 0,

Prob
(
|x− E(x)| ≥ c

)
≤ V ar(x)

c2
.

Proof: Prob
(
|x−E(x)| ≥ c

)
= Prob

(
|x−E(x)|2 ≥ c2

)
. Let y = |x−E(x)|2. Note that

y is a nonnegative random variable and E(y) = V ar(x), so Markov’s inequality can be
applied giving:

Prob(|x− E(x)| ≥ c) = Prob
(
|x− E(x)|2 ≥ c2

)
≤ E(|x− E(x)|2)

c2
=
V ar(x)

c2
.

The Law of Large Numbers follows from Chebyshev’s inequality together with facts
about independent random variables. Recall that:

E(x+ y) = E(x) + E(y),

V ar(x− c) = V ar(x),

V ar(cx) = c2V ar(x).
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Also, if x and y are independent, then E(xy) = E(x)E(y). These facts imply that if x
and y are independent then V ar(x+ y) = V ar(x) + V ar(y), which is seen as follows:

V ar(x+ y) = E(x+ y)2 − E2(x+ y)

= E(x2 + 2xy + y2)−
(
E2(x) + 2E(x)E(y) + E2(y)

)
= E(x2)− E2(x) + E(y2)− E2(y) = V ar(x) + V ar(y),

where we used independence to replace E(2xy) with 2E(x)E(y).

Theorem 2.4 (Law of Large Numbers) Let x1, x2, . . . , xn be n independent samples
of a random variable x. Then

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ ≥ ε

)
≤ V ar(x)

nε2

Proof: By Chebychev’s inequality

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ ≥ ε

)
≤
V ar

(
x1+x2+···+xn

n

)
ε2

=
1

n2ε2
V ar(x1 + x2 + · · ·+ xn)

=
1

n2ε2
(
V ar(x1) + V ar(x2) + · · ·+ V ar(xn)

)
=
V ar(x)

nε2
.

The Law of Large Numbers is quite general, applying to any random variable x of
finite variance. Later we will look at tighter concentration bounds for spherical Gaussians
and sums of 0-1 valued random variables. One observation worth making about the Law
of Large Numbers is that the size of the universe does not enter into the bound. For
instance, if you want to know what fraction of the population of a country prefers tea
to coffee, then the number n of people you need to sample in order to have at most a δ
chance that your estimate is off by more than ε depends only on ε and δ and not on the
population of the country.

As an application of the Law of Large Numbers, let z be a d-dimensional random point
whose coordinates are each selected from a zero mean, 1

2π
variance Gaussian. We set the

variance to 1
2π

so the Gaussian probability density equals one at the origin and is bounded
below throughout the unit ball by a constant.1 By the Law of Large Numbers, the square
of the distance of z to the origin will be Θ(d) with high probability. In particular, there is
vanishingly small probability that such a random point z would lie in the unit ball. This

1If we instead used variance 1, then the density at the origin would be a decreasing function of d,
namely ( 1

2π )d/2, making this argument more complicated.

14



implies that the integral of the probability density over the unit ball must be vanishingly
small. On the other hand, the probability density in the unit ball is bounded below by a
constant. We thus conclude that the unit ball must have vanishingly small volume.

Similarly if we draw two points y and z from a d-dimensional Gaussian with unit
variance in each direction, then |y|2 ≈ d and |z|2 ≈ d. Since E(yi−zi)2 = E(y2

i )+E(z2
i )−

2E(yizi) = 2 for all i, |y − z|2 ≈ 2d. Thus by the Pythagorean theorem, the random
d-dimensional y and z must be approximately orthogonal. This implies that if we scale
these random points to be unit length and call y the North Pole, much of the surface area
of the unit ball must lie near the equator. We will formalize these and related arguments
in subsequent sections.

We now state a general theorem on probability tail bounds for a sum of independent
random variables. Tail bounds for sums of Bernoulli, squared Gaussian and Power Law
distributed random variables can all be derived from this. The table below summarizes
some of the results.

Theorem 2.5 (Master Tail Bounds Theorem) Let x = x1 + x2 + · · · + xn, where
x1, x2, . . . , xn are mutually independent random variables with zero mean and variance at
most σ2. Let 0 ≤ a ≤

√
2nσ2. Assume that |E(xsi )| ≤ σ2s! for s = 3, 4, . . . , b(a2/4nσ2)c.

Then,
Prob (|x| ≥ a) ≤ 3e−a

2/(12nσ2).

The proof of Theorem 2.5 is elementary. A slightly more general version, Theorem
12.5, is given in the appendix. For a brief intuition of the proof, consider applying
Markov’s inequality to the random variable xr where r is a large even number. Since
r is even, xr is nonnegative, and thus Prob(|x| ≥ a) = Prob(xr ≥ ar) ≤ E(xr)/ar. If
E(xr) is not too large, we will get a good bound. To compute E(xr), write E(x) as
E(x1 + . . . + xn)r and distribute the polynomial into its terms. Use the fact that by
independence E(xrii x

rj
j ) = E(xrii )E(x

rj
j ) to get a collection of simpler expectations that

can be bounded using our assumption that |E(xsi )| ≤ σ2s!. For the full proof, see the
appendix.

2.3 The Geometry of High Dimensions

An important property of high-dimensional objects is that most of their volume is
near the surface. Consider any object A in Rd. Now shrink A by a small amount ε to
produce a new object (1− ε)A = {(1− ε)x|x ∈ A}. Then the following equality holds:

volume((1− ε)A) = (1− ε)dvolume(A).

To see that this is true, partition A into infinitesimal cubes. Then, (1− ε)A is the union
of a set of cubes obtained by shrinking the cubes in A by a factor of 1 − ε. When we
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Condition Tail bound

Markov x ≥ 0 Prob(x ≥ a) ≤ E(x)
a

Chebychev Any x Prob
(
|x− E(x)| ≥ a

)
≤ Var(x)

a2

Chernoff x = x1 + x2 + · · ·+ xn Prob(|x− E(x)| ≥ εE(x))

xi ∈ [0, 1] i.i.d. Bernoulli; ≤ 3e−cε
2E(x)

Higher Moments r positive even integer Prob(|x| ≥ a) ≤ E(xr)/ar

Gaussian x =
√
x2

1 + x2
2 + · · ·+ x2

n Prob(|x−
√
n| ≥ β) ≤ 3e−cβ

2

Annulus xi ∼ N(0, 1); β ≤
√
n indep.

Power Law x = x1 + x2 + . . .+ xn Prob
(
|x− E(x)| ≥ εE(x)

)
for xi; order k ≥ 4 xi i.i.d ; ε ≤ 1/k2 ≤ (4/ε2kn)(k−3)/2

Figure 2.1: Table of Tail Bounds. The bound labeled higher moments is obtained by
applying Markov to xr. The Chernoff, Gaussian Annulus, and Power Law bounds follow
from Theorem 2.5 which is proved in the appendix.

shrink each of the d sides of a d-dimensional cube by a factor f , its volume shrinks by a
factor of fd. Using the fact that 1− x ≤ e−x, for any object A in Rd we have:

volume
(
(1− ε)A

)
volume(A)

= (1− ε)d ≤ e−εd.

Fixing ε and letting d → ∞, the above quantity rapidly approaches zero. This means
that nearly all of the volume of A must be in the portion of A that does not belong to
the region (1− ε)A.

Let S denote the unit ball in d dimensions, that is, the set of points within distance
one of the origin. An immediate implication of the above observation is that at least a
1 − e−εd fraction of the volume of the unit ball is concentrated in S \ (1 − ε)S, namely
in a small annulus of width ε at the boundary. In particular, most of the volume of the
d-dimensional unit ball is contained in an annulus of width O(1/d) near the boundary. If
the ball is of radius r, then the annulus width is O

(
r
d

)
.

2.4 Properties of the Unit Ball

We now focus more specifically on properties of the unit ball in d-dimensional space.
We just saw that most of its volume is concentrated in a small annulus of width O(1/d)

16



1

1− 1
d

Annulus of
width 1

d

Figure 2.2: Most of the volume of the d-dimensional ball of radius r is contained in an
annulus of width O(r/d) near the boundary.

near the boundary. Next we will show that in the limit as d goes to infinity, the volume of
the ball goes to zero. This result can be proven in several ways. Here we use integration.

2.4.1 Volume of the Unit Ball

To calculate the volume V (d) of the unit ball in Rd, one can integrate in either Cartesian
or polar coordinates. In Cartesian coordinates the volume is given by

V (d) =

x1=1∫
x1=−1

x2=
√

1−x21∫
x2=−
√

1−x21

· · ·

xd=
√

1−x21−···−x2d−1∫
xd=−
√

1−x21−···−x2d−1

dxd · · · dx2dx1.

Since the limits of the integrals are complicated, it is easier to integrate using polar
coordinates. In polar coordinates, V (d) is given by

V (d) =

∫
Sd

1∫
r=0

rd−1drdΩ.

Since the variables Ω and r do not interact,

V (d) =

∫
Sd

dΩ

1∫
r=0

rd−1dr =
1

d

∫
Sd

dΩ =
A(d)

d

where A(d) is the surface area of the d-dimensional unit ball. For instance, for d = 3 the
surface area is 4π and the volume is 4

3
π. The question remains, how to determine the

surface area A (d) =
∫
Sd
dΩ for general d.

Consider a different integral

I (d) =

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞

e−(x21+x22+···x2d)dxd · · · dx2dx1.
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Including the exponential allows integration to infinity rather than stopping at the surface
of the sphere. Thus, I(d) can be computed by integrating in both Cartesian and polar
coordinates. Integrating in polar coordinates will relate I(d) to the surface area A(d).
Equating the two results for I(d) allows one to solve for A(d).

First, calculate I(d) by integration in Cartesian coordinates.

I (d) =

 ∞∫
−∞

e−x
2

dx

d =
(√

π
)d

= π
d
2 .

Here, we have used the fact that
∫∞
−∞ e

−x2 dx =
√
π. For a proof of this, see Section 12.2

of the appendix. Next, calculate I(d) by integrating in polar coordinates. The volume of
the differential element is rd−1dΩdr. Thus,

I (d) =

∫
Sd

dΩ

∞∫
0

e−r
2

rd−1dr.

The integral
∫
Sd
dΩ is the integral over the entire solid angle and gives the surface area,

A(d), of a unit sphere. Thus, I (d) = A (d)
∞∫
0

e−r
2
rd−1dr. Evaluating the remaining

integral gives

∞∫
0

e−r
2

rd−1dr =

∞∫
0

e−tt
d−1
2

(
1
2
t−

1
2dt
)

=
1

2

∞∫
0

e−tt
d
2
− 1dt =

1

2
Γ

(
d

2

)

and hence, I(d) = A(d)1
2
Γ
(
d
2

)
where the Gamma function Γ (x) is a generalization of the

factorial function for noninteger values of x. Γ (x) = (x− 1) Γ (x− 1), Γ (1) = Γ (2) = 1,
and Γ

(
1
2

)
=
√
π. For integer x, Γ (x) = (x− 1)!.

Combining I (d) = π
d
2 with I (d) = A (d) 1

2
Γ
(
d
2

)
yields

A (d) =
π
d
2

1
2
Γ
(
d
2

)
establishing the following lemma.

Lemma 2.6 The surface area A(d) and the volume V (d) of a unit-radius ball in d di-
mensions are given by

A (d) =
2π

d
2

Γ(d
2
)

and V (d) =
2π

d
2

d Γ(d
2
)
.
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x1

H

 A c√
d−1

Figure 2.3: Most of the volume of the upper hemisphere of the d-dimensional ball is below
the plane x1 = c√

d−1
.

To check the formula for the volume of a unit ball, note that V (2) = π and V (3) =
2
3
π

3
2

Γ( 3
2)

= 4
3
π, which are the correct volumes for the unit balls in two and three dimen-

sions. To check the formula for the surface area of a unit ball, note that A(2) = 2π and

A(3) = 2π
3
2

1
2

√
π

= 4π, which are the correct surface areas for the unit ball in two and three

dimensions. Note that π
d
2 is an exponential in d

2
and Γ

(
d
2

)
grows as the factorial of d

2
.

This implies that lim
d→∞

V (d) = 0, as claimed.

2.4.2 Volume Near the Equator

An interesting fact about the unit ball in high dimensions is that most of its volume
is concentrated near its “equator”. In particular, for any unit-length vector v defining
“north”, most of the volume of the unit ball lies in the thin slab of points whose dot-
product with v has magnitude O(1/

√
d). To show this fact, it suffices by symmetry to fix

v to be the first coordinate vector. That is, we will show that most of the volume of the
unit ball has |x1| = O(1/

√
d). Using this fact, we will show that two random points in the

unit ball are with high probability nearly orthogonal, and also give an alternative proof
from the one in Section 2.4.1 that the volume of the unit ball goes to zero as d→∞.

Theorem 2.7 For c ≥ 1 and d ≥ 3, at least a 1 − 2
c
e−c

2/2 fraction of the volume of the
d-dimensional unit ball has |x1| ≤ c√

d−1
.

Proof: By symmetry we just need to prove that at most a 2
c
e−c

2/2 fraction of the half of
the ball with x1 ≥ 0 has x1 ≥ c√

d−1
. Let A denote the portion of the ball with x1 ≥ c√

d−1
and let H denote the upper hemisphere. We will then show that the ratio of the volume
of A to the volume of H goes to zero by calculating an upper bound on volume(A) and
a lower bound on volume(H) and proving that

volume(A)

volume(H)
≤ upper bound volume(A)

lower bound volume(H)
=

2

c
e−

c2

2 .
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To calculate the volume of A, integrate an incremental volume that is a disk of width
dx1 and whose face is a ball of dimension d− 1 and radius

√
1− x2

1. The surface area of

the disk is (1− x2
1)

d−1
2 V (d− 1) and the volume above the slice is

volume(A) =

∫ 1

c√
d−1

(1− x2
1)

d−1
2 V (d− 1)dx1

To get an upper bound on the above integral, use 1 − x ≤ e−x and integrate to infinity.
To integrate, insert x1

√
d−1
c

, which is greater than one in the range of integration, into the
integral. Then

volume(A) ≤
∫ ∞

c√
d−1

x1

√
d− 1

c
e−

d−1
2
x21V (d− 1)dx1 = V (d− 1)

√
d− 1

c

∫ ∞
c√
d−1

x1e
− d−1

2
x21dx1

Now ∫ ∞
c√
d−1

x1e
− d−1

2
x21dx1 = − 1

d− 1
e−

d−1
2
x21

∣∣∣∞
c√

(d−1)

=
1

d− 1
e−

c2

2

Thus, an upper bound on volume(A) is V (d−1)

c
√
d−1

e−
c2

2 .

The volume of the hemisphere below the plane x1 = 1√
d−1

is a lower bound on the
entire volume of the upper hemisphere and this volume is at least that of a cylinder of

height 1√
d−1

and radius
√

1− 1
d−1

. The volume of the cylinder is V (d−1)(1− 1
d−1

)
d−1
2

1√
d−1

.

Using the fact that (1 − x)a ≥ 1 − ax for a ≥ 1, the volume of the cylinder is at least
V (d−1)

2
√
d−1

for d ≥ 3.

Thus,

ratio ≤ upper bound above plane

lower bound total hemisphere
=

V (d−1)

c
√
d−1

e−
c2

2

V (d−1)

2
√
d−1

=
2

c
e−

c2

2

One might ask why we computed a lower bound on the total hemisphere since it is one
half of the volume of the unit ball which we already know. The reason is that the volume
of the upper hemisphere is 1

2
V (d) and we need a formula with V (d− 1) in it to cancel the

V (d− 1) in the numerator.

Near orthogonality. One immediate implication of the above analysis is that if we
draw two points at random from the unit ball, with high probability their vectors will
be nearly orthogonal to each other. Specifically, from our previous analysis in Section
2.3, with high probability both will have length 1− O(1/d). From our analysis above, if
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we define the vector in the direction of the first point as “north”, with high probability
the second will have a projection of only ±O(1/

√
d) in this direction, and thus their dot-

product will be ±O(1/
√
d). This implies that with high probability, the angle between

the two vectors will be π/2±O(1/
√
d). In particular, we have the following theorem that

states that if we draw n points at random in the unit ball, with high probability all points
will be close to unit length and each pair of points will be almost orthogonal.

Theorem 2.8 Consider drawing n points x1,x2, . . . ,xn at random from the unit ball.
With probability 1−O(1/n)

1. |xi| ≥ 1− 2 lnn
d

for all i, and

2. |xi · xj| ≤
√

6 lnn√
d−1

for all i 6= j.

Proof: For the first part, for any fixed i, by the analysis of Section 2.3,

Prob
(
|xi| < 1− 2 lnn

d

)
≤ e−( 2 lnn

d
)d = 1/n2.

So, by the union bound, the probability there exists i such that |xi| < 1− 2 lnn
d

is at most
1/n. For the second part, there are

(
n
2

)
pairs i and j, and for each such pair, if we define

xi as “north”, the probability that the projection of xj onto the “north” direction is more

than
√

6 lnn√
d−1

is at most O(e−
6 lnn

2 ) = O(n−3) by Theorem 2.7; note that this is a necessary
condition for the dot-product to be large. Thus, the dot-product condition is violated
with probability at most O

((
n
2

)
n−3
)

= O(1/n) as well.

Alternative proof that volume goes to zero. Another immediate implication of
Theorem 2.7 is that as d→∞, the volume of the ball approaches zero. Specifically, con-
sider a small box centered at the origin of side length 2c√

d−1
. Using Theorem 2.7, we show

that for c = 2
√

ln d, this box contains over half of the volume of the ball. On the other
hand, the volume of this box clearly goes to zero as d goes to infinity, since its volume is
O(( ln d

d−1
)d/2). Thus the volume of the ball goes to zero as well.

By Theorem 2.7 with c = 2
√

ln d, the fraction of the volume of the ball with |x1| ≥ c√
d−1

is at most:
2

c
e−

c2

2 =
1√
ln d

e−2 ln d =
1

d2
√

ln d
<

1

d2
.

Since this is true for each of the d dimensions, by a union bound at most a O(1
d
) ≤ 1

2

fraction of the volume of the ball lies outside the cube, completing the proof.

Discussion. One might wonder how it can be that nearly all the points in the unit ball
are very close to the surface and yet at the same time nearly all points are in a box of
side-length O

(
ln d
d−1

)
. The answer is to remember that points on the surface of the ball

satisfy x2
1 + x2

2 + . . .+ x2
d = 1, so for each coordinate i, a typical value will be ±O

(
1√
d

)
.

In fact, it is often helpful to think of picking a random point on the sphere as very similar

to picking a random point of the form
(
± 1√

d
,± 1√

d
,± 1√

d
, . . .± 1√

d

)
.
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← Unit radius sphere

←− Nearly all the volume

← Vertex of hypercube

Figure 2.4: Illustration of the relationship between the sphere and the cube in 2, 4, and
d-dimensions.

2.5 Generating Points Uniformly at Random from a Ball

Consider generating points uniformly at random on the surface of the unit ball. For
the 2-dimensional version of generating points on the circumference of a unit-radius cir-
cle, independently generate each coordinate uniformly at random from the interval [−1, 1].
This produces points distributed over a square that is large enough to completely contain
the unit circle. Project each point onto the unit circle. The distribution is not uniform
since more points fall on a line from the origin to a vertex of the square than fall on a line
from the origin to the midpoint of an edge of the square due to the difference in length.
To solve this problem, discard all points outside the unit circle and project the remaining
points onto the circle.

In higher dimensions, this method does not work since the fraction of points that fall
inside the ball drops to zero and all of the points would be thrown away. The solution is to
generate a point each of whose coordinates is an independent Gaussian variable. Generate
x1, x2, . . . , xd, using a zero mean, unit variance Gaussian, namely, 1√

2π
exp(−x2/2) on the

real line.2 Thus, the probability density of x is

p (x) =
1

(2π)
d
2

e−
x21+x22+···+x2d

2

and is spherically symmetric. Normalizing the vector x = (x1, x2, . . . , xd) to a unit vector,
namely x

|x| , gives a distribution that is uniform over the surface of the sphere. Note that

2One might naturally ask: “how do you generate a random number from a 1-dimensional Gaussian?”
To generate a number from any distribution given its cumulative distribution function P, first select a
uniform random number u ∈ [0, 1] and then choose x = P−1(u). For any a < b, the probability that x is
between a and b is equal to the probability that u is between P (a) and P (b) which equals P (b) − P (a)
as desired. For the 2-dimensional Gaussian, one can generate a point in polar coordinates by choosing
angle θ uniform in [0, 2π] and radius r =

√
−2 ln(u) where u is uniform random in [0, 1]. This is called

the Box-Muller transform.
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once the vector is normalized, its coordinates are no longer statistically independent.

To generate a point y uniformly over the ball (surface and interior), scale the point
x
|x| generated on the surface by a scalar ρ ∈ [0, 1]. What should the distribution of ρ be
as a function of r? It is certainly not uniform, even in 2 dimensions. Indeed, the density
of ρ at r is proportional to r for d = 2. For d = 3, it is proportional to r2. By similar
reasoning, the density of ρ at distance r is proportional to rd−1 in d dimensions. Solving∫ r=1

r=0
crd−1dr = 1 (the integral of density must equal 1) we should set c = d. Another

way to see this formally is that the volume of the radius r ball in d dimensions is rdV (d).
The density at radius r is exactly d

dr
(rdVd) = drd−1Vd. So, pick ρ(r) with density equal to

drd−1 for r over [0, 1].

We have succeeded in generating a point

y = ρ
x

|x|

uniformly at random from the unit ball by using the convenient spherical Gaussian dis-
tribution. In the next sections, we will analyze the spherical Gaussian in more detail.

2.6 Gaussians in High Dimension

A 1-dimensional Gaussian has its mass close to the origin. However, as the dimension
is increased something different happens. The d-dimensional spherical Gaussian with zero
mean and variance σ2 in each coordinate has density function

p(x) =
1

(2π)d/2 σd
exp

(
− |x|

2

2σ2

)
.

The value of the density is maximum at the origin, but there is very little volume there.
When σ2 = 1, integrating the probability density over a unit ball centered at the origin
yields almost zero mass since the volume of such a ball is negligible. In fact, one needs
to increase the radius of the ball to nearly

√
d before there is a significant volume and

hence significant probability mass. If one increases the radius much beyond
√
d, the

integral barely increases even though the volume increases since the probability density
is dropping off at a much higher rate. The following theorem formally states that nearly
all the probability is concentrated in a thin annulus of width O(1) at radius

√
d.

Theorem 2.9 (Gaussian Annulus Theorem) For a d-dimensional spherical Gaussian
with unit variance in each direction, for any β ≤

√
d, all but at most 3e−cβ

2
of the prob-

ability mass lies within the annulus
√
d − β ≤ |x| ≤

√
d + β, where c is a fixed positive

constant.

For a high-level intuition, note that E(|x|2) =
d∑
i=1

E(x2
i ) = dE(x2

1) = d, so the mean

squared distance of a point from the center is d. The Gaussian Annulus Theorem says
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that the points are tightly concentrated. We call the square root of the mean squared
distance, namely

√
d, the radius of the Gaussian.

To prove the Gaussian Annulus Theorem we make use of a tail inequality for sums of
independent random variables of bounded moments (Theorem 12.5).

Proof (Gaussian Annulus Theorem): Let x = (x1, x2, . . . , xd) be a point selected
from a unit variance Gaussian centered at the origin, and let r = |x|.

√
d − β ≤ |y| ≤√

d + β is equivalent to |r −
√
d| ≥ β. If |r −

√
d| ≥ β, then multiplying both sides by

r +
√
d gives |r2 − d| ≥ β(r +

√
d) ≥ β

√
d. So, it suffices to bound the probability that

|r2 − d| ≥ β
√
d.

Rewrite r2 − d = (x2
1 + . . .+ x2

d)− d = (x2
1 − 1) + . . .+ (x2

d − 1) and perform a change
of variables: yi = x2

i − 1. We want to bound the probability that |y1 + . . . + yd| ≥ β
√
d.

Notice that E(yi) = E(x2
i ) − 1 = 0. To apply Theorem 12.5, we need to bound the sth

moments of yi.

For |xi| ≤ 1, |yi|s ≤ 1 and for |xi| ≥ 1, |yi|s ≤ |xi|2s. Thus

|E(ysi )| = E(|yi|s) ≤ E(1 + x2s
i ) = 1 + E(x2s

i )

= 1 +

√
2

π

∫ ∞
0

x2se−x
2/2dx

Using the substitution 2z = x2,

|E(ysi )| = 1 +
1√
π

∫ ∞
0

2szs−(1/2)e−zdz

≤ 2ss!.

The last inequality is from the Gamma integral.

Since E(yi) = 0, V ar(yi) = E(y2
i ) ≤ 222 = 8. Unfortunately, we do not have |E(ysi )| ≤

8s! as required in Theorem 12.5. To fix this problem, perform one more change of variables,
using wi = yi/2. Then, V ar(wi) ≤ 2 and |E(wsi )| ≤ 2s!, and our goal is now to bound the

probability that |w1 + . . .+wd| ≥ β
√
d

2
. Applying Theorem 12.5 where σ2 = 2 and n = d,

this occurs with probability less than or equal to 3e−
β2

96 .

In the next sections we will see several uses of the Gaussian Annulus Theorem.

2.7 Random Projection and Johnson-Lindenstrauss Lemma

One of the most frequently used subroutines in tasks involving high dimensional data
is nearest neighbor search. In nearest neighbor search we are given a database of n points
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in Rd where n and d are usually large. The database can be preprocessed and stored in
an efficient data structure. Thereafter, we are presented “query” points in Rd and are
asked to find the nearest or approximately nearest database point to the query point.
Since the number of queries is often large, the time to answer each query should be very
small, ideally a small function of log n and log d, whereas preprocessing time could be
larger, namely a polynomial function of n and d. For this and other problems, dimension
reduction, where one projects the database points to a k-dimensional space with k � d
(usually dependent on log d) can be very useful so long as the relative distances between
points are approximately preserved. We will see using the Gaussian Annulus Theorem
that such a projection indeed exists and is simple.

The projection f : Rd → Rk that we will examine (many related projections are
known to work as well) is the following. Pick k Gaussian vectors u1,u2, . . . ,uk in Rd

with unit-variance coordinates. For any vector v, define the projection f(v) by:

f(v) = (u1 · v,u2 · v, . . . ,uk · v).

The projection f(v) is the vector of dot products of v with the ui. We will show that
with high probability, |f(v)| ≈

√
k|v|. For any two vectors v1 and v2, f(v1 − v2) =

f(v1)− f(v2). Thus, to estimate the distance |v1−v2| between two vectors v1 and v2 in
Rd, it suffices to compute |f(v1)− f(v2)| = |f(v1−v2)| in the k-dimensional space since
the factor of

√
k is known and one can divide by it. The reason distances increase when

we project to a lower dimensional space is that the vectors ui are not unit length. Also
notice that the vectors ui are not orthogonal. If we had required them to be orthogonal,
we would have lost statistical independence.

Theorem 2.10 (The Random Projection Theorem) Let v be a fixed vector in Rd

and let f be defined as above. Then there exists constant c > 0 such that for ε ∈ (0, 1),

Prob
(∣∣∣|f(v)| −

√
k|v|

∣∣∣ ≥ ε
√
k|v|

)
≤ 3e−ckε

2

,

where the probability is taken over the random draws of vectors ui used to construct f .

Proof: By scaling both sides of the inner inequality by |v|, we may assume that |v| = 1.
The sum of independent normally distributed real variables is also normally distributed
where the mean and variance are the sums of the individual means and variances. Since
ui · v =

∑d
j=1 uijvj, the random variable ui · v has Gaussian density with zero mean and

unit variance, in particular,

V ar(ui · v) = V ar

(
d∑
j=1

vijvj

)
=

d∑
j=1

v2
jV ar(uij) =

d∑
j=1

v2
j = 1

Since u1 ·v,u2 ·v, . . . ,uk ·v are independent Gaussian random variables, f(v) is a random
vector from a k-dimensional spherical Gaussian with unit variance in each coordinate, and
so the theorem follows from the Gaussian Annulus Theorem (Theorem 2.9) with k = d.
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The random projection theorem establishes that the probability of the length of the
projection of a single vector differing significantly from its expected value is exponentially
small in k, the dimension of the target subspace. By a union bound, the probability that
any of O(n2) pairwise differences |vi−vj| among n vectors v1, . . . ,vn differs significantly
from their expected values is small, provided k ≥ 3

cε2
lnn. Thus, this random projection

preserves all relative pairwise distances between points in a set of n points with high
probability. This is the content of the Johnson-Lindenstrauss Lemma.

Theorem 2.11 (Johnson-Lindenstrauss Lemma) For any 0 < ε < 1 and any integer
n, let k ≥ 3

cε2
lnn with c as in Theorem 2.9. For any set of n points in Rd, the random

projection f : Rd → Rk defined above has the property that for all pairs of points vi and
vj, with probability at least 1− 3/2n,

(1− ε)
√
k |vi − vj| ≤ |f(vi)− f(vj)| ≤ (1 + ε)

√
k |vi − vj| .

Proof: Applying the Random Projection Theorem (Theorem 2.10), for any fixed vi and
vj, the probability that |f(vi − vj)| is outside the range[

(1− ε)
√
k|vi − vj|, (1 + ε)

√
k|vi − vj|

]
is at most 3e−ckε

2 ≤ 3/n3 for k ≥ 3 lnn
cε2

. Since there are
(
n
2

)
< n2/2 pairs of points, by the

union bound, the probability that any pair has a large distortion is less than 3
2n

.

Remark: It is important to note that the conclusion of Theorem 2.11 asserts for all vi

and vj, not just for most of them. The weaker assertion for most vi and vj is typically less
useful, since our algorithm for a problem such as nearest-neighbor search might return
one of the bad pairs of points. A remarkable aspect of the theorem is that the number
of dimensions in the projection is only dependent logarithmically on n. Since k is often
much less than d, this is called a dimension reduction technique. In applications, the
dominant term is typically the 1/ε2 term.

For the nearest neighbor problem, if the database has n1 points and n2 queries are
expected during the lifetime of the algorithm, take n = n1 + n2 and project the database
to a random k-dimensional space, for k as in Theorem 2.11. On receiving a query, project
the query to the same subspace and compute nearby database points. The Johnson
Lindenstrauss Theorem says that with high probability this will yield the right answer
whatever the query. Note that the exponentially small in k probability was useful here in
making k only dependent on lnn, rather than n.

2.8 Separating Gaussians

Mixtures of Gaussians are often used to model heterogeneous data coming from multiple
sources. For example, suppose we are recording the heights of individuals age 20-30 in a
city. We know that on average, men tend to be taller than women, so a natural model
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would be a Gaussian mixture model p(x) = w1p1(x) +w2p2(x), where p1(x) is a Gaussian
density representing the typical heights of women, p2(x) is a Gaussian density represent-
ing the typical heights of men, and w1 and w2 are the mixture weights representing the
proportion of women and men in the city. The parameter estimation problem for a mixture
model is the problem: given access to samples from the overall density p (e.g., heights of
people in the city, but without being told whether the person with that height is male
or female), reconstruct the parameters for the distribution (e.g., good approximations to
the means and variances of p1 and p2, as well as the mixture weights).

There are taller women and shorter men, so even if one solved the parameter estima-
tion problem for heights perfectly, given a data point, one couldn’t necessarily tell which
population it came from. That is, given a height, one couldn’t necessarily tell if it came
from a man or a woman. In this section, we will look at a problem that is in some ways
easier and some ways harder than this problem of heights. It will be harder in that we
will be interested in a mixture of two Gaussians in high-dimensions as opposed to the
d = 1 case of heights. But it will be easier in that we will assume the means are quite
well-separated compared to the variances. Specifically, our focus will be on a mixture of
two spherical unit-variance Gaussians whose means are separated by a distance Ω(d1/4).
We will show that at this level of separation, we can with high probability uniquely de-
termine which Gaussian each data point came from. The algorithm to do so will actually
be quite simple. Calculate the distance between all pairs of points. Points whose distance
apart is smaller are from the same Gaussian, whereas points whose distance is larger are
from different Gaussians. Later, we will see that with more sophisticated algorithms, even
a separation of Ω(1) suffices.

First, consider just one spherical unit-variance Gaussian centered at the origin. From
Theorem 2.9, most of its probability mass lies on an annulus of width O(1) at radius

√
d.

Also e−|x|
2/2 =

∏
i e
−x2i /2 and almost all of the mass is within the slab { x | −c ≤ x1 ≤ c },

for c ∈ O(1). Pick a point x from this Gaussian. After picking x, rotate the coordinate
system to make the first axis align with x. Independently pick a second point y from
this Gaussian. The fact that almost all of the probability mass of the Gaussian is within
the slab {x | − c ≤ x1 ≤ c, c ∈ O(1)} at the equator implies that y’s component along
x’s direction is O(1) with high probability. Thus, y is nearly perpendicular to x. So,
|x − y| ≈

√
|x|2 + |y|2. See Figure 2.5(a). More precisely, since the coordinate system

has been rotated so that x is at the North Pole, x = (
√
d ± O(1), 0, . . . , 0). Since y is

almost on the equator, further rotate the coordinate system so that the component of
y that is perpendicular to the axis of the North Pole is in the second coordinate. Then
y = (O(1),

√
d±O(1), 0, . . . , 0). Thus,

(x− y)2 = d±O(
√
d) + d±O(

√
d) = 2d±O(

√
d)

and |x− y| =
√

2d±O(1) with high probability.

Consider two spherical unit variance Gaussians with centers p and q separated by a
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Figure 2.5: (a) indicates that two randomly chosen points in high dimension are surely
almost nearly orthogonal. (b) indicates the distance between a pair of random points
from two different unit balls approximating the annuli of two Gaussians.

distance ∆. The distance between a randomly chosen point x from the first Gaussian
and a randomly chosen point y from the second is close to

√
∆2 + 2d, since x− p,p− q,

and q − y are nearly mutually perpendicular. Pick x and rotate the coordinate system
so that x is at the North Pole. Let z be the North Pole of the ball approximating the
second Gaussian. Now pick y. Most of the mass of the second Gaussian is within O(1)
of the equator perpendicular to q− z. Also, most of the mass of each Gaussian is within
distance O(1) of the respective equators perpendicular to the line q − p. See Figure 2.5
(b). Thus,

|x− y|2 ≈ ∆2 + |z− q|2 + |q− y|2

= ∆2 + 2d±O(
√
d)).

To ensure that the distance between two points picked from the same Gaussian are
closer to each other than two points picked from different Gaussians requires that the
upper limit of the distance between a pair of points from the same Gaussian is at most
the lower limit of distance between points from different Gaussians. This requires that√

2d+O(1) ≤
√

2d+ ∆2−O(1) or 2d+O(
√
d) ≤ 2d+∆2, which holds when ∆ ∈ ω(d1/4).

Thus, mixtures of spherical Gaussians can be separated in this way, provided their centers
are separated by ω(d1/4). If we have n points and want to correctly separate all of
them with high probability, we need our individual high-probability statements to hold
with probability 1− 1/poly(n),3 which means our O(1) terms from Theorem 2.9 become
O(
√

log n). So we need to include an extra O(
√

log n) term in the separation distance.

Algorithm for separating points from two Gaussians: Calculate all
pairwise distances between points. The cluster of smallest pairwise distances
must come from a single Gaussian. Remove these points. The remaining
points come from the second Gaussian.

3poly(n) means bounded by a polynomial in n.
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One can actually separate Gaussians where the centers are much closer. In the next
chapter we will use singular value decomposition to separate points from a mixture of two
Gaussians when their centers are separated by a distance O(1).

2.9 Fitting a Spherical Gaussian to Data

Given a set of sample points, x1,x2, . . . ,xn, in a d-dimensional space, we wish to find
the spherical Gaussian that best fits the points. Let f be the unknown Gaussian with
mean µ and variance σ2 in each direction. The probability density for picking these points
when sampling according to f is given by

c exp

(
− (x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

2σ2

)

where the normalizing constant c is the reciprocal of

[∫
e−
|x−µ|2

2σ2 dx

]n
. In integrating from

−∞ to ∞, one can shift the origin to µ and thus c is

[∫
e−
|x|2

2σ2 dx

]−n
= 1

(2π)
n
2

and is inde-

pendent of µ.

The Maximum Likelihood Estimator (MLE) of f, given the samples x1,x2, . . . ,xn, is
the f that maximizes the above probability density.

Lemma 2.12 Let {x1,x2, . . . ,xn} be a set of n d-dimensional points. Then (x1 − µ)2 +
(x2 − µ)2+· · ·+(xn − µ)2 is minimized when µ is the centroid of the points x1,x2, . . . ,xn,
namely µ = 1

n
(x1 + x2 + · · ·+ xn).

Proof: Setting the gradient of (x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2 with respect to µ
to zero yields

−2 (x1 − µ)− 2 (x2 − µ)− · · · − 2 (xn − µ) = 0.

Solving for µ gives µ = 1
n
(x1 + x2 + · · ·+ xn).

To determine the maximum likelihood estimate of σ2 for f , set µ to the true centroid.
Next, show that σ is set to the standard deviation of the sample. Substitute ν = 1

2σ2 and

a = (x1 − µ)2 +(x2 − µ)2 + · · ·+(xn − µ)2 into the formula for the probability of picking
the points x1,x2, . . . ,xn. This gives

e−aν[∫
x

e−x2νdx

]n .

Now, a is fixed and ν is to be determined. Taking logs, the expression to maximize is

−aν − n ln

∫
x

e−νx
2

dx

 .
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To find the maximum, differentiate with respect to ν, set the derivative to zero, and solve
for σ. The derivative is

−a+ n

∫
x

|x|2e−νx2dx∫
x

e−νx2dx
.

Setting y = |
√
νx| in the derivative, yields

−a+
n

ν

∫
y

y2e−y
2
dy∫

y

e−y2dy
.

Since the ratio of the two integrals is the expected distance squared of a d-dimensional
spherical Gaussian of standard deviation 1√

2
to its center, and this is known to be d

2
, we

get −a + nd
2ν
. Substituting σ2 for 1

2ν
gives −a + ndσ2. Setting −a + ndσ2 = 0 shows that

the maximum occurs when σ =
√
a√
nd

. Note that this quantity is the square root of the
average coordinate distance squared of the samples to their mean, which is the standard
deviation of the sample. Thus, we get the following lemma.

Lemma 2.13 The maximum likelihood spherical Gaussian for a set of samples is the
Gaussian with center equal to the sample mean and standard deviation equal to the stan-
dard deviation of the sample from the true mean.

Let x1,x2, . . . ,xn be a sample of points generated by a Gaussian probability distri-
bution. Then µ = 1

n
(x1 + x2 + · · ·+ xn) is an unbiased estimator of the expected value

of the distribution. However, if in estimating the variance from the sample set, we use
the estimate of the expected value rather than the true expected value, we will not get
an unbiased estimate of the variance, since the sample mean is not independent of the
sample set. One should use µ̃ = 1

n−1
(x1 + x2 + · · ·+ xn) when estimating the variance.

See Section 12.4.10 of the appendix.

2.10 Bibliographic Notes

The word vector model was introduced by Salton [SWY75]. There is vast literature on
the Gaussian distribution, its properties, drawing samples according to it, etc. The reader
can choose the level and depth according to his/her background. The Master Tail Bounds
theorem and the derivation of Chernoff and other inequalities from it are from [Kan09].
The original proof of the Random Projection Theorem by Johnson and Lindenstrauss was
complicated. Several authors used Gaussians to simplify the proof. The proof here is due
to Dasgupta and Gupta [DG99]. See [Vem04] for details and applications of the theorem.
[MU05] and [MR95b] are text books covering a lot of the material touched upon here.
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2.11 Exercises

Exercise 2.1

1. Let x and y be independent random variables with uniform distribution in [0, 1].
What is the expected value E(x), E(x2), E(x− y), E(xy), and E(x− y)2?

2. Let x and y be independent random variables with uniform distribution in [−1
2
, 1

2
].

What is the expected value E(x), E(x2), E(x− y), E(xy), and E(x− y)2?

3. What is the expected squared distance between two points generated at random inside
a unit d-dimensional cube?

Exercise 2.2 Randomly generate 30 points inside the cube [−1
2
, 1

2
]100 and plot distance

between points and the angle between the vectors from the origin to the points for all pairs
of points.

Exercise 2.3 Show that Markov’s inequality is tight by showing the following:

1. For each a = 2, 3, and 4 give a probability distribution p(x) for a nonnegative random

variable x where Prob
(
x ≥ a

)
= E(x)

a
.

2. For arbitrary a ≥ 1 give a probability distribution for a nonnegative random variable
x where Prob

(
x ≥ a

)
= E(x)

a
.

Exercise 2.4 Give a probability distribution p(x) and a value b for which Chebyshev’s
inequality is tight and a probability distribution and value of b for which it is not tight.

Exercise 2.5 Let x be a random variable with probability density 1
4

for 0 ≤ x ≤ 4 and
zero elsewhere.

1. Use Markov’s inequality to bound the probability that x ≥ 3.

2. Make use of Prob(|x| ≥ a) = Prob(x2 ≥ a2) to get a tighter bound.

3. What is the bound using Prob(|x| ≥ a) = Prob(xr ≥ ar)?

Exercise 2.6 Consider the probability distribution p(x = 0) = 1 − 1
a

and p(x = a) = 1
a
.

Plot the probability that x is greater than or equal to a as a function of a for the bound
given by Markov’s inequality and by Markov’s inequality applied to x2 and x4.

Exercise 2.7 Consider the probability density function p(x) = 0 for x < 1 and p(x) = c 1
x4

for x ≥ 1.

1. What should c be to make p a legal probability density function?

2. Generate 100 random samples from this distribution. How close is the average of
the samples to the expected value of x?
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Exercise 2.8 Let G be a d-dimensional spherical Gaussian with variance 1
2

in each di-
rection, centered at the origin. Derive the expected squared distance to the origin.

Exercise 2.9 Consider drawing a random point x on the surface of the unit sphere in Rd.
What is the variance of x1 (the first coordinate of x)? See if you can give an argument
without doing any integrals.

Exercise 2.10 How large must ε be for 99% of the volume of a 1000-dimensional unit-
radius ball to lie in the shell of ε-thickness at the surface of the ball?

Exercise 2.11 A 3-dimensional cube has vertices, edges, and faces. In a d-dimensional
cube, these components are called faces. A vertex is a 0-dimensional face, an edge a
1-dimensional face, etc.

1. For 0 ≤ k ≤ d, how many k-dimensional faces does a d-dimensional cube have?

2. What is the total number of faces of all dimensions? The d-dimensional face is the
cube itself which you can include in your count.

3. What is the surface area of a unit cube in d-dimensions (a unit cube has side-length
1 in each dimension)?

4. What is the surface area of the cube if the length of each side was 2?

5. Prove that the volume of a unit cube is close to its surface.

Exercise 2.12 Consider the portion of the surface area of a unit radius, 3-dimensional
ball with center at the origin that lies within a circular cone whose vertex is at the origin.
What is the formula for the incremental unit of area when using polar coordinates to
integrate the portion of the surface area of the ball that is lying inside the circular cone?
What is the formula for the integral? What is the value of the integral if the angle of the
cone is 36◦? The angle of the cone is measured from the axis of the cone to a ray on the
surface of the cone.

Exercise 2.13 For what value of d does the volume, V (d), of a d-dimensional unit ball

take on its maximum? Hint: Consider the ratio V (d)
V (d−1)

.

Exercise 2.14 Consider a unit radius, circular cylinder in 3-dimensions of height one.
The top of the cylinder could be an horizontal plane or half of a circular ball. Consider
these two possibilities for a unit radius, circular cylinder in 4-dimensions. In 4-dimensions
the horizontal plane is 3-dimensional and the half circular ball is 4-dimensional. In each
of the two cases, what is the surface area of the top face of the cylinder? You can use
V (d) for the volume of a unit radius, d-dimension ball and A(d) for the surface area of
a unit radius, d-dimensional ball. An infinite length, unit radius, circular cylinder in 4-
dimensions would be the set {(x1, x2, x3, x4)|x2

2 + x2
3 + x2

4 ≤ 1} where the coordinate x1 is
the axis.
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Exercise 2.15 Given a d-dimensional circular cylinder of radius r and height h

1. What is the surface area in terms of V (d) and A(d)?

2. What is the volume?

Exercise 2.16 How does the volume of a ball of radius two behave as the dimension of
the space increases? What if the radius was larger than two but a constant independent
of d? What function of d would the radius need to be for a ball of radius r to have
approximately constant volume as the dimension increases? Hint: you may want to use
Stirling’s approximation, n! ≈

(
n
e

)n
, for factorial.

Exercise 2.17 If lim
d→∞

V (d) = 0, the volume of a d-dimensional ball for sufficiently large

d must be less than V (3). How can this be if the d-dimensional ball contains the three
dimensional ball?

Exercise 2.18 Write a recurrence relation for V (d) in terms of V (d− 1) by integrating
over x1.

Hint: At x1 = t, the (d−1)-dimensional volume of the slice is the volume of a (d−1)-
dimensional sphere of radius

√
1− t2. Express this in terms of V (d− 1) and write down

the integral. You need not evaluate the integral.

Exercise 2.19 Verify the formula V (d) = 2
∫ 1

0
V (d − 1)(1 − x2

1)
d−1
2 dx1 for d = 2 and

d = 3 by integrating and comparing with V (2) = π and V (3) = 4
3
π

Exercise 2.20 Consider a unit ball A centered at the origin and a unit ball B whose
center is at distance s from the origin. Suppose that a random point x is drawn from
the mixture distribution: “with probability 1/2, draw at random from A; with probability
1/2, draw at random from B”. Show that a separation s� 1/

√
d− 1 is sufficient so that

Prob(x ∈ A ∩B) = o(1); i.e., for any ε > 0 there exists c such that if s ≥ c/
√
d− 1, then

Prob(x ∈ A ∩ B) < ε. In other words, this extent of separation means that nearly all of
the mixture distribution is identifiable.

Exercise 2.21 Prove that 1 + x ≤ ex for all real x. For what values of x is the approxi-
mation 1 + x ≈ ex within 0.01?

Exercise 2.22 Consider the upper hemisphere of a unit-radius ball in d-dimensions.
What is the height of the maximum volume cylinder that can be placed entirely inside
the hemisphere? As you increase the height of the cylinder, you need to reduce the cylin-
der’s radius so that it will lie entirely within the hemisphere.

Exercise 2.23 What is the volume of the maximum size d-dimensional hypercube that
can be placed entirely inside a unit radius d-dimensional ball?
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Exercise 2.24 For a 1,000-dimensional unit-radius ball centered at the origin, what frac-
tion of the volume of the upper hemisphere is above the plane x1 = 0.1? Above the plane
x1 = 0.01?

Exercise 2.25 Calculate the ratio of area above the plane x1 = ε to the area of the upper
hemisphere of a unit radius ball in d-dimensions for ε = 0.001, 0.01, 0.02, 0.03, 0.04, 0.05
and for d = 100 and d = 1, 000.

Exercise 2.26 Almost all of the volume of a ball in high dimensions lies in a narrow
slice of the ball at the equator. However, the narrow slice is determined by the point on
the surface of the ball that is designated the North Pole. Explain how this can be true
if several different locations are selected for the location of the North Pole giving rise to
different equators.

Exercise 2.27 Explain how the volume of a ball in high dimensions can simultaneously
be in a narrow slice at the equator and also be concentrated in a narrow annulus at the
surface of the ball.

Exercise 2.28 Generate 500 points uniformly at random on the surface of a unit-radius
ball in 50 dimensions. Then randomly generate five additional points. For each of the five
new points, calculate a narrow band of width 2√

50
at the equator, assuming the point was

the North Pole. How many of the 500 points are in each band corresponding to one of the
five equators? How many of the points are in all five bands? How wide do the bands need
to be for all points to be in all five bands?

Exercise 2.29 Place 100 points at random on a d-dimensional unit-radius ball. Assume
d is large. Pick a random vector and let it define two parallel hyperplanes on opposite
sides of the origin that are equal distance from the origin. How close can the hyperplanes
be moved and still have at least a .99 probability that all of the 100 points land between
them?

Exercise 2.30 Let x and y be d-dimensional zero mean, unit variance Gaussian vectors.
Prove that x and y are almost orthogonal by consider their dot product.

Exercise 2.31 Prove that with high probability, the angle between two random vectors in
a high-dimensional space is at least 45◦. Hint: use Theorem 2.8.

Exercise 2.32 Project the volume of a d-dimensional ball of radius
√
d onto a line

through the center. For large d, give an intuitive argument that the projected volume
should behave like a Gaussian.

Exercise 2.33

1. Write a computer program that generates n points uniformly distributed over the
surface of a unit-radius d-dimensional ball.
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2. Generate 200 points on the surface of a sphere in 50 dimensions.

3. Create several random lines through the origin and project the points onto each line.
Plot the distribution of points on each line.

4. What does your result from (3) say about the surface area of the sphere in relation
to the lines, i.e., where is the surface area concentrated relative to each line?

Exercise 2.34 If one generates points in d-dimensions with each coordinate a unit vari-
ance Gaussian, the points will approximately lie on the surface of a sphere of radius

√
d.

1. What is the distribution when the points are projected onto a random line through
the origin?

2. If one uses a Gaussian with variance four, where in d-space will the points lie?

Exercise 2.35 Randomly generate a 100 points on the surface of a sphere in 3-dimensions
and in 100-dimensions. Create a histogram of all distances between the pairs of points in
both cases.

Exercise 2.36 We have claimed that a randomly generated point on a ball lies near the
equator of the ball, independent of the point picked to be the North Pole. Is the same claim
true for a randomly generated point on a cube? To test this claim, randomly generate ten
±1 valued vectors in 128 dimensions. Think of these ten vectors as ten choices for the
North Pole. Then generate some additional ±1 valued vectors. To how many of the
original vectors is each of the new vectors close to being perpendicular; that is, how many
of the equators is each new vector close to?

Exercise 2.37 Define the equator of a d-dimensional unit cube to be the hyperplane{
x
∣∣∣ d∑
i=1

xi = d
2

}
.

1. Are the vertices of a unit cube concentrated close to the equator?

2. Is the volume of a unit cube concentrated close to the equator?

3. Is the surface area of a unit cube concentrated close to the equator?

Exercise 2.38 Consider a nonorthogonal basis e1, e2, . . . , ed. The ei are a set of linearly
independent unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique.

2. Calculate the squared length of z = (
√

2
2
, 1)e where z is expressed in the basis e1 =

(1, 0) and e2 = (−
√

2
2
,
√

2
2

)

3. If y =
∑

i aiei and z =
∑

i biei, with 0 < ai < bi, is it necessarily true that the
length of z is greater than the length of y? Why or why not?
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4. Consider the basis e1 = (1, 0) and e2 = (−
√

2
2
,
√

2
2

).

(a) What is the representation of the vector (0,1) in the basis (e1, e2).

(b) What is the representation of the vector (
√

2
2
,
√

2
2

)?

(c) What is the representation of the vector (1, 2)?

e1

e2

e1

e2

e1

e2

Exercise 2.39 Generate 20 points uniformly at random on a 900-dimensional sphere of
radius 30. Calculate the distance between each pair of points. Then, select a method of
projection and project the data onto subspaces of dimension k=100, 50, 10, 5, 4, 3, 2, 1
and calculate the difference between

√
k times the original distances and the new pair-wise

distances. For each value of k what is the maximum difference as a percent of
√
k.

Exercise 2.40 In d-dimensions there are exactly d-unit vectors that are pairwise orthog-
onal. However, if you wanted a set of vectors that were almost orthogonal you might
squeeze in a few more. For example, in 2-dimensions if almost orthogonal meant at least
45 degrees apart, you could fit in three almost orthogonal vectors. Suppose you wanted to
find 1000 almost orthogonal vectors in 100 dimensions. Here are two ways you could do
it:

1. Begin with 1,000 orthonormal 1,000-dimensional vectors, and then project them to
a random 100-dimensional space.

2. Generate 1000 100-dimensional random Gaussian vectors.

Implement both ideas and compare them to see which does a better job.

Exercise 2.41 Suppose there is an object moving at constant velocity along a straight
line. You receive the gps coordinates corrupted by Gaussian noise every minute. How do
you estimate the current position?

Exercise 2.42

1. What is the maximum size rectangle that can be fitted under a unit variance Gaus-
sian?
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2. What unit area rectangle best approximates a unit variance Gaussian if one measure
goodness of fit by the symmetric difference of the Gaussian and the rectangle.

Exercise 2.43 Let x1,x2, . . . ,xn be independent samples of a random variable x with

mean µ and variance σ2. Let ms = 1
n

n∑
i=1

xi be the sample mean. Suppose one estimates

the variance using the sample mean rather than the true mean, that is,

σ2
s =

1

n

n∑
i=1

(xi −ms)
2

Prove that E(σ2
s) = n−1

n
σ2 and thus one should have divided by n− 1 rather than n.

Hint: First calculate the variance of the sample mean and show that var(ms) = 1
n

var(x).
Then calculate E(σ2

s) = E[ 1
n

∑n
i=1(xi−ms)

2] by replacing xi−ms with (xi−m)−(ms−m).

Exercise 2.44 Generate ten values by a Gaussian probability distribution with zero mean
and variance one. What is the center determined by averaging the points? What is the
variance? In estimating the variance, use both the real center and the estimated center.
When using the estimated center to estimate the variance, use both n = 10 and n = 9.
How do the three estimates compare?

Exercise 2.45 Suppose you want to estimate the unknown center of a Gaussian in d-
space which has variance one in each direction. Show that O(log d/ε2) random samples
from the Gaussian are sufficient to get an estimate ms of the true center µ, so that with
probability at least 99%,

|µ−ms|∞ ≤ ε.

How many samples are sufficient to ensure that with probability at least 99%

|µ−ms| ≤ ε?

Exercise 2.46 Use the probability distribution 1
3
√

2π
e−

1
2

(x−5)2

9 to generate ten points.

(a) From the ten points estimate µ. How close is the estimate of µ to the true mean of
5?

(b) Using the true mean of 5, estimate σ2 by the formula σ2 = 1
10

10∑
i=1

(xi− 5)2. How close

is the estimate of σ2 to the true variance of 9?

(c) Using your estimate m of the mean, estimate σ2 by the formula σ2 = 1
10

10∑
i=1

(xi−m)2.

How close is the estimate of σ2 to the true variance of 9?
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(d) Using your estimate m of the mean, estimate σ2 by the formula σ2 = 1
9

10∑
i=1

(xi −m)2.

How close is the estimate of σ2 to the true variance of 9?

Exercise 2.47 Create a list of the five most important things that you learned about high
dimensions.

Exercise 2.48 Write a short essay whose purpose is to excite a college freshman to learn
about high dimensions.
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3 Best-Fit Subspaces and Singular Value Decompo-

sition (SVD)

3.1 Introduction

In this chapter, we examine the Singular Value Decomposition (SVD) of a matrix.
Consider each row of an n× d matrix A as a point in d-dimensional space. The singular
value decomposition finds the best-fitting k-dimensional subspace for k = 1, 2, 3, . . . , for
the set of n data points. Here, “best” means minimizing the sum of the squares of the
perpendicular distances of the points to the subspace, or equivalently, maximizing the
sum of squares of the lengths of the projections of the points onto this subspace.4 We
begin with a special case where the subspace is 1-dimensional, namely a line through the
origin. We then show that the best-fitting k-dimensional subspace can be found by k
applications of the best fitting line algorithm, where on the ith iteration we find the best
fit line perpendicular to the previous i− 1 lines. When k reaches the rank of the matrix,
from these operations we get an exact decomposition of the matrix called the singular
value decomposition.

In matrix notation, the singular value decomposition of a matrix A with real entries
(we assume all our matrices have real entries) is the factorization of A into the product
of three matrices, A = UDV T , where the columns of U and V are orthonormal5 and the
matrix D is diagonal with positive real entries. The columns of V are the unit length vec-
tors defining the best fitting lines described above (the ith column being the unit-length
vector in the direction of the ith line). The coordinates of a row of U will be the fractions
of the corresponding row of A along the direction of each of the lines.

The SVD is useful in many tasks. Often a data matrix A is close to a low rank ma-
trix and it is useful to find a good low rank approximation to A. For any k, the singular
value decomposition of A gives the best rank-k approximation to A in a well-defined sense.

If ui and vi are columns of U and V respectively, then the matrix equation A = UDV T

can be rewritten as
A =

∑
i

diiuivi
T .

Since ui is a n × 1 matrix and vi is a d × 1 matrix, uivi
T is an n × d matrix with the

same dimensions as A. The ith term in the above sum can be viewed as giving the compo-
nents of the rows of A along direction vi. When the terms are summed, they reconstruct A.

4This equivalence is due to the Pythagorean Theorem. For each point, its squared length (its distance
to the origin squared) is exactly equal to the squared length of its projection onto the subspace plus the
squared distance of the point to its projection; therefore, maximizing the sum of the former is equivalent
to minimizing the sum of the latter. For further discussion see Section 3.2.

5A set of vectors is orthonormal if each is of length one and they are pairwise orthogonal.
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This decomposition of A can be viewed as analogous to writing a vector x in some
orthonormal basis v1,v2, . . . ,vd. The coordinates of x = (x · v1,x · v2 . . . ,x · vd) are the
projections of x onto the vi’s. For SVD, this basis has the property that for any k, the
first k vectors of this basis produce the least possible total sum of squares error for that
value of k.

In addition to the singular value decomposition, there is an eigenvalue decomposition.
Let A be a square matrix. A vector v such that Av = λv is called an eigenvector and
λ the eigenvalue. When A is symmetric, the eigenvectors are orthogonal and A can be
expressed as A = V DV T where the eigenvectors are the columns of V and D is a diagonal
matrix with the corresponding eigenvalues on its diagonal. For a symmetric matrix A
the singular values and eigenvalues are identical. If the singular values are distinct, then
A’s singular vectors and eigenvectors are identical. If a singular value has multiplicity d
greater than one, the corresponding singular vectors span a subspace of dimension d and
any orthogonal basis of the subspace can be used as the eigenvectors or singular vectors.6

The singular value decomposition is defined for all matrices, whereas the more fa-
miliar eigenvector decomposition requires that the matrix A be square and certain other
conditions on the matrix to ensure orthogonality of the eigenvectors. In contrast, the
columns of V in the singular value decomposition, called the right-singular vectors of A,
always form an orthogonal set with no assumptions on A. The columns of U are called
the left-singular vectors and they also form an orthogonal set (see Section 3.6). A simple
consequence of the orthonormality is that for a square and invertible matrix A, the inverse
of A is V D−1UT .

Eigenvalues and eignevectors satisfy Av = λv. We will show that singular values and
vectors satisfy a somewhat analogous relationship. Since Avi is a n× 1 matrix (vector),
the matrix A cannot act on it from the left. But AT , which is a d× n matrix, can act on
this vector. Indeed, we will show that

Avi = diiui and ATui = diivi.

In words, A acting on vi produces a scalar multiple of ui and AT acting on ui produces
the same scalar multiple of vi. Note that ATAvi = d2

iivi. The ith singular vector of A is
the ith eigenvector of the square symmetric matrix ATA.

3.2 Preliminaries

Consider projecting a point ai = (ai1, ai2, . . . , aid) onto a line through the origin. Then

a2
i1 + a2

i2 + · · ·+ a2
id = (length of projection)2 + (distance of point to line)2 .

6When d = 1 there are actually two possible singular vectors, one the negative of the other. The
subspace spanned is unique.

40



v

ai

disti

proji

Minimizing
∑
i

dist2
i is equiv-
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Figure 3.1: The projection of the point ai onto the line through the origin in the direction
of v.

This holds by the Pythagorean Theorem (see Figure 3.1). Thus

(distance of point to line)2 = a2
i1 + a2

i2 + · · ·+ a2
id − (length of projection)2 .

Since
n∑
i=1

(a2
i1 + a2

i2 + · · ·+ a2
id) is a constant independent of the line, minimizing the sum

of the squares of the distances to the line is equivalent to maximizing the sum of the
squares of the lengths of the projections onto the line. Similarly for best-fit subspaces,
maximizing the sum of the squared lengths of the projections onto the subspace minimizes
the sum of squared distances to the subspace.

Thus we have two interpretations of the best-fit subspace. The first is that it minimizes
the sum of squared distances of the data points to it. This first interpretation and its use
are akin to the notion of least-squares fit from calculus.7 The second interpretation of
best-fit-subspace is that it maximizes the sum of projections squared of the data points on
it. This says that the subspace contains the maximum content of data among all subspaces
of the same dimension. definition gives a different answer than the line minimizing the
sum of squared perpendicular distances. The choice of the objective function as the sum
of squared distances seems a bit arbitrary and in a way it is. But the square has many
nice mathematical properties. The first of these, as we have just seen, is that minimizing
the sum of squared distances is equivalent to maximizing the sum of squared projections.

3.3 Singular Vectors

We now define the singular vectors of an n × d matrix A. Consider the rows of A as
n points in a d-dimensional space. Consider the best fit line through the origin. Let v
be a unit vector along this line. The length of the projection of ai, the ith row of A, onto

7But there is a difference: here we take the perpendicular distance to the line or subspace, whereas,
in the calculus notion, given n pairs, (x1, y1), (x2, y2), . . . , (xn, yn), we find a line l = {(x, y)|y = mx+ b}
minimizing the vertical squared distances of the points to it, namely,

∑n
i=1(yi −mxi − b)2.
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v is |ai · v|. From this we see that the sum of the squared lengths of the projections is
|Av|2. The best fit line is the one maximizing |Av|2 and hence minimizing the sum of the
squared distances of the points to the line.

With this in mind, define the first singular vector v1 of A as

v1 = arg max
|v|=1
|Av|.

Technically, there may be a tie for the vector attaining the maximum and so we should
not use the article “the”; in fact, −v1 is always as good as v1. In this case, we arbitrarily
pick one of the vectors achieving the maximum and refer to it as “the first singular vector”
avoiding the more cumbersome “one of the vectors achieving the maximum”. We adopt
this terminology for all uses of arg max .

The value σ1 (A) = |Av1| is called the first singular value of A. Note that σ2
1 =

n∑
i=1

(ai ·v1)2 is the sum of the squared lengths of the projections of the points onto the line

determined by v1.

If the data points were all either on a line or close to a line, intuitively, v1 should
give us the direction of that line. It is possible that data points are not close to one
line, but lie close to a 2-dimensional subspace or more generally a low dimensional space.
Suppose we have an algorithm for finding v1 (we will describe one such algorithm later).
How do we use this to find the best-fit 2-dimensional plane or more generally the best fit
k-dimensional space?

The greedy approach begins by finding v1 and then finds the best 2-dimensional
subspace containing v1. The sum of squared distances helps. For every 2-dimensional
subspace containing v1, the sum of squared lengths of the projections onto the subspace
equals the sum of squared projections onto v1 plus the sum of squared projections along
a vector perpendicular to v1 in the subspace. Thus, instead of looking for the best 2-
dimensional subspace containing v1, look for a unit vector v2 perpendicular to v1 that
maximizes |Av|2 among all such unit vectors. Using the same greedy strategy to find the
best three and higher dimensional subspaces, defines v3,v4, . . . in a similar manner. This
is captured in the following definitions. There is no apriori guarantee that the greedy
algorithm gives the best fit. But, in fact, the greedy algorithm does work and yields the
best-fit subspaces of every dimension as we will show.

The second singular vector , v2, is defined by the best fit line perpendicular to v1.

v2 = arg max
v⊥v1
|v|=1

|Av|

The value σ2 (A) = |Av2| is called the second singular value of A. The third singular
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vector v3 and the third singular value are defined similarly by

v3 = arg max
v⊥v1,v2
|v|=1

|Av|

and
σ3(A) = |Av3|,

and so on. The process stops when we have found singular vectors v1,v2, . . . ,vr, singular
values σ1, σ2, . . . , σr, and

max
v⊥v1,v2,...,vr
|v|=1

|Av| = 0.

The greedy algorithm found the v1 that maximized |Av| and then the best fit 2-
dimensional subspace containing v1. Is this necessarily the best-fit 2-dimensional sub-
space overall? The following theorem establishes that the greedy algorithm finds the best
subspaces of every dimension.

Theorem 3.1 (The Greedy Algorithm Works) Let A be an n×d matrix with singu-
lar vectors v1,v2, . . . ,vr. For 1 ≤ k ≤ r, let Vk be the subspace spanned by v1,v2, . . . ,vk.
For each k, Vk is the best-fit k-dimensional subspace for A.

Proof: The statement is obviously true for k = 1. For k = 2, let W be a best-fit 2-
dimensional subspace for A. For any orthonormal basis (w1,w2) of W , |Aw1|2 + |Aw2|2
is the sum of squared lengths of the projections of the rows of A onto W . Choose an
orthonormal basis (w1,w2) of W so that w2 is perpendicular to v1. If v1 is perpendicular
to W , any unit vector in W will do as w2. If not, choose w2 to be the unit vector in W
perpendicular to the projection of v1 onto W. This makes w2 perpendicular to v1.

8 Since
v1 maximizes |Av|2, it follows that |Aw1|2 ≤ |Av1|2. Since v2 maximizes |Av|2 over all
v perpendicular to v1, |Aw2|2 ≤ |Av2|2. Thus

|Aw1|2 + |Aw2|2 ≤ |Av1|2 + |Av2|2.

Hence, V2 is at least as good as W and so is a best-fit 2-dimensional subspace.

For general k, proceed by induction. By the induction hypothesis, Vk−1 is a best-fit
k-1 dimensional subspace. Suppose W is a best-fit k-dimensional subspace. Choose an
orthonormal basis w1,w2, . . . ,wk of W so that wk is perpendicular to v1,v2, . . . ,vk−1.
Then

|Aw1|2 + |Aw2|2 + · · ·+ |Awk−1|2 ≤ |Av1|2 + |Av2|2 + · · ·+ |Avk−1|2

since Vk−1 is an optimal k − 1 dimensional subspace. Since wk is perpendicular to
v1,v2, . . . ,vk−1, by the definition of vk, |Awk|2 ≤ |Avk|2. Thus

|Aw1|2 + |Aw2|2 + · · ·+ |Awk−1|2 + |Awk|2 ≤ |Av1|2 + |Av2|2 + · · ·+ |Avk−1|2 + |Avk|2,

proving that Vk is at least as good as W and hence is optimal.

8This can be seen by noting that v1 is the sum of two vectors that each are individually perpendicular
to w2, namely the projection of v1 to W and the portion of v1 orthogonal to W .
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Note that the n-dimensional vector Avi is a list of lengths (with signs) of the projec-
tions of the rows of A onto vi. Think of |Avi| = σi(A) as the component of the matrix
A along vi. For this interpretation to make sense, it should be true that adding up the
squares of the components of A along each of the vi gives the square of the “whole content
of A”. This is indeed the case and is the matrix analogy of decomposing a vector into its
components along orthogonal directions.

Consider one row, say aj, of A. Since v1,v2, . . . ,vr span the space of all rows of A,

aj · v = 0 for all v perpendicular to v1,v2, . . . ,vr. Thus, for each row aj,
r∑
i=1

(aj · vi)
2 =

|aj|2. Summing over all rows j,

n∑
j=1

|aj|2 =
n∑
j=1

r∑
i=1

(aj · vi)
2 =

r∑
i=1

n∑
j=1

(aj · vi)
2 =

r∑
i=1

|Avi|2 =
r∑
i=1

σ2
i (A).

But
n∑
j=1

|aj|2 =
n∑
j=1

d∑
k=1

a2
jk, the sum of squares of all the entries of A. Thus, the sum of

squares of the singular values of A is indeed the square of the “whole content of A”, i.e.,
the sum of squares of all the entries. There is an important norm associated with this
quantity, the Frobenius norm of A, denoted ||A||F defined as

||A||F =

√∑
j,k

a2
jk.

Lemma 3.2 For any matrix A, the sum of squares of the singular values equals the square
of the Frobenius norm. That is,

∑
σ2
i (A) = ||A||2F .

Proof: By the preceding discussion.

The vectors v1,v2, . . . ,vr are called the right-singular vectors . The vectors Avi form
a fundamental set of vectors and we normalize them to length one by

ui =
1

σi(A)
Avi.

Later we will show that ui similarly maximizes |uTA| over all u perpendicular to u1, . . . ,ui−1.
These ui are called the left-singular vectors. Clearly, the right-singular vectors are orthog-
onal by definition. We will show later that the left-singular vectors are also orthogonal.

3.4 Singular Value Decomposition (SVD)

Let A be an n × d matrix with singular vectors v1,v2, . . . ,vr and corresponding
singular values σ1, σ2, . . . , σr. The left-singular vectors of A are ui = 1

σi
Avi where σiui is
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a vector whose coordinates correspond to the projections of the rows of A onto vi. Each
σiuiv

T
i is a rank one matrix whose rows are the “vi components” of the rows of A, i.e., the

projections of the rows of A in the vi direction. We will prove that A can be decomposed
into a sum of rank one matrices as

A =
r∑
i=1

σiuiv
T
i .

Geometrically, each point is decomposed in A into its components along each of the r
orthogonal directions given by the vi. We will also prove this algebraically. We begin
with a simple lemma that two matrices A and B are identical if Av = Bv for all v.

Lemma 3.3 Matrices A and B are identical if and only if for all vectors v, Av = Bv.

Proof: Clearly, if A = B then Av = Bv for all v. For the converse, suppose that
Av = Bv for all v. Let ei be the vector that is all zeros except for the ith component
which has value one. Now Aei is the ith column of A and thus A = B if for each i,
Aei = Bei.

Theorem 3.4 Let A be an n × d matrix with right-singular vectors v1,v2, . . . ,vr, left-
singular vectors u1,u2, . . . ,ur, and corresponding singular values σ1, σ2, . . . , σr. Then

A =
r∑
i=1

σiuiv
T
i .

Proof: We first show that multiplying both A and
r∑
i=1

σiuiv
T
i by vj results in equality.

r∑
i=1

σiuiv
T
i vj = σjuj = Avj

Since any vector v can be expressed as a linear combination of the singular vectors

plus a vector perpendicular to the vi, Av =
r∑
i=1

σiuiv
T
i v for all v and by Lemma 3.3,

A =
r∑
i=1

σiuiv
T
i .

The decomposition A =
∑

i σiuiv
T
i is called the singular value decomposition, SVD,

of A. We can rewrite this equation in matrix notation as A = UDV T where ui is the ith

column of U , vT
i is the ith row of V T , and D is a diagonal matrix with σi as the ith entry

on its diagonal. For any matrix A, the sequence of singular values is unique and if the
singular values are all distinct, then the sequence of singular vectors is unique up to signs.
However, when some set of singular values are equal, the corresponding singular vectors
span some subspace. Any set of orthonormal vectors spanning this subspace can be used
as the singular vectors.
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A

n× d
U

n× r

D

r × r
V T

r × d

=

Figure 3.2: The SVD decomposition of an n× d matrix.

3.5 Best Rank-k Approximations

Let A be an n × d matrix and think of the rows of A as n points in d-dimensional
space. Let

A =
r∑
i=1

σiuiv
T
i

be the SVD of A. For k ∈ {1, 2, . . . , r}, let

Ak =
k∑
i=1

σiuiv
T
i

be the sum truncated after k terms. It is clear that Ak has rank k. We show that Ak
is the best rank k approximation to A, where error is measured in the Frobenius norm.
Geometrically, this says that v1, . . . ,vk define the k-dimensional space minimizing the
sum of squared distances of the points to the space. To see why, we need the following
lemma.

Lemma 3.5 The rows of Ak are the projections of the rows of A onto the subspace Vk
spanned by the first k singular vectors of A.

Proof: Let a be an arbitrary row vector. Since the vi are orthonormal, the projection
of the vector a onto Vk is given by

∑k
i=1 (a · vi)vi

T . Thus, the matrix whose rows are

the projections of the rows of A onto Vk is given by
∑k

i=1 Aviv
T
i . This last expression

simplifies to
k∑
i=1

Avivi
T =

k∑
i=1

σiuivi
T = Ak.
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Theorem 3.6 For any matrix B of rank at most k

‖A− Ak‖F ≤ ‖A−B‖F

Proof: Let B minimize ‖A−B‖2
F among all rank k or less matrices. Let V be the space

spanned by the rows of B. The dimension of V is at most k. Since B minimizes ‖A−B‖2
F ,

it must be that each row of B is the projection of the corresponding row of A onto V :
Otherwise replace the row of B with the projection of the corresponding row of A onto
V . This still keeps the row space of B contained in V and hence the rank of B is still at
most k. But it reduces ‖A−B‖2

F , contradicting the minimality of ||A−B||F .

Since each row of B is the projection of the corresponding row of A, it follows that
‖A−B‖2

F is the sum of squared distances of rows of A to V . Since Ak minimizes the
sum of squared distance of rows of A to any k-dimensional subspace, from Theorem 3.1,
it follows that ‖A− Ak‖F ≤ ‖A−B‖F .

In addition to the Frobenius norm, there is another matrix norm of interest. Consider
an n × d matrix A and a large number of vectors where for each vector x we wish to
compute Ax. It takes time O(nd) to compute each product Ax but if we approximate
A by Ak =

∑k
i=1 σiuivi

T and approximate Ax by Akx it requires only k dot products
of d-dimensional vectors, followed by a sum of k n-dimensional vectors, and takes time
O(kd+ kn), which is a win provided k � min(d, n). How is the error measured? Since x
is unknown, the approximation needs to be good for every x. So we take the maximum
over all x of |(Ak − A)x|. Since this would be infinite if |x| could grow without bound,
we restrict the maximum to |x| ≤ 1. Formally, we define a new norm of a matrix A by

||A||2 = max
|x|≤1
|Ax|.

This is called the 2-norm or the spectral norm. Note that it equals σ1(A).

As an application consider a large database of documents that form rows of an n× d
matrix A. There are d terms and each document is a d-dimensional vector with one
component for each term, which is the number of occurrences of the term in the document.
We are allowed to “preprocess” A. After the preprocessing, we receive queries. Each
query x is an d-dimensional vector which specifies how important each term is to the
query. The desired answer is an n-dimensional vector which gives the similarity (dot
product) of the query to each document in the database, namely Ax, the “matrix-vector”
product. Query time is to be much less than preprocessing time, since the idea is that we
need to answer many queries for the same database. There are many other applications
where one performs many matrix vector products with the same matrix. This technique
is applicable to these situations as well.

3.6 Left Singular Vectors

Theorem 3.7 The left singular vectors are pairwise orthogonal.
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Proof: First we show that each ui, i ≥ 2 is orthogonal to u1. Suppose not, and for some
i ≥ 2, uT1ui 6= 0. Without loss of generality assume that uT1ui = δ > 0. If u1

Tui < 0 then
just replace ui with −ui. For ε > 0, let

v′1 =
v1 + εvi

|v1 + εvi|
.

Notice that v′1 is a unit-length vector.

Av′1 =
σ1u1 + εσiui√

1 + ε2

has length at least as large as its component along u1 which is

uT
1

(
σ1u1 + εσiui√

1 + ε2

)
> (σ1 + εσiδ)

(
1− ε2

2

)
> σ1 − ε2

2
σ1 + εσiδ + ε3

2
σiδ > σ1,

for sufficiently small ε, a contradiction to the definition of σ1. Thus u1 · ui = 0 for i ≥ 2.

The proof for other ui and uj, j > i > 1 is similar. Suppose without loss of generality
that ui

Tuj > δ > 0.

A

(
vi + εvj

|vi + εvj|

)
=
σiui + εσjuj√

1 + ε2

has length at least as large as its component along ui which is

uT
i (
σ1ui + εσjuj√

1 + ε2
) >

(
σi + εσju

T
i uj

) (
1− ε2

2

)
> σi − ε2

2
σi + εσjδ − ε3

2
σiδ > σi,

for sufficiently small ε, a contradiction since vi + εvj is orthogonal to v1,v2, . . . ,vi−1 and
σi is defined to be the maximum of |Av| over such vectors.

Next we prove that Ak is the best rank k, 2-norm approximation to A. We first show
that the square of the 2-norm of A−Ak is the square of the (k+ 1)st singular value of A.
This is essentially by definition of Ak; that is, Ak represents the projections of the points
in A onto the space spanned by the top k singular vectors, and so A−Ak is the remaining
portion of those points, whose top singular value will be σk+1.

Lemma 3.8 ‖A− Ak‖2
2 = σ2

k+1.

Proof: LetA =
r∑
i=1

σiuivi
T be the singular value decomposition ofA. ThenAk =

k∑
i=1

σiuivi
T

and A− Ak =
r∑

i=k+1

σiuivi
T . Let v be the top singular vector of A− Ak. Express v as a
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linear combination of v1,v2, . . . ,vr. That is, write v =
r∑
j=1

cjvj. Then

|(A− Ak)v| =

∣∣∣∣∣
r∑

i=k+1

σiuivi
T

r∑
j=1

cjvj

∣∣∣∣∣ =

∣∣∣∣∣
r∑

i=k+1

ciσiuivi
Tvi

∣∣∣∣∣
=

∣∣∣∣∣
r∑

i=k+1

ciσiui

∣∣∣∣∣ =

√√√√ r∑
i=k+1

c2
iσ

2
i ,

since the ui are orthonormal. The v maximizing this last quantity, subject to the con-

straint that |v|2 =
r∑
i=1

c2
i = 1, occurs when ck+1 = 1 and the rest of the ci are zero. Thus,

‖A− Ak‖2
2 = σ2

k+1 proving the lemma.

Finally, we prove that Ak is the best rank k, 2-norm approximation to A:

Theorem 3.9 Let A be an n× d matrix. For any matrix B of rank at most k

‖A− Ak‖2 ≤ ‖A−B‖2 .

Proof: If A is of rank k or less, the theorem is obviously true since ‖A− Ak‖2 = 0.
Assume that A is of rank greater than k. By Lemma 3.8, ‖A− Ak‖2

2 = σ2
k+1. The null

space of B, the set of vectors v such that Bv = 0, has dimension at least d − k. Let
v1,v2, . . . ,vk+1 be the first k + 1 singular vectors of A. By a dimension argument, it
follows that there exists a z 6= 0 in

Null (B) ∩ Span {v1,v2, . . . ,vk+1} .
Scale z to be of length one.

‖A−B‖2
2 ≥ |(A−B) z|2 .

Since Bz = 0,
‖A−B‖2

2 ≥ |Az|2 .
Since z is in the Span {v1,v2, . . . ,vk+1}

|Az|2 =

∣∣∣∣∣
n∑
i=1

σiuivi
Tz

∣∣∣∣∣
2

=
n∑
i=1

σ2
i

(
vi
Tz
)2

=
k+1∑
i=1

σ2
i

(
vi
Tz
)2 ≥ σ2

k+1

k+1∑
i=1

(
vi
Tz
)2

= σ2
k+1.

It follows that ‖A−B‖2
2 ≥ σ2

k+1 proving the theorem.

For a square symmetric matrix A and eigenvector v, Av = λv. We now prove the
analog for singular values and vectors we discussed in the introduction.

Lemma 3.10 (Analog of eigenvalues and eigenvectors)

Avi = σiui and ATui = σivi.

Proof: The first equation follows from the definition of left singular vectors. For the
second, note that from the SVD, we get ATui =

∑
j σjvjuj

Tui, where since the uj are
orthonormal, all terms in the summation are zero except for j = i.
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3.7 Power Method for Singular Value Decomposition

Computing the singular value decomposition is an important branch of numerical
analysis in which there have been many sophisticated developments over a long period of
time. The reader is referred to numerical analysis texts for more details. Here we present
an “in-principle” method to establish that the approximate SVD of a matrix A can be
computed in polynomial time. The method we present, called the power method, is simple
and is in fact the conceptual starting point for many algorithms. Let A be a matrix whose
SVD is

∑
i σiuivi

T . We wish to work with a matrix that is square and symmetric. Let
B = ATA. By direct multiplication, using the orthogonality of the ui’s that was proved
in Theorem 3.7,

B = ATA =

(∑
i

σiviu
T
i

)(∑
j

σjujv
T
j

)
=
∑
i,j

σiσjvi(u
T
i · uj)v

T
j =

∑
i

σ2
i viv

T
i .

The matrix B is square and symmetric, and has the same left and right-singular vectors.
In particular, Bvj = (

∑
i σ

2
i viv

T
i )vj = σ2

jvj, so vj is an eigenvector of B with eigenvalue
σ2
j . If A is itself square and symmetric, it will have the same right and left-singular vec-

tors, namely A =
∑
i

σivivi
T and computing B is unnecessary.

Now consider computing B2.

B2 =

(∑
i

σ2
i viv

T
i

)(∑
j

σ2
jvjv

T
j

)
=
∑
ij

σ2
i σ

2
jvi(vi

Tvj)vj
T

When i 6= j, the dot product vi
Tvj is zero by orthogonality.9 Thus, B2 =

r∑
i=1

σ4
i vivi

T . In

computing the kth power of B, all the cross product terms are zero and

Bk =
r∑
i=1

σ2k
i vivi

T .

If σ1 > σ2, then the first term in the summation dominates, so Bk → σ2k
1 v1v1

T . This
means a close estimate to v1 can be computed by simply taking the first column of Bk

and normalizing it to a unit vector.

3.7.1 A Faster Method

A problem with the above method is that A may be a very large, sparse matrix, say a
108 × 108 matrix with 109 nonzero entries. Sparse matrices are often represented by just

9The “outer product” vivj
T is a matrix and is not zero even for i 6= j.
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a list of nonzero entries, say a list of triples of the form (i, j, aij). Though A is sparse, B
need not be and in the worse case may have all 1016 entries nonzero10 and it is then impos-
sible to even write down B, let alone compute the product B2. Even if A is moderate in
size, computing matrix products is costly in time. Thus, a more efficient method is needed.

Instead of computing Bk, select a random vector x and compute the product Bkx.
The vector x can be expressed in terms of the singular vectors of B augmented to a full

orthonormal basis as x =
d∑
i=1

civi. Then

Bkx ≈ (σ2k
1 v1v1

T )
( d∑

i=1

civi

)
= σ2k

1 c1v1.

Normalizing the resulting vector yields v1, the first singular vector of A. The way Bkx
is computed is by a series of matrix vector products, instead of matrix products. Bkx =
ATA . . . ATAx, which can be computed right-to-left. This consists of 2k vector times
sparse matrix multiplications.

An issue occurs if there is no significant gap between the first and second singular
values of a matrix. Take for example the case when there is a tie for the first singular
vector and σ1 = σ2. Then, the above argument fails. We will overcome this hurdle.
Theorem 3.11 below states that even with ties, the power method converges to some
vector in the span of those singular vectors corresponding to the “nearly highest” singular
values. The theorem assumes it is given a vector x which has a component of magnitude
at least δ along the first right singular vector v1 of A. We will see in Lemma 3.12 that a
random vector satisfies this condition with fairly high probability.

Theorem 3.11 Let A be an n×d matrix and x a unit length vector in Rd with |xTv1| ≥ δ,
where δ > 0. Let V be the space spanned by the right singular vectors of A corresponding
to singular values greater than (1− ε)σ1. Let w be the unit vector after k = ln(1/εδ)

2ε

iterations of the power method, namely,

w =

(
ATA

)k
x∣∣∣(ATA)k x
∣∣∣ .

Then w has a component of at most ε perpendicular to V .

Proof: Let

A =
r∑
i=1

σiuiv
T
i

10E.g., suppose each entry in the first row of A is nonzero and the rest of A is zero.
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be the SVD of A. If the rank of A is less than d, then for convenience complete
{v1,v2, . . .vr} into an orthonormal basis {v1,v2, . . .vd} of d-space. Write x in the basis
of the vi’s as

x =
d∑
i=1

civi.

Since (ATA)k =
d∑
i=1

σ2k
i viv

T
i , it follows that (ATA)kx =

d∑
i=1

σ2k
i civi. By hypothesis,

|c1| ≥ δ.

Suppose that σ1, σ2, . . . , σm are the singular values of A that are greater than or equal
to (1− ε)σ1 and that σm+1, . . . , σd are the singular values that are less than (1− ε)σ1.
Now

|(ATA)kx|2 =

∣∣∣∣∣
d∑
i=1

σ2k
i civi

∣∣∣∣∣
2

=
d∑
i=1

σ4k
i c

2
i ≥ σ4k

1 c
2
1 ≥ σ4k

1 δ
2.

The component of |(ATA)kx|2 perpendicular to the space V is

d∑
i=m+1

σ4k
i c

2
i ≤ (1− ε)4k σ4k

1

d∑
i=m+1

c2
i ≤ (1− ε)4k σ4k

1

since
∑d

i=1 c
2
i = |x| = 1. Thus, the component of w perpendicular to V has squared

length at most
(1−ε)4kσ4k

1

σ4k
1 δ2

and so its length is at most

(1− ε)2kσ2k
1

δσ2k
1

=
(1− ε)2k

δ
≤ e−2kε

δ
= ε

since k = ln(1/εδ
2ε

.

Lemma 3.12 Let y ∈ Rn be a random vector with the unit variance spherical Gaussian
as its probability density. Normalize y to be a unit length vector by setting x = y/|y|. Let
v be any unit length vector. Then

Prob

(
|xTv| ≤ 1

20
√
d

)
≤ 1

10
+ 3e−d/96.

Proof: Proving for the unit length vector x that Prob
(
|xTv| ≤ 1

20
√
d

)
≤ 1

10
+ 3e−d/96 is

equivalent to proving for the unnormalized vector y that Prob(|y| ≥ 2
√
d) ≤ 3e−d/96 and

Prob(|yTv| ≤ 1
10

) ≤ 1/10. That Prob(|y| ≥ 2
√
d) is at most 3e−d/96 follows from Theorem

(2.9) with
√
d substituted for β. The probability that |yTv| ≤ 1

10
is at most 1/10 follows

from the fact that yTv is a random, zero mean, unit variance Gaussian with density is at
most 1/

√
2π ≤ 1/2 in the interval [−1/10, 1/10], so the integral of the Gaussian over the

interval is at most 1/10.
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Figure 3.3: If one wants statistical information relative to the mean of the data, one needs
to center the data. If one wants the best low rank approximation, one would not center
the data.

3.8 Singular Vectors and Eigenvectors

For a square matrix B, if Bx = λx, then x is an eigenvector of B and λ is the corre-
sponding eigenvalue. We saw in Section 3.7, if B = ATA, then the right singular vectors
vj of A are eigenvectors of B with eigenvalues σ2

j . The same argument shows that the left
singular vectors uj of A are eigenvectors of AAT with eigenvalues σ2

j .

The matrix B = ATA has the property that for any vector x, xTBx ≥ 0. This is
because B =

∑
i σ

2
i vivi

T and for any x, xTvivi
Tx = (xTvi)

2 ≥ 0. A matrix B with
the property that xTBx ≥ 0 for all x is called positive semi-definite. Every matrix of
the form ATA is positive semi-definite. In the other direction, any positive semi-definite
matrix B can be decomposed into a product ATA, and so its eigenvalue decomposition
can be obtained from the singular value decomposition of A. The interested reader should
consult a linear algebra book.

3.9 Applications of Singular Value Decomposition

3.9.1 Centering Data

Singular value decomposition is used in many applications and for some of these ap-
plications it is essential to first center the data by subtracting the centroid of the data
from each data point.11 If you are interested in the statistics of the data and how it varies
in relationship to its mean, then you would center the data. On the other hand, if you
are interested in finding the best low rank approximation to a matrix, then you do not
center the data. The issue is whether you are finding the best fitting subspace or the best
fitting affine space. In the latter case you first center the data and then find the best
fitting subspace. See Figure 3.3.

11The centroid of a set of points is the coordinate-wise average of the points.

53



We first show that the line minimizing the sum of squared distances to a set of points,
if not restricted to go through the origin, must pass through the centroid of the points.
This implies that if the centroid is subtracted from each data point, such a line will pass
through the origin. The best fit line can be generalized to k dimensional “planes”. The
operation of subtracting the centroid from all data points is useful in other contexts as
well. We give it the name “centering data”.

Lemma 3.13 The best-fit line (minimizing the sum of perpendicular distances squared)
of a set of data points must pass through the centroid of the points.

Proof: Subtract the centroid from each data point so that the centroid is 0. Let ` be the
best-fit line and assume for contradiction that ` does not pass through the origin. The
line ` can be written as {a + λv|λ ∈ R}, where a is the closest point to 0 on ` and v is
a unit length vector in the direction of `, which is perpendicular to a. For a data point
ai, let dist(ai, `) denote its perpendicular distance to `. By the Pythagorean theorem, we
have |ai − a|2 = dist(ai, `)

2 + (v · ai)
2, or equivalently, dist(ai, `)

2 = |ai − a|2 − (v · ai)
2.

Summing over all data points:

n∑
i=1

dist(ai, `)
2 =

n∑
i=1

(
|ai − a|2 − (v · ai)

2
)

=
n∑
i=1

(
|ai|2 + |a|2 − 2ai · a− (v · ai)

2
)

=
n∑
i=1

|ai|2 + n|a|2 − 2a ·

(∑
i

ai

)
−

n∑
i=1

(v · ai)
2 =

∑
i

|ai|2 + n|a|2 −
∑
i

(v · ai)
2,

where we used the fact that since the centroid is 0,
∑

i ai = 0. The above expression is
minimized when a = 0, so the line `′ = {λv : λ ∈ R} through the origin is a better fit
than `, contradicting ` being the best-fit line.

A statement analogous to Lemma 3.13 holds for higher dimensional objects. Define
an affine space as a subspace translated by a vector. So an affine space is a set of the
form

{v0 +
k∑
i=1

civi|c1, c2, . . . , ck ∈ R}.

Here, v0 is the translation and v1,v2, . . . ,vk form an orthonormal basis for the subspace.

Lemma 3.14 The k dimensional affine space which minimizes the sum of squared per-
pendicular distances to the data points must pass through the centroid of the points.

Proof: We only give a brief idea of the proof, which is similar to the previous lemma.
Instead of (v · ai)

2, we will now have
∑k

j=1(vj · ai)
2, where the vj, j = 1, 2, . . . , k are an

orthonormal basis of the subspace through the origin parallel to the affine space.

54



3.9.2 Principal Component Analysis

The traditional use of SVD is in Principal Component Analysis (PCA). PCA is il-
lustrated by a movie recommendation setting where there are n customers and d movies.
Let matrix A with elements aij represent the amount that customer i likes movie j. One
hypothesizes that there are only k underlying basic factors that determine how much a
given customer will like a given movie, where k is much smaller than n or d. For example,
these could be the amount of comedy, drama, and action, the novelty of the story, etc.
Each movie can be described as a k-dimensional vector indicating how much of these ba-
sic factors the movie has, and each customer can be described as a k-dimensional vector
indicating how important each of these basic factors is to that customer. The dot-product
of these two vectors is hypothesized to determine how much that customer will like that
movie. In particular, this means that the n×d matrix A can be expressed as the product
of an n × k matrix U describing the customers and a k × d matrix V describing the
movies. Finding the best rank k approximation Ak by SVD gives such a U and V . One
twist is that A may not be exactly equal to UV , in which case A − UV is treated as
noise. Another issue is that SVD gives a factorization with negative entries. Nonnegative
matrix factorization (NMF) is more appropriate in some contexts where we want to keep
entries nonnegative. NMF is discussed in Chapter 9

In the above setting, A was available fully and we wished to find U and V to identify
the basic factors. However, in a case such as movie recommendations, each customer may
have seen only a small fraction of the movies, so it may be more natural to assume that we
are given just a few elements of A and wish to estimate A. If A was an arbitrary matrix
of size n × d, this would require Ω(nd) pieces of information and cannot be done with a
few entries. But again hypothesize that A was a small rank matrix with added noise. If
now we also assume that the given entries are randomly drawn according to some known
distribution, then there is a possibility that SVD can be used to estimate the whole of A.
This area is called collaborative filtering and one of its uses is to recommend movies or to
target an ad to a customer based on one or two purchases. We do not describe it here.

3.9.3 Clustering a Mixture of Spherical Gaussians

Clustering is the task of partitioning a set of points into k subsets or clusters where
each cluster consists of nearby points. Different definitions of the quality of a clustering
lead to different solutions. Clustering is an important area which we will study in detail
in Chapter 7. Here we will see how to solve a particular clustering problem using singular
value decomposition.

Mathematical formulations of clustering tend to have the property that finding the
highest quality solution to a given set of data is NP-hard. One way around this is to
assume stochastic models of input data and devise algorithms to cluster data generated by
such models. Mixture models are a very important class of stochastic models. A mixture
is a probability density or distribution that is the weighted sum of simple component
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probability densities. It is of the form

f = w1p1 + w2p2 + · · ·+ wkpk,

where p1, p2, . . . , pk are the basic probability densities and w1, w2, . . . , wk are positive real
numbers called mixture weights that add up to one. Clearly, f is a probability density
and integrates to one.

The model fitting problem is to fit a mixture of k basic densities to n independent,
identically distributed samples, each sample drawn according to the same mixture dis-
tribution f . The class of basic densities is known, but various parameters such as their
means and the component weights of the mixture are not. Here, we deal with the case
where the basic densities are all spherical Gaussians. There are two equivalent ways of
thinking of the hidden sample generation process when only the samples are given:

1. Pick each sample according to the density f on Rd.

2. Pick a random i from {1, 2, . . . , k} where probability of picking i is wi. Then, pick
a sample according to the density pi.

One approach to the model-fitting problem is to break it into two subproblems:

1. First, cluster the set of samples into k clusters C1, C2, . . . , Ck, where Ci is the set of
samples generated according to pi (see (2) above) by the hidden generation process.

2. Then fit a single Gaussian distribution to each cluster of sample points.

The second problem is relatively easier and indeed we saw the solution in Chapter
(2), where we showed that taking the empirical mean (the mean of the sample) and the
empirical standard deviation gives us the best-fit Gaussian. The first problem is harder
and this is what we discuss here.
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If the component Gaussians in the mixture have their centers very close together, then
the clustering problem is unresolvable. In the limiting case where a pair of component
densities are the same, there is no way to distinguish between them. What condition on
the inter-center separation will guarantee unambiguous clustering? First, by looking at
1-dimensional examples, it is clear that this separation should be measured in units of the
standard deviation, since the density is a function of the number of standard deviation
from the mean. In one dimension, if two Gaussians have inter-center separation at least
six times the maximum of their standard deviations, then they hardly overlap. This is
summarized in the question: How many standard deviations apart are the means? In one
dimension, if the answer is at least six, we can easily tell the Gaussians apart. What is
the analog of this in higher dimensions?

We discussed in Chapter (2) distances between two sample points from the same
Gaussian as well the distance between two sample points from two different Gaussians.
Recall from that discussion that if

• If x and y are two independent samples from the same spherical Gaussian with
standard deviation12 σ then

|x− y|2 ≈ 2
(√

d±O(1)
)2
σ2.

• If x and y are samples from different spherical Gaussians each of standard deviation
σ and means separated by distance ∆, then

|x− y|2 ≈ 2
(√

d±O(1)
)2
σ2 + ∆2.

To ensure that points from the same Gaussian are closer to each other than points from
different Gaussians, we need

2
(√

d−O(1)
)2
σ2 + ∆2 > 2

(√
d+O(1)

)2
σ2.

Expanding the squares, the high order term 2d cancels and we need that

∆ > cd1/4,

for some constant c. While this was not a completely rigorous argument, it can be used to
show that a distance based clustering approach (see Chapter 2 for an example) requires an
inter-mean separation of at least cd1/4 standard deviations to succeed, thus unfortunately
not keeping with mnemonic of a constant number of standard deviations separation of
the means. Here, indeed, we will show that Ω(1) standard deviations suffice provided the
number k of Gaussians is O(1).

12Since a spherical Gaussian has the same standard deviation in every direction, we call it the standard
deviation of the Gaussian.
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The central idea is the following. Suppose we can find the subspace spanned by the
k centers and project the sample points to this subspace. The projection of a spherical
Gaussian with standard deviation σ remains a spherical Gaussian with standard deviation
σ (Lemma 3.15). In the projection, the inter-center separation remains the same. So in
the projection, the Gaussians are distinct provided the inter-center separation in the whole
space is at least ck1/4 σ which is less than cd1/4 σ for k � d. Interestingly, we will see that
the subspace spanned by the k-centers is essentially the best-fit k-dimensional subspace
that can be found by singular value decomposition.

Lemma 3.15 Suppose p is a d-dimensional spherical Gaussian with center µ and stan-
dard deviation σ. The density of p projected onto a k-dimensional subspace V is a spherical
Gaussian with the same standard deviation.

Proof: Rotate the coordinate system so V is spanned by the first k coordinate vectors.
The Gaussian remains spherical with standard deviation σ although the coordinates of
its center have changed. For a point x = (x1, x2, . . . , xd), we will use the notation x′ =
(x1, x2, . . . xk) and x′′ = (xk+1, xk+2, . . . , xn). The density of the projected Gaussian at
the point (x1, x2, . . . , xk) is

ce−
|x′−µ′|2

2σ2

∫
x′′

e−
|x′′−µ′′|2

2σ2 dx′′ = c′e−
|x′−µ′|2

2σ2 .

This implies the lemma.

We now show that the top k singular vectors produced by the SVD span the space of
the k centers. First, we extend the notion of best fit to probability distributions. Then
we show that for a single spherical Gaussian whose center is not the origin, the best fit
1-dimensional subspace is the line though the center of the Gaussian and the origin. Next,
we show that the best fit k-dimensional subspace for a single Gaussian whose center is not
the origin is any k-dimensional subspace containing the line through the Gaussian’s center
and the origin. Finally, for k spherical Gaussians, the best fit k-dimensional subspace is
the subspace containing their centers. Thus, the SVD finds the subspace that contains
the centers.

Recall that for a set of points, the best-fit line is the line passing through the origin
that maximizes the sum of squared lengths of the projections of the points onto the line.
We extend this definition to probability densities instead of a set of points.

Definition 3.1 If p is a probability density in d space, the best fit line for p is the line
l = {cv1 : c ∈ R} where

v1 = arg max
|v|=1

E
x∼p

[
(vTx)2

]
.

For a spherical Gaussian centered at the origin, it is easy to see that any line passing
through the origin is a best fit line. Our next lemma shows that the best fit line for a
spherical Gaussian centered at µ 6= 0 is the line passing through µ and the origin.
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1. The best fit 1-dimension subspace
to a spherical Gaussian is the line
through its center and the origin.

2. Any k-dimensional subspace contain-
ing the line is a best fit k-dimensional
subspace for the Gaussian.

3. The best fit k-dimensional subspace
for k spherical Gaussians is the sub-
space containing their centers.

Figure 3.5: Best fit subspace to a spherical Gaussian.

Lemma 3.16 Let the probability density p be a spherical Gaussian with center µ 6= 0.
The unique best fit 1-dimensional subspace is the line passing through µ and the origin.
If µ = 0, then any line through the origin is a best-fit line.

Proof: For a randomly chosen x (according to p) and a fixed unit length vector v,

E
x∼p

[
(vTx)2

]
= E

x∼p

[(
vT (x− µ) + vTµ

)2
]

= E
x∼p

[(
vT (x− µ)

)2
+ 2

(
vTµ

) (
vT (x− µ)

)
+
(
vTµ

)2
]

= E
x∼p

[(
vT (x− µ)

)2
]

+ 2
(
vTµ

)
E
[
vT (x− µ)

]
+
(
vTµ

)2

= E
x∼p

[(
vT (x− µ)

)2
]

+
(
vTµ

)2

= σ2 +
(
vTµ

)2

where the fourth line follows from the fact that E[vT (x− µ)] = 0, and the fifth line
follows from the fact that E[(vT (x− µ))2] is the variance in the direction v. The best fit

line v maximizes Ex∼p[(v
Tx)2] and therefore maximizes

(
vTµ

)2
. This is maximized when

v is aligned with the center µ. To see uniqueness, just note that if µ 6= 0, then vTµ is
strictly less when v is not aligned with the center.

We now extend Definition 3.1 to k-dimensional subspaces.
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Definition 3.2 If p is a probability density in d-space then the best-fit k-dimensional
subspace Vk is

Vk = argmax
V :dim(V )=k

E
x∼p

[
|proj(x, V )|2

]
,

where proj(x, V ) is the orthogonal projection of x onto V .

Lemma 3.17 For a spherical Gaussian with center µ, a k-dimensional subspace is a best
fit subspace if and only if it contains µ.

Proof: If µ = 0, then by symmetry any k−dimensional subspace is a best-fit subspace.
If µ 6= 0, then, the best-fit line must pass through µ by Lemma 3.16. Now, as in the
greedy algorithm for finding subsequent singular vectors, we would project perpendicular
to the first singular vector. But after the projection, the mean of the Gaussian becomes
0 and any vectors will do as subsequent best-fit directions.

This leads to the following theorem.

Theorem 3.18 If p is a mixture of k spherical Gaussians, then the best fit k-dimensional
subspace contains the centers. In particular, if the means of the Gaussians are linearly
independent, the space spanned by them is the unique best-fit k dimensional subspace.

Proof: Let p be the mixture w1p1+w2p2+· · ·+wkpk. Let V be any subspace of dimension
k or less. Then,

E
x∼p

[
|proj(x, V )|2

]
=

k∑
i=1

wi E
x∼pi

[
|proj(x, V )|2

]
If V contains the centers of the densities pi, by Lemma 3.17, each term in the summation
is individually maximized, which implies the entire summation is maximized, proving the
theorem.

For an infinite set of points drawn according to the mixture, the k-dimensional SVD
subspace gives exactly the space of the centers. In reality, we have only a large number
of samples drawn according to the mixture. However, it is intuitively clear that as the
number of samples increases, the set of sample points will approximate the probability
density and so the SVD subspace of the sample will be close to the space spanned by
the centers. The details of how close it gets as a function of the number of samples are
technical and we do not carry this out here.

3.9.4 Ranking Documents and Web Pages

An important task for a document collection is to rank the documents according to
their intrinsic relevance to the collection. A good candidate definition of “intrinsic rele-
vance” is a document’s projection onto the best-fit direction for that collection, namely the
top left-singular vector of the term-document matrix. An intuitive reason for this is that
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this direction has the maximum sum of squared projections of the collection and so can be
thought of as a synthetic term-document vector best representing the document collection.

Ranking in order of the projection of each document’s term vector along the best fit
direction has a nice interpretation in terms of the power method. For this, we consider
a different example, that of the web with hypertext links. The World Wide Web can
be represented by a directed graph whose nodes correspond to web pages and directed
edges to hypertext links between pages. Some web pages, called authorities, are the most
prominent sources for information on a given topic. Other pages called hubs, are ones
that identify the authorities on a topic. Authority pages are pointed to by many hub
pages and hub pages point to many authorities. One is led to what seems like a circular
definition: a hub is a page that points to many authorities and an authority is a page
that is pointed to by many hubs.

One would like to assign hub weights and authority weights to each node of the web.
If there are n nodes, the hub weights form an n-dimensional vector u and the authority
weights form an n-dimensional vector v. Suppose A is the adjacency matrix representing
the directed graph. Here aij is 1 if there is a hypertext link from page i to page j and 0
otherwise. Given hub vector u, the authority vector v could be computed by the formula

vj ∝
d∑
i=1

uiaij

since the right hand side is the sum of the hub weights of all the nodes that point to node
j. In matrix terms,

v = ATu/|ATu|.
Similarly, given an authority vector v, the hub vector u could be computed by

u = Av/|Av|. Of course, at the start, we have neither vector. But the above discus-
sion suggests a power iteration. Start with any v. Set u = Av, then set v = ATu, then
renormalize and repeat the process. We know from the power method that this converges
to the left and right-singular vectors. So after sufficiently many iterations, we may use the
left vector u as the hub weights vector and project each column of A onto this direction
and rank columns (authorities) in order of this projection. But the projections just form
the vector ATu which equals a multiple of v. So we can just rank by order of the vj.
This is the basis of an algorithm called the HITS algorithm, which was one of the early
proposals for ranking web pages.

A different ranking called pagerank is widely used. It is based on a random walk on
the graph described above. We will study random walks in detail in Chapter 4.

3.9.5 An Application of SVD to a Discrete Optimization Problem

In clustering a mixture of Gaussians, SVD was used as a dimension reduction tech-
nique. It found a k-dimensional subspace (the space of centers) of a d-dimensional space
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and made the Gaussian clustering problem easier by projecting the data to the subspace.
Here, instead of fitting a model to data, we consider an optimization problem where ap-
plying dimension reduction makes the problem easier. The use of SVD to solve discrete
optimization problems is a relatively new subject with many applications. We start with
an important NP-hard problem, the maximum cut problem for a directed graph G(V,E).

The maximum cut problem is to partition the nodes of an n-node directed graph into
two subsets S and S̄ so that the number of edges from S to S̄ is maximized. Let A be
the adjacency matrix of the graph. With each vertex i, associate an indicator variable xi.
The variable xi will be set to 1 for i ∈ S and 0 for i ∈ S̄. The vector x = (x1, x2, . . . , xn)
is unknown and we are trying to find it or equivalently the cut, so as to maximize the
number of edges across the cut. The number of edges across the cut is precisely∑

i,j

xi(1− xj)aij.

Thus, the maximum cut problem can be posed as the optimization problem

Maximize
∑
i,j

xi(1− xj)aij subject to xi ∈ {0, 1}.

In matrix notation, ∑
i,j

xi(1− xj)aij = xTA(1− x),

where 1 denotes the vector of all 1’s . So, the problem can be restated as

Maximize xTA(1− x) subject to xi ∈ {0, 1}. (3.1)

This problem is NP-hard. However we will see that for dense graphs, that is, graphs
with Ω(n2) edges and therefore whose optimal solution has size Ω(n2),13 we can use the
SVD to find a near optimal solution in polynomial time. To do so we will begin by
computing the SVD of A and replacing A by Ak =

∑k
i=1 σiuivi

T in (3.1) to get

Maximize xTAk(1− x) subject to xi ∈ {0, 1}. (3.2)

Note that the matrix Ak is no longer a 0-1 adjacency matrix.

We will show that:

1. For each 0-1 vector x, xTAk(1− x) and xTA(1− x) differ by at most n2
√
k+1

. Thus,

the maxima in (3.1) and (3.2) differ by at most this amount.

2. A near optimal x for (3.2) can be found in time nO(k) by exploiting the low rank
of Ak, which is polynomial time for constant k. By Item 1 this is near optimal for
(3.1) where near optimal means with additive error of at most n2

√
k+1

.

13Any graph of m edges has a cut of size at least m/2. This can be seen by noting that the expected
size of the cut for a random x ∈ {0, 1}n is exactly m/2.
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First, we prove Item 1. Since x and 1− x are 0-1 n-vectors, each has length at most√
n. By the definition of the 2-norm, |(A − Ak)(1 − x)| ≤

√
n||A − Ak||2. Now since

xT (A− Ak)(1− x) is the dot product of the vector x with the vector (A− Ak)(1− x),

|xT (A− Ak)(1− x)| ≤ n||A− Ak||2.

By Lemma 3.8, ||A− Ak||2 = σk+1(A). The inequalities,

(k + 1)σ2
k+1 ≤ σ2

1 + σ2
2 + · · ·σ2

k+1 ≤ ||A||2F =
∑
i,j

a2
ij ≤ n2

imply that σ2
k+1 ≤ n2

k+1
and hence ||A− Ak||2 ≤ n√

k+1
proving Item 1.

Next we focus on Item 2. It is instructive to look at the special case when k=1 and A
is approximated by the rank one matrix A1. An even more special case when the left and
right-singular vectors u and v are identical is already NP-hard to solve exactly because
it subsumes the problem of whether for a set of n integers, {a1, a2, . . . , an}, there is a
partition into two subsets whose sums are equal. However, for that problem, there is
an efficient dynamic programming algorithm that finds a near-optimal solution. We will
build on that idea for the general rank k problem.

For Item 2, we want to maximize
∑k

i=1 σi(x
Tui)(vi

T (1 − x)) over 0-1 vectors x. A
piece of notation will be useful. For any S ⊆ {1, 2, . . . n}, write ui(S) for the sum of coor-
dinates of the vector ui corresponding to elements in the set S, that is, ui(S) =

∑
j∈S uij,

and similarly for vi. We will find S to maximize
∑k

i=1 σiui(S)vi(S̄) using dynamic pro-
gramming.

For a subset S of {1, 2, . . . , n}, define the 2k-dimensional vector

w(S) = (u1(S),v1(S̄),u2(S),v2(S̄), . . . ,uk(S),vk(S̄)).

If we had the list of all such vectors, we could find
∑k

i=1 σiui(S)vi(S̄) for each of them
and take the maximum. There are 2n subsets S, but several S could have the same w(S)
and in that case it suffices to list just one of them. Round each coordinate of each ui to
the nearest integer multiple of 1

nk2
. Call the rounded vector ũi. Similarly obtain ṽi. Let

w̃(S) denote the vector (ũ1(S), ṽ1(S̄), ũ2(S), ṽ2(S̄), . . . , ũk(S), ṽk(S̄)). We will construct
a list of all possible values of the vector w̃(S). Again, if several different S’s lead to the
same vector w̃(S), we will keep only one copy on the list. The list will be constructed by
dynamic programming. For the recursive step, assume we already have a list of all such
vectors for S ⊆ {1, 2, . . . , i} and wish to construct the list for S ⊆ {1, 2, . . . , i+ 1}. Each
S ⊆ {1, 2, . . . , i} leads to two possible S ′ ⊆ {1, 2, . . . , i + 1}, namely, S and S ∪ {i + 1}.
In the first case, the vector w̃(S ′) = (ũ1(S), ṽ1(S̄) + ṽ1,i+1, ũ2(S), ṽ2(S̄) + ṽ2,i+1, . . . , ...).
In the second case, it is w̃(S ′) = (ũ1(S) + ũ1,i+1, ṽ1(S̄), ũ2(S) + ũ2,i+1, ṽ2(S̄), . . . , ...). We
put in these two vectors for each vector in the previous list. Then, crucially, we prune -
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i.e., eliminate duplicates.

Assume that k is constant. Now, we show that the error is at most n2
√
k+1

as claimed.

Since ui and vi are unit length vectors, |ui(S)|, |vi(S̄)| ≤
√
n. Also |ũi(S) − ui(S)| ≤

n
nk2

= 1
k2

and similarly for vi. To bound the error, we use an elementary fact: if a and b are
reals with |a|, |b| ≤M and we estimate a by a′ and b by b′ so that |a−a′|, |b−b′| ≤ δ ≤M ,
then a′b′ is an estimate of ab in the sense

|ab− a′b′| = |a(b− b′) + b′(a− a′)| ≤ |a||b− b′|+ (|b|+ |b− b′|)|a− a′| ≤ 3Mδ.

Using this, we get that∣∣∣∣∣
k∑
i=1

σiũi(S)ṽi(S̄) −
k∑
i=1

σiui(S)vi(S)

∣∣∣∣∣ ≤ 3kσ1

√
n/k2 ≤ 3n3/2/k ≤ n2/k,

and this meets the claimed error bound.

Next, we show that the running time is polynomially bounded. First, |ũi(S)|, |ṽi(S)| ≤
2
√
n. Since ũi(S) and ṽi(S) are all integer multiples of 1/(nk2), there are at most 2n3/2k2

possible values of ũi(S) and ṽi(S) from which it follows that the list of w̃(S) never gets
larger than (2n3/2k2)2k which for fixed k is polynomially bounded.

We summarize what we have accomplished.

Theorem 3.19 Given a directed graph G(V,E), a cut of size at least the maximum cut

minus O
(
n2
√
k

)
can be computed in time polynomial in n for any fixed k.

Note that achieving the same accuracy in time polynomial in n and k would give an
exact max cut in polynomial time.

3.10 Bibliographic Notes

Singular value decomposition is fundamental to numerical analysis and linear algebra.
There are many texts on these subjects and the interested reader may want to study
these. A good reference is [GvL96]. The material on clustering a mixture of Gaussians
in Section 3.9.3 is from [VW02]. Modeling data with a mixture of Gaussians is a stan-
dard tool in statistics. Several well-known heuristics like the expectation-minimization
algorithm are used to learn (fit) the mixture model to data. Recently, in theoretical com-
puter science, there has been modest progress on provable polynomial-time algorithms
for learning mixtures. Some references are [DS07], [AK05], [AM05], and [MV10]. The
application to the discrete optimization problem is from [FK99]. The section on rank-
ing documents/webpages is from two influential papers, one on hubs and authorities by
Jon Kleinberg [Kle99] and the other on pagerank by Page, Brin, Motwani and Winograd
[BMPW98].
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3.11 Exercises

Exercise 3.1 (Least squares vertical error) In many experiments one collects the
value of a parameter at various instances of time. Let yi be the value of the parameter y
at time xi. Suppose we wish to construct the best linear approximation to the data in the
sense that we wish to minimize the mean square error. Here error is measured vertically
rather than perpendicular to the line. Develop formulas for m and b to minimize the mean
square error of the points {(xi, yi) |1 ≤ i ≤ n} to the line y = mx+ b.

Exercise 3.2 Given five observed variables, height, weight, age, income, and blood pres-
sure of n people, how would one find the best least squares fit affine subspace of the form

a1 (height) + a2 (weight) + a3 (age) + a4 (income) + a5 (blood pressure) = a6

Here a1, a2, . . . , a6 are the unknown parameters. If there is a good best fit 4-dimensional
affine subspace, then one can think of the points as lying close to a 4-dimensional sheet
rather than points lying in 5-dimensions. Why might it be better to use the perpendicular
distance to the affine subspace rather than vertical distance where vertical distance is
measured along the coordinate axis corresponding to one of the variables?

Exercise 3.3 Manually find the best fit lines (not subspaces which must contain the ori-
gin) through the points in the sets below. Subtract the center of gravity of the points in
the set from each of the points in the set and find the best fit line for the resulting points.
Does the best fit line for the original data go through the origin?

1. (4,4) (6,2)

2. (4,2) (4,4) (6,2) (6,4)

3. (3,2.5) (3,5) (5,1) (5,3.5)

Exercise 3.4 Manually determine the best fit line through the origin for each of the
following sets of points. Is the best fit line unique? Justify your answer for each of the
subproblems.

1. {(0, 1) , (1, 0)}

2. {(0, 1) , (2, 0)}

Exercise 3.5 Manually find the left and right-singular vectors, the singular values, and
the SVD decomposition of the matrices in Figure 3.6.

Exercise 3.6 Consider the matrix

A =


1 2
−1 2

1 −2
−1 −2
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(0,3)

(1,1)

(3,0)

M =

 1 1
0 3
3 0



Figure 3.6 a

(0,2)

(1,3)

(3,1)

(2,0)

M =


0 2
2 0
1 3
3 1



Figure 3.6 b

Figure 3.6: SVD problem

1. Run the power method starting from x =
(

1
1

)
for k = 3 steps. What does this give

as an estimate of v1?

2. What actually are the vi’s, σi’s, and ui’s? It may be easiest to do this by computing
the eigenvectors of B = ATA.

3. Suppose matrix A is a database of restaurant ratings: each row is a person, each
column is a restaurant, and aij represents how much person i likes restaurant j.
What might v1 represent? What about u1? How about the gap σ1 − σ2?

Exercise 3.7 Let A be a square n × n matrix whose rows are orthonormal. Prove that
the columns of A are orthonormal.

Exercise 3.8 Suppose A is a n×n matrix with block diagonal structure with k equal size
blocks where all entries of the ith block are ai with a1 > a2 > · · · > ak > 0. Show that A
has exactly k nonzero singular vectors v1,v2, . . . ,vk where vi has the value ( k

n
)1/2 in the

coordinates corresponding to the ith block and 0 elsewhere. In other words, the singular
vectors exactly identify the blocks of the diagonal. What happens if a1 = a2 = · · · = ak?
In the case where the ai are equal, what is the structure of the set of all possible singular
vectors?
Hint: By symmetry, the top singular vector’s components must be constant in each block.

Exercise 3.9 Interpret the first right and left-singular vectors for the document term
matrix.

Exercise 3.10 Verify that the sum of r-rank one matrices
r∑
i=1

cixiyi
T can be written as

XCY T , where the xi are the columns of X, the yi are the columns of Y, and C is a
diagonal matrix with the constants ci on the diagonal.

Exercise 3.11 Let
∑r

i=1 σiuivi
T be the SVD of A. Show that

∣∣uT1A∣∣ = σ1 and that∣∣uT1A∣∣ = max
|u|=1

∣∣uTA
∣∣.
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Exercise 3.12 If σ1, σ2, . . . , σr are the singular values of A and v1,v2, . . . ,vr are the
corresponding right-singular vectors, show that

1. ATA =
r∑
i=1

σ2
i vivi

T

2. v1,v2, . . .vr are eigenvectors of ATA.

3. Assuming that the eigenvectors of ATA are unique up to multiplicative constants,
conclude that the singular vectors of A (which by definition must be unit length) are
unique up to sign.

Exercise 3.13 Let
∑
i

σiuiv
T
i be the singular value decomposition of a rank r matrix A.

Let Ak =
k∑
i=1

σiuiv
T
i be a rank k approximation to A for some k < r. Express the following

quantities in terms of the singular values {σi, 1 ≤ i ≤ r}.

1. ||Ak||2F

2. ||Ak||22

3. ||A− Ak||2F

4. ||A− Ak||22

Exercise 3.14 If A is a symmetric matrix with distinct singular values, show that the
left and right singular vectors are the same and that A = V DV T .

Exercise 3.15 Let A be a matrix. How would you compute

v1 = arg max
|v|=1

|Av|?

How would you use or modify your algorithm for finding v1 to compute the first few
singular vectors of A.

Exercise 3.16 Use the power method to compute the singular value decomposition of the
matrix

A =

(
1 2
3 4

)
Exercise 3.17 1. Write a program to implement the power method for computing the

first singular vector of a matrix. Apply your program to the matrix

A =


1 2 3 · · · 9 10
2 3 4 · · · 10 0
...

...
...

...
9 10 0 · · · 0 0
10 0 0 · · · 0 0

 .
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2. Modify the power method to find the first four singular vectors of a matrix A as
follows. Randomly select four vectors and find an orthonormal basis for the space
spanned by the four vectors. Then multiply each of the basis vectors times A and
find a new orthonormal basis for the space spanned by the resulting four vectors.
Apply your method to find the first four singular vectors of matrix A from part 1.
In Matlab the command orth finds an orthonormal basis for the space spanned by a
set of vectors.

Exercise 3.18 A matrix A is positive semi-definite if for all x, xTAx ≥ 0.

1. Let A be a real valued matrix. Prove that B = AAT is positive semi-definite.

2. Let A be the adjacency matrix of a graph. The Laplacian of A is L = D −A where
D is a diagonal matrix whose diagonal entries are the row sums of A. Prove that
L is positive semi definite by showing that L = BTB where B is an m-by-n matrix
with a row for each edge in the graph, a column for each vertex, and we define

bei =


−1 if i is the endpoint of e with lesser index

1 if i is the endpoint of e with greater index
0 if i is not an endpoint of e

Exercise 3.19 Prove that the eigenvalues of a symmetric real valued matrix are real.

Exercise 3.20 Suppose A is a square invertible matrix and the SVD of A is A =
∑
i

σiuiv
T
i .

Prove that the inverse of A is
∑
i

1
σi
viu

T
i .

Exercise 3.21 Suppose A is square, but not necessarily invertible and has SVD A =
r∑
i=1

σiuiv
T
i . Let B =

r∑
i=1

1
σi
viu

T
i . Show that BAx = x for all x in the span of the right-

singular vectors of A. For this reason B is sometimes called the pseudo inverse of A and
can play the role of A−1 in many applications.

Exercise 3.22

1. For any matrix A, show that σk ≤ ||A||F√
k

.

2. Prove that there exists a matrix B of rank at most k such that ||A−B||2 ≤ ||A||F√
k

.

3. Can the 2-norm on the left hand side in (2) be replaced by Frobenius norm?

Exercise 3.23 Suppose an n × d matrix A is given and you are allowed to preprocess
A. Then you are given a number of d-dimensional vectors x1,x2, . . . ,xm and for each of
these vectors you must find the vector Axj approximately, in the sense that you must find a
vector yj satisfying |yj−Axj| ≤ ε||A||F |xj|. Here ε >0 is a given error bound. Describe
an algorithm that accomplishes this in time O

(
d+n
ε2

)
per xj not counting the preprocessing

time. Hint: use Exercise 3.22.
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Exercise 3.24 Find the values of ci to maximize
r∑
i=1

c2
iσ

2
i where σ1 ≥ σ2 ≥ . . . and

r∑
i=1

c2
i = 1.

Exercise 3.25 (Document-Term Matrices): Suppose we have an m × n document-
term matrix A where each row corresponds to a document and has been normalized to
length one. Define the “similarity” between two such documents by their dot product.

1. Consider a “synthetic” document whose sum of squared similarities with all docu-
ments in the matrix is as high as possible. What is this synthetic document and how
would you find it?

2. How does the synthetic document in (1) differ from the center of gravity?

3. Building on (1), given a positive integer k, find a set of k synthetic documents such
that the sum of squares of the mk similarities between each document in the matrix
and each synthetic document is maximized. To avoid the trivial solution of selecting
k copies of the document in (1), require the k synthetic documents to be orthogonal
to each other. Relate these synthetic documents to singular vectors.

4. Suppose that the documents can be partitioned into k subsets (often called clusters),
where documents in the same cluster are similar and documents in different clusters
are not very similar. Consider the computational problem of isolating the clusters.
This is a hard problem in general. But assume that the terms can also be partitioned
into k clusters so that for i 6= j, no term in the ith cluster occurs in a document
in the jth cluster. If we knew the clusters and arranged the rows and columns in
them to be contiguous, then the matrix would be a block-diagonal matrix. Of course
the clusters are not known. By a “block” of the document-term matrix, we mean
a submatrix with rows corresponding to the ithcluster of documents and columns
corresponding to the ithcluster of terms . We can also partition any n vector into
blocks. Show that any right-singular vector of the matrix must have the property
that each of its blocks is a right-singular vector of the corresponding block of the
document-term matrix.

5. Suppose now that the k singular values are all distinct. Show how to solve the
clustering problem.

Hint: (4) Use the fact that the right-singular vectors must be eigenvectors of ATA. Show
that ATA is also block-diagonal and use properties of eigenvectors.

Exercise 3.26 Let u be a fixed vector. Show that maximizing xTuuT (1 − x) subject to
xi ∈ {0, 1} is equivalent to partitioning the coordinates of u into two subsets where the
sum of the elements in both subsets are as equal as possible.
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Exercise 3.27 Read in a photo and convert to a matrix. Perform a singular value de-
composition of the matrix. Reconstruct the photo using only 5%, 10%, 25%, 50% of the
singular values.

1. Print the reconstructed photo. How good is the quality of the reconstructed photo?

2. What percent of the Forbenius norm is captured in each case?

Hint: If you use Matlab, the command to read a photo is imread. The types of files that
can be read are given by imformats. To print the file use imwrite. Print using jpeg format.
To access the file afterwards you may need to add the file extension .jpg. The command
imread will read the file in uint8 and you will need to convert to double for the SVD code.
Afterwards you will need to convert back to uint8 to write the file. If the photo is a color
photo you will get three matrices for the three colors used.

Exercise 3.28 1. Create a 100×100 matrix of random numbers between 0 and 1 such
that each entry is highly correlated with the adjacency entries. Find the SVD of A.
What fraction of the Frobenius norm of A is captured by the top 10 singular vectors?
How many singular vectors are required to capture 95% of the Frobenius norm?

2. Repeat (1) with a 100 × 100 matrix of statistically independent random numbers
between 0 and 1.

Exercise 3.29 Show that the running time for the maximum cut algorithm in Section
3.9.5 can be carried out in time O(n3 + poly(n)kk), where poly is some polynomial.

Exercise 3.30 Let x1,x2, . . . ,xn be n points in d-dimensional space and let X be the
n×d matrix whose rows are the n points. Suppose we know only the matrix D of pairwise
distances between points and not the coordinates of the points themselves. The set of points
x1,x2, . . . ,xn giving rise to the distance matrix D is not unique since any translation,
rotation, or reflection of the coordinate system leaves the distances invariant. Fix the
origin of the coordinate system so that the centroid of the set of points is at the origin.
That is,

∑n
i=1 xi = 0.

1. Show that the elements of XXT are given by

xix
T
j = −1

2

[
d2
ij −

1

n

n∑
k=1

d2
ik −

1

n

n∑
k=1

d2
kj +

1

n2

n∑
k=1

n∑
l=1

d2
kl

]
.

2. Describe an algorithm for determining the matrix X whose rows are the xi.

Exercise 3.31
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1. Consider the pairwise distance matrix for twenty US cities given below. Use the
algorithm of Exercise 3.30 to place the cities on a map of the US. The algorithm is
called classical multidimensional scaling, cmdscale, in Matlab. Alternatively use the
pairwise distance matrix to place the cities on a map of China.

Note: Any rotation or a mirror image of the map will have the same pairwise
distances.

2. Suppose you had airline distances for 50 cities around the world. Could you use
these distances to construct a 3-dimensional world model?

B B C D D H L M M M
O U H A E O A E I I
S F I L N U M A M

Boston - 400 851 1551 1769 1605 2596 1137 1255 1123
Buffalo 400 - 454 1198 1370 1286 2198 803 1181 731
Chicago 851 454 - 803 920 940 1745 482 1188 355
Dallas 1551 1198 803 - 663 225 1240 420 1111 862
Denver 1769 1370 920 663 - 879 831 879 1726 700
Houston 1605 1286 940 225 879 - 1374 484 968 1056
Los Angeles 2596 2198 1745 1240 831 1374 - 1603 2339 1524
Memphis 1137 803 482 420 879 484 1603 - 872 699
Miami 1255 1181 1188 1111 1726 968 2339 872 - 1511
Minneapolis 1123 731 355 862 700 1056 1524 699 1511 -
New York 188 292 713 1374 1631 1420 2451 957 1092 1018
Omaha 1282 883 432 586 488 794 1315 529 1397 290
Philadelphia 271 279 666 1299 1579 1341 2394 881 1019 985
Phoenix 2300 1906 1453 887 586 1017 357 1263 1982 1280
Pittsburgh 483 178 410 1070 1320 1137 2136 660 1010 743
Saint Louis 1038 662 262 547 796 679 1589 240 1061 466
Salt Lake City 2099 1699 1260 999 371 1200 579 1250 2089 987
San Francisco 2699 2300 1858 1483 949 1645 347 1802 2594 1584
Seattle 2493 2117 1737 1681 1021 1891 959 1867 2734 1395
Washington D.C. 393 292 597 1185 1494 1220 2300 765 923 934
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N O P P P S S S S D
Y M H H I t L F E C

A I O T L C A
Boston 188 1282 271 2300 483 1038 2099 2699 2493 393
Buffalo 292 883 279 1906 178 662 1699 2300 2117 292
Chicago 713 432 666 1453 410 262 1260 1858 1737 597
Dallas 1374 586 1299 887 1070 547 999 1483 1681 1185
Denver 1631 488 1579 586 1320 796 371 949 1021 1494
Houston 1420 794 1341 1017 1137 679 1200 1645 1891 1220
Los Angeles 2451 1315 2394 357 2136 1589 579 347 959 2300
Memphis 957 529 881 1263 660 240 1250 1802 1867 765
Miami 1092 1397 1019 1982 1010 1061 2089 2594 2734 923
Minneapolis 1018 290 985 1280 743 466 987 1584 1395 934
New York - 1144 83 2145 317 875 1972 2571 2408 230
Omaha 1144 - 1094 1036 836 354 833 1429 1369 1014
Philadelphia 83 1094 - 2083 259 811 1925 2523 2380 123
Phoenix 2145 1036 2083 - 1828 1272 504 653 1114 1973
Pittsburgh 317 836 259 1828 - 559 1668 2264 2138 192
Saint Louis 875 354 811 1272 559 - 1162 1744 1724 712
Salt Lake City 1972 833 1925 504 1668 1162 - 600 701 1848
San Francisco 2571 1429 2523 653 2264 1744 600 - 678 2442
Seattle 2408 1369 2380 1114 2138 1724 701 678 - 2329
Washington D.C. 230 1014 123 1973 192 712 1848 2442 2329 -

City Bei- Tian- Shang- Chong- Hoh- Urum- Lha- Yin- Nan- Har- Chang- Shen-
jing jin hai qing hot qi sa chuan ning bin chun yang

Beijing 0 125 1239 3026 480 3300 3736 1192 2373 1230 979 684
Tianjin 125 0 1150 1954 604 3330 3740 1316 2389 1207 955 661

Shanghai 1239 1150 0 1945 1717 3929 4157 2092 1892 2342 2090 1796
Chongqing 3026 1954 1945 0 1847 3202 2457 1570 993 3156 2905 2610

Hohhot 480 604 1717 1847 0 2825 3260 716 2657 1710 1458 1164
Urumqi 3300 3330 3929 3202 2825 0 2668 2111 4279 4531 4279 3985
Lhasa 3736 3740 4157 2457 3260 2668 0 2547 3431 4967 4715 4421

Yinchuan 1192 1316 2092 1570 716 2111 2547 0 2673 2422 2170 1876
Nanning 2373 2389 1892 993 2657 4279 3431 2673 0 3592 3340 3046
Harbin 1230 1207 2342 3156 1710 4531 4967 2422 3592 0 256 546

Changchun 979 955 2090 2905 1458 4279 4715 2170 3340 256 0 294
Shenyang 684 661 1796 2610 1164 3985 4421 1876 3046 546 294 0

Exercise 3.32 Ones data in a high dimensional space may lie on a lower dimensional
sheath. To test for this one might for each data point find the set of closest data points
and calculate the vector distance from the data point to each of the close points. If the set
of these distance vectors is a lower dimensional space than the number of distance points,
then it is likely that the data is on a low dimensional sheath. To test the dimension of
the space of the distance vectors one might use the singular value decomposition to find
the singular values. The dimension of the space is the number of large singular values.
The low singular values correspond to noise or slight curvature of the sheath. To test
this concept generate a data set of points that lie on a one dimensional curve in three
space. For each point find maybe ten nearest points, form the matrix of distance, and do
a singular value decomposition on the matrix. Report what happens.

Using code such as the following to create the data.

function [ data, distance ] = create_sheath( n )
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%creates n data points on a one dimensional sheath in three dimensional

%space

%

if nargin==0

n=100;

end

data=zeros(3,n);

for i=1:n

x=sin((pi/100)*i);

y=sqrt(1-x^2);

z=0.003*i;

data(:,i)=[x;y;z];

end

%subtract adjacent vertices

distance=zeros(3,10);

for i=1:5

distance(:,i)=data(:,i)-data(:,6);

distance(:,i+5)=data(:,i+6)-data(:,6);

end

end
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4 Random Walks and Markov Chains

A random walk on a directed graph consists of a sequence of vertices generated from
a start vertex by probabilistically selecting an incident edge, traversing the edge to a new
vertex, and repeating the process.

We generally assume the graph is strongly connected, meaning that for any pair of
vertices x and y, the graph contains a path of directed edges starting at x and ending
at y. If the graph is strongly connected, then, as we will see, no matter where the walk
begins the fraction of time the walk spends at the different vertices of the graph converges
to a stationary probability distribution.

Start a random walk at a vertex x and think of the starting probability distribution as
putting a mass of one on x and zero on every other vertex. More generally, one could start
with any probability distribution p, where p is a row vector with nonnegative components
summing to one, with px being the probability of starting at vertex x. The probability
of being at vertex x at time t+ 1 is the sum over each adjacent vertex y of being at y at
time t and taking the transition from y to x. Let p(t) be a row vector with a component
for each vertex specifying the probability mass of the vertex at time t and let p(t + 1) be
the row vector of probabilities at time t+ 1. In matrix notation14

p(t)P = p(t + 1)

where the ijth entry of the matrix P is the probability of the walk at vertex i selecting
the edge to vertex j.

A fundamental property of a random walk is that in the limit, the long-term average
probability of being at a particular vertex is independent of the start vertex, or an initial
probability distribution over vertices, provided only that the underlying graph is strongly
connected. The limiting probabilities are called the stationary probabilities. This funda-
mental theorem is proved in the next section.

A special case of random walks, namely random walks on undirected graphs, has
important connections to electrical networks. Here, each edge has a parameter called
conductance, like electrical conductance. If the walk is at vertex x, it chooses an edge to
traverse next from among all edges incident to x with probability proportional to its con-
ductance. Certain basic quantities associated with random walks are hitting time, which
is the expected time to reach vertex y starting at vertex x, and cover time, which is the
expected time to visit every vertex. Qualitatively, for undirected graphs these quantities
are all bounded above by polynomials in the number of vertices. The proofs of these facts
will rely on the analogy between random walks and electrical networks.

14Probability vectors are represented by row vectors to simplify notation in equations like the one here.
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random walk Markov chain

graph stochastic process
vertex state
strongly connected persistent
aperiodic aperiodic
strongly connected

and aperiodic ergodic

undirected graph time reversible

Table 5.1: Correspondence between terminology of random walks and Markov chains

Aspects of the theory of random walks were developed in computer science with a
number of applications. Among others, these include defining the pagerank of pages on
the World Wide Web by their stationary probability. An equivalent concept called a
Markov chain had previously been developed in the statistical literature. A Markov chain
has a finite set of states. For each pair of states x and y, there is a transition probability
pxy of going from state x to state y where for each x,

∑
y pxy = 1. A random walk in

the Markov chain starts at some state. At a given time step, if it is in state x, the next
state y is selected randomly with probability pxy. A Markov chain can be represented by
a directed graph with a vertex representing each state and an edge with weight pxy from
vertex x to vertex y. We say that the Markov chain is connected if the underlying directed
graph is strongly connected. That is, if there is a directed path from every vertex to every
other vertex. The matrix P consisting of the pxy is called the transition probability matrix
of the chain. The terms “random walk” and “Markov chain” are used interchangeably.
The correspondence between the terminologies of random walks and Markov chains is
given in Table 5.1.

A state of a Markov chain is persistent if it has the property that should the state ever
be reached, the random process will return to it with probability one. This is equivalent
to the property that the state is in a strongly connected component with no out edges.
For most of the chapter, we assume that the underlying directed graph is strongly con-
nected. We discuss here briefly what might happen if we do not have strong connectivity.
Consider the directed graph in Figure 4.1b with three strongly connected components,
A, B, and C. Starting from any vertex in A, there is a nonzero probability of eventually
reaching any vertex in A. However, the probability of returning to a vertex in A is less
than one and thus vertices in A, and similarly vertices in B, are not persistent. From
any vertex in C, the walk eventually will return with probability one to the vertex, since
there is no way of leaving component C. Thus, vertices in C are persistent.

A connected Markov Chain is said to be aperiodic if the greatest common divisor of
the lengths of directed cycles is one. It is known that for connected aperiodic chains, the
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A B C
(a)

A B C
(b)

Figure 4.1: (a) A directed graph with vertices having no out out edges and a strongly
connected component A with no in edges.
(b) A directed graph with three strongly connected components.

probability distribution of the random walk converges to a unique stationary distribution.
Aperiodicity is a technical condition needed in this proof. Here, we do not prove this
theorem and do not worry about aperiodicity at all. It turns out that if we take the av-
erage probability distribution of the random walk over the first t steps, then this average
converges to a limiting distribution for connected chains (without assuming aperiodicity)
and this average is what one uses in practice. We prove this limit theorem and explain
its uses in what is called the Markov Chain Monte Carlo (MCMC) method.

Markov chains are used to model situations where all the information of the system
necessary to predict the future can be encoded in the current state. A typical example
is speech, where for a small k the current state encodes the last k syllables uttered by
the speaker. Given the current state, there is a certain probability of each syllable being
uttered next and these can be used to calculate the transition probabilities. Another
example is a gambler’s assets, which can be modeled as a Markov chain where the current
state is the amount of money the gambler has on hand. The model would only be valid
if the gambler’s bets depend only on current assets, not the past history.

Later in the chapter, we study the widely used Markov Chain Monte Carlo method
(MCMC). Here, the objective is to sample a large space according to some probability
distribution p. The number of elements in the space may be very large, say 10100. One
designs a Markov chain where states correspond to the elements of the space. The transi-
tion probabilities of the chain are designed so that the stationary probability of the chain
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is the probability distribution p with which we want to sample. One samples by taking
a random walk until the probability distribution is close to the stationary distribution of
the chain and then selects the current state of the walk. The walk continues a number of
steps until the probability distribution is nearly independent of where the walk was when
the first element was selected. A second point is then selected, and so on. Although it
is impossible to store the graph in a computer since it has 10100 vertices, to do the walk
one needs only store the current vertex of the walk and be able to generate the adjacent
vertices by some algorithm. What is critical is that the probability distribution of the
walk converges to the stationary distribution in time logarithmic in the number of states.

We mention two motivating examples. The first is to select a point at random in
d-space according to a probability density such as a Gaussian. Put down a grid and let
each grid point be a state of the Markov chain. Given a probability density p, design
transition probabilities of a Markov chain so that the stationary distribution is p. In
general, the number of states grows exponentially in the dimension d, but if the time
to converge to the stationary distribution grows polynomially in d, then one can do a
random walk on the graph until convergence to the stationary probability. Once the sta-
tionary probability has been reached, one selects a point. To select a set of points, one
must walk a number of steps between each selection so that the probability of the current
point is independent of the previous point. By selecting a number of points one can es-
timate the probability of a region by observing the number of selected points in the region.

A second example is from physics. Consider an n×n grid in the plane with a particle
at each grid point. Each particle has a spin of ±1. A configuration is a n2 dimensional
vector v = (v1, v2, . . . , vn2), where, vi is the spin of the ith particle. There are 2n

2
spin

configurations. The energy of a configuration is a function f(v) of the configuration, not
of any single spin. A central problem in statistical mechanics is to sample spin config-
urations according to their probability. It is easy to design a Markov chain with one
state per spin configuration so that the stationary probability of a state is proportional
to the state’s energy. If a random walk gets close to the stationary probability in time
polynomial in n rather than 2n

2
, then one can sample spin configurations according to

their probability.

The Markov Chain has 2n
2

states, one per configuration. Two states in the Markov
chain are adjacent if and only if the corresponding configurations v and u differ in just one
coordinate (ui = vi for all but one i). The Metropilis-Hastings random walk, described
in more detail in Section 4.2, has a transition probability from a configuration v to an
adjacent configuration u of

1

n2
min

(
1,
f(u)

f(v)

)
.

As we will see, the Markov Chain has a stationary probability proportional to the energy.
There are two more crucial facts about this chain. The first is that to execute a step in
the chain, we do not need the whole chain, just the ratio f(u)

f(v)
. The second is that under
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suitable assumptions, the chain approaches stationarity in time polynomial in n.

A quantity called the mixing time, loosely defined as the time needed to get close to
the stationary distribution, is often much smaller than the number of states. In Section
4.4, we relate the mixing time to a combinatorial notion called normalized conductance
and derive upper bounds on the mixing time in several cases.

4.1 Stationary Distribution

Let p(t) be the probability distribution after t steps of a random walk. Define the
long-term average probability distribution a(t) by

a(t) =
1

t

(
p(0) + p(1) + · · ·+ p(t− 1)

)
.

The fundamental theorem of Markov chains asserts that for a connected Markov chain,
a(t) converges to a limit probability vector x that satisfies the equations xP = x. Before
proving the fundamental theorem of Markov chains, we first prove a technical lemma.

Lemma 4.1 Let P be the transition probability matrix for a connected Markov chain.
The n× (n+ 1) matrix A = [P − I , 1] obtained by augmenting the matrix P − I with an
additional column of ones has rank n.

Proof: If the rank of A = [P − I,1] was less than n there would be a two-dimensional
subspace (at least) of solutions to Ax = 0. Each row in P sums to one so each row in
P − I sums to zero. Thus x = (1, 0), where all but the last coordinate of x is 1, is one
solution to Ax = 0. Assume there was a second solution (x, α) perpendicular to (1, 0).
Then (P − I)x + α1 = 0 or xi =

∑
j pijxj + α. Each xi is a convex combination of some

xj plus α. Let S be the set of i for which xi attains its maximum value. S̄ is not empty
since x is perpendicular to 1 and hence

∑
j xj = 0. Connectedness implies that some xk

of maximum value is adjacent to some xl of lower value. Thus, xk >
∑

j pkjxj. Therefore
α must be greater than 0 in xk =

∑
j pkjxj + α..

On the other hand, the same argument with T the set of i with xi taking its minimum
value implies α < 0 producing a contradiction thereby proving the lemma.

Theorem 4.2 (Fundamental Theorem of Markov Chains) For a connected Markov
chain there is a unique probability vector π satisfying πP = π. Moreover, for any starting
distribution, lim

t→∞
a(t) exists and equals π.

Proof: Note that a(t) is itself a probability vector, since its components are nonnegative
and sum to 1. Run one step of the Markov chain starting with distribution a(t); the
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distribution after the step is a(t)P . Calculate the change in probabilities due to this step.

a(t)P − a(t) =
1

t
[p(0)P + p(1)P + · · ·+ p(t− 1)P ]− 1

t
[p(0) + p(1) + · · ·+ p(t− 1)]

=
1

t
[p(1) + p(2) + · · ·+ p(t)]− 1

t
[p(0) + p(1) + · · ·+ p(t− 1)]

=
1

t
(p(t)− p(0)) .

Thus, b(t) = a(t)P − a(t) satisfies |b(t)| ≤ 2
t
→ 0, as t→∞.

By Lemma 4.1 above, A has rank n. The n × n submatrix B of A consisting of all
its columns except the first is invertible. Let c(t) be obtained from b(t) by removing the
first entry. Then, a(t)B = [c(t), 1] and so a(t) = [c(t) , 1]B−1 → [0 , 1]B−1. We have
the theorem with π = [0 , 1]B−1.

We finish this section with the following lemma useful in establishing that a probability
distribution is the stationary probability distribution for a random walk on a connected
graph with edge probabilities.

Lemma 4.3 For a random walk on a strongly connected graph with probabilities on the
edges, if the vector π satisfies πxpxy = πypyx for all x and y and

∑
x πx = 1, then π is

the stationary distribution of the walk.

Proof: Since π satisfies πxpxy = πypyx, summing both sides, πx =
∑
y

πypyx and hence π

satisfies π = πP. By Theorem 4.2, π is the unique stationary probability.

4.2 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is a technique for sampling a mul-
tivariate probability distribution p(x), where x = (x1, x2, . . . , xd). The MCMC method is
used to estimate the expected value of a function f(x)

E(f) =
∑
x

f(x)p(x).

If each xi can take on two or more values, then there are at least 2d values for x, so an
explicit summation requires exponential time. Instead, one could draw a set of samples,
where each sample x is selected with probability p(x). Averaging f over these samples
provides an estimate of the sum.

To sample according to p(x), design a Markov Chain whose states correspond to the
possible values of x and whose stationary probability distribution is p(x). There are two
general techniques to design such a Markov Chain: the Metropolis-Hastings algorithm

79



and Gibbs sampling, which we will describe in the next two subsections. The Fundamen-
tal Theorem of Markov Chains, Theorem 4.2, states that the average of the function f
over states seen in a sufficiently long run is a good estimate of E(f). The harder task
is to show that the number of steps needed before the long-run average probabilities are
close to the stationary distribution grows polynomially in d, though the total number of
states may grow exponentially in d. This phenomenon known as rapid mixing happens for
a number of interesting examples. Section 4.4 presents a crucial tool used to show rapid
mixing.

We used x ∈ Rd to emphasize that distributions are multi-variate. From a Markov
chain perspective, each value x can take on is a state, i.e., a vertex of the graph on which
the random walk takes place. Henceforth, we will use the subscripts i, j, k, . . . to denote
states and will use pi instead of p(x1, x2, . . . , xd) to denote the probability of the state
corresponding to a given set of values for the variables. Recall that in the Markov chain
terminology, vertices of the graph are called states.

Recall the notation that p(t) is the row vector of probabilities of the random walk
being at each state (vertex of the graph) at time t. So, p(t) has as many components
as there are states and its ith component is the probability of being in state i at time t.
Recall the long-term t-step average is

a(t) =
1

t
[p(0) + p(1) + · · ·+ p(t− 1)] . (4.1)

The expected value of the function f under the probability distribution p is E(f) =∑
i fipi where fi is the value of f at state i. Our estimate of this quantity will be the

average value of f at the states seen in a t step walk. Call this estimate γ. Clearly, the
expected value of γ is

E(γ) =
∑
i

fi

(
1

t

t∑
j=1

Prob
(
walk is in state i at time j

))
=
∑
i

fiai(t).

The expectation here is with respect to the “coin tosses” of the algorithm, not with respect
to the underlying distribution p. Let fmax denote the maximum absolute value of f . It is
easy to see that∣∣∣∑

i

fipi − E(γ)
∣∣∣ ≤ fmax

∑
i

|pi − ai(t)| = fmax||p− a(t)||1 (4.2)

where the quantity ||p− a(t)||1 is the l1 distance between the probability distributions p
and a(t), often called the “total variation distance” between the distributions. We will
build tools to upper bound ||p− a(t)||1. Since p is the stationary distribution, the t for
which ||p− a(t)||1 becomes small is determined by the rate of convergence of the Markov
chain to its steady state.

The following proposition is often useful.
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Proposition 4.4 For two probability distributions p and q,

||p− q||1 = 2
∑
i

(pi − qi)+ = 2
∑
i

(qi − pi)+

where x+ = x if x ≥ 0 and x+ = 0 if x < 0.

The proof is left as an exercise.

4.2.1 Metropolis-Hasting Algorithm

The Metropolis-Hasting algorithm is a general method to design a Markov chain whose
stationary distribution is a given target distribution p. Start with a connected undirected
graph G on the set of states. If the states are the lattice points (x1, x2, . . . , xd) in Rd

with xi ∈ {0, 1, 2, , . . . , n}, then G could be the lattice graph with 2d coordinate edges at
each interior vertex. In general, let r be the maximum degree of any vertex of G. The
transitions of the Markov chain are defined as follows. At state i select neighbor j with
probability 1

r
. Since the degree of i may be less than r, with some probability no edge

is selected and the walk remains at i. If a neighbor j is selected and pj ≥ pi, go to j. If
pj < pi, go to j with probability pj/pi and stay at i with probability 1 − pj

pi
. Intuitively,

this favors “heavier” states with higher pi values. For i adjacent to j in G,

pij =
1

r
min

(
1,
pj
pi

)
and

pii = 1−
∑
j 6=i

pij.

Thus,

pipij =
pi
r

min
(

1,
pj
pi

)
=

1

r
min(pi, pj) =

pj
r

min
(

1,
pi
pj

)
= pjpji.

By Lemma 4.3, the stationary probabilities are indeed pi as desired.

Example: Consider the graph in Figure 4.2. Using the Metropolis-Hasting algorithm,
assign transition probabilities so that the stationary probability of a random walk is
p(a) = 1

2
, p(b) = 1

4
, p(c) = 1

8
, and p(d) = 1

8
. The maximum degree of any vertex is three,

so at a, the probability of taking the edge (a, b) is 1
3

1
4

2
1

or 1
6
. The probability of taking the

edge (a, c) is 1
3

1
8

2
1

or 1
12

and of taking the edge (a, d) is 1
3

1
8

2
1

or 1
12

. Thus, the probability
of staying at a is 2

3
. The probability of taking the edge from b to a is 1

3
. The probability

of taking the edge from c to a is 1
3

and the probability of taking the edge from d to a is
1
3
. Thus, the stationary probability of a is 1

4
1
3

+ 1
8

1
3

+ 1
8

1
3

+ 1
2

2
3

= 1
2
, which is the desired

probability.
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a

c

b

1
8

1
2

1
8

1
4

p(a) = 1
2

p(b) = 1
4

p(c) = 1
8

p(d) = 1
8

a→ b 1
3

1
4

2
1

= 1
6

c→ a 1
3

a→ c 1
3

1
8

2
1

= 1
12

c→ b 1
3

a→ d 1
3

1
8

2
1

= 1
12

c→ d 1
3

a→ a 1− 1
6
− 1

12
− 1

12
= 2

3
c→ c 1− 1

3
− 1

3
− 1

3
= 0

b→ a 1
3

d→ a 1
3

b→ c 1
3

1
8

4
1

= 1
6

d→ c 1
3

b→ b 1− 1
3
− 1

6
= 1

2
d→ d 1− 1

3
− 1

3
= 1

3

p(a) = p(a)p(a→ a) + p(b)p(b→ a) + p(c)p(c→ a) + p(d)p(d→ a)
= 1

2
2
3

+ 1
4

1
3

+ 1
8

1
3

+ 1
8

1
3

= 1
2

p(b) = p(a)p(a→ b) + p(b)p(b→ b) + p(c)p(c→ b)
= 1

2
1
6

+ 1
4

1
2

+ 1
8

1
3

= 1
4

p(c) = p(a)p(a→ c) + p(b)p(b→ c) + p(c)p(c→ c) + p(d)p(d→ c)
= 1

2
1
12

+ 1
4

1
6

+ 1
8

0 + 1
8

1
3

= 1
8

p(d) = p(a)p(a→ d) + p(c)p(c→ d) + p(d)p(d→ d)
= 1

2
1
12

+ 1
8

1
3

+ 1
8

1
3

= 1
8

Figure 4.2: Using the Metropolis-Hasting algorithm to set probabilities for a random walk
so that the stationary probability will be the desired probability.

4.2.2 Gibbs Sampling

Gibbs sampling is another Markov Chain Monte Carlo method to sample from a
multivariate probability distribution. Let p (x) be the target distribution where x =
(x1, . . . , xd). Gibbs sampling consists of a random walk on an undirectd graph whose
vertices correspond to the values of x = (x1, . . . , xd) and in which there is an edge from
x to y if x and y differ in only one coordinate. Thus, the underlying graph is like a
d-dimensional lattice except that the vertices in the same coordinate line form a clique.

To generate samples of x = (x1, . . . , xd) with a target distribution p (x), the Gibbs
sampling algorithm repeats the following steps. One of the variables xi is chosen to be
updated. Its new value is chosen based on the marginal probability of xi with the other
variables fixed. There are two commonly used schemes to determine which xi to update.
One scheme is to choose xi randomly, the other is to choose xi by sequentially scanning
from x1 to xd.

Suppose that x and y are two states that differ in only one coordinate. Without loss
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1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

5
8

7
12

1
3

3
4

3
8

5
12

1
6

1
6

1
12

1
8

1
6

1
12

1
3

1
4

1
6

p(1, 1) = 1
3

p(1, 2) = 1
4

p(1, 3) = 1
6

p(2, 1) = 1
8

p(2, 2) = 1
6

p(2, 3) = 1
12

p(3, 1) = 1
6

p(3, 2) = 1
6

p(3, 3) = 1
12

p(11)(12) = 1
d
p12/(p11 + p12 + p13) = 1

2
(1

4
)/(1

3
1
4

1
6
) = 1

8
/ 9

12
= 1

8
4
3

= 1
6

Calculation of edge probability p(11)(12)

p(11)(12) = 1
2

1
4

4
3

= 1
6

p(11)(13) = 1
2

1
6

4
3

= 1
9

p(11)(21) = 1
2

1
8

8
5

= 1
10

p(11)(31) = 1
2

1
6

8
5

= 2
15

p(12)(11) = 1
2

1
3

4
3

= 2
9

p(12)(13) = 1
2

1
6

4
3

= 1
9

p(12)(22) = 1
2

1
6

12
7

= 1
7

p(12)(32) = 1
2

1
6

12
7

= 1
7

p(13)(11) = 1
2

1
3

4
3

= 2
9

p(13)(12) = 1
2

1
4

4
3

= 1
6

p(13)(23) = 1
2

1
12

3
1

= 1
8

p(13)(33) = 1
2

1
12

3
1

= 1
8

p(21)(22) = 1
2

1
6

8
3

= 2
9

p(21)(23) = 1
2

1
12

8
3

= 1
9

p(21)(11) = 1
2

1
3

8
5

= 4
15

p(21)(31) = 1
2

1
6

8
5

= 2
15

Edge probabilities.

p11p(11)(12) = 1
3

1
6

= 1
4

2
9

= p12p(12)(11)

p11p(11)(13) = 1
3

1
9

= 1
6

2
9

= p13p(13)(11)

p11p(11)(21) = 1
3

1
10

= 1
8

4
15

= p21p(21)(11)

Verification of a few edges, pipij = pjpji.

Note that the edge probabilities out of a state such as (1,1) do not add up to one.
That is, with some probability the walk stays at the state that it is in. For example,

p(11)(11) = 1− (p(11)(12) + p(11)(13) + p(11)(21) + p(11)(31)) = 1− 1
6
− 1

24
− 1

32
− 1

24
= 9

32
.

Figure 4.3: Using the Gibbs algorithm to set probabilities for a random walk so that the
stationary probability will be a desired probability.
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of generality let that coordinate be the first. Then, in the scheme where a coordinate is
randomly chosen to modify, the probability pxy of going from x to y is

pxy =
1

d
p(y1|x2, x3, . . . , xd).

The normalizing constant is 1/d since
∑
y1

p(y1|x2, x3, . . . , xd) equals 1 and summing over

d coordinates
d∑
i=1

∑
yi

p(yi|x1, x2, . . . , xi−1, xi+1 . . . xd) = d

gives a value of d. Similarly,

pyx =
1

d
p(x1|y2, y3, . . . , yd)

=
1

d
p(x1|x2, x3, . . . , xd).

Here use was made of the fact that for j 6= 1, xj = yj.

It is simple to see that this chain has stationary probability proportional to p (x).
Rewrite pxy as

pxy =
1

d

p(y1|x2, x3, . . . , xd)p(x2, x3, . . . , xd)

p(x2, x3, . . . , xd)

=
1

d

p(y1, x2, x3, . . . , xd)

p(x2, x3, . . . , xd)

=
1

d

p(y)

p(x2, x3, . . . , xd)

again using xj = yj for j 6= 1. Similarly write

pyx =
1

d

p(x)

p(x2, x3, . . . , xd)

from which it follows that p(x)pxy = p(y)pyx. By Lemma 4.3 the stationary probability
of the random walk is p(x).

4.3 Areas and Volumes

Computing areas and volumes is a classical problem. For many regular figures in
two and three dimensions there are closed form formulae. In Chapter 2, we saw how to
compute volume of a high dimensional sphere by integration. For general convex sets in
d-space, there are no closed form formulae. Can we estimate volumes of d-dimensional
convex sets in time that grows as a polynomial function of d? The MCMC method answes
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this question in the affirmative.

One way to estimate the area of the region is to enclose it in a rectangle and estimate
the ratio of the area of the region to the area of the rectangle by picking random points
in the rectangle and seeing what proportion land in the region. Such methods fail in high
dimensions. Even for a sphere in high dimension, a cube enclosing the sphere has expo-
nentially larger area, so exponentially many samples are required to estimate the volume
of the sphere.

It turns out, however, that the problem of estimating volumes of sets can be reduced
to the problem of drawing uniform random samples from sets. Suppose one wants to
estimate the volume of a convex set R. Create a concentric series of larger and larger
spheres15 S1, S2, . . . , Sk such that S1 is contained in R and Sk contains R. Then

Vol(R) = Vol(Sk ∩R) =
Vol(Sk ∩R)

Vol(Sk−1 ∩R)

Vol(Sk−1 ∩R)

Vol(Sk−2 ∩R)
· · · Vol(S2 ∩R)

Vol(S1 ∩R)
Vol(S1)

If the radius of the sphere Si is 1 + 1
d

times the radius of the sphere Si−1, then we have:

1 ≤ Vol(Si ∩R)

Vol(Si−1 ∩R)
≤ e

because Vol(Si)/Vol(Si−1) =
(
1 + 1

d

)d
< e, and the fraction of Si occupied by R is less

than or equal to the fraction of Si−1 occupied by R (due to the convexity of R and the

fact that the center of the spheres lies in R). This implies that the ratio V ol(Si∩R)
V ol(Si−1∩R)

can

be estimated by rejection sampling, i.e., selecting points in Si ∩ R uniformly at random
and computing the fraction in Si−1 ∩R, provided one can select points at random from a
d-dimensional convex region.

The number of spheres is at most

O(log1+(1/d) r) = O(rd)

where r is the ratio of the radius of Sk to the radius of S1. This means that it suffices
to estimate each ratio to a factor of (1 ± ε

erd
) in order to estimate the overall volume to

error 1± ε.

It remains to show how to draw a uniform random sample from a d-dimensional convex
set. Here we will use the convexity of the set R and thus the sets Si∩R so that the Markov
chain technique will converge quickly to its stationary probability. To select a random
sample from a d-dimensional convex set, impose a grid on the region and do a random
walk on the grid points. At each time, pick one of the 2d coordinate neighbors of the
current grid point, each with probability 1/(2d) and go to the neighbor if it is still in the

15One could also use rectangles instead of spheres.
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Si+1

Si

R

Figure 4.4: By sampling the area inside the dark line and determining the fraction of
points in the shaded region we compute V ol(Si+1∩R)

V ol(Si∩R)
.

To sample we create a grid and assign a probability of one to each grid point inside the
dark lines and zero outside. Using Metropolis-Hasting edge probabilities the stationary
probability will be uniform for each point inside the the region and we can sample points
uniformly and determine the fraction within the shaded region.

set; otherwise, stay put and repeat. If the grid length in each of the d coordinate directions
is at most some a, the total number of grid points in the set is at most ad. Although this
is exponential in d, the Markov chain turns out to be rapidly mixing (the proof is beyond
our scope here) and leads to polynomial time bounded algorithm to estimate the volume
of any convex set in Rd.

4.4 Convergence of Random Walks on Undirected Graphs

The Metropolis-Hasting algorithm and Gibbs sampling both involve random walks
on edge-weighted undirected graphs. Given an edge-weighted undirected graph, let wxy
denote the weight of the edge between nodes x and y, with wxy = 0 if no such edge exists.
Let wx =

∑
y wxy. The Markov chain has transition probabilities pxy = wxy/wx. We

assume the chain is connected.

We now claim that the stationary distribution π of this walk has πx proportional to
wx, i.e., πx = wx/wtotal for wtotal =

∑
x′ wx′ . Specifically, notice that

wxpxy = wx
wxy
wx

= wxy = wyx = wy
wyx
wy

= wypyx.

Therefore (wx/wtotal)pxy = (wy/wtotal)pyx and Lemma 4.3 implies that the values πx =
wx/wtotal are the stationary probabilities.

An important question is how fast the walk starts to reflect the stationary probability
of the Markov process. If the convergence time was proportional to the number of states,
algorithms such as Metropolis-Hasting and Gibbs sampling would not be very useful since
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Figure 4.5: A network with a constriction. All edges have weight 1.

the number of states can be exponentially large.

There are clear examples of connected chains that take a long time to converge. A
chain with a constriction, see Figure 4.5, takes a long time to converge since the walk is
unlikely to cross the narrow passage between the two halves, both of which are reasonably
big. We will show in Theorem 4.5 that the time to converge is quantitatively related to
the tightest constriction.

We define below a combinatorial measure of constriction for a Markov chain, called the
normalized conductance. We will relate normalized conductance to the time by which the
average probability distribution of the chain is guaranteed to be close to the stationary
probability distribution. We call this ε-mixing time:

Definition 4.1 Fix ε > 0. The ε-mixing time of a Markov chain is the minimum integer
t such that for any starting distribution p, the 1-norm distance between the t-step running
average probability distribution16 and the stationary distribution is at most ε.

Definition 4.2 For a subset S of vertices, let π(S) denote
∑

x∈S πx. The normalized
conductance Φ(S) of S is

Φ(S) =

∑
(x,y)∈(S,S̄)

πxpxy

min
(
π(S), π(S̄)

) .
There is a simple interpretation of Φ(S). Suppose without loss of generality that π(S) ≤
π(S̄). Then, we may write Φ(S) as

Φ(S) =
∑
x∈S

πx
π(S)︸ ︷︷ ︸
a

∑
y∈S̄

pxy︸ ︷︷ ︸
b

.

16Recall that a(t) = 1
t

(
p(0) + p(1) + · · ·+ p(t− 1)

)
is called the running average distribution.
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Here, a is the probability of being in x if we were in the stationary distribution restricted
to S and b is the probability of stepping from x to S̄ in a single step. Thus, Φ(S) is the
probability of moving from S to S̄ in one step if we are in the stationary distribution
restricted to S.

It is easy to show that if we started in the distribution p0,x = πs/π(S) for x ∈ S and
p0,x = 0 for x ∈ S̄, the expected number of steps before we step into S̄ is

1Φ(S) + 2(1− Φ(S))Φ(S) + 3(1− Φ(S))2Φ(S) + · · · = 1

Φ(S)
.

Clearly, to be close to the stationary distribution, we must at least get to S̄ once. So,
mixing time is lower bounded by 1/Φ(S). Since we could have taken any S, mixing time
is lower bounded by the minimum over all S of Φ(S). We define this quantity to be the
normalized conductance of the Markov Chain:

Definition 4.3 The normalized conductance of the Markov chain, denoted Φ, is defined
by

Φ = min
S⊂V,S 6={}

Φ(S).

As we just argued, normalized conductance being high is a necessary condition for
rapid mixing. The theorem below proves the converse: normalized conductance being
high is sufficient for mixing. Intuitively, if Φ is large, the walk rapidly leaves any subset
of states. But the proof of the theorem is quite difficult. After we prove it, we will see
examples where the mixing time is much smaller than the cover time. That is, the number
of steps before a random walk reaches a random state independent of its starting state is
much smaller than the average number of steps needed to reach every state. In fact for
some graphs, called expanders, the mixing time is logarithmic in the number of states.

Theorem 4.5 The ε-mixing time of a random walk on an undirected graph is

O

(
ln(1/πmin)

Φ2ε3

)
where πmin is the minimum stationary probability of any state.

Proof: Let t = c ln(1/πmin)
Φ2ε3

, for a suitable constant c. Let

a = a(t) =
1

t

(
p(0) + p(1) + · · ·+ p(t− 1)

)
be the running average distribution. We need to show that ||a− π||1 ≤ ε. Let

vi =
ai
πi
,

88



x

f(x)
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G1 = {1};G2 = {2, 3, 4};G3 = {5}.

γ1 γ2 γ3 γ4 γ5

Figure 4.6: Bounding l1 distance.

and renumber states so that v1 ≥ v2 ≥ v3 ≥ · · · . Thus, early indices i for which vi > 1
are states that currently have too much probability, and late indices i for which vi < 1
are states that currently have too little probability.

Intuitively, to show that ||a− π||1 ≤ ε it is enough to show that the values vi are
relatively flat and do not drop too fast as we increase i. We begin by reducing our goal
to a formal statement of that form. Then, in the second part of the proof, we prove that
vi do not fall fast using the concept of “probability flows”.

We call a state i for which vi > 1 “heavy” since it has more probability according to
a than its stationary probability. Let i0 be the maximum i such that vi > 1; it is the last
heavy state. By Proposition (4.4):

||a− π||1 = 2

i0∑
i=1

(vi − 1)πi = 2
∑
i≥i0+1

(1− vi)πi. (4.3)

Let
γi = π1 + π2 + · · ·+ πi.

Define a function f : [0, γi0 ]→ < by f(x) = vi−1 for x ∈ [γi−1, γi). See figure (4.6). Now,

i0∑
i=1

(vi − 1)πi =

∫ γi0

0

f(x) dx. (4.4)

We make one more technical modification. We divide {1, 2, . . . , i0} into groupsG1, G2, G3, . . . , Gr,
of contiguous subsets. (We will specify the groups later.) Let ut = Maxi∈Gtvi be the max-
imum value of vi within Gt. Then we define a new function g(x) by g(x) = ut − 1 for
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x ∈ ∪i∈Gt [γi−1, γi); see Figure 4.6. Since g(x) ≥ f(x) we have∫ γi0

0

f(x) dx ≤
∫ γi0

0

g(x) dx. (4.5)

We now assert (with ur+1 = 1):∫ γi0

0

g(x) dx =
r∑
t=1

π(G1 ∪G2 ∪ . . . ∪Gt)(ut − ut+1). (4.6)

This is just the statement that the area under g(x) in the figure is exactly covered by the
rectangles whose bottom sides are the dotted lines. We leave the formal proof of this to
the reader. We now focus on proving that

r∑
t=1

π(G1 ∪G2 ∪ . . . ∪Gt)(ut − ut+1) ≤ ε/2, (4.7)

for a sub-division into groups we specify which suffices by 4.3, 4.4, 4.5 and 4.6. While we
start the proof of (4.7) with a technical observation (4.8), its proof will involve two nice
ideas: the notion of probability flow and reckoning probability flow in two different ways.
First, the technical observation: if 2

∑
i≥i0+1(1−vi)πi ≤ ε then we would be done by (4.3).

So assume now that
∑

i≥i0+1(1− vi)πi > ε/2 from which it follows that
∑

i≥i0+1 πi ≥ ε/2
and so, for any subset A of heavy nodes,

Min(π(A), π(Ā)) ≥ ε

2
π(A). (4.8)

We now define the subsets. G1 will be just {1}. In general, suppose G1, G2, . . . , Gt−1 have
already been defined. We start Gt at it = 1+ (end of Gt−1). Let it = k. We will define l,
the last element of Gt to be the largest integer greater than or equal to k and at most i0
so that

l∑
j=k+1

πj ≤ εΦγk/4.

Lemma 4.6 Suppose groups G1, G2, . . . , Gr, u1.u2, . . . , ur, ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . . Gr)(ut − ut+1) ≤ 8

tΦε
.

Proof: This is the main lemma. The proof of the lemma uses a crucial idea of probability
flows. We will use two ways of calculating the probability flow from heavy states to ligh
states when we execute one step of the Markov chain starting at probabilities a. The
probability vector after that step is aP . Now, a − aP is the net loss of probability for
each state due to the step.

Consider a particular group Gt = {k, k + 1, . . . , l}, say. First consider the case when
k < i0. Let A = {1, 2, . . . , k}. The net loss of probability for each state from the set A in
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one step is
∑k

i=1(ai − (aP )i) which is at most 2
t

by the proof of Theorem 4.2.

Another way to reckon the net loss of probability from A is to take the difference of
the probability flow from A to Ā and the flow from Ā to A. For any i < j,

net-flow(i, j) = flow(i, j)− flow(j, i) = πipijvi − πjpjivj = πjpji(vi − vj) ≥ 0,

Thus, for any two states i, j, with i heavier than j, i.e., i < j, there is a non-negative net
flow from i to j. (This is intuitively reasonable since it says that probability is flowing
from heavy to light states.) Since l ≥ k, the flow from A to {k + 1, k + 2, . . . , l} minus
the flow from {k+ 1, k+ 2, . . . , l} to A is nonnegative. Since for i ≤ k and j > l, we have
vi ≥ vk and vj ≤ vl+1, the net loss from A is at least∑

i≤k
j>l

πjpji(vi − vj) ≥ (vk − vl+1)
∑
i≤k
j>l

πjpji.

Thus,

(vk − vl+1)
∑
i≤k
j>l

πjpji ≤
2

t
. (4.9)

Since
k∑
i=1

l∑
j=k+1

πjpji ≤
l∑

j=k+1

πj ≤ εΦπ(A)/4

and by the definition of Φ, using (4.8)∑
i≤k<j

πjpji ≥ ΦMin(π(A), π(Ā)) ≥ εΦγk/2,

we have,
∑
i≤k
j>l

πjpji =
∑

i≤k<j πjpji −
∑

i≤k;j≤l πjpji ≥ εΦγk/4. Substituting this into the

inequality (4.9) gives

vk − vl+1 ≤
8

tεΦγk
, (4.10)

proving the lemma provided k < i0. If k = i0, the proof is similar but simpler.

Now to prove (4.7), we now only need an upper bound on r, the number of groups. If
Gt = {k, k + 1, . . . , l}, with l < i0, then by definition of l, we have γl+1 ≥ (1 + εΦ

2
)γk. So,

r ≤ ln1+(εΦ/2)(1/π1) + 2 ≤ ln(1/π1)/(εΦ/2) + 2. This completes the proof of (4.7) and the
theorem.
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4.4.1 Using Normalized Conductance to Prove Convergence

We now apply Theorem 4.5 to some examples to illustrate how the normalized con-
ductance bounds the rate of convergence. In each case we compute the mixing time for
the uniform probability function on the vertices. Our first examples will be simple graphs.
The graphs do not have rapid converge, but their simplicity helps illustrate how to bound
the normalized conductance and hence the rate of convergence.

A 1-dimensional lattice

Consider a random walk on an undirected graph consisting of an n-vertex path with
self-loops at the both ends. With the self loops, we have pxy = 1/2 on all edges (x, y),
and so the stationary distribution is a uniform 1

n
over all vertices by Lemma 4.3. The set

with minimum normalized conductance is the set S with probability π(S) ≤ 1
2

having the
smallest ratio of probability mass exiting it,

∑
(x,y)∈(S,S̄) πxpxy, to probability mass inside

it, π(S). This set consists of the first n/2 vertices, for which the numerator is 1
2n

and
denominator is 1

2
. Thus,

Φ(S) =
1

n
.

By Theorem 4.5, for ε a constant such as 1/100, after O(n2 log n/ε3) steps, ||at − π||1 ≤
1/100. This graph does not have rapid convergence. The hitting time and the cover time
are O(n2). In many interesting cases, the mixing time may be much smaller than the
cover time. We will see such an example later.

A 2-dimensional lattice

Consider the n× n lattice in the plane where from each point there is a transition to
each of the coordinate neighbors with probability 1/4. At the boundary there are self-loops
with probability 1-(number of neighbors)/4. It is easy to see that the chain is connected.
Since pij = pji, the function fi = 1/n2 satisfies fipij = fjpji and by Lemma 4.3, f is the
stationary distribution. Consider any subset S consisting of at most half the states. If
|S| ≥ n2

4
, then the subset with the fewest edges leaving it consists of some number of

columns plus perhaps one additional partial column. The number of edges leaving S is at
least n. Thus ∑

i∈S

∑
j∈S̄

πipij ≥ Ω
(
n

1

n2

)
= Ω

(
1

n

)
.

Since |S| ≥ n2

4
, in this case

Φ(S) ≥ Ω

(
1/n

min
(
S
n2 ,

S̄
n2

)) = Ω

(
1

n

)
.

If |S| < n2

4
, the subset S of a given size that has the minimum number of edges leaving

consists of a square located at the lower left hand corner of the grid (Exercise 4.21). If
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|S| is not a perfect square then the right most column of S is short. Thus at least 2
√
|S|

points in S are adjacent to points in S̄. Each of these points contributes πipij = Ω( 1
n2 ) to

the flow(S, S̄). Thus, ∑
i∈S

∑
j∈S̄

πipij ≥
c
√
|S|
n2

and

Φ(S) =

∑
i∈S
∑

j∈S̄ πipij

min
(
π(S), π(S̄)

) ≥ c
√
|S|/n2

|S|/n2
=

c√
|S|

= Ω

(
1

n

)
.

Thus, in either case, after O(n2 lnn/ε3) steps |a(t)− π|1 ≤ ε.

A lattice in d-dimensions

Next consider the n × n × · · · × n lattice in d-dimensions with a self-loop at each
boundary point with probability 1 − (number of neighbors)/2d. The self loops make all
πi equal to n−d. View the lattice as an undirected graph and consider the random walk
on this undirected graph. Since there are nd states, the cover time is at least nd and
thus exponentially dependent on d. It is possible to show (Exercise 4.22) that Φ is Ω( 1

dn
).

Since all πi are equal to n−d, the mixing time is O(d3n2 lnn/ε3), which is polynomially
bounded in n and d.

The d-dimensional lattice is related to the Metropolis-Hastings algorithm and Gibbs
sampling although in those constructions there is a nonuniform probability distribution at
the vertices. However, the d-dimension lattice case suggests why the Metropolis-Hastings
and Gibbs sampling constructions might converge fast.

A clique

Consider an n vertex clique with a self loop at each vertex. For each edge, pxy = 1
n

and thus for each vertex, πx = 1
n
. Let S be a subset of the vertices. Then∑

x∈S

πx =
|S|
n
.

∑
(x,y)∈(S,S̄)

πxpxy = πxpxy|S||S| =
1

n2
|S||S|

and

Φ(S) =

∑
(x,y)∈(S,S̄) πxpxy

min(
∑

x∈S πx,
∑

x∈S̄ πx)
=

1
n2 |S||S|

min( 1
n
|S|, 1

n
|S|)

=
1

n
max(|S|, |S|) =

1

2
.

This gives a bound on the ε-mixing time of

O

(
ln 1

πmin

Φ2ε3

)
= O

(
lnn

ε3

)
.
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However a walker on the clique, starting from any probability distribution will in one step
be exactly at the stationary probability distribution.

A connected undirected graph

Next consider a random walk on a connected n vertex undirected graph where at each
vertex all edges are equally likely. The stationary probability of a vertex equals the degree
of the vertex divided by the sum of degrees. That is, if the degree of vertex x is dx and
the number of edges in the graph is m, then πx = dx

2m
. Notice that for any edge (x, y) we

have

πxpxy =

(
dx
2m

)(
1

dx

)
=

1

2m
.

Therefore, for any S, the total conductance of edges out of S is at least 1
2m

, and so
Φ is at least 1

m
. Since πmin ≥ 1

2m
≥ 1

n2 , ln 1
πmin

= O(lnn). Thus, the mixing time is

O(m2 lnn/ε3) = O(n4 lnn/ε3).

The Gaussian distribution on the interval [-1,1]

Consider the interval [−1, 1]. Let δ be a “grid size” specified later and let G be the
graph consisting of a path on the 2

δ
+ 1 vertices {−1,−1 + δ,−1 + 2δ, . . . , 1− δ, 1} having

self loops at the two ends. Let πx = ce−αx
2

for x ∈ {−1,−1 + δ,−1 + 2δ, . . . , 1 − δ, 1}
where α > 1 and c has been adjusted so that

∑
x πx = 1.

We now describe a simple Markov chain with the πx as its stationary probability and
argue its fast convergence. With the Metropolis-Hastings’ construction, the transition
probabilities are

px,x+δ =
1

2
min

(
1,
e−α(x+δ)2

e−αx2

)
and px,x−δ =

1

2
min

(
1,
e−α(x−δ)2

e−αx2

)
.

Let S be any subset of states with π(S) ≤ 1
2
. First consider the case when S is an interval

[kδ, 1] for k ≥ 2. It is easy to see that

π(S) ≤
∫ ∞
x=(k−1)δ

ce−αx
2

dx

≤
∫ ∞

(k−1)δ

x

(k − 1)δ
ce−αx

2

dx

= O

(
ce−α((k−1)δ)2

α(k − 1)δ

)
.

Now there is only one edge from S to S̄ and total conductance of edges out of S is∑
i∈S

∑
j /∈S

πipij = πkδpkδ,(k−1)δ = min(ce−αk
2δ2 , ce−α(k−1)2δ2) = ce−αk

2δ2 .
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Using 2 ≤ k ≤ 1/δ, α ≥ 1, and π(S̄) ≤ 1, we have

Φ(S) =
flow(S, S̄)

min(π(S), π(S̄))
≥ ce−αk

2δ2 α(k − 1)δ

ce−α((k−1)δ)2

≥ Ω(α(k − 1)δe−αδ
2(2k−1)) ≥ Ω(αδe−O(αδ)).

For the grid size less than the variance of the Gaussian distribution, δ < 1
α

, we have αδ < 1,
so e−O(αδ) = Ω(1), thus, Φ(S) ≥ Ω(αδ). Now, πmin ≥ ce−α ≥ e−1/δ, so ln(1/πmin) ≤ 1/δ.

If S is not an interval of the form [k, 1] or [−1, k], then the situation is only better
since there is more than one “boundary” point which contributes to flow(S, S̄). We do
not present this argument here. By Theorem 4.5 in Ω(1/α2δ3ε3) steps, a walk gets within
ε of the steady state distribution.

In these examples, we have chosen simple probability distributions. The methods ex-
tend to more complex situations.

4.5 Electrical Networks and Random Walks

In the next few sections, we study the relationship between electrical networks and
random walks on undirected graphs. The graphs have nonnegative weights on each edge.
A step is executed by picking a random edge from the current vertex with probability
proportional to the edge’s weight and traversing the edge.

An electrical network is a connected, undirected graph in which each edge (x, y) has
a resistance rxy > 0. In what follows, it is easier to deal with conductance defined as the
reciprocal of resistance, cxy = 1

rxy
, rather than resistance. Associated with an electrical

network is a random walk on the underlying graph defined by assigning a probability
pxy = cxy/cx to the edge (x, y) incident to the vertex x, where the normalizing constant cx
equals

∑
y

cxy. Note that although cxy equals cyx, the probabilities pxy and pyx may not be

equal due to the normalization required to make the probabilities at each vertex sum to
one. We shall soon see that there is a relationship between current flowing in an electrical
network and a random walk on the underlying graph.

Since we assume that the undirected graph is connected, by Theorem 4.2 there is
a unique stationary probability distribution.The stationary probability distribution is π
where πx = cx

c0
with c0 =

∑
x

cx. To see this, for all x and y

πxpxy =
cx
c0

cxy
cx

=
cy
c0

cyx
cy

= πypyx
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Figure 4.7: Graph illustrating an harmonic function.

and hence by Lemma 4.3, π is the unique stationary probability.

Harmonic functions

Harmonic functions are useful in developing the relationship between electrical net-
works and random walks on undirected graphs. Given an undirected graph, designate
a nonempty set of vertices as boundary vertices and the remaining vertices as interior
vertices. A harmonic function g on the vertices is a function whose value at the boundary
vertices is fixed to some boundary condition, and whose value at any interior vertex x is
a weighted average of its values at all the adjacent vertices y, with weights pxy satisfying∑

y pxy = 1 for each x. Thus, if at every interior vertex x for some set of weights pxy
satisfying

∑
y pxy = 1, gx =

∑
y

gypxy, then g is an harmonic function.

Example: Convert an electrical network with conductances cxy to a weighted, undirected
graph with probabilities pxy. Let f be a function satisfying fP = f where P is the matrix
of probabilities. It follows that the function gx = fx

cx
is harmonic.

gx = fx
cx

= 1
cx

∑
y

fypyx = 1
cx

∑
y

fy
cyx
cy

= 1
cx

∑
y

fy
cxy
cy

=
∑
y

fy
cy

cxy
cx

=
∑
y

gypxy

A harmonic function on a connected graph takes on its maximum and minimum on
the boundary. This is easy to see for the following reason. Suppose the maximum does
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not occur on the boundary. Let S be the set of interior vertices at which the maximum
value is attained. Since S contains no boundary vertices, S̄ is nonempty. Connectedness
implies that there is at least one edge (x, y) with x ∈ S and y ∈ S̄. The value of the
function at x is the weighted average of the value at its neighbors, all of which are less
than or equal to the value at x and the value at y is strictly less, a contradiction. The
proof for the minimum value is identical.

There is at most one harmonic function satisfying a given set of equations and bound-
ary conditions. For suppose there were two solutions, f(x) and g(x). The difference of two
solutions is itself harmonic. Since h(x) = f(x)−g(x) is harmonic and has value zero on the
boundary, by the min and max principles it has value zero everywhere. Thus f(x) = g(x).

The analogy between electrical networks and random walks

There are important connections between electrical networks and random walks on
undirected graphs. Choose two vertices a and b. Attach a voltage source between a and b
so that the voltage va equals one and the voltage vb equals zero. Fixing the voltages at va
and vb induces voltages at all other vertices, along with a current flow through the edges
of the network. What we will show below is the following. Having fixed the voltages at
the vertices a and b, the voltage at an arbitrary vertex x equals the probability that a
random walk that starts at x will reach a before it reaches b. We will also show there is
a related probabilistic interpretation of current as well.

Probabilistic interpretation of voltages

Before relating voltages and probabilities, we first show that the voltages form a har-
monic function. Let x and y be adjacent vertices and let ixy be the current flowing through
the edge from x to y. By Ohm’s law,

ixy =
vx − vy
rxy

= (vx − vy)cxy.

By Kirchhoff’s law the currents flowing out of each vertex sum to zero.∑
y

ixy = 0

Replacing currents in the above sum by the voltage difference times the conductance
yields ∑

y

(vx − vy)cxy = 0

or
vx
∑
y

cxy =
∑
y

vycxy.
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Observing that
∑
y

cxy = cx and that pxy = cxy
cx

, yields vxcx =
∑
y

vypxycx. Hence,

vx =
∑
y

vypxy. Thus, the voltage at each vertex x is a weighted average of the volt-

ages at the adjacent vertices. Hence the voltages form a harmonic function with {a, b} as
the boundary.

Let px be the probability that a random walk starting at vertex x reaches a before b.
Clearly pa = 1 and pb = 0. Since va = 1 and vb = 0, it follows that pa = va and pb = vb.
Furthermore, the probability of the walk reaching a from x before reaching b is the sum
over all y adjacent to x of the probability of the walk going from x to y in the first step
and then reaching a from y before reaching b. That is

px =
∑
y

pxypy.

Hence, px is the same harmonic function as the voltage function vx and v and p satisfy the
same boundary conditions at a and b.. Thus, they are identical functions. The probability
of a walk starting at x reaching a before reaching b is the voltage vx.

Probabilistic interpretation of current

In a moment, we will set the current into the network at a to have a value which we will
equate with one random walk. We will then show that the current ixy is the net frequency
with which a random walk from a to b goes through the edge xy before reaching b. Let
ux be the expected number of visits to vertex x on a walk from a to b before reaching b.
Clearly ub = 0. Consider a node x not equal to a or b. Every time the walk visits x, it
must have come from some neighbor y. Thus, the expected number of visits to x before
reaching b is the sum over all neighbors y of the expected number of visits uy to y before
reaching b times the probability pyx of going from y to x. That is,

ux =
∑
y

uypyx.

Since cxpxy = cypyx

ux =
∑
y

uy
cxpxy
cy

and hence ux
cx

=
∑
y

uy
cy
pxy. It follows that ux

cx
is harmonic with a and b as the boundary

where the boundary conditions are ub = 0 and ua equals some fixed value. Now, ub
cb

= 0.
Setting the current into a to one, fixed the value of va. Adjust the current into a so that
va equals ua

ca
. Now ux

cx
and vx satisfy the same boundary conditions and thus are the same

harmonic function. Let the current into a correspond to one walk. Note that if the walk
starts at a and ends at b, the expected value of the difference between the number of times
the walk leaves a and enters a must be one. This implies that the amount of current into
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a corresponds to one walk.

Next we need to show that the current ixy is the net frequency with which a random
walk traverses edge xy.

ixy = (vx − vy)cxy =

(
ux
cx
− uy
cy

)
cxy = ux

cxy
cx
− uy

cxy
cy

= uxpxy − uypyx

The quantity uxpxy is the expected number of times the edge xy is traversed from x to y
and the quantity uypyx is the expected number of times the edge xy is traversed from y to
x. Thus, the current ixy is the expected net number of traversals of the edge xy from x to y.

Effective resistance and escape probability

Set va = 1 and vb = 0. Let ia be the current flowing into the network at vertex a and
out at vertex b. Define the effective resistance reff between a and b to be reff = va

ia
and

the effective conductance ceff to be ceff = 1
reff

. Define the escape probability, pescape, to

be the probability that a random walk starting at a reaches b before returning to a. We
now show that the escape probability is

ceff

ca
. For convenience, assume that a and b are

not adjacent. A slight modification of the argument suffices for the case when a and b are
adjacent.

ia =
∑
y

(va − vy)cay

Since va = 1,

ia =
∑
y

cay − ca
∑
y

vy
cay
ca

= ca

[
1−

∑
y

payvy

]
.

For each y adjacent to the vertex a, pay is the probability of the walk going from vertex
a to vertex y. Earlier we showed that vy is the probability of a walk starting at y going
to a before reaching b. Thus,

∑
y

payvy is the probability of a walk starting at a returning

to a before reaching b and 1−
∑
y

payvy is the probability of a walk starting at a reaching

b before returning to a. Thus, ia = capescape. Since va = 1 and ceff = ia
va

, it follows that

ceff = ia . Thus, ceff = capescape and hence pescape =
ceff

ca
.

For a finite connected graph, the escape probability will always be nonzero. Consider
an infinite graph such as a lattice and a random walk starting at some vertex a. Form a
series of finite graphs by merging all vertices at distance d or greater from a into a single
vertex b for larger and larger values of d. The limit of pescape as d goes to infinity is the
probability that the random walk will never return to a. If pescape → 0, then eventually
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any random walk will return to a. If pescape → q where q > 0, then a fraction of the walks
never return. Thus, the escape probability terminology.

4.6 Random Walks on Undirected Graphs with Unit Edge Weights

We now focus our discussion on random walks on undirected graphs with uniform
edge weights. At each vertex, the random walk is equally likely to take any edge. This
corresponds to an electrical network in which all edge resistances are one. Assume the
graph is connected. We consider questions such as what is the expected time for a random
walk starting at a vertex x to reach a target vertex y, what is the expected time until the
random walk returns to the vertex it started at, and what is the expected time to reach
every vertex?

Hitting time

The hitting time hxy, sometimes called discovery time, is the expected time of a ran-
dom walk starting at vertex x to reach vertex y. Sometimes a more general definition is
given where the hitting time is the expected time to reach a vertex y from a given starting
probability distribution.

One interesting fact is that adding edges to a graph may either increase or decrease
hxy depending on the particular situation. Adding an edge can shorten the distance from
x to y thereby decreasing hxy or the edge could increase the probability of a random walk
going to some far off portion of the graph thereby increasing hxy. Another interesting
fact is that hitting time is not symmetric. The expected time to reach a vertex y from a
vertex x in an undirected graph may be radically different from the time to reach x from y.

We start with two technical lemmas. The first lemma states that the expected time
to traverse a path of n vertices is Θ (n2).

Lemma 4.7 The expected time for a random walk starting at one end of a path of n
vertices to reach the other end is Θ (n2).

Proof: Consider walking from vertex 1 to vertex n in a graph consisting of a single path
of n vertices. Let hij, i < j, be the hitting time of reaching j starting from i. Now h12 = 1
and

hi,i+1 = 1
2

+ 1
2
(1 + hi−1,i+1) = 1 + 1

2
(hi−1,i + hi,i+1) 2 ≤ i ≤ n− 1.

Solving for hi,i+1 yields the recurrence

hi,i+1 = 2 + hi−1,i.

Solving the recurrence yields
hi,i+1 = 2i− 1.
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To get from 1 to n, you need to first reach 2, then from 2 (eventually) reach 3, then from
3 (eventually) reach 4, and so on. Thus by linearity of expectation,

h1,n =
n−1∑
i=1

hi,i+1 =
n−1∑
i=1

(2i− 1)

= 2
n−1∑
i=1

i−
n−1∑
i=1

1

= 2
n (n− 1)

2
− (n− 1)

= (n− 1)2 .

The next lemma shows that the expected time spent at vertex i by a random walk
from vertex 1 to vertex n in a chain of n vertices is 2(i− 1) for 2 ≤ i ≤ n− 1.

Lemma 4.8 Consider a random walk from vertex 1 to vertex n in a chain of n vertices.
Let t(i) be the expected time spent at vertex i. Then

t (i) =


n− 1 i = 1
2 (n− i) 2 ≤ i ≤ n− 1
1 i = n.

Proof: Now t (n) = 1 since the walk stops when it reaches vertex n. Half of the time when
the walk is at vertex n − 1 it goes to vertex n. Thus t (n− 1) = 2. For 3 ≤ i < n− 1,
t (i) = 1

2
[t (i− 1) + t (i+ 1)] and t (1) and t (2) satisfy t (1) = 1

2
t (2) + 1 and t (2) =

t (1) + 1
2
t (3). Solving for t(i+ 1) for 3 ≤ i < n− 1 yields

t(i+ 1) = 2t(i)− t(i− 1)

which has solution t(i) = 2(n− i) for 3 ≤ i < n− 1. Then solving for t(2) and t(1) yields
t (2) = 2 (n− 2) and t (1) = n− 1. Thus, the total time spent at vertices is

n− 1 + 2 (1 + 2 + · · ·+ n− 2) + 1 = (n− 1) + 2
(n− 1)(n− 2)

2
+ 1 = (n− 1)2 + 1

which is one more than h1n and thus is correct.

Adding edges to a graph might either increase or decrease the hitting time hxy. Con-
sider the graph consisting of a single path of n vertices. Add edges to this graph to get the
graph in Figure 4.8 consisting of a clique of size n/2 connected to a path of n/2 vertices.
Then add still more edges to get a clique of size n. Let x be the vertex at the midpoint of
the original path and let y be the other endpoint of the path consisting of n/2 vertices as
shown in the figure. In the first graph consisting of a single path of length n, hxy = Θ (n2).

101



x
y

n/2

︸ ︷︷ ︸

clique of
size n/2

Figure 4.8: Illustration that adding edges to a graph can either increase or decrease hitting
time.

In the second graph consisting of a clique of size n/2 along with a path of length n/2,
hxy = Θ (n3).To see this latter statement, note that starting at x, the walk will go down
the path towards y and return to x for n/2− 1 times on average before reaching y for the
first time, by Lemma 4.8. Each time the walk in the path returns to x, with probability
(n/2 − 1)/(n/2) it enters the clique and thus on average enters the clique Θ(n) times
before starting down the path again. Each time it enters the clique, it spends Θ(n) time
in the clique before returning to x. it then reenters the clique Θ(n) times before starting
down the path to y. Thus, each time the walk returns to x from the path it spends Θ(n2)
time in the clique before starting down the path towards y for a total expected time that
is Θ(n3) before reaching y. In the third graph, which is the clique of size n, hxy = Θ (n).
Thus, adding edges first increased hxy from n2 to n3 and then decreased it to n.

Hitting time is not symmetric even in the case of undirected graphs. In the graph of
Figure 4.8, the expected time, hxy, of a random walk from x to y, where x is the vertex of
attachment and y is the other end vertex of the chain, is Θ(n3). However, hyx is Θ(n2).

Commute time

The commute time, commute(x, y), is the expected time of a random walk starting at
x reaching y and then returning to x. So commute(x, y) = hxy + hyx. Think of going
from home to office and returning home. Note that commute time is symmetric. We now
relate the commute time to an electrical quantity, the effective resistance. The effective
resistance between two vertices x and y in an electrical network is the voltage difference
between x and y when one unit of current is inserted at vertex x and withdrawn from
vertex y.

Theorem 4.9 Given a connected, undirected graph, consider the electrical network where
each edge of the graph is replaced by a one ohm resistor. Given vertices x and y, the
commute time, commute(x, y), equals 2mrxy where rxy is the effective resistance from x
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to y and m is the number of edges in the graph.

Proof: Insert at each vertex i a current equal to the degree di of vertex i. The total
current inserted is 2m where m is the number of edges. Extract from a specific vertex j
all of this 2m current (note: for this to be legal, the graph must be connected). Let vij
be the voltage difference from i to j. The current into i divides into the di resistors at
vertex i. The current in each resistor is proportional to the voltage across it. Let k be a
vertex adjacent to i. Then the current through the resistor between i and k is vij − vkj,
the voltage drop across the resistor. The sum of the currents out of i through the resistors
must equal di, the current injected into i.

di =
∑
k adj
to i

(vij − vkj) = divij −
∑
k adj
to i

vkj.

Solving for vij

vij = 1 +
∑
k adj
to i

1
di
vkj =

∑
k adj
to i

1
di

(1 + vkj). (4.11)

Now the hitting time from i to j is the average time over all paths from i to k adjacent
to i and then on from k to j. This is given by

hij =
∑
k adj
to i

1
di

(1 + hkj). (4.12)

Subtracting (4.12) from (4.11), gives vij − hij =
∑
k adj
to i

1
di

(vkj − hkj). Thus, the function

vij − hij is harmonic. Designate vertex j as the only boundary vertex. The value of
vij−hij at i = j, namely vjj−hjj, is zero, since both vjj and hjj are zero. So the function
vij−hij must be zero everywhere. Thus, the voltage vij equals the expected time hij from
i to j.

To complete the proof, note that hij = vij is the voltage from i to j when currents are
inserted at all vertices in the graph and extracted at vertex j. If the current is extracted
from i instead of j, then the voltages change and vji = hji in the new setup. Finally,
reverse all currents in this latter step. The voltages change again and for the new voltages
−vji = hji. Since −vji = vij, we get hji = vij.

Thus, when a current is inserted at each vertex equal to the degree of the vertex
and the current is extracted from j, the voltage vij in this set up equals hij. When we
extract the current from i instead of j and then reverse all currents, the voltage vij in
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Insert current at each vertex
equal to degree of the vertex.

Extract 2m at vertex j. vij = hij
(a)

i j

↑

↓

↑

↓

↑
↑

⇐=

Extract current from i instead of j.
For new voltages vji = hji.

(b)

i j

↓

↑

↓

↑

↓
↓

=⇒

Reverse currents in (b).
For new voltages −vji = hji.
Since −vji = vij, hji = vij.

(c)

i j
=⇒ =⇒
2m 2m

Superpose currents in (a) and (c).
2mrij = vij = hij + hji = commute(i, j)

(d)

Figure 4.9: Illustration of proof that commute(x, y) = 2mrxy where m is the number of
edges in the undirected graph and rxy is the effective resistance between x and y.

this new set up equals hji. Now, superpose both situations, i.e., add all the currents and
voltages. By linearity, for the resulting vij, which is the sum of the other two vij’s, is
vij = hij + hji. All currents cancel except the 2m amps injected at i and withdrawn at j.
Thus, 2mrij = vij = hij + hji = commute(i, j) or commute(i, j) = 2mrij where rij is the
effective resistance from i to j.

The following corollary follows from Theorem 4.9 since the effective resistance ruv is
less than or equal to one when u and v are connected by an edge.

Corollary 4.10 If vertices x and y are connected by an edge, then hxy +hyx ≤ 2m where
m is the number of edges in the graph.

Proof: If x and y are connected by an edge, then the effective resistance rxy is less than
or equal to one.

Corollary 4.11 For vertices x and y in an n vertex graph, the commute time, commute(x, y),
is less than or equal to n3.

Proof: By Theorem 4.9 the commute time is given by the formula commute(x, y) =
2mrxy where m is the number of edges. In an n vertex graph there exists a path from x

104



to y of length at most n. Since the resistance can not be greater than that of any path
from x to y, rxy ≤ n. Since the number of edges is at most

(
n
2

)
commute(x, y) = 2mrxy ≤ 2

(
n

2

)
n ∼= n3.

While adding edges into a graph can never increase the effective resistance between
two given nodes x and y, it may increase or decrease the commute time. To see this
consider three graphs: the graph consisting of a chain of n vertices, the graph of Figure
4.8, and the clique on n vertices.

Cover time

The cover time, cover(x,G) , is the expected time of a random walk starting at vertex x
in the graph G to reach each vertex at least once. We write cover(x) when G is understood.
The cover time of an undirected graph G, denoted cover(G), is

cover(G) = max
x

cover(x,G).

For cover time of an undirected graph, increasing the number of edges in the graph
may increase or decrease the cover time depending on the situation. Again consider three
graphs, a chain of length n which has cover time Θ(n2), the graph in Figure 4.8 which has
cover time Θ(n3), and the complete graph on n vertices which has cover time Θ(n log n).
Adding edges to the chain of length n to create the graph in Figure 4.8 increases the
cover time from n2 to n3 and then adding even more edges to obtain the complete graph
reduces the cover time to n log n.

Note: The cover time of a clique is θ(n log n) since this is the time to select every
integer out of n integers with high probability, drawing integers at random. This is called
the coupon collector problem. The cover time for a straight line is Θ(n2) since it is the
same as the hitting time. For the graph in Figure 4.8, the cover time is Θ(n3) since one
takes the maximum over all start states and cover(x,G) = Θ (n3) where x is the vertex
of attachment.

Theorem 4.12 Let G be a connected graph with n vertices and m edges. The time for a
random walk to cover all vertices of the graph G is bounded above by 4m(n− 1).

Proof: Consider a depth first search of the graph G starting from some vertex z and let
T be the resulting depth first search spanning tree of G. The depth first search covers
every vertex. Consider the expected time to cover every vertex in the order visited by the
depth first search. Clearly this bounds the cover time of G starting from vertex z. Note
that each edge in T is traversed twice, once in each direction.

cover (z,G) ≤
∑

(x,y)∈T
(y,x)∈T

hxy.
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If (x, y) is an edge in T , then x and y are adjacent and thus Corollary 4.10 implies
hxy ≤ 2m. Since there are n − 1 edges in the dfs tree and each edge is traversed twice,
once in each direction, cover(z) ≤ 4m(n− 1). This holds for all starting vertices z. Thus,
cover(G) ≤ 4m(n− 1).

The theorem gives the correct answer of n3 for the n/2 clique with the n/2 tail. It
gives an upper bound of n3 for the n-clique where the actual cover time is n log n.

Let rxy be the effective resistance from x to y. Define the resistance reff (G) of a graph
G by reff (G) = max

x,y
(rxy).

Theorem 4.13 Let G be an undirected graph with m edges. Then the cover time for G
is bounded by the following inequality

mreff (G) ≤ cover(G) ≤ 6em reff (G) lnn+ n

where e ≈ 2.718 is Euler’s constant and reff (G) is the resistance of G.

Proof: By definition reff (G) = max
x,y

(rxy). Let u and v be the vertices of G for which rxy is

maximum. Then reff (G) = ruv. By Theorem 4.9, commute(u, v) = 2mruv. Hence mruv =
1
2
commute(u, v). Note that 1

2
commute(u, v) is the average of huv and hvu, which is clearly

less than max(huv, hvu). Finally, max(huv, hvu) is less than max(cover(u,G), cover(v,G))
which is clearly less than the cover time of G. Putting these facts together gives the first
inequality in the theorem.

mreff (G) = mruv = 1
2
commute(u, v) ≤ max(huv, hvu) ≤ cover(G)

For the second inequality in the theorem, by Theorem 4.9, for any x and y, commute(x, y)
equals 2mrxy which is less than or equal to 2mreff (G), implying hxy ≤ 2mreff (G). By
the Markov inequality, since the expected time to reach y starting at any x is less than
2mreff (G), the probability that y is not reached from x in 2mreff (G)e steps is at most
1
e
. Thus, the probability that a vertex y has not been reached in 6em reff (G) log n steps

is at most 1
e

3 lnn
= 1

n3 because a random walk of length 6emreff (G) log n is a sequence of
3 log n random walks, each of length 2emreff (G) and each possibly starting from different
vertices. Suppose after a walk of 6em reff (G) log n steps, vertices v1, v2, . . . , vl had not
been reached. Walk until v1 is reached, then v2, etc. By Corollary 4.11 the expected time
for each of these is n3, but since each happens only with probability 1/n3, we effectively
take O(1) time per vi, for a total time at most n. More precisely,

cover(G) ≤ 6em reff (G) log n+
∑
v

Prob (v was not visited in the first 6em reff (G) steps)n3

≤ 6em reff (G) log n+
∑
v

1

n3
n3 ≤ 6em reff (G) + n.
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4.7 Random Walks in Euclidean Space

Many physical processes such as Brownian motion are modeled by random walks.
Random walks in Euclidean d-space consisting of fixed length steps parallel to the coor-
dinate axes are really random walks on a d-dimensional lattice and are a special case of
random walks on graphs. In a random walk on a graph, at each time unit an edge from
the current vertex is selected at random and the walk proceeds to the adjacent vertex.
We begin by studying random walks on lattices.

Random walks on lattices

We now apply the analogy between random walks and current to lattices. Consider
a random walk on a finite segment −n, . . . ,−1, 0, 1, 2, . . . , n of a one dimensional lattice
starting from the origin. Is the walk certain to return to the origin or is there some prob-
ability that it will escape, i.e., reach the boundary before returning? The probability of
reaching the boundary before returning to the origin is called the escape probability. We
shall be interested in this quantity as n goes to infinity.

Convert the lattice to an electrical network by replacing each edge with a one ohm
resistor. Then the probability of a walk starting at the origin reaching n or –n before
returning to the origin is the escape probability given by

pescape =
ceff

ca

where ceff is the effective conductance between the origin and the boundary points and ca
is the sum of the conductances at the origin. In a d-dimensional lattice, ca = 2d assuming
that the resistors have value one. For the d-dimensional lattice

pescape =
1

2d reff

In one dimension, the electrical network is just two series connections of n one-ohm re-
sistors connected in parallel. So as n goes to infinity, reff goes to infinity and the escape
probability goes to zero as n goes to infinity. Thus, the walk in the unbounded one di-
mensional lattice will return to the origin with probability one. Note, however, that the
expected time to return to the origin, which is equal to commute(0, 1), is infinite.

Two dimensions

For the 2-dimensional lattice, consider a larger and larger square about the origin for
the boundary as shown in Figure 4.10a and consider the limit of reff as the squares get
larger. Shorting the resistors on each square can only reduce reff . Shorting the resistors
results in the linear network shown in Figure 4.10b. As the paths get longer, the number
of resistors in parallel also increases. The resistor between vertex i and i + 1 is really
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(a)

· · ·
4 12 20

0 1 2 3

Number of resistors
in parallel

(b)

Figure 4.10: 2-dimensional lattice along with the linear network resulting from shorting
resistors on the concentric squares about the origin.

4(2i+ 1) unit resistors in parallel. The effective resistance of 4(2i+ 1) resistors in parallel
is 1/4(2i+ 1). Thus,

reff ≥ 1
4

+ 1
12

+ 1
20

+ · · · = 1
4
(1 + 1

3
+ 1

5
+ · · · ) = Θ(lnn).

Since the lower bound on the effective resistance and hence the effective resistance goes
to infinity, the escape probability goes to zero for the 2-dimensional lattice.

Three dimensions

In three dimensions, the resistance along any path to infinity grows to infinity but
the number of paths in parallel also grows to infinity. It turns out there are a sufficient
number of paths that reff remains finite and thus there is a nonzero escape probability.
We will prove this now. First note that shorting any edge decreases the resistance, so
we do not use shorting in this proof, since we seek to prove an upper bound on the
resistance. Instead we remove some edges, which increases their resistance to infinity and
hence increases the effective resistance, giving an upper bound. To simplify things we
consider walks on a quadrant rather than the full grid. The resistance to infinity derived
from only the quadrant is an upper bound on the resistance of the full grid.

The construction used in three dimensions is easier to explain first in two dimensions.
Draw dotted diagonal lines at x+ y = 2n−1. Consider two paths that start at the origin.
One goes up and the other goes to the right. Each time a path encounters a dotted
diagonal line, split the path into two, one which goes right and the other up. Where
two paths cross, split the vertex into two, keeping the paths separate. By a symmetry
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Figure 4.11: Paths in a 2-dimensional lattice obtained from the 3-dimensional construction
applied in 2-dimensions.

argument, splitting the vertex does not change the resistance of the network. Remove
all resistors except those on these paths. The resistance of the original network is less
than that of the tree produced by this process since removing a resistor is equivalent to
increasing its resistance to infinity.

The distances between splits increase and are 1, 2, 4, etc. At each split the number
of paths in parallel doubles. See Figure 4.12. Thus, the resistance to infinity in this two
dimensional example is

1

2
+

1

4
2 +

1

8
4 + · · · = 1

2
+

1

2
+

1

2
+ · · · =∞.

In the analogous three dimensional construction, paths go up, to the right, and out of
the plane of the paper. The paths split three ways at planes given by x+ y + z = 2n − 1.
Each time the paths split the number of parallel segments triple. Segments of the paths
between splits are of length 1, 2, 4, etc. and the resistance of the segments are equal to
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1 2 4

Figure 4.12: Paths obtained from 2-dimensional lattice. Distances between splits double
as do the number of parallel paths.

the lengths. The resistance out to infinity for the tree is

1
3

+ 1
9
2 + 1

27
4 + · · · = 1

3

(
1 + 2

3
+ 4

9
+ · · ·

)
= 1

3
1

1− 2
3

= 1

The resistance of the three dimensional lattice is less. It is important to check that the
paths are edge-disjoint and so the tree is a subgraph of the lattice. Going to a subgraph is
equivalent to deleting edges which only increases the resistance. That is why the resistance
of the lattice is less than that of the tree. Thus, in three dimensions the escape probability
is nonzero. The upper bound on reff gives the lower bound

pescape = 1
2d

1
reff
≥ 1

6
.

A lower bound on reff gives an upper bound on pescape. To get the upper bound on
pescape, short all resistors on surfaces of boxes at distances 1, 2, 3,, etc. Then

reff ≥ 1
6

[
1 + 1

9
+ 1

25
+ · · ·

]
≥ 1.23

6
≥ 0.2

This gives
pescape = 1

2d
1
reff
≤ 5

6
.

4.8 The Web as a Markov Chain

A modern application of random walks on directed graphs comes from trying to estab-
lish the importance of pages on the World Wide Web. Search Engines output an ordered
list of webpages in response to each search query. To do this, they have to solve two
problems at query time: (i) find the set of all webpages containing the query term(s) and
(ii) rank the webpages and display them (or the top subset of them) in ranked order. (i)
is done by maintaining a “reverse index” which we do not discuss here. (ii) cannot be
done at query time since this would make the response too slow. So Search Engines rank
the entire set of webpages (in the billions) “off-line” and use that single ranking for all
queries. At query time, the webpages containing the query terms(s) are displayed in this
ranked order.

One way to do this ranking would be to take a random walk on the web viewed as a
directed graph (which we call the web graph) with an edge corresponding to each hyper-
text link and rank pages according to their stationary probability. Hypertext links are
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Figure 4.13: Impact on pagerank of adding a self loop

one-way and the web graph may not be strongly connected. Indeed, for a node at the
“bottom” level there may be no out-edges. When the walk encounters this vertex the
walk disappears. Another difficulty is that a vertex or a strongly connected component
with no in edges is never reached. One way to resolve these difficulties is to introduce
a random restart condition. At each step, with some probability r, jump to a vertex se-
lected uniformly at random in the entire graph; with probability 1− r select an out-edge
at random from the current node and follow it. If a vertex has no out edges, the value
of r for that vertex is set to one. This makes the graph strongly connected so that the
stationary probabilities exist.

Pagerank

The pagerank of a vertex in a directed graph is the stationary probability of the vertex,
where we assume a positive restart probability of say r = 0.15. The restart ensures that
the graph is strongly connected. The pagerank of a page is the frequency with which the
page will be visited over a long period of time. If the pagerank is p, then the expected
time between visits or return time is 1/p. Notice that one can increase the pagerank of a
page by reducing the return time and this can be done by creating short cycles.

Consider a vertex i with a single edge in from vertex j and a single edge out. The
stationary probability π satisfies πP = π, and thus

πi = πjpji.

Adding a self-loop at i, results in a new equation

πi = πjpji +
1

2
πi

or
πi = 2 πjpji.

Of course, πj would have changed too, but ignoring this for now, pagerank is doubled by
the addition of a self-loop. Adding k self loops, results in the equation

πi = πjpji +
k

k + 1
πi,
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and again ignoring the change in πj, we now have πi = (k + 1)πjpji. What prevents
one from increasing the pagerank of a page arbitrarily? The answer is the restart. We
neglected the 0.15 probability that is taken off for the random restart. With the restart
taken into account, the equation for πi when there is no self-loop is

πi = 0.85πjpji

whereas, with k self-loops, the equation is

πi = 0.85πjpji + 0.85
k

k + 1
πi.

Solving for πi yields

πi =
0.85k + 0.85

0.15k + 1
πjpji

which for k = 1 is πi = 1.48πjpji and in the limit as k → ∞ is πi = 5.67πjpji. Adding a
single loop only increases pagerank by a factor of 1.74.

Relation to Hitting time

Recall the definition of hitting time hxy, which for two states x and y is the expected
time to reach y starting from x. Here, we deal with hy, the average time to hit y, starting
at a random node. Namely, hy = 1

n

∑
x hxy, where the sum is taken over all n nodes x.

Hitting time hy is closely related to return time and thus to the reciprocal of page rank.
Return time is clearly less than the expected time until a restart plus hitting time. With
r as the restart value, this gives:

Return time to y ≤ 1

r
+ hy.

In the other direction, the fastest one could return would be if there were only paths of
length two (assume we remove all self-loops). A path of length two would be traversed
with at most probability (1− r)2. With probability r + (1− r) r = (2− r) r one restarts
and then hits v. Thus, the return time is at least 2 (1− r)2 + (2− r) r × (hitting time).
Combining these two bounds yields

2 (1− r)2 + (2− r) r(hitting time) ≤ (return time) ≤ 1

r
+ (hitting time) .

The relationship between return time and hitting time can be used to see if a vertex has
unusually high probability of short loops. However, there is no efficient way to compute
hitting time for all vertices as there is for return time. For a single vertex v, one can
compute hitting time by removing the edges out of the vertex v for which one is com-
puting hitting time and then run the pagerank algorithm for the new graph. The hitting
time for v is the reciprocal of the pagerank in the graph with the edges out of v removed.
Since computing hitting time for each vertex requires removal of a different set of edges,
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the algorithm only gives the hitting time for one vertex at a time. Since one is probably
only interested in the hitting time of vertices with low hitting time, an alternative would
be to use a random walk to estimate the hitting time of low hitting time vertices.

Spam

Suppose one has a web page and would like to increase its pagerank by creating other
web pages with pointers to the original page. The abstract problem is the following. We
are given a directed graph G and a vertex v whose pagerank we want to increase. We may
add new vertices to the graph and edges from them to any vertices we want. We can also
add or delete edges from v. However, we cannot add or delete edges out of other vertices.

The pagerank of v is the stationary probability for vertex v with random restarts. If
we delete all existing edges out of v, create a new vertex u and edges (v, u) and (u, v),
then the pagerank will be increased since any time the random walk reaches v it will be
captured in the loop v → u → v. A search engine can counter this strategy by more
frequent random restarts.

A second method to increase pagerank would be to create a star consisting of the
vertex v at its center along with a large set of new vertices each with a directed edge to
v. These new vertices will sometimes be chosen as the target of the random restart and
hence the vertices increase the probability of the random walk reaching v. This second
method is countered by reducing the frequency of random restarts.

Notice that the first technique of capturing the random walk increases pagerank but
does not effect hitting time. One can negate the impact of someone capturing the random
walk on pagerank by increasing the frequency of random restarts. The second technique
of creating a star increases pagerank due to random restarts and decreases hitting time.
One can check if the pagerank is high and hitting time is low in which case the pagerank
is likely to have been artificially inflated by the page capturing the walk with short cycles.

Personalized pagerank

In computing pagerank, one uses a restart probability, typically 0.15, in which at each
step, instead of taking a step in the graph, the walk goes to a vertex selected uniformly
at random. In personalized pagerank, instead of selecting a vertex uniformly at random,
one selects a vertex according to a personalized probability distribution. Often the distri-
bution has probability one for a single vertex and whenever the walk restarts it restarts
at that vertex. Note that this may make the graph disconnected.

Algorithm for computing personalized pagerank

First, consider the normal pagerank. Let α be the restart probability with which the
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random walk jumps to an arbitrary vertex. With probability 1 − α the random walk
selects a vertex uniformly at random from the set of adjacent vertices. Let p be a row
vector denoting the pagerank and let A be the adjacency matrix with rows normalized to
sum to one. Then

p = α
n

(1, 1, . . . , 1) + (1− α) pA

p[I − (1− α)A] =
α

n
(1, 1, . . . , 1)

or
p = α

n
(1, 1, . . . , 1) [I − (1− α)A]−1.

Thus, in principle, p can be found by computing the inverse of [I − (1 − α)A]−1. But
this is far from practical since for the whole web one would be dealing with matrices with
billions of rows and columns. A more practical procedure is to run the random walk and
observe using the basics of the power method in Chapter 3 that the process converges to
the solution p.

For the personalized pagerank, instead of restarting at an arbitrary vertex, the walk
restarts at a designated vertex. More generally, it may restart in some specified neighbor-
hood. Suppose the restart selects a vertex using the probability distribution s. Then, in
the above calculation replace the vector 1

n
(1, 1, . . . , 1) by the vector s. Again, the compu-

tation could be done by a random walk. But, we wish to do the random walk calculation
for personalized pagerank quickly since it is to be performed repeatedly. With more care
this can be done, though we do not describe it here.

4.9 Bibliographic Notes

The material on the analogy between random walks on undirected graphs and electrical
networks is from [DS84] as is the material on random walks in Euclidean space. Addi-
tional material on Markov chains can be found in [MR95b], [MU05], and [per10]. For
material on Markov Chain Monte Carlo methods see [Jer98] and [Liu01].

The use of normalized conductance to prove convergence of Markov Chains is by
Sinclair and Jerrum, [SJ89] and Alon [Alo86]. A polynomial time bounded Markov chain
based method for estimating the volume of convex sets was developed by Dyer, Frieze and
Kannan [DFK91].
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4.10 Exercises

Exercise 4.1 The Fundamental Theorem of Markov chains says that for a connected
Markov chain, the long-term average distribution a(t) converges to a stationary distribu-
tion. Does the t step distribution p(t) also converge for every connected Markov Chain?
Consider the following examples: (i) A two-state chain with p12 = p21 = 1. (ii) A three
state chain with p12 = p23 = p31 = 1 and the other pij = 0. Generalize these examples to
produce Markov Chains with many states.

Exercise 4.2 Does limt→∞ a(t) − a(t + 1) = 0 imply that a(t) converges to some value?
Hint: consider the average cumulative sum of the sequence 1021408116 · · ·

Exercise 4.3 What is the stationary probability for the following networks.

0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4
0.4 0.6

a

0.5 0.5 0.5

0.5 0 0.5 0 0.5 0 0.5 0
0.5 1

b

Exercise 4.4 A Markov chain is said to be symmetric if for all i and j, pij = pji. What
is the stationary distribution of a connected symmetric chain? Prove your answer.

Exercise 4.5 Prove |p − q|1 = 2
∑

i(pi − qi)
+ for probability distributions p and q.

Proposition 4.4

Exercise 4.6 Let p(x), where x = (x1, x2, . . . , xd) xi ∈ {0, 1}, be a multivariate probabil-
ity distribution. For d = 100, how would you estimate the marginal distribution

p(x1) =
∑

x2,...,xd

p(x1, x2, . . . , xd) ?

Exercise 4.7 Using the Metropolis-Hasting Algorithm create a Markov chain whose sta-
tionary probability is that given in the following table. Use the 3× 3 lattice for the under-
lying graph.

x1x2 00 01 02 10 11 12 20 21 22
Prob 1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8 1/16

Exercise 4.8 Using Gibbs sampling create a 4× 4 lattice whose stationary probability is
that given in the following table.
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x/y 1 2 3 4

1 1
16

1
32

1
32

1
16

2 1
32

1
8

1
8

1
32

3 1
32

1
8

1
8

1
32

4 1
16

1
32

1
32

1
16

Note by symmetry there are only three types of vertices and only two types of rows or
columns.

Exercise 4.9 How would you integrate a high dimensional multivariate polynomial dis-
tribution over some convex region?

Exercise 4.10 Given a time-reversible Markov chain, modify the chain as follows. At
the current state, stay put (no move) with probability 1/2. With the other probability 1/2,
move as in the old chain. Show that the new chain has the same stationary distribution.
What happens to the convergence time in this modification?

Exercise 4.11 Let p be a probability vector (nonnegative components adding up to 1) on
the vertices of a connected graph which is sufficiently large that it cannot be stored in a
computer. Set pij (the transition probability from i to j) to pj for all i 6= j which are
adjacent in the graph. Show that the stationary probability vector is p. Is a random walk
an efficient way to sample according to a distribution close to p? Think, for example, of
the graph G being the n× n× n× · · ·n grid.

Exercise 4.12 Construct the edge probability for a three state Markov chain where each
pair of states is connected by an undirected edge so that the stationary probability is(

1
2
, 1

3
, 1

6

)
. Repeat adding a self loop with probability 1

2
to the vertex with probability 1

2
.

Exercise 4.13 Consider a three state Markov chain with stationary probability
(

1
2
, 1

3
, 1

6

)
.

Consider the Metropolis-Hastings algorithm with G the complete graph on these three
vertices. What is the expected probability that we would actually make a move along a
selected edge?

Exercise 4.14 Consider a distribution p over {0, 1}2 with p(00) = p(11) = 1
2

and p(01) =
p(10) = 0. Give a connected graph on {0, 1}2 that would be bad for running Metropolis-
Hastings and a graph that would be good for running Metropolis-Hastings. What would be
the problem with Gibbs sampling?

Exercise 4.15 Consider p(x) where x ∈ {0, 1}100 such that p (0) = 1
2

and p (x) = 1/2
(2100−1)

for x 6= 0. How does Gibbs sampling behave?

Exercise 4.16 Given a connected graph G and an integer k how would you generate
connected subgraphs of G with k vertices with probability proportional to the number of
edges in the subgraph? A subgraph of G does not need to have all edges of G that join
vertices of the subgraph. The probabilities need not be exactly proportional to the number
of edges and you are not expected to prove your algorithm for this problem.
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Exercise 4.17 Suppose one wishes to generate uniformly at random a regular, degree
three, undirected, not necessarily connected multi-graph with 1,000 vertices. A multi-
graph may have multiple edges between a pair of vertices and self loops. One decides to
do this by a Markov Chain Monte Carlo technique. In particular, consider a (very large)
network where each vertex corresponds to a regular degree three, 1,000 vertex multi-graph.
For edges, say that the vertices corresponding to two graphs are connected by an edge if
one graph can be obtained from the other by a flip of a pair of edges. In a flip, a pair of
edges (a, b) and (c, d) are replaced by (a, c) and (b, d).

1. Prove that the network whose vertices correspond to the desired graphs is connected.
That is, for any two 1000-vertex degree-3 multigraphs, it is possible to walk from
one to the other in this network.

2. Prove that the stationary probability of the random walk is uniform over all vertices.

3. Give an upper bound on the diameter of the network.

4. How would you modify the process if you wanted to uniformly generate connected
degree three multi-graphs?

In order to use a random walk to generate the graphs in in a reasonable amount of time,
the random walk must rapidly converge to the stationary probability. Proving this is beyond
the material in this book.

Exercise 4.18 Construct, program, and execute an algorithm to estimate the volume of
a unit radius sphere in 20 dimensions by carrying out a random walk on a 20 dimensional
grid with 0.1 spacing.

Exercise 4.19 What is the mixing time for the undirected graphs

1. Two cliques connected by a single edge?

2. A graph consisting of an n vertex clique plus one additional vertex connected to one
vertex in the clique.

Exercise 4.20 What is the mixing time for

1. G(n, p) with p = logn
n

?

2. A circle with n vertices where at each vertex an edge has been added to another
vertex chosen at random. On average each vertex will have degree four, two circle
edges, and an edge from that vertex to a vertex chosen at random, and possible some
edges that are the ends of the random edges from other vertices.

Exercise 4.21 Find the ε-mixing time for a 2-dimensional lattice with n vertices in each
coordinate direction with a uniform probability distribution. To do this solve the following
problems.
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1. The minimum number of edges leaving a set S of size greater than or equal to n2/4
is n.

2. The minimum number of edges leaving a set S of size less than or equal to n2/4 is
b
√
Sc.

3. Compute Φ(S)

4. Compute Φ

5. Computer the ε-mixing time

Exercise 4.22 Find the ε-mixing time for a d-dimensional lattice with n vertices in each
coordinate direction with a uniform probability distribution. To do this, solve the following
problems.

1. Select a direction say x1 and push all elements of S in each column perpendicular
to x1 = 0 as close to x1 = 0 as possible. Prove that the number of edges leaving S
is at least as large as the number leaving the modified version of S.

2. Repeat step one for each direction. Argue that for a direction say x1, as x1 gets
larger a set in the perpendicular plane is contained in the previous set.

3. Optimize the arrangements of elements in the plane x1 = 0 and move elements from
farthest out plane in to make all planes the same shape as x1 = 0 except for some
leftover elements of S in the last plane. Argue that this does not increase the number
of edges out.

4. What configurations might we end up with?

5. Argue that for a given size, S has at least as many edges as the modified version of
S.

6. What is Φ(S) for a modified form S?

7. What is Φ for a d-dimensional lattice?

8. What is the ε-mixing time?

Exercise 4.23

1. What is the set of possible harmonic functions on a connected graph if there are only
interior vertices and no boundary vertices that supply the boundary condition?

2. Let qx be the stationary probability of vertex x in a random walk on an undirected
graph where all edges at a vertex are equally likely and let dx be the degree of vertex
x. Show that qx

dx
is a harmonic function.

118



i1

i2

R1

R2

R3

Figure 4.14: An electrical network of resistors.

3. If there are multiple harmonic functions when there are no boundary conditions, why
is the stationary probability of a random walk on an undirected graph unique?

4. What is the stationary probability of a random walk on an undirected graph?

Exercise 4.24 In Section 4.5, given an electrical network, we define an associated Markov
chain such that voltages and currents in the electrical network corresponded to properties
of the Markov chain. Can we go in the reverse order and for any Markov chain construct
the equivalent electrical network?

Exercise 4.25 What is the probability of reaching vertex 1 before vertex 5 when starting
a random walk at vertex 4 in each of the following graphs.

1.

1 2 3 4 5

2.

1

2

3

4

6

5

Exercise 4.26 Consider the electrical resistive network in Figure 4.14 consisting of ver-
tices connected by resistors. Kirchoff’s law states that the currents at each vertex sum to
zero. Ohm’s law states that the voltage across a resistor equals the product of the resis-
tance times the current through it. Using these laws calculate the effective resistance of
the network.

Exercise 4.27 Consider the electrical network of Figure 4.15.
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R=1 R=2

R=1R=2

R=1a b

c

d

Figure 4.15: An electrical network of resistors.

1. Set the voltage at a to one and at b to zero. What are the voltages at c and d?

2. What is the current in the edges a to c, a to d, c to d. c to b and d to b?

3. What is the effective resistance between a and b?

4. Convert the electrical network to a graph. What are the edge probabilities at each
vertex?

5. What is the probability of a walk starting at c reaching a before b? a walk starting
at d reaching a before b?

6. What is the net frequency that a walk from a to b goes through the edge from c to
d?

7. What is the probability that a random walk starting at a will return to a before
reaching b?

Exercise 4.28 Consider a graph corresponding to an electrical network with vertices a
and b. Prove directly that

ceff

ca
must be less than or equal to one. We know that this is the

escape probability and must be at most 1. But, for this exercise, do not use that fact.

Exercise 4.29 (Thomson’s Principle) The energy dissipated by the resistance of edge xy
in an electrical network is given by i2xyrxy. The total energy dissipation in the network
is E = 1

2

∑
x,y

i2xyrxy where the 1
2

accounts for the fact that the dissipation in each edge is

counted twice in the summation. Show that the actual current distribution is the distribu-
tion satisfying Ohm’s law that minimizes energy dissipation.

Exercise 4.30 (Rayleigh’s law) Prove that reducing the value of a resistor in a network
cannot increase the effective resistance. Prove that increasing the value of a resistor cannot
decrease the effective resistance. You may use Thomson’s principle Exercise 4.29.
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u uu v vv

Figure 4.16: Three graphs

1 2 3 4

1 2 3 4

1 2 3 4(a)

(b)

(c)

Figure 4.17: Three graph

Exercise 4.31 What is the hitting time huv for two adjacent vertices on a cycle of length
n? What is the hitting time if the edge (u, v) is removed?

Exercise 4.32 What is the hitting time huv for the three graphs if Figure 4.16.

Exercise 4.33 Show that adding an edge can either increase or decrease hitting time by
calculating h24 for the three graphs in Figure 4.17.

Exercise 4.34 Consider the n vertex connected graph shown in Figure 4.18 consisting
of an edge (u, v) plus a connected graph on n − 1 vertices and m edges. Prove that
huv = 2m+ 1 where m is the number of edges in the n− 1 vertex subgraph.

Exercise 4.35 Consider a random walk on a clique of size n. What is the expected
number of steps before a given vertex is reached?

Exercise 4.36 What is the most general solution to the difference equation t(i + 2) −
5t(i + 1) + 6t(i) = 0. How many boundary conditions do you need to make the solution
unique?
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u vn− 1
vertices
m edges

Figure 4.18: A connected graph consisting of n − 1 vertices and m edges along with a
single edge (u, v).

Exercise 4.37 Given the difference equation akt(i+ k) + ak−1t(i+ k− 1) + · · ·+ a1t(i+
1)+a0t(i) = 0 the polynomial akt

k+ak−it
k−1 + · · ·+a1t+a0 = 0 is called the characteristic

polynomial.

1. If the equation has a set of r distinct roots, what is the most general form of the
solution?

2. If the roots of the characteristic polynomial are not distinct what is the most general
form of the solution?

3. What is the dimension of the solution space?

4. If the difference equation is not homogeneous (i.e., the right hand side is not 0) and
f(i) is a specific solution to the nonhomogeneous difference equation, what is the full
set of solutions to the difference equation?

Exercise 4.38 Show that adding an edge to a graph can either increase or decrease com-
mute time.

Exercise 4.39 Given the integers 1 to n, what is the expected number of draws with
replacement until the integer 1 is drawn.

Exercise 4.40 Consider the set of integers {1, 2, . . . , n}. What is the expected number
of draws d with replacement so that every integer is drawn?

Exercise 4.41 For each of the three graphs below what is the return time starting at
vertex A? Express your answer as a function of the number of vertices, n, and then
express it as a function of the number of edges m.

A B

n vertices

a

A

B

← n− 2→
b

n− 1
clique

A

B

c
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Exercise 4.42 Suppose that the clique in Exercise 4.41 was replaced by an arbitrary graph
with m− 1 edges. What would be the return time to A in terms of m, the total number of
edges.

Exercise 4.43 Suppose that the clique in Exercise 4.41 was replaed by an arbitrary graph
with m− d edges and there were d edges from A to the graph. What would be the expected
length of a random path starting at A and ending at A after returning to A exactly d
times.

Exercise 4.44 Given an undirected graph with a component consisting of a single edge
find two eigenvalues of the Laplacian L = D−A where D is a diagonal matrix with vertex
degrees on the diagonal and A is the adjacency matrix of the graph.

Exercise 4.45 A researcher was interested in determining the importance of various
edges in an undirected graph. He computed the stationary probability for a random walk
on the graph and let pi be the probability of being at vertex i. If vertex i was of degree
di, the frequency that edge (i, j) was traversed from i to j would be 1

di
pi and the frequency

that the edge was traversed in the opposite direction would be 1
dj
pj. Thus, he assigned an

importance of
∣∣∣ 1
di
pi − 1

dj
pj

∣∣∣ to the edge. What is wrong with his idea?

Exercise 4.46 Prove that two independent random walks starting at the origin on a two
dimensional lattice will eventually meet with probability one.

Exercise 4.47 Suppose two individuals are flipping balanced coins and each is keeping
tract of the number of heads minus the number of tails. Will both individual’s counts ever
return to zero at the same time?

Exercise 4.48 Consider the lattice in 2-dimensions. In each square add the two diagonal
edges. What is the escape probability for the resulting graph?

Exercise 4.49 Determine by simulation the escape probability for the 3-dimensional lat-
tice.

Exercise 4.50 What is the escape probability for a random walk starting at the root of
an infinite binary tree?

Exercise 4.51 Consider a random walk on the positive half line, that is the integers
0, 1, 2, . . .. At the origin, always move right one step. At all other integers move right
with probability 2/3 and left with probability 1/3. What is the escape probability?

Exercise 4.52 Consider the graphs in Figure 4.19. Calculate the stationary distribution
for a random walk on each graph and the flow through each edge. What condition holds
on the flow through edges in the undirected graph? In the directed graph?
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A B

CD

E

A B

CD

Figure 4.19: An undirected and a directed graph.

Exercise 4.53 Create a random directed graph with 200 vertices and roughly eight edges
per vertex. Add k new vertices and calculate the pagerank with and without directed edges
from the k added vertices to vertex 1. How much does adding the k edges change the
pagerank of vertices for various values of k and restart frequency? How much does adding
a loop at vertex 1 change the pagerank? To do the experiment carefully one needs to
consider the pagerank of a vertex to which the star is attached. If it has low pagerank its
page rank is likely to increase a lot.

Exercise 4.54 Repeat the experiment in Exercise 4.53 for hitting time.

Exercise 4.55 Search engines ignore self loops in calculating pagerank. Thus, to increase
pagerank one needs to resort to loops of length two. By how much can you increase the
page rank of a page by adding a number of loops of length two?

Exercise 4.56 Number the vertices of a graph {1, 2, . . . , n}. Define hitting time to be the
expected time from vertex 1. In (2) assume that the vertices in the cycle are sequentially
numbered.

1. What is the hitting time for a vertex in a complete directed graph with self loops?

2. What is the hitting time for a vertex in a directed cycle with n vertices?

Create exercise relating strongly connected and full rank
Full rank implies strongly connected.
Strongly connected does not necessarily imply full rank 0 0 1

0 0 1
1 1 0


Is graph aperiodic iff λ1 > λ2?
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Exercise 4.57 Using a web browser bring up a web page and look at the source html.
How would you extract the url’s of all hyperlinks on the page if you were doing a crawl
of the web? With Internet Explorer click on “source” under “view” to access the html
representation of the web page. With Firefox click on “page source” under “view”.

Exercise 4.58 Sketch an algorithm to crawl the World Wide Web. There is a time delay
between the time you seek a page and the time you get it. Thus, you cannot wait until the
page arrives before starting another fetch. There are conventions that must be obeyed if
one were to actually do a search. Sites specify information as to how long or which files
can be searched. Do not attempt an actual search without guidance from a knowledgeable
person.
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5 Machine Learning

5.1 Introduction

Machine learning algorithms are general purpose tools that solve problems from many
disciplines without detailed domain-specific knowledge. They have proven to be very
effective in a large number of contexts, including computer vision, speech recognition,
document classification, automated driving, computational science, and decision support.

The core problem. A core problem underlying many machine learning applications
is learning a good classification rule from labeled data. This problem consists of a do-
main of interest X , called the instance space, such as email messages or patient records,
and a classification task, such as classifying email messages into spam versus non-spam
or determining which patients will respond well to a given medical treatment. We will
typically assume our instance space X = {0, 1}d or X = Rd, corresponding to data that is
described by d Boolean or real-valued features. Features for email messages could be the
presence or absence of various types of words, and features for patient records could be
the results of various medical tests. To perform the learning task, our learning algorithm
is given a set S of labeled training examples, which are points in X along with their
correct classification. This training data could be a collection of email messages, each
labeled as spam or not spam, or a collection of patients, each labeled by whether or not
they responded well to the given medical treatment. Our algorithm then aims to use the
training examples to produce a classification rule that will perform well over new data.
A key feature of machine learning, which distinguishes it from other algorithmic tasks, is
that our goal is generalization: to use one set of data in order to perform well on new data
we have not seen yet. We focus on binary classification where items in the domain of inter-
est are classified into two categories, as in the medical and spam-detection examples above.

How to learn. A high-level approach to solving this problem that many algorithms
we discuss will follow is to try to find a “simple” rule with good performance on the
training data. For instance in the case of classifying email messages, we might find a set
of highly indicative words such that every spam email in the training data has at least
one of these words and none of the non-spam emails has any of them; in this case, the
rule “if the message has any of these words then it is spam, else it is not” would be a
simple rule that performs well on the training data. Or, we might find a way of weighting
words with positive and negative weights such that the total weighted sum of words in
the email message is positive on the spam emails in the training data, and negative on the
non-spam emails. We will then argue that so long as the training data is representative of
what future data will look like, we can be confident that any sufficiently “simple” rule that
performs well on the training data will also perform well on future data. To make this into
a formal mathematical statement, we need to be precise about what we mean by “simple”
as well as what it means for training data to be “representative” of future data. In fact,
we will see several notions of complexity, including bit-counting and VC-dimension, that
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will allow us to make mathematical statements of this form. These statements can be
viewed as formalizing the intuitive philosophical notion of Occam’s razor.

Formalizing the problem. To formalize the learning problem, assume there is some
probability distribution D over the instance space X , such that (a) our training set S
consists of points drawn independently at random from D, and (b) our objective is to
predict well on new points that are also drawn from D. This is the sense in which we
assume that our training data is representative of future data. Let c∗, called the target
concept, denote the subset of X corresponding to the positive class for the binary classifi-
cation we are aiming to make. For example, c∗ would correspond to the set of all patients
who respond well to the treatment in the medical example, or the set of all spam emails
in the spam-detection setting. So, each point in our training set S is labeled according
to whether or not it belongs to c∗ and our goal is to produce a set h ⊆ X , called our
hypothesis, which is close to c∗ with respect to distribution D. The true error of h is
errD(h) = Prob(h4c∗) where “4” denotes symmetric difference, and probability mass is
according to D. In other words, the true error of h is the probability it incorrectly clas-
sifies a data point drawn at random from D. Our goal is to produce h of low true error.
The training error of h, denoted errS(h), is the fraction of points in S on which h and
c∗ disagree. That is, errS(h) = |S ∩ (h4c∗)|/|S|. Training error is also called empirical
error. Note that even though S is assumed to consist of points randomly drawn from D,
it is possible for a hypothesis h to have low training error or even to completely agree with
c∗ over the training sample, and yet have high true error. This is called overfitting the
training data. For instance, a hypothesis h that simply consists of listing the positive ex-
amples in S, which is equivalent to a rule that memorizes the training sample and predicts
positive on an example if and only if it already appeared positively in the training sample,
would have zero training error. However, this hypothesis likely would have high true error
and therefore would be highly overfitting the training data. More generally, overfitting is
a concern because algorithms will typically be optimizing over the training sample. To
design and analyze algorithms for learning, we will have to address the issue of overfitting.

To be able to formally analyze overfitting, we introduce the notion of an hypothesis
class, also called a concept class or set system. An hypothesis classH over X is a collection
of subsets of X , called hypotheses. For instance, the class of intervals over X = R is the
collection {[a, b]|a ≤ b}. The class of linear separators over X = Rd is the collection

{{x ∈ Rd|w · x ≥ w0}|w ∈ Rd, w0 ∈ R};

that is, it is the collection of all sets in Rd that are linearly separable from their comple-
ment. In the case that X is the set of 4 points in the plane {(−1,−1), (−1, 1), (1,−1), (1, 1)},
the class of linear separators contains 14 of the 24 = 16 possible subsets of X .17 Given an
hypothesis class H and training set S, what we typically aim to do algorithmically is to
find the hypothesis in H that most closely agrees with c∗ over S. To address overfitting,

17The only two subsets that are not in the class are the sets {(−1,−1), (1, 1)} and {(−1, 1), (1,−1)}.
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we argue that if S is large enough compared to some property of H, then with high prob-
ability all h ∈ H have their training error close to their true error, so that if we find a
hypothesis whose training error is low, we can be confident its true error will be low as well.

Before giving our first result of this form, we note that it will often be convenient to
associate each hypotheses with its {−1, 1}-valued indicator function

h(x) =

{
1 x ∈ h
−1 x 6∈ h

In this notation the true error of h is errD(h) = Probx∼D[h(x) 6= c∗(x)] and the training
error is errS(h) = Probx∼S[h(x) 6= c∗(x)].

5.2 Overfitting and Uniform Convergence

We now present two results that explain how one can guard against overfitting. Given
a class of hypotheses H, the first result states that for any given ε greater than zero, so
long as the training data set is large compared to 1

ε
ln(|H|), it is unlikely any hypothesis

h ∈ H will have zero training error but have true error greater than ε. This means that
with high probability, any hypothesis that our algorithms finds that agrees with the target
hypothesis on the training data will have low true error. The second result states that if
the training data set is large compared to 1

ε2
ln(|H|), then it is unlikely that the training

error and true error will differ by more than ε for any hypothesis in H. This means that if
we find an hypothesis in H whose training error is low, we can be confident its true error
will be low as well, even if its training error is not zero.

The basic idea is the following. If we consider some h with large true error, and we
select an element x ∈ X at random according to D, there is a reasonable chance that
x will belong to the symmetric difference h4c∗. If we select a large enough training
sample S with each point drawn independently from X according to D, the chance that
S is completely disjoint from h4c∗ will be incredibly small. This is just for a single
hypothesis h but we can now apply the union bound over all h ∈ H of large true error,
when H is finite. We formalize this below.

Theorem 5.1 Let H be an hypothesis class and let ε and δ be greater than zero. If a
training set S of size

n ≥ 1

ε

(
ln |H|+ ln(1/δ)

)
,

is drawn from distribution D, then with probability greater than or equal to 1− δ every h
in H with with true error errD(h) ≥ ε has training error errS(h) > 0. Equivalently, with
probability greater than or equal to 1 − δ, every h ∈ H with training error zero has true
error less than ε.

Proof: Let h1, h2, . . . be the hypotheses in H with true error greater than or equal to ε.
These are the hypotheses that we don’t want to output. Consider drawing the sample S
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Not spam︷ ︸︸ ︷ Spam︷ ︸︸ ︷
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 emails

↓ ↓ ↓
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 target concept

l l l
0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 hypothesis hi

↑ ↑ ↑

Figure 5.1: The hypothesis hi disagrees with the truth in one quarter of the emails. Thus
with a training set |S|, the probability that the hypothesis will survive is (1− 0.25)|S|

of size n and let Ai be the event that hi is consistent with S. Since every hi has true error
greater than or equal to ε

Prob(Ai) ≤ (1− ε)n.

In other words, if we fix hi and draw a sample S of size n, the chance that hi makes no
mistakes on S is at most the probability that a coin of bias ε comes up tails n times in a
row, which is (1− ε)n. By the union bound over all i we have

Prob (∪iAi) ≤ |H|(1− ε)n.

Using the fact that (1− ε) ≤ e−ε, the probability that any hypothesis in H with true error
greater than or equal to ε has training error zero is at most |H|e−εn. Replacing n by the
sample size bound from the theorem statement, this is at most |H|e− ln |H|−ln(1/δ) = δ as
desired.

The conclusion of Theorem 5.1 is sometimes called a “PAC-learning guarantee” since
it states that if we can find an h ∈ H consistent with the sample, then this h is Probably
Approximately Correct.

Theorem 5.1 addressed the case where there exists a hypothesis in H with zero train-
ing error. What if the best hi in H has 5% error on S? Can we still be confident that its
true error is low, say at most 10%? For this, we want an analog of Theorem 5.1 that says
for a sufficiently large training set S, every hi ∈ H has training error within ±ε of the
true error with high probability. Such a statement is called uniform convergence because
we are asking that the training set errors converge to their true errors uniformly over all
sets in H. To see intuitively why such a statement should be true for sufficiently large
S and a single hypothesis hi, consider two strings that differ in 10% of the positions and
randomly select a large sample of positions. The number of positions that differ in the
sample will be close to 10%.

To prove uniform convergence bounds, we use a tail inequality for sums of independent
Bernoulli random variables (i.e., coin tosses). The following is particularly convenient and
is a variation on the Chernoff bounds in Section 12.4.11 of the appendix.
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Theorem 5.2 (Hoeffding bounds) Let x1, x2, . . . , xn be independent {0, 1}-valued ran-
dom variables with probability p that xi equals one. Let s =

∑
i xi (equivalently, flip n

coins of bias p and let s be the total number of heads). For any 0 ≤ α ≤ 1,

Prob(s/n > p+ α) ≤ e−2nα2

Prob(s/n < p− α) ≤ e−2nα2

.

Theorem 5.2 implies the following uniform convergence analog of Theorem 5.1.

Theorem 5.3 (Uniform convergence) Let H be a hypothesis class and let ε and δ be
greater than zero. If a training set S of size

n ≥ 1

2ε2
(

ln |H|+ ln(2/δ)
)
,

is drawn from distribution D, then with probability greater than or equal to 1− δ, every h
in H satisfies |errS(h)− errD(h)| ≤ ε.

Proof: First, fix some h ∈ H and let xj be the indicator random variable for the event
that h makes a mistake on the jth example in S. The xj are independent {0, 1} random
variables and the probability that xi equals 1 is the true error of h, and the fraction of the
xj’s equal to 1 is exactly the training error of h. Therefore, Hoeffding bounds guarantee
that the probability of the event Ah that |errD(h)− errS(h)| > ε is less than or equal to
2e−2nε2 . Applying the union bound to the events Ah over all h ∈ H, the probability that
there exists an h ∈ H with the difference between true error and empirical error greater
than ε is less than or equal to 2|H|e−2nε2. Using the value of n from the theorem statement,
the right-hand-side of the above inequality is at most δ as desired.

Theorem 5.3 justifies the approach of optimizing over our training sample S even if we
are not able to find a rule of zero training error. If our training set S is sufficiently large,
with high probability, good performance on S will translate to good performance on D.

Note that Theorems 5.1 and 5.3 require |H| to be finite in order to be meaningful.
The notion of growth functions and VC-dimension in Section 5.9, extend Theorem 5.3 to
certain infinite hypothesis classes.

5.3 Illustrative Examples and Occam’s Razor

We now present some examples to illustrate the use of Theorem 5.1 and 5.3 and also
use these theorems to give a formal connection to the notion of Occam’s razor.

5.3.1 Learning Disjunctions

Consider the instance space X = {0, 1}d and suppose we believe that the target concept
can be represented by a disjunction (an OR) over features, such as c∗ = {x|x1 = 1∨ x4 =
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1∨x8 = 1}, or more succinctly, c∗ = x1∨x4∨x8. For example, if we are trying to predict
whether an email message is spam or not, and our features correspond to the presence
or absence of different possible indicators of spam-ness, then this would correspond to
the belief that there is some subset of these indicators such that every spam email has at
least one of them and every non-spam email has none of them. Formally, let H denote
the class of disjunctions, and notice that |H| = 2d. So, by Theorem 5.1, it suffices to find
a consistent disjunction over a sample S of size

|S| = 1

ε

(
d ln(2) + ln(1/δ)

)
.

How can we efficiently find a consistent disjunction when one exists? Here is a simple
algorithm.

Simple Disjunction Learner: Given sample S, discard all features that are set to 1 in
any negative example in S. Output the concept h that is the OR of all features that remain.

Lemma 5.4 The Simple Disjunction Learner produces a disjunction h that is consis-
tent with the sample S (i.e., with errS(h) = 0) whenever the target concept is indeed a
disjunction.

Proof: Suppose target concept c∗ is a disjunction. Then for any xi that is listed in c∗,
xi will not be set to 1 in any negative example by definition of an OR. Therefore, h will
include xi as well. Since h contains all variables listed in c∗, this ensures that h will
correctly predict positive on all positive examples in S. Furthermore, h will correctly
predict negative on all negative examples in S since by design all features set to 1 in any
negative example were discarded. Therefore, h is correct on all examples in S.

Thus, combining Lemma 5.4 with Theorem 5.1, we have an efficient algorithm for
PAC-learning the class of disjunctions.

5.3.2 Occam’s Razor

Occam’s razor is the notion, stated by William of Occam around AD 1320, that in general
one should prefer simpler explanations over more complicated ones.18 Why should one
do this, and can we make a formal claim about why this is a good idea? What if each of
us disagrees about precisely which explanations are simpler than others? It turns out we
can use Theorem 5.1 to make a mathematical statement of Occam’s razor that addresses
these issues.

First, what do we mean by a rule being “simple”? Let’s assume that each of us has
some way of describing rules, using bits (since we are computer scientists). The methods,
also called description languages, used by each of us may be different, but one fact we can

18The statement more explicitly was that “Entities should not be multiplied unnecessarily.”
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Figure 5.2: A decision tree with three internal nodes and four leaves. This tree corresponds
to the Boolean function x̄1x̄2 ∨ x1x2x3 ∨ x2x̄3.

say for certain is that in any given description language, there are at most 2b rules that
can be described using fewer than b bits (because 1 + 2 + 4 + . . .+ 2b−1 < 2b). Therefore,
by setting H to be the set of all rules that can be described in fewer than b bits and
plugging into Theorem 5.1, yields the following:

Theorem 5.5 (Occam’s razor) Fix any description language, and consider a training
sample S drawn from distribution D. With probability at least 1− δ, any rule h consistent
with S that can be described in this language using fewer than b bits will have errD(h) ≤ ε
for |S| = 1

ε
[b ln(2) + ln(1/δ)]. Equivalently, with probability at least 1 − δ, all rules that

can be described in fewer than b bits will have errD(h) ≤ b ln(2)+ln(1/δ)
|S| .

For example, using the fact that ln(2) < 1 and ignoring the low-order ln(1/δ) term, this
means that if the number of bits it takes to write down a rule consistent with the training
data is at most 10% of the number of data points in our sample, then we can be confident
it will have error at most 10% with respect to D. What is perhaps surprising about this
theorem is that it means that we can each have different ways of describing rules and yet
all use Occam’s razor. Note that the theorem does not say that complicated rules are
necessarily bad, or even that given two rules consistent with the data that the complicated
rule is necessarily worse. What it does say is that Occam’s razor is a good policy in that
simple rules are unlikely to fool us since there are just not that many simple rules.

5.3.3 Application: Learning Decision Trees

One popular practical method for machine learning is to learn a decision tree; see Figure
5.2. While finding the smallest decision tree that fits a given training sample S is NP-
hard, there are a number of heuristics that are used in practice.19 Suppose we run such
a heuristic on a training set S and it outputs a tree with k nodes. Such a tree can be

19For instance, one popular heuristic, called ID3, selects the feature to put inside any given node v
by choosing the feature of largest information gain, a measure of how much it is directly improving
prediction. Formally, using Sv to denote the set of examples in S that reach node v, and supposing that
feature xi partitions Sv into S0

v and S1
v (the examples in Sv with xi = 0 and xi = 1, respectively), the
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described using O(k log d) bits: log2(d) bits to give the index of the feature in the root,
O(1) bits to indicate for each child if it is a leaf and if so what label it should have, and
then O(kL log d) and O(kR log d) bits respectively to describe the left and right subtrees,
where kL is the number of nodes in the left subtree and kR is the number of nodes in the
right subtree. So, by Theorem 5.5, we can be confident the true error is low if we can
produce a consistent tree with fewer than ε|S|/ log(d) nodes.

5.4 Regularization: Penalizing Complexity

Theorems 5.3 and 5.5 suggest the following idea. Suppose that there is no simple rule
that is perfectly consistent with the training data, but we notice there are very simple
rules with training error 20%, say, and then some more complex rules with training error
10%, and so on. In this case, perhaps we should optimize some combination of training er-
ror and simplicity. This is the notion of regularization, also called complexity penalization.

Specifically, a regularizer is a penalty term that penalizes more complex hypotheses.
Given our theorems so far, a natural measure of complexity of a hypothesis is the number
of bits we need to write it down.20 Consider now fixing some description language, and let
Hi denote those hypotheses that can be described in i bits in this language, so |Hi| ≤ 2i.
Let δi = δ/2i. Rearranging the bound of Theorem 5.3, we know that with probability at

least 1 − δi, all h ∈ Hi satisfy errD(h) ≤ errS(h) +
√

ln(|Hi|)+ln(2/δi)
2|S| . Now, applying the

union bound over all i, using the fact that δ1 + δ2 + δ3 + . . . = δ, and also the fact that
ln(|Hi|) + ln(2/δi) ≤ i ln(4) + ln(2/δ), gives the following corollary.

Corollary 5.6 Fix any description language, and consider a training sample S drawn
from distribution D. With probability greater than or equal to 1 − δ, all hypotheses h
satisfy

errD(h) ≤ errS(h) +

√
size(h) ln(4) + ln(2/δ)

2|S|

where size(h) denotes the number of bits needed to describe h in the given language.

Corollary 5.6 gives us the tradeoff we were looking for. It tells us that rather than
searching for a rule of low training error, we instead may want to search for a rule with
a low right-hand-side in the displayed formula. If we can find one for which this quantity
is small, we can be confident true error will be low as well.

information gain of xi is defined as: Ent(Sv)− [
|S0

v|
|Sv|Ent(S

0
v) +

|S1
v|
|Sv|Ent(S

1
v)]. Here, Ent(S′) is the binary

entropy of the label proportions in set S′; that is, if a p fraction of the examples in S′ are positive, then
Ent(S′) = p log2(1/p) + (1−p) log2(1/(1−p)), defining 0 log2(0) = 0. This then continues until all leaves
are pure—they have only positive or only negative examples.

20Later we will see support vector machines that use a regularizer for linear separators based on the
margin of separation of data.
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5.5 Online Learning and the Perceptron Algorithm

So far we have been considering what is often called the batch learning scenario. You are
given a “batch” of data—the training sample S—and your goal is to use it to produce
a hypothesis h that will have low error on new data, under the assumption that both S
and the new data are sampled from some fixed distribution D. We now switch to the
more challenging online learning scenario where we remove the assumption that data is
sampled from a fixed probability distribution, or from any probabilistic process at all.

Specifically, the online learning scenario proceeds as follows. At each time t = 1, 2, . . .:

1. The algorithm is presented with an arbitrary example xt ∈ X and is asked to make
a prediction `t of its label.

2. The algorithm is told the true label of the example c∗(xt) and is charged for a
mistake if c∗(xt) 6= `t.

The goal of the learning algorithm is to make as few mistakes as possible in total. For
example, consider an email classifier that when a new email message arrives must classify
it as “important” or “it can wait”. The user then looks at the email and informs the
algorithm if it was incorrect. We might not want to model email messages as independent
random objects from a fixed probability distribution, because they often are replies to
previous emails and build on each other. Thus, the online learning model would be more
appropriate than the batch model for this setting.

Intuitively, the online learning model is harder than the batch model because we have
removed the requirement that our data consists of independent draws from a fixed proba-
bility distribution. Indeed, we will see shortly that any algorithm with good performance
in the online model can be converted to an algorithm with good performance in the batch
model. Nonetheless, the online model can sometimes be a cleaner model for design and
analysis of algorithms.

5.5.1 An Example: Learning Disjunctions

As a simple example, let’s revisit the problem of learning disjunctions in the online model.
We can solve this problem by starting with a hypothesis h = x1 ∨ x2 ∨ . . . ∨ xd and using
it for prediction. We will maintain the invariant that every variable in the target disjunc-
tion is also in our hypothesis, which is clearly true at the start. This ensures that the
only mistakes possible are on examples x for which h(x) is positive but c∗(x) is negative.
When such a mistake occurs, we simply remove from h any variable set to 1 in x. Since
such variables cannot be in the target function (since x was negative), we maintain our
invariant and remove at least one variable from h. This implies that the algorithm makes
at most d mistakes total on any series of examples consistent with a disjunction.
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In fact, we can show this bound is tight by showing that no deterministic algorithm
can guarantee to make fewer than d mistakes.

Theorem 5.7 For any deterministic algorithm A there exists a sequence of examples σ
and disjunction c∗ such that A makes at least d mistakes on sequence σ labeled by c∗.

Proof: Let σ be the sequence e1, e2, . . . , ed where ej is the example that is zero everywhere
except for a 1 in the jth position. Imagine running A on sequence σ and telling A it made
a mistake on every example; that is, if A predicts positive on ej we set c∗(ej) = −1 and if
A predicts negative on ej we set c∗(ej) = +1. This target corresponds to the disjunction
of all xj such that A predicted negative on ej, so it is a legal disjunction. Since A is
deterministic, the fact that we constructed c∗ by running A is not a problem: it would
make the same mistakes if re-run from scratch on the same sequence and same target.
Therefore, A makes d mistakes on this σ and c∗.

5.5.2 The Halving Algorithm

If we are not concerned with running time, a simple algorithm that guarantees to make at
most log2(|H|) mistakes for a target belonging to any given class H is called the halving
algorithm. This algorithm simply maintains the version space V ⊆ H consisting of all
h ∈ H consistent with the labels on every example seen so far, and predicts based on
majority vote over these functions. Each mistake is guaranteed to reduce the size of the
version space V by at least half (hence the name), thus the total number of mistakes is
at most log2(|H|). Note that this can be viewed as the number of bits needed to write a
function in H down.

5.5.3 The Perceptron Algorithm

The Perceptron algorithm is an efficient algorithm for learning a linear separator in d-
dimensional space, with a mistake bound that depends on the margin of separation of
the data. Specifically, the assumption is that the target function can be described by a
vector w∗ such that for each positive example x we have xTw∗ ≥ 1 and for each negative
example x we have xTw∗ ≤ −1. Note that if we think of the examples x as points in
space, then xTw∗/|w∗| is the distance of x to the hyperplane xTw∗ = 0. Thus, we can
view our assumption as stating that there exists a linear separator through the origin
with all positive examples on one side, all negative examples on the other side, and all
examples at distance at least γ = 1/|w∗| from the separator. This quantity γ is called
the margin of separation (see Figure 5.3).

The guarantee of the Perceptron algorithm will be that the total number of mistakes is
at most (R/γ)2 where R = maxt |xt| over all examples xt seen so far. Thus, if there exists
a hyperplane through the origin that correctly separates the positive examples from the
negative examples by a large margin relative to the radius of the smallest ball enclosing
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margin

Figure 5.3: Margin of a linear separator.

the data, then the total number of mistakes will be small. The algorithm is very simple
and proceeds as follows.

The Perceptron Algorithm: Start with the all-zeroes weight vector w = 0. Then, for
t = 1, 2, . . . do:

1. Given example xt, predict sgn(xTt w).

2. If the prediction was a mistake, then update:

(a) If xt was a positive example, let w← w + xt.

(b) If xt was a negative example, let w← w − xt.

While simple, the Perceptron algorithm enjoys a strong guarantee on its total number
of mistakes.

Theorem 5.8 On any sequence of examples x1,x2, . . ., if there exists a vector w∗ such
that xTt w∗ ≥ 1 for the positive examples and xTt w∗ ≤ −1 for the negative examples (i.e.,
a linear separator of margin γ = 1/|w∗|), then the Perceptron algorithm makes at most
R2|w∗|2 mistakes, where R = maxt |xt|.

To get a feel for this bound, notice that if we multiply all entries in all the xt by 100, we
can divide all entries in w∗ by 100 and it will still satisfy the “if”condition. So the bound
is invariant to this kind of scaling, i.e., to what our “units of measurement” are.

Proof of Theorem 5.8: Fix some consistent w∗. We will keep track of two quantities,
wTw∗ and |w|2. First of all, each time we make a mistake, wTw∗ increases by at least 1.
That is because if xt is a positive example, then

(w + xt)
Tw∗ = wTw∗ + xTt w∗ ≥ wTw∗ + 1,
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by definition of w∗. Similarly, if xt is a negative example, then

(w − xt)
Tw∗ = wTw∗ − xTt w∗ ≥ wTw∗ + 1.

Next, on each mistake, we claim that |w|2 increases by at most R2. Let us first consider
mistakes on positive examples. If we make a mistake on a positive example xt then we
have

(w + xt)
T (w + xt) = |w|2 + 2xTt w + |xt|2 ≤ |w|2 + |xt|2 ≤ |w|2 +R2,

where the middle inequality comes from the fact that we made a mistake, which means
that xTt w ≤ 0. Similarly, if we make a mistake on a negative example xt then we have

(w − xt)
T (w − xt) = |w|2 − 2xTt w + |xt|2 ≤ |w|2 + |xt|2 ≤ |w|2 +R2.

Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then wTw∗ ≥ M , and |w|2 ≤ MR2, or equivalently,
|w| ≤ R

√
M . Finally, we use the fact that wTw∗/|w∗| ≤ |w| which is just saying that

the projection of w in the direction of w∗ cannot be larger than the length of w. This
gives us:

M/|w∗| ≤ R
√
M√

M ≤ R|w∗|
M ≤ R2|w∗|2

as desired.

5.5.4 Extensions: Inseparable Data and Hinge Loss

We assumed above that there existed a perfect w∗ that correctly classified all the exam-
ples, e.g., correctly classified all the emails into important versus non-important. This
is rarely the case in real-life data. What if even the best w∗ isn’t quite perfect? We
can see what this does to the above proof: if there is an example that w∗ doesn’t cor-
rectly classify, then while the second part of the proof still holds, the first part (the dot
product of w with w∗ increasing) breaks down. However, if this doesn’t happen too of-
ten, and also xTt w∗ is just a “little bit wrong” then we will only make a few more mistakes.

To make this formal, define the hinge-loss of w∗ on a positive example xt as max(0, 1−
xTt w∗). In other words, if xTt w∗ ≥ 1 as desired then the hinge-loss is zero; else, the hinge-
loss is the amount the LHS is less than the RHS.21 Similarly, the hinge-loss of w∗ on a
negative example xt is max(0, 1 + xTt w∗). Given a sequence of labeled examples S, define
the total hinge-loss Lhinge(w

∗, S) as the sum of hinge-losses of w∗ on all examples in S.
We now get the following extended theorem.

21This is called “hinge-loss” because as a function of xTt w
∗ it looks like a hinge.
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Theorem 5.9 On any sequence of examples S = x1,x2, . . ., the Perceptron algorithm
makes at most

min
w∗

(
R2|w∗|2 + 2Lhinge(w

∗, S)
)

mistakes, where R = maxt |xt|.

Proof: As before, each update of the Perceptron algorithm increases |w|2 by at most R2,
so if the algorithm makes M mistakes, we have |w|2 ≤MR2.

What we can no longer say is that each update of the algorithm increases wTw∗ by
at least 1. Instead, on a positive example we are “increasing” wTw∗ by xTt w∗ (it could
be negative), which is at least 1 − Lhinge(w

∗,xt). Similarly, on a negative example we
“increase” wTw∗ by −xTt w∗, which is also at least 1 − Lhinge(w∗,xt). If we sum this up
over all mistakes, we get that at the end we have wTw∗ ≥ M − Lhinge(w∗, S), where we
are using here the fact that hinge-loss is never negative so summing over all of S is only
larger than summing over the mistakes that w made.

Finally, we just do some algebra. Let L = Lhinge(w
∗, S). So we have:

wTw∗/|w∗| ≤ |w|
(wTw∗)2 ≤ |w|2|w∗|2

(M − L)2 ≤ MR2|w∗|2

M2 − 2ML+ L2 ≤ MR2|w∗|2

M − 2L+ L2/M ≤ R2|w∗|2

M ≤ R2|w∗|2 + 2L− L2/M ≤ R2|w∗|2 + 2L

as desired.

5.6 Kernel Functions

What if even the best w∗ has high hinge-loss? E.g., perhaps instead of a linear separator
decision boundary, the boundary between important emails and unimportant emails looks
more like a circle, for example as in Figure 5.4.

A powerful idea for addressing situations like this is to use what are called kernel
functions, or sometimes the “kernel trick”. Here is the idea. Suppose you have a function
K, called a “kernel”, over pairs of data points such that for some function φ : Rd → RN ,
where perhaps N � d, we have K(x,x′) = φ(x)Tφ(x′). In that case, if we can write
the Perceptron algorithm so that it only interacts with the data via dot-products, and
then replace every dot-product with an invocation of K, then we can act as if we had
performed the function φ explicitly without having to actually compute φ.

For example, consider K(x,x′) = (1 + xTx′)k for some integer k ≥ 1. It turns out this
corresponds to a mapping φ into a space of dimension N ≈ dk. For example, in the case
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Figure 5.4: Data that is not linearly separable in the input space R2 but that is linearly
separable in the “φ-space,” φ(x) = (1,

√
2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2), corresponding to the

kernel function K(xty) = (1 + x1x2 + y1y2)2.

d = 2, k = 2 we have (using xi to denote the ith coordinate of x):

K(x,x′) = (1 + x1x
′
1 + x2x

′
2)2

= 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1x
′2
1 + 2x1x2x

′
1x
′
2 + x2

2x
′2
2

= φ(x)Tφ(x′)

for φ(x) = (1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2). Notice also that a linear separator in this

space could correspond to a more complicated decision boundary such as an ellipse in
the original space. For instance, the hyperplane φ(x)Tw∗ = 0 for w∗ = (−4, 0, 0, 1, 0, 1)
corresponds to the circle x2

1 + x2
2 = 4 in the original space, such as in Figure 5.4.

The point of this is that if in the higher-dimensional “φ-space” there is a w∗ such that
the bound of Theorem 5.9 is small, then the algorithm will perform well and make few
mistakes. But the nice thing is we didn’t have to computationally perform the mapping φ!

So, how can we view the Perceptron algorithm as only interacting with data via dot-
products? Notice that w is always a linear combination of data points. For example, if we
made mistakes on the first, second and fifth examples, and these examples were positive,
positive, and negative respectively, we would have w = x1+x2−x5. So, if we keep track of
w this way, then to predict on a new example xt, we can write xTt w = xTt x1+xTt x2−xTt x5.
So if we just replace each of these dot-products with “K”, we are running the algorithm
as if we had explicitly performed the φmapping. This is called “kernelizing” the algorithm.

Many different pairwise functions on examples are legal kernel functions. One easy
way to create a kernel function is by combining other kernel functions together, via the
following theorem.

Theorem 5.10 Suppose K1 and K2 are kernel functions. Then
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1. For any constant c ≥ 0, cK1 is a legal kernel. In fact, for any scalar function f ,
the function K3(x,x′) = f(x)f(x′)K1(x,x′) is a legal kernel.

2. The sum K1 +K2, is a legal kernel.

3. The product, K1K2, is a legal kernel.

You will prove Theorem 5.10 in Exercise 5.9. Notice that this immediately implies that
the function K(x,x′) = (1+xTx′)k is a legal kernel by using the fact that K1(x,x′) = 1 is
a legal kernel, K2(x,x′) = xTx′ is a legal kernel, then adding them, and then multiplying
that by itself k times. Another popular kernel is the Gaussian kernel, defined as:

K(x,x′) = e−c|x−x
′|2 .

If we think of a kernel as a measure of similarity, then this kernel defines the similarity
between two data objects as a quantity that decreases exponentially with the squared
distance between them. The Gaussian kernel can be shown to be a true kernel func-
tion by first writing it as f(x)f(x′)e2cxTx′ for f(x) = e−c|x|

2
and then taking the Taylor

expansion of e2cxTx′ , applying the rules in Theorem 5.10. Technically, this last step re-
quires considering countably infinitely many applications of the rules and allowing for
infinite-dimensional vector spaces.

5.7 Online to Batch Conversion

Suppose we have an online algorithm with a good mistake bound, such as the Perceptron
algorithm. Can we use it to get a guarantee in the distributional (batch) learning setting?
Intuitively, the answer should be yes since the online setting is only harder. Indeed, this
intuition is correct. We present here two natural approaches for such online to batch
conversion.

Conversion procedure 1: Random Stopping. Suppose we have an online algorithm
A with mistake-bound M . Say we run the algorithm in a single pass on a sample S of size
M/ε. Let Xt be the indicator random variable for the event that Amakes a mistake on the

tth example. Since
∑|S|

t=1Xt ≤ M for any set S, we certainly have that E[
∑|S|

t=1Xt] ≤ M
where the expectation is taken over the random draw of S from D|S|. By linearity of
expectation, and dividing both sides by |S| we therefore have:

1

|S|

|S|∑
t=1

E[Xt] ≤ M/|S| = ε. (5.1)

Let ht denote the hypothesis used by algorithm A to predict on the tth example. Since
the tth example was randomly drawn from D, we have E[errD(ht)] = E[Xt]. This means
that if we choose t at random from 1 to |S|, i.e., stop the algorithm at a random time, the
expected error of the resulting prediction rule, taken over the randomness in the draw of
S and the choice of t, is at most ε as given by equation (5.1). Thus we have:
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Theorem 5.11 (Online to Batch via Random Stopping) If an online algorithm A
with mistake-bound M is run on a sample S of size M/ε and stopped at a random time
between 1 and |S|, the expected error of the hypothesis h produced satisfies E[errD(h)] ≤ ε.

Conversion procedure 2: Controlled Testing. A second natural approach to us-
ing an online learning algorithm A in the distributional setting is to just run a series of
controlled tests. Specifically, suppose that the initial hypothesis produced by algorithm
A is h1. Define δi = δ/(i + 2)2 so we have

∑∞
i=0 δi = (π

2

6
− 1)δ ≤ δ. We draw a set of

n1 = 1
ε

log( 1
δ1

) random examples and test to see whether h1 gets all of them correct. Note
that if errD(h1) ≥ ε then the chance h1 would get them all correct is at most (1−ε)n1 ≤ δ1.
So, if h1 indeed gets them all correct, we output h1 as our hypothesis and halt. If not,
we choose some example x1 in the sample on which h1 made a mistake and give it to
algorithm A. Algorithm A then produces some new hypothesis h2 and we again repeat,
testing h2 on a fresh set of n2 = 1

ε
log( 1

δ2
) random examples, and so on.

In general, given ht we draw a fresh set of nt = 1
ε

log( 1
δt

) random examples and test
to see whether ht gets all of them correct. If so, we output ht and halt; if not, we choose
some xt on which ht(xt) was incorrect and give it to algorithm A. By choice of nt, if ht
had error rate ε or larger, the chance we would mistakenly output it is at most δt. By
choice of the values δt, the chance we ever halt with a hypothesis of error ε or larger is at
most δ1 + δ2 + . . . ≤ δ. Thus, we have the following theorem.

Theorem 5.12 (Online to Batch via Controlled Testing) Let A be an online learn-
ing algorithm with mistake-bound M . Then this procedure will halt after O(M

ε
log(M

δ
))

examples and with probability at least 1− δ will produce a hypothesis of error at most ε.

Note that in this conversion we cannot re-use our samples: since the hypothesis ht depends
on the previous data, we need to draw a fresh set of nt examples to use for testing it.

5.8 Support-Vector Machines

In a batch setting, rather than running the Perceptron algorithm and adapting it via
one of the methods above, another natural idea would be just to solve for the vector w
that minimizes the right-hand-side in Theorem 5.9 on the given dataset S. This turns
out to have good guarantees as well, though they are beyond the scope of this book. In
fact, this is the Support Vector Machine (SVM) algorithm. Specifically, SVMs solve the
following convex optimization problem over a sample S = {x1,x2, . . .xn} where c is a
constant that is determined empirically.

minimize c|w|2 +
∑
i

si

subject to w · xi ≥ 1− si for all positive examples xi

w · xi ≤ −1 + si for all negative examples xi

si ≥ 0 for all i.
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The variables si are called slack variables, and notice that the sum of the slack variables
is the total hinge loss of w. So, this convex optimization is minimizing a weighted sum
of 1/γ2, where γ is the margin, and the total hinge loss. If we were to add the constraint
that all si = 0 then this would be solving for the maximum margin linear separator for the
data. However, in practice, optimizing a weighted combination generally performs better.
SVMs can also be kernelized, by using the dual of the above optimization problem (the
key idea is that the optimal w will be a weighted combination of data points, just as in the
Perceptron algorithm, and these weights can be variables in the optimization problem);
details are beyond the scope of this book.

5.9 VC-Dimension

In Section 5.2 we presented several theorems showing that so long as the training set
S is large compared to 1

ε
log(|H|), we can be confident that every h ∈ H with errD(h) ≥ ε

will have errS(h) > 0, and if S is large compared to 1
ε2

log(|H|), then we can be confident
that every h ∈ H will have |errD(h)−errS(h)| ≤ ε. In essence, these results used log(|H|)
as a measure of complexity of class H. VC-dimension is a different, tighter measure of
complexity for a concept class, and as we will see, is also sufficient to yield confidence
bounds. For any class H, VCdim(H) ≤ log2(|H|) but it can also be quite a bit smaller.
Let’s introduce and motivate it through an example.

Consider a database consisting of the salary and age for a random sample of the adult
population in the United States. Suppose we are interested in using the database to an-
swer questions of the form: “what fraction of the adult population in the United States
has age between 35 and 45 and salary between $50,000 and $70,000?” That is, we are
interested in queries that ask about the fraction of the adult population within some axis-
parallel rectangle. What we can do is calculate the fraction of the database satisfying
this condition and return this as our answer. This brings up the following question: How
large does our database need to be so that with probability greater than or equal to 1− δ,
our answer will be within ±ε of the truth for every possible rectangle query of this form?

If we assume our values are discretized such as 100 possible ages and 1,000 possible
salaries, then there are at most (100× 1, 000)2 = 1010 possible rectangles. This means we
can apply Theorem 5.3 with |H| ≤ 1010. Specifically, we can think of the target concept
c∗ as the empty set so that errS(h) is exactly the fraction of the sample inside rectangle
h and errD(h) is exactly the fraction of the whole population inside h.22 This would tell
us that a sample size of 1

2ε2
(10 ln 10 + ln(2/δ)) would be sufficient.

However, what if we do not wish to discretize our concept class? Another approach
would be to say that if there are only N adults total in the United States, then there

22Technically D is the uniform distribution over the adult population of the United States, and we
want to think of S as an independent identical distributed sample from this D.
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are at most N4 rectangles that are truly different with respect to D and so we could use
|H| ≤ N4. Still, this suggests that S needs to grow with N , albeit logarithmically, and
one might wonder if that is really necessary. VC-dimension, and the notion of the growth
function of concept class H, will give us a way to avoid such discretization and avoid any
dependence on the size of the support of the underlying distribution D.

5.9.1 Definitions and Key Theorems

Definition 5.1 Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels all examples in A
as positive and all examples in S \ A as negative.

Definition 5.2 The VC-dimension of H is the size of the largest set shattered by H.

For example, there exist sets of four points that can be shattered by rectangles with
axis-parallel edges, e.g., four points at the vertices of a diamond (see Figure 5.5). Given
such a set S, for any A ⊆ S, there exists a rectangle with the points in A inside the rect-
angle and the points in S \A outside the rectangle. However, rectangles with axis-parallel
edges cannot shatter any set of five points. To see this, assume for contradiction that
there is a set of five points shattered by the family of axis-parallel rectangles. Find the
minimum enclosing rectangle for the five points. For each edge there is at least one point
that has stopped its movement. Identify one such point for each edge. The same point
may be identified as stopping two edges if it is at a corner of the minimum enclosing rect-
angle. If two or more points have stopped an edge, designate only one as having stopped
the edge. Now, at most four points have been designated. Any rectangle enclosing the
designated points must include the undesignated points. Thus, the subset of designated
points cannot be expressed as the intersection of a rectangle with the five points. There-
fore, the VC-dimension of axis-parallel rectangles is four.

We now need one more definition, which is the growth function of a concept class H.

Definition 5.3 Given a set S of examples and a concept class H, let H[S] = {h ∩ S :
h ∈ H}. That is, H[S] is the concept class H restricted to the set of points S. For integer
n and class H, let H[n] = max|S|=n |H[S]|; this is called the growth function of H.

For example, we could have defined shattering by saying that S is shattered by H
if |H[S]| = 2|S|, and then the VC-dimension of H is the largest n such that H[n] = 2n.
Notice also that for axis-parallel rectangles, H[n] = O(n4). The growth function of a class
is sometimes called the shatter function or shatter coefficient.

What connects these to learnability are the following three remarkable theorems. The
first two are analogs of Theorem 5.1 and Theorem 5.3 respectively, showing that one can
replace |H| with its growth function. This is like replacing the number of concepts in H
with the number of concepts “after the fact”, i.e., after S is drawn, and is subtle because
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(a)

A

B

C

D

(b)

Figure 5.5: (a) shows a set of four points that can be shattered by rectangles along with
some of the rectangles that shatter the set. Not every set of four points can be shattered
as seen in (b). Any rectangle containing points A, B, and C must contain D. No set of five
points can be shattered by rectangles with axis-parallel edges. No set of three collinear
points can be shattered, since any rectangle that contains the two end points must also
contain the middle point. More generally, since rectangles are convex, a set with one point
inside the convex hull of the others cannot be shattered.

we cannot just use a union bound after we have already drawn our set S. The third
theorem relates the growth function of a class to its VC-dimension. We now present the
theorems, give examples of VC-dimension and growth function of various concept classes,
and then prove the theorems.

Theorem 5.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

n ≥ 2

ε
[log2(2H[2n]) + log2(1/δ)]

then with probability ≥ 1−δ, every h ∈ H with errD(h) ≥ ε has errS(h) > 0 (equivalently,
every h ∈ H with errS(h) = 0 has errD(h) < ε).

Theorem 5.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

n ≥ 8

ε2
[ln(2H[2n]) + ln(1/δ)]

then with probability ≥ 1− δ, every h ∈ H will have |errS(h)− errD(h)| ≤ ε.

Theorem 5.15 (Sauer’s lemma) If VCdim(H) = d then H[n] ≤
∑d

i=0

(
n
i

)
≤ ( en

d
)d.

Notice that Sauer’s lemma was fairly tight in the case of axis-parallel rectangles,
though in some cases it can be a bit loose. E.g., we will see that for linear separators
in the plane, their VC-dimension is 3 but H[n] = O(n2). An interesting feature about
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Sauer’s lemma is that it implies the growth function switches from taking the form 2n to
taking the form nVCdim(H) when n reaches the VC-dimension of the class H.

Putting Theorems 5.13 and 5.15 together, with a little algebra we get the following
corollary (a similar corollary results by combining Theorems 5.14 and 5.15):

Corollary 5.16 (VC-dimension sample bound) For any class H and distribution D,
a training sample S of size

O

(
1

ε
[VCdim(H) log(1/ε) + log(1/δ)]

)
is sufficient to ensure that with probability ≥ 1 − δ, every h ∈ H with errD(h) ≥ ε has
errS(h) > 0 (equivalently, every h ∈ H with errS(h) = 0 has errD(h) < ε).

For any class H, VCdim(H) ≤ log2(|H|) since H must have at least 2k concepts in
order to shatter k points. Thus Corollary 5.16 is never too much worse than Theorem 5.1
and can be much better.

5.9.2 Examples: VC-Dimension and Growth Function

Rectangles with axis-parallel edges

As we saw above, the class of axis-parallel rectangles in the plane has VC-dimension
4 and growth function C[n] = O(n4).

Intervals of the reals

Intervals on the real line can shatter any set of two points but no set of three points
since the subset of the first and last points cannot be isolated. Thus, the VC-dimension
of intervals is two. Also, C[n] = O(n2) since we have O(n2) choices for the left and right
endpoints.

Pairs of intervals of the reals

Consider the family of pairs of intervals, where a pair of intervals is viewed as the set
of points that are in at least one of the intervals, in other words, their set union. There
exists a set of size four that can be shattered but no set of size five since the subset of first,
third, and last point cannot be isolated. Thus, the VC-dimension of pairs of intervals is
four. Also we have C[n] = O(n4).

Convex polygons

Consider the set system of all convex polygons in the plane. For any positive integer
n, place n points on the unit circle. Any subset of the points are the vertices of a convex
polygon. Clearly that polygon will not contain any of the points not in the subset. This
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shows that convex polygons can shatter arbitrarily large sets, so the VC-dimension is
infinite. Notice that this also implies that C[n] = 2n.

Half spaces in d-dimensions

Define a half space to be the set of all points on one side of a hyper plane, i.e., a set
of the form {x|wTx ≥ w0}. The VC-dimension of half spaces in d-dimensions is d+ 1.

There exists a set of size d + 1 that can be shattered by half spaces. Select the d
unit-coordinate vectors plus the origin to be the d + 1 points. Suppose A is any subset
of these d + 1 points. Without loss of generality assume that the origin is in A. Take
a 0-1 vector w which has 1’s precisely in the coordinates corresponding to vectors not
in A. Clearly A lies in the half-space wTx ≤ 0 and the complement of A lies in the
complementary half-space.

We now show that no set of d + 2 points in d-dimensions can be shattered by linear
separators. This is done by proving that any set of d+2 points can be partitioned into two
disjoint subsets A and B of points whose convex hulls intersect. This establishes the claim
since any linear separator with A on one side must have its entire convex hull on that
side,23 so it is not possible to have a linear separator with A on one side and B on the other.

Let convex(S) denote the convex hull of point set S.

Theorem 5.17 (Radon): Any set S ⊆ Rd with |S| ≥ d+ 2, can be partitioned into two
disjoint subsets A and B such that convex(A) ∩ convex(B) 6= φ.

Proof: Without loss of generality, assume |S| = d+2. Form a d×(d+2) matrix with one
column for each point of S. Call the matrix A. Add an extra row of all 1’s to construct a
(d+1)×(d+2) matrix B. Clearly the rank of this matrix is at most d+1 and the columns
are linearly dependent. Say x = (x1, x2, . . . , xd+2) is a nonzero vector with Bx = 0.
Reorder the columns so that x1, x2, . . . , xs ≥ 0 and xs+1, xs+2, . . . , xd+2 < 0. Normalize

x so
s∑
i=1

|xi| = 1. Let bi (respectively ai) be the ith column of B (respectively A). Then,

s∑
i=1

|xi|bi =
d+2∑
i=s+1

|xi|bi from which it follows that
s∑
i=1

|xi|ai =
d+2∑
i=s+1

|xi|ai and
s∑
i=1

|xi| =

d+2∑
i=s+1

|xi|. Since
s∑
i=1

|xi| = 1 and
d+2∑
i=s+1

|xi| = 1 each side of
s∑
i=1

|xi|ai =
d+2∑
i=s+1

|xi|ai is a convex

combination of columns of A which proves the theorem. Thus, S can be partitioned into
two sets, the first consisting of the first s points after the rearrangement and the second
consisting of points s+ 1 through d+ 2 . Their convex hulls intersect as required.

23If any two points x1 and x2 lie on the same side of a separator, so must any convex combination: if
w · x1 ≥ b and w · x2 ≥ b then w · (ax1 + (1− a)x2) ≥ b.
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Radon’s theorem immediately implies that half-spaces in d-dimensions do not shatter
any set of d+ 2 points.

Spheres in d-dimensions

A sphere in d-dimensions is a set of points of the form {x| |x− x0| ≤ r}. The VC-
dimension of spheres is d + 1. It is the same as that of half spaces. First, we prove that
no set of d+ 2 points can be shattered by spheres. Suppose some set S with d+ 2 points
can be shattered. Then for any partition A1 and A2 of S, there are spheres B1 and B2

such that B1 ∩ S = A1 and B2 ∩ S = A2. Now B1 and B2 may intersect, but there is no
point of S in their intersection. It is easy to see that there is a hyperplane perpendicular
to the line joining the centers of the two spheres with all of A1 on one side and all of A2

on the other and this implies that half spaces shatter S, a contradiction. Therefore no
d+ 2 points can be shattered by hyperspheres.

It is also not difficult to see that the set of d+1 points consisting of the unit-coordinate
vectors and the origin can be shattered by spheres. Suppose A is a subset of the d + 1
points. Let a be the number of unit vectors in A. The center a0 of our sphere will be
the sum of the vectors in A. For every unit vector in A, its distance to this center will
be
√
a− 1 and for every unit vector outside A, its distance to this center will be

√
a+ 1.

The distance of the origin to the center is
√
a. Thus, we can choose the radius so that

precisely the points in A are in the hypersphere.

Finite sets

The system of finite sets of real numbers can shatter any finite set of real numbers
and thus the VC-dimension of finite sets is infinite.

5.9.3 Proof of Main Theorems

We begin with a technical lemma. Consider drawing a set S of n examples from D and
let A denote the event that there exists h ∈ H with zero training error on S but true
error greater than or equal to ε. Now draw a second set S ′ of n examples from D and let
B denote the event that there exists h ∈ H with zero error on S but error greater than
or equal to ε/2 on S ′.

Lemma 5.18 Let H be a concept class over some domain X and let S and S ′ be sets of
n elements drawn from some distribution D on X , where n ≥ 8/ε. Let A be the event that
there exists h ∈ H with zero error on S but true error greater than or equal to ε. Let B
be the event that there exists h ∈ H with zero error on S but error greater than or equal
to ε

2
on S ′. Then Prob(B) ≥ Prob(A)/2.

Proof: Clearly, Prob(B) ≥ Prob(A,B) = Prob(A)Prob(B|A). Consider drawing set S
and suppose event A occurs. Let h be in H with errD(h) ≥ ε but errS(h) = 0. Now,
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draw set S ′. E(error of h on S ′) = errD(h) ≥ ε. So, by Chernoff bounds, since n ≥ 8/ε,
Prob(errS′(h) ≥ ε/2) ≥ 1/2. Thus, Prob(B|A) ≥ 1/2 and Prob(B) ≥ Prob(A)/2 as
desired.

We now prove Theorem 5.13, restated here for convenience.

Theorem 5.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

n ≥ 2

ε
[log2(2H[2n]) + log2(1/δ)]

then with probability ≥ 1−δ, every h ∈ H with errD(h) ≥ ε has errS(h) > 0 (equivalently,
every h ∈ H with errS(h) = 0 has errD(h) < ε).

Proof: Consider drawing a set S of n examples from D and let A denote the event that
there exists h ∈ H with true error greater than ε but training error zero. Our goal is to
prove that Prob(A) ≤ δ.

By Lemma 5.18 it suffices to prove that Prob(B) ≤ δ/2. Consider a third experiment.
Draw a set S ′′ of 2n points from D and then randomly partition S ′′ into two sets S and
S ′ of n points each. Let B∗ denote the event that there exists h ∈ H with errS(h) = 0
but errS′(h) ≥ ε/2. Prob(B∗) = Prob(B) since drawing 2n points from D and randomly
partitioning them into two sets of size n produces the same distribution on (S, S ′) as does
drawing S and S ′ directly. The advantage of this new experiment is that we can now
argue that Prob(B∗) is low by arguing that for any set S ′′ of size 2n, Prob(B∗|S ′′) is low,
with probability now taken over just the random partition of S ′′ into S and S ′. The key
point is that since S ′′ is fixed, there are at most |H[S ′′]| ≤ H[2n] events to worry about.
Specifically, it suffices to prove that for any fixed h ∈ H[S ′′], the probability over the
partition of S ′′ that h makes zero mistakes on S but more than εn/2 mistakes on S ′ is at
most δ/(2H[2n]). We can then apply the union bound over H[S ′′] = {h ∩ S ′′|h ∈ H}.

To make the calculations easier, consider the following specific method for partitioning
S ′′ into S and S ′. Randomly put the points in S ′′ into pairs: (a1, b1), (a2, b2), . . ., (an, bn).
For each index i, flip a fair coin. If heads put ai into S and bi into S ′, else if tails put ai
into S ′ and bi into S. Now, fix some partition h ∈ H[S ′′] and consider the probability over
these n fair coin flips that h makes zero mistakes on S but more than εn/2 mistakes on S ′.
First of all, if for any index i, h makes a mistake on both ai and bi then the probability is
zero (because it cannot possibly make zero mistakes on S). Second, if there are fewer than
εn/2 indices i such that h makes a mistake on either ai or bi then again the probability is
zero because it cannot possibly make more than εn/2 mistakes on S ′. So, assume there
are r ≥ εn/2 indices i such that h makes a mistake on exactly one of ai or bi. In this case,
the chance that all of those mistakes land in S ′ is exactly 1/2r. This quantity is at most
1/2εn/2 ≤ δ/(2H[2n]) as desired for n as given in the theorem statement.

148



We now prove Theorem 5.14, restated here for convenience.

Theorem 5.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

n ≥ 8

ε2
[ln(2H[2n]) + ln(1/δ)]

then with probability ≥ 1− δ, every h ∈ H will have |errS(h)− errD(h)| ≤ ε.

Proof: This proof is identical to the proof of Theorem 5.13 except B∗ is now the event
that there exists a set h ∈ H[S ′′] such that the error of h on S differs from the error of h on
S ′ by more than ε/2. We again consider the experiment where we randomly put the points
in S ′′ into pairs (ai, bi) and then flip a fair coin for each index i, if heads placing ai into S
and bi into S ′, else placing ai into S ′ and bi into S. Consider the difference between the
number of mistakes h makes on S and the number of mistakes h makes on S ′ and observe
how this difference changes as we flip coins for i = 1, 2, . . . , n. Initially, the difference
is zero. If h makes a mistake on both or neither of (ai, bi) then the difference does not
change. Else, if h makes a mistake on exactly one of ai or bi, then with probability 1/2
the difference increases by one and with probability 1/2 the difference decreases by one.
If there are r ≤ n such pairs, then if we take a random walk of r ≤ n steps, what is the
probability that we end up more than εn/2 steps away from the origin? This is equivalent
to asking: if we flip r ≤ n fair coins, what is the probability the number of heads differs
from its expectation by more than εn/4. By Hoeffding bounds, this is at most 2e−ε

2n/8.
This quantity is at most δ/(2H[2n]) as desired for n as given in the theorem statement.

Finally, we prove Sauer’s lemma, relating the growth function to the VC-dimension.

Theorem 5.15 (Sauer’s lemma) If VCdim(H) = d then H[n] ≤
∑d

i=0

(
n
i

)
≤ ( en

d
)d.

Proof: Let d = VCdim(H). Our goal is to prove for any set S of n points that
|H[S]| ≤

(
n
≤d

)
, where we are defining

(
n
≤d

)
=
∑d

i=0

(
n
i

)
; this is the number of distinct

ways of choosing d or fewer elements out of n. We will do so by induction on n. As a
base case, our theorem is trivially true if n ≤ d.

As a first step in the proof, notice that:(
n

≤ d

)
=

(
n− 1

≤ d

)
+

(
n− 1

≤ d− 1

)
(5.2)

because we can partition the ways of choosing d or fewer items into those that do not
include the first item (leaving ≤ d to be chosen from the remainder) and those that do
include the first item (leaving ≤ d− 1 to be chosen from the remainder).
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Now, consider any set S of n points and pick some arbitrary point x ∈ S. By induc-
tion, we may assume that |H[S \ {x}]| ≤

(
n−1
≤d

)
. So, by equation (5.2) all we need to show

is that |H[S]| − |H[S \ {x}]| ≤
(
n−1
≤d−1

)
. Thus, our problem has reduced to analyzing how

many more partitions there are of S than there are of S \ {x} using sets in H.

If H[S] is larger than H[S \ {x}], it is because of pairs of sets in H[S] that differ only
on point x and therefore collapse to the same set when x is removed. For set h ∈ H[S]
containing point x, define twin(h) = h \ {x}; this may or may not belong to H[S]. Let
T = {h ∈ H[S] : x ∈ h and twin(h) ∈ H[S]}. Notice |H[S]| − |H[S \ {x}]| = |T |.

Now, what is the VC-dimension of T ? If d′ = VCdim(T ), this means there is some set
R of d′ points in S \ {x} that are shattered by T . By definition of T , all 2d

′
subsets of R

can be extended to either include x, or not include x and still be a set in H[S]. In other
words, R ∪ {x} is shattered by H. This means, d′ + 1 ≤ d. Since VCdim(T ) ≤ d− 1, by
induction we have |T | ≤

(
n−1
≤d−1

)
as desired.

5.9.4 VC-Dimension of Combinations of Concepts

Often one wants to create concepts out of other concepts. For example, given several
linear separators, one could take their intersection to create a convex polytope. Or given
several disjunctions, one might want to take their majority vote. We can use Sauer’s
lemma to show that such combinations do not increase the VC-dimension of the class by
too much.

Specifically, given k concepts h1, h2, . . . , hk and a Booelan function f define the set
combf (h1, . . . , hk) = {x ∈ X : f(h1(x), . . . , hk(x)) = 1}, where here we are using hi(x) to
denote the indicator for whether or not x ∈ hi. For example, f might be the AND function
to take the intersection of the sets hi, or f might be the majority-vote function. This can
be viewed as a depth-two neural network. Given a concept class H, a Boolean function f ,
and an integer k, define the new concept class COMBf,k(H) = {combf (h1, . . . , hk) : hi ∈
H}. We can now use Sauer’s lemma to produce the following corollary.

Corollary 5.19 If the concept class H has VC-dimension d, then for any combination
function f , the class COMBf,k(H) has VC-dimension O

(
kd log(kd)

)
.

Proof: Let n be the VC-dimension of COMBf,k(H), so by definition, there must exist
a set S of n points shattered by COMBf,k(H). We know by Sauer’s lemma that there
are at most nd ways of partitioning the points in S using sets in H. Since each set in
COMBf,k(H) is determined by k sets in H, and there are at most (nd)k = nkd different
k-tuples of such sets, this means there are at most nkd ways of partitioning the points
using sets in COMBf,k(H). Since S is shattered, we must have 2n ≤ nkd, or equivalently
n ≤ kd log2(n). We solve this as follows. First, assuming n ≥ 16 we have log2(n) ≤

√
n so

kd log2(n) ≤ kd
√
n which implies that n ≤ (kd)2. To get the better bound, plug back into

the original inequality. Since n ≤ (kd)2, it must be that log2(n) ≤ 2 log2(kd). substituting
log n ≤ 2 log2(kd) into n ≤ kd log2 n gives n ≤ 2kd log2(kd).
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This result will be useful for our discussion of Boosting in Section 5.10.

5.9.5 Other Measures of Complexity

VC-dimension and number of bits needed to describe a set are not the only measures
of complexity one can use to derive generalization guarantees. There has been significant
work on a variety of measures. One measure called Rademacher complexity measures
the extent to which a given concept class H can fit random noise. Given a set of n
examples S = {x1, . . . , xn}, the empirical Rademacher complexity of H is defined as
RS(H) = Eσ1,...,σn max

h∈H
1
n

∑n
i=1 σih(xi), where σi ∈ {−1, 1} are independent random labels

with Prob[σi = 1] = 1
2
. E.g., if you assign random ±1 labels to the points in S and the

best classifier in H on average gets error 0.45 then RS(H) = 0.55− 0.45 = 0.1. One can
prove that with probability greater than or equal to 1− δ, every h ∈ H satisfies true error

less than or equal to training error plus RS(H) + 3
√

ln(2/δ)
2n

. For more on results such as

this, see, e.g., [BM02].

5.10 Strong and Weak Learning - Boosting

We now describe boosting, which is important both as a theoretical result and as a
practical and easy-to-use learning method.

A strong learner for a problem is an algorithm that with high probability is able to
achieve any desired error rate ε using a number of samples that may depend polynomially
on 1/ε. A weak learner for a problem is an algorithm that does just a little bit better than
random guessing. It is only required to get with high probability an error rate less than
or equal to 1

2
− γ for some 0 < γ ≤ 1

2
. We show here that a weak-learner for a problem

that achieves the weak-learning guarantee for any distribution of data can be boosted to a
strong learner, using the technique of boosting. At the high level, the idea will be to take
our training sample S, and then to run the weak-learner on different data distributions
produced by weighting the points in the training sample in different ways. Running the
weak learner on these different weightings of the training sample will produce a series of
hypotheses h1, h2, . . ., and the idea of our reweighting procedure will be to focus attention
on the parts of the sample that previous hypotheses have performed poorly on. At the
end we will combine the hypotheses together by a majority vote.

Assume the weak learning algorithm A outputs hypotheses from some class H. Our
boosting algorithm will produce hypotheses that will be majority votes over t0 hypotheses
from H, for t0 defined below. This means that we can apply Corollary 5.19 to bound the
VC-dimension of the class of hypotheses our boosting algorithm can produce in terms of
the VC-dimension of H. In particular, the class of rules that can be produced by the
booster running for t0 rounds has VC-dimension O(t0VCdim(H) log(t0VCdim(H))). This
in turn gives a bound on the number of samples needed, via Corollary 5.16, to ensure that
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Boosting Algorithm

Given a sample S of n labeled examples x1, . . . ,xn, initialize each
example xi to have a weight wi = 1. Let w = (w1, . . . , wn).

For t = 1, 2, . . . , t0 do

Call the weak learner on the weighted sample (S,w), receiving
hypothesis ht.

Multiply the weight of each example that was misclassified by

ht by α =
1
2

+γ
1
2
−γ . Leave the other weights as they are.

End

Output the classifier MAJ(h1, . . . , ht0) which takes the majority vote
of the hypotheses returned by the weak learner. Assume t0 is odd so
there is no tie.

Figure 5.6: The boosting algorithm

high accuracy on the sample will translate to high accuracy on new data.

To make the discussion simpler, we will assume that the weak learning algorithm A,
when presented with a weighting of the points in our training sample, always (rather than
with high probability) produces a hypothesis that performs slightly better than random
guessing with respect to the distribution induced by weighting. Specificially:

Definition 5.4 (γ-Weak learner on sample) A weak learner is an algorithm that given
examples, their labels, and a nonnegative real weight wi on each example xi, produces a

classifier that correctly labels a subset of examples with total weight at least (1
2

+ γ)
n∑
i=1

wi.

At the high level, boosting makes use of the intuitive notion that if an example was
misclassified, one needs to pay more attention to it. The boosting procedure is in Figure
5.6.

Theorem 5.20 Let A be a γ-weak learner for sample S. Then t0 = O( 1
γ2

log n) is suffi-

cient so that the classifier MAJ(h1, . . . , ht0) produced by the boosting procedure has training
error zero.

Proof: Suppose m is the number of examples the final classifier gets wrong. Each of
these m examples was misclassified at least t0/2 times so each has weight at least αt0/2.
Thus the total weight is at least mαt0/2. On the other hand, at time t+1, only the weights
of examples misclassified at time t were increased. By the property of weak learning, the
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total weight of misclassified examples is at most (1
2
− γ) of the total weight at time t. Let

weight(t) be the total weight at time t. Then

weight(t+ 1) ≤
(
α
(

1
2
− γ
)

+
(

1
2

+ γ
) )
× weight(t)

= (1 + 2γ)× weight(t).

Since weight(0) = n, the total weight at the end is at most n(1 + 2γ)t0 . Thus

mαt0/2 ≤ total weight at end ≤ n(1 + 2γ)t0 .

Substituting α = 1/2+γ
1/2−γ = 1+2γ

1−2γ
and rearranging terms

m ≤ n(1− 2γ)t0/2(1 + 2γ)t0/2 = n[1− 4γ2]t0/2.

Using 1 − x ≤ e−x, m ≤ ne−2t0γ2 . For t0 >
lnn
2γ2
, m < 1, so the number of misclassified

items must be zero.

Having completed the proof of the boosting result, here are two interesting observa-
tions:

Connection to Hoeffding bounds: The boosting result applies even if our weak learn-
ing algorithm is “adversarial”, giving us the least helpful classifier possible subject
to Definition 5.4. This is why we don’t want the α in the boosting algorithm to be
too large, otherwise the weak learner could return the negation of the classifier it
gave the last time. Suppose that the weak learning algorithm gave a classifier each
time that for each example, flipped a coin and produced the correct answer with
probability 1

2
+ γ and the wrong answer with probability 1

2
− γ, so it is a γ-weak

learner in expectation. In that case, if we called the weak learner t0 times, for any
fixed xi, Hoeffding bounds imply the chance the majority vote of those classifiers is
incorrect on xi is at most e−2t0γ2 . So, the expected total number of mistakes m is
at most ne−2t0γ2 . What is interesting is that this is the exact bound we get from
boosting without the expectation for an adversarial weak-learner.

A minimax view: Consider a 2-player zero-sum game 24 with one row for each example
xi and one column for each hypothesis hj that the weak-learning algorithm might
output. If the row player chooses row i and the column player chooses column j,
then the column player gets a payoff of one if hj(xi) is correct and gets a payoff
of zero if hj(xi) is incorrect. The γ-weak learning assumption implies that for any
randomized strategy for the row player (any “mixed strategy” in the language of
game theory), there exists a response hj that gives the column player an expected

24A two person zero sum game consists of a matrix whose columns correspond to moves for Player 1
and whose rows correspond to moves for Player 2. The ijth entry of the matrix is the payoff for Player
1 if Player 1 choose the jth column and Player 2 choose the ith row. Player 2’s payoff is the negative of
Player1’s.
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payoff of at least 1
2

+ γ. The von Neumann minimax theorem 25 states that this
implies there exists a probability distribution on the columns (a mixed strategy for
the column player) such that for any xi, at least a 1

2
+ γ probability mass of the

columns under this distribution is correct on xi. We can think of boosting as a
fast way of finding a very simple probability distribution on the columns (just an
average over O(log n) columns, possibly with repetitions) that is nearly as good (for
any xi, more than half are correct) that moreover works even if our only access to
the columns is by running the weak learner and observing its outputs.

We argued above that t0 = O( 1
γ2

log n) rounds of boosting are sufficient to produce a
majority-vote rule h that will classify all of S correctly. Using our VC-dimension bounds,
this implies that if the weak learner is choosing its hypotheses from concept class H, then
a sample size

n = Õ

(
1

ε

(
VCdim(H)

γ2

))
is sufficient to conclude that with probability 1 − δ the error is less than or equal to ε,
where we are using the Õ notation to hide logarithmic factors. It turns out that running
the boosting procedure for larger values of t0 i.e., continuing past the point where S is
classified correctly by the final majority vote, does not actually lead to greater overfitting.
The reason is that using the same type of analysis used to prove Theorem 5.20, one can
show that as t0 increases, not only will the majority vote be correct on each x ∈ S, but
in fact each example will be correctly classified by a 1

2
+ γ′ fraction of the classifiers,

where γ′ → γ as t0 →∞. I.e., the vote is approaching the minimax optimal strategy for
the column player in the minimax view given above. This in turn implies that h can be
well-approximated over S by a vote of a random sample of O(1/γ2) of its component weak
hypotheses hj. Since these small random majority votes are not overfitting by much, our
generalization theorems imply that h cannot be overfitting by much either.

5.11 Stochastic Gradient Descent

We now describe a widely-used algorithm in machine learning, called stochastic gradi-
ent descent (SGD). The Perceptron algorithm we examined in Section 5.5.3 can be viewed
as a special case of this algorithm, as can methods for deep learning.

Let F be a class of real-valued functions fw : Rd → R where w = (w1, w2, . . . , wn) is a
vector of parameters. For example, we could think of the class of linear functions where
n = d and fw(x) = wTx, or we could have more complicated functions where n > d. For
each such function fw we can define an associated set hw = {x : fw(x) ≥ 0}, and let

25The von Neumann minimax theorem states that there exists a mixed strategy for each player so that
given Player 2’s strategy the best payoff possible for Player 1 is the negative of given Player 1’s strategy
the best possible payoff for Player 2. A mixed strategy is one in which a probability is assigned to every
possible move for each situation a player could be in.
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HF = {hw : fw ∈ F}. For example, if F is the class of linear functions then HF is the
class of linear separators.

To apply stochastic gradient descent, we also need a loss function L(fw(x), c∗(x)) that
describes the real-valued penalty we will associate with function fw for its prediction on
an example x whose true label is c∗(x). The algorithm is then the following:

Stochastic Gradient Descent:

Given: starting point w = winit and learning rates λ1, λ2, λ3, . . .

(e.g., winit = 0 and λt = 1 for all t, or λt = 1/
√
t).

Consider a sequence of random examples (x1, c
∗(x1)), (x2, c

∗(x2)), . . ..

1. Given example (xt, c
∗(xt)), compute the gradient ∇L(fw(xt), c

∗(xt)) of the loss of
fw(xt) with respect to the weights w. This is a vector in Rn whose ith component is
∂L(fw(xt),c∗(xt))

∂wi
.

2. Update: w← w − λt∇L(fw(xt), c
∗(xt)).

Let’s now try to understand the algorithm better by seeing a few examples of instan-
tiating the class of functions F and loss function L.

First, consider n = d and fw(x) = wTx, so F is the class of linear predictors. Consider
the loss function L(fw(x), c∗(x)) = max(0,−c∗(x)fw(x)), and recall that c∗(x) ∈ {−1, 1}.
In other words, if fw(x) has the correct sign, then we have a loss of 0, otherwise we have
a loss equal to the magnitude of fw(x). In this case, if fw(x) has the correct sign and is
non-zero, then the gradient will be zero since an infinitesimal change in any of the weights
will not change the sign. So, when hw(x) is correct, the algorithm will leave w alone.
On the other hand, if fw(x) has the wrong sign, then ∂L

∂wi
= −c∗(x)∂w·x

∂wi
= −c∗(x)xi. So,

using λt = 1, the algorithm will update w ← w + c∗(x)x. Note that this is exactly the
Perceptron algorithm. (Technically we must address the case that fw(x) = 0; in this case,
we should view fw as having the wrong sign just barely.)

As a small modification to the above example, consider the same class of linear predic-
tors F but now modify the loss function to the hinge-loss L(fw(x), c∗(x)) = max(0, 1 −
c∗(x)fw(x)). This loss function now requires fw(x) to have the correct sign and have mag-
nitude at least 1 in order to be zero. Hinge loss has the useful property that it is an upper
bound on error rate: for any sample S, the training error is at most

∑
x∈S L(fw(x), c∗(x)).

With this loss function, stochastic gradient descent is called the margin perceptron algo-
rithm.

More generally, we could have a much more complex class F . For example, consider
a layered circuit of soft threshold gates. Each node in the circuit computes a linear func-
tion of its inputs and then passes this value through an “activation function” such as
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a(z) = tanh(z) = (ez − e−z)/(ez + e−z). This circuit could have multiple layers with
the output of layer i being used as the input to layer i + 1. The vector w would be the
concatenation of all the weight vectors in the network. This is the idea of deep neural
networks discussed further in Section 5.13.

While it is difficult to give general guarantees on when stochastic gradient descent will
succeed in finding a hypothesis of low error on its training set S, Theorems 5.5 and 5.3
imply that if it does and if S is sufficiently large, we can be confident that its true error
will be low as well. Suppose that stochastic gradient descent is run on a machine where
each weight is a 64-bit floating point number. This means that its hypotheses can each
be described using 64n bits. If S has size at least 1

ε
[64n ln(2) + ln(1/δ)], by Theorem 5.5

it is unlikely any such hypothesis of true error greater than ε will be consistent with the
sample, and so if it finds a hypothesis consistent with S, we can be confident its true error
is at most ε. Or, by Theorem 5.3, if |S| ≥ 1

2ε2

(
64n ln(2) + ln(2/δ)

)
then almost surely the

final hypothesis h produced by stochastic gradient descent satisfies true error leas than
or equal to training error plus ε.

5.12 Combining (Sleeping) Expert Advice

Imagine you have access to a large collection of rules-of-thumb that specify what to
predict in different situations. For example, in classifying news articles, you might have
one that says “if the article has the word ‘football’, then classify it as sports” and another
that says “if the article contains a dollar figure, then classify it as business”. In predicting
the stock market, these could be different economic indicators. These predictors might
at times contradict each other, e.g., a news article that has both the word “football” and
a dollar figure, or a day in which two economic indicators are pointing in different direc-
tions. It also may be that no predictor is perfectly accurate with some much better than
others. We present here an algorithm for combining a large number of such predictors
with the guarantee that if any of them are good, the algorithm will perform nearly as well
as each good predictor on the examples on which that predictor fires.

Formally, define a “sleeping expert” to be a predictor h that on any given example x
either makes a prediction on its label or chooses to stay silent (asleep). We will think of
them as black boxes. Now, suppose we have access to n such sleeping experts h1, . . . , hn,
and let Si denote the subset of examples on which hi makes a prediction (e.g., this could
be articles with the word “football” in them). We consider the online learning model,
and let mistakes(A, S) denote the number of mistakes of an algorithm A on a sequence
of examples S. Then the guarantee of our algorithm A will be that for all i

E
(
mistakes(A, Si)

)
≤ (1 + ε) ·mistakes(hi, Si) +O

(
logn
ε

)
where ε is a parameter of the algorithm and the expectation is over internal randomness
in the randomized algorithm A.
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As a special case, if h1, . . . , hn are concepts from a concept class H, and so they all
make predictions on every example, then A performs nearly as well as the best concept
in H. This can be viewed as a noise-tolerant version of the Halving Algorithm of Section
5.5.2 for the case that no concept in H is perfect. The case of predictors that make
predictions on every example is called the problem of combining expert advice, and the
more general case of predictors that sometimes fire and sometimes are silent is called the
sleeping experts problem.

Combining Sleeping Experts Algorithm:

Initialize each expert hi with a weight wi = 1. Let ε ∈ (0, 1). For each example x, do the
following:

1. [Make prediction] Let Hx denote the set of experts hi that make a prediction on x, and
let wx =

∑
hj∈Hx

wj. Choose hi ∈ Hx with probability pix = wi/wx and predict hi(x).

2. [Receive feedback] Given the correct label, for each hi ∈ Hx let mix = 1 if hi(x) was
incorrect, else let mix = 0.

3. [Update weights] For each hi ∈ Hx, update its weight as follows:

• Let rix =
(∑

hj∈Hx pjxmjx

)
/(1 + ε)−mix.

• Update wi ← wi(1 + ε)rix .

Note that
∑

hj∈Hx pjxmjx represents the algorithm’s probability of making a mis-

take on example x. So, hi is rewarded for predicting correctly (mix = 0) especially
when the algorithm had a high probability of making a mistake, and hi is penal-
ized for predicting incorrectly (mix = 1) especially when the algorithm had a low
probability of making a mistake.

For each hi 6∈ Hx, leave wi alone.

Theorem 5.21 For any set of n sleeping experts h1, . . . , hn, and for any sequence of
examples S, the Combining Sleeping Experts Algorithm A satisfies for all i:

E
(
mistakes(A, Si)

)
≤ (1 + ε) ·mistakes(hi, Si) +O

(
logn
ε

)
where Si = {x ∈ S : hi ∈ Hx}.

Proof: Consider sleeping expert hi. The weight of hi after the sequence of examples S
is exactly:

wi = (1 + ε)
∑
x∈Si

[(∑
hj∈Hx

pjxmjx

)
/(1+ε)−mix

]
= (1 + ε)E[mistakes(A,Si)]/(1+ε)−mistakes(hi,Si).
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Let w =
∑

j wj. Clearly wi ≤ w. Therefore, taking logs, we have:

E
(
mistakes(A, Si)

)
/(1 + ε)−mistakes(hi, Si) ≤ log1+εw.

So, using the fact that log1+εw = O( logW
ε

),

E
(
mistakes(A, Si)

)
≤ (1 + ε) ·mistakes(hi, Si) +O

(
logw
ε

)
.

Initially, w = n. To prove the theorem, it is enough to prove that w never increases. To
do so, we need to show that for each x,

∑
hi∈Hx wi(1 + ε)rix ≤

∑
hi∈Hx wi, or equivalently

dividing both sides by
∑

hj∈Hx wj that
∑

i pix(1 + ε)rix ≤ 1, where for convenience we
define pix = 0 for hi 6∈ Hx.

For this we will use the inequalities that for β, z ∈ [0, 1], βz ≤ 1 − (1 − β)z and
β−z ≤ 1 + (1− β)z/β. Specifically, we will use β = (1 + ε)−1. We now have:∑

i

pix(1 + ε)rix =
∑
i

pixβ
mix−(

∑
j pjxmjx)β

≤
∑
i

pix

(
1− (1− β)mix

)(
1 + (1− β)

(∑
j

pjxmjx

))

≤

(∑
i

pix

)
− (1− β)

∑
i

pixmix + (1− β)
∑
i

pix
∑
j

pjxmjx

= 1− (1− β)
∑
i

pixmix + (1− β)
∑
j

pjxmjx

= 1,

where the second-to-last line follows from using
∑

i pix = 1 in two places. So w never
increases and the bound follows as desired.

5.13 Deep Learning

Deep learning, or deep neural networks, refers to training many-layered networks of
nonlinear computational units. The input to the network is an example x ∈ Rd. The
first layer of the network transforms the example into a new vector f1(x). Then the
second layer transforms f1(x) into a new vector f2(f1(x)), and so on. Finally, the kth

layer outputs the final prediction fk(fk−1(. . . (f1(x)))). When the learning is supervised
the output is typically a vector of probabilities. The motivation for deep learning is that
often we are interested in data, such as images, that are given to us in terms of very
low-level features, such as pixel intensity values. Our goal is to achieve some higher-
level understanding of each image, such as what objects are in the image and what are
they doing. To do so, it is natural to first convert the given low-level representation into
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Each gate is connected to a
k × k grid. Weights are tied
together.


Second set of gates each
connected to a k × k grid.
Weights are tied together.

Figure 5.7: Convolution layers

one of higher-level features. That is what the layers of the network aim to do. Deep
learning is also motivated by multi-task learning, with the idea that a good higher-level
representation of data should be useful for a wide range of tasks. Indeed, a common use
of deep learning for multi-task learning is to share initial levels of the network across tasks.

A typical architecture of a deep neural network consists of layers of logic units. In a
fully connected layer, the output of each gate in the layer is connected to the input of
every gate in the next layer. However, if the input is an image one might like to recognize
features independent of where they are located in the image. To achieve this one often
uses a number of convolution layers. In a convolution layer, each gate gets inputs from a
small k × k grid where k may be 5 to 10. There is a gate for each k × k square array of
the image. The weights on each gate are tied together so that each gate recognizes the
same feature. There will be several such collections of gates, so several different features
can be learned. Such a level is called a convolution level and the fully connected layers
are called autoencoder levels. A technique called pooling is used to keep the number of
gates reasonable. A small k × k grid with k typically set to two is used to scan a layer.
The stride is set so the grid will provide a non overlapping cover of the layer. Each k× k
input grid will be reduced to a single cell by selecting the maximum input value or the
average of the inputs. For k = 2 this reduces the number of cells by a factor of four.

Deep learning networks are trained by stochastic gradient descent (Section 5.11), some-
times called back propagation in the network context. An error function is constructed
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Figure 5.8: A deep learning fully connected network.

and the weights are adjusted using the derivative of the error function. This requires that
the error function be differentiable. A smooth threshold is used such as

tanh(x) =
ex − e−x

ex + e−x
where

∂

∂x

ee − e−e

ex + e−x
= 1−

(
ex − e−x

ex + e−x

)2

or sigmod(x) = 1
1+e−x

where

∂ sigmod(x)

∂x
=

e−x

(1 + e−x)2
= sigmod(x)

e−x

1 + e−x
= sigmoid(x)

(
1− sigmoid(x)

)
.

In fact the function

ReLU(x) =

{
x x ≥ 0
0 otherwise

where
∂ReLU(x)

∂x
=

{
1 x ≥ 0
0 otherwise

seems to work well even though its derivative at x = 0 is undefined. An advantage of
ReLU over sigmoid is that ReLU does not saturate far from the origin.

Training a deep learning network of 7 or 8 levels using gradient descent can be compu-
tationally expensive.26 To address this issue one can train one level at a time on unlabeled
data using an idea called autoencoding. There are three levels, the input, a middle level
called the hidden level, and an output level as shown in Figure 5.9a. There are two sets
of weights. W1 is the weights of the hidden level gates and W2 is W T

1 . Let x be the input
pattern and y be the output. The error is |x− y|2. One uses gradient descent to reduce
the error. Once the weights W1 are determined they are frozen and a second hidden level
of gates is added as in Figure 5.9 b. In this network W3 = W T

2 and stochastic gradient
descent is again used this time to determine W2. In this way one level of weights is trained

26In the image recognition community, researchers work with networks of 150 levels. The levels tend
to be convolution rather than fully connected.
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W1 W2

(a)

W1 W2 W3

(b)

Figure 5.9: Autoencoder technique used to train one level at a time. In the Figure 5.9 (a)
train W1 and W2. Then in Figure 5.9 (b), freeze W1 and train W2 and W3. In this way
one trains one set of weights at a time.

at a time.

The output of the hidden gates is an encoding of the input. An image might be a
108 dimensional input and there may only be 105 hidden gates. However, the number of
images might be 107 so even though the dimension of the hidden layer is smaller than the
dimension of the input, the number of possible codes far exceeds the number of inputs
and thus the hidden layer is a compressed representation of the input. If the hidden layer
were the same dimension as the input layer one might get the identity mapping. This
does not happen for gradient descent starting with random weights.

The output layer of a deep network typically uses a softmax procedure. Softmax is
a generalization of logistic regression where given a set of vectors {x1,x2, . . .xn} with
labels l1, l2, . . . ln, li ∈ {0, 1} and with a weight vector w we define the probability that
the label l given x equals 0 or 1 by

Prob(l = 1|x) =
1

1 + e−wTx
= σ(wTx)

and
Prob(l = 0|x) = 1− Prob(l = 1/x)

where σ is the sigmoid function.

Define a cost function

J(w) =
∑
i

(
li log(Prob(l = 1|x)) + (1− li) log(1− Prob(l = 1|x))

)
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and compute w to minimize J(x). Then

J(w) =
∑
i

(
li log(σ(wTx)) + (1− li) log(1− σ(wTx))

)
Since ∂σ(wTx)

∂wj
= σ(wTx)(1− σ(wTx))xj, it follows that ∂ log(σ(wTx))

∂wj
=

σ(wTx)(1−σ(wTx))xj
σ(wTx)

,

Thus

∂J

∂wj
=
∑
i

(
li
σ(wTx)(1− σ(wTx))

σ(wTx)
xj − (1− li)

(1− σ(wTx))σ(wTx)

1− σ(wTx)
xj

)
=
∑
i

(
li(1− σ(wTx))xj − (1− li)σ(wTx)xj

)
=
∑
i

(
(lixj − liσ(wTx)xj − σ(wTx)xj + liσ(wTx)xj

)
=
∑
i

(
li − σ(wTx)

)
xj.

Softmax is a generalization of logistic regression to multiple classes. Thus, the labels
li take on values {1, 2, . . . , k}. For an input x, softmax estimates the probability of each
label. The hypothesis is of the form

hw(x) =


Prob(l = 1|x,w1)
Prob(l = 2|x,w2)

...
Prob(l = k|x,wk)

 =
1∑k

i=1 e
wT

i x


ew

T
1 x

ew
T
2 x

...

ew
T
k x


where the matrix formed by the weight vectors is

W = (w1,w2, . . . ,wk)T

W is a matrix since for each label li, there is a vector wi of weights.

Consider a set of n inputs {x1,x2, . . . ,xn}. Define

δ(l = k) =

{
1 if l = k
0 otherwise

and

J(W ) =
n∑
i=1

k∑
j=1

δ(li = j) log
ew

T
j xi∑k

h=1 e
wT

h xi
.

The derivative of the cost function with respect to the weights is

∇wi
J(W ) = −

n∑
j=1

xj

(
δ(lj = k)− Prob(lj = k)|xj,W

)
.
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convolution pooling

Image Convolution levels Fully connected levels Softmax

Figure 5.10: A convolution network
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Note ∇wi
J(W ) is a vector. Since wi is a vector, each component of ∇wi

J(W ) is the
derivative with respect to one component of the vector wi.

Over fitting is a major concern in deep learning since large networks can have hun-
dreds of millions of weights. In image recognition, the number of training images can
be significantly increased by random jittering of the images. Another technique called
dropout randomly deletes a fraction of the weights at each training iteration. Regulariza-
tion is used to assign a cost to the size of weights and many other ideas are being explored.

Deep learning is an active research area. Some of the ideas being explored are what
do individual gates or sets of gates learn. If one trains a network twice from starting with
random sets of weights, do gates learn the same features? In image recognition, the early
convolution layers seem to learn features of images rather than features of the specific set
of images they are being trained with. Once a network is trained on say a set of images
one of which is a cat one can freeze the weights and then find images that will map to
the activation vector generated by the cat image. One can take an artwork image and
separate the style from the content and then create an image using the content but a
different style [GEB15]. This is done by taking the activation of the original image and
moving it to the manifold of activation vectors of images of a given style. One can do
many things of this type. For example one can change the age of a child in an image
or change some other feature [GKL+15]. For more information about deep learning, see
[Ben09].27

5.13.1 Generative Adversarial Networks (GANs)

A method that is promising in trying to generate images that look real is to create code
that tries to discern between real images and synthetic images.

image
generator

real
image

synthetic
image

discriminator

One first trains the synthetic image discriminator to distinguish between real images and
synthetic ones. Then one trains the image generator to generate images that the discrim-
inator believes are real images. Alternating the training between the two units ends up
forcing the image generator to produce real looking images. This is the idea of Generative

27See also the tutorials: http://deeplearning.net/tutorial/deeplearning.pdf and
http://deeplearning.stanford.edu/tutorial/.
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Adversarial Networks.

There are many possible applications for this technique. Suppose you wanted to train
a network to translate from English to German. First train a discriminator to determine
if a sentence is a real sentence in German as opposed to a synthetic sentence. Then train
a translator for English to German and a translator from German to English.

translate

to German

translate

to English

discriminator

5.14 Further Current Directions

We now briefly discuss a few additional current directions in machine learning, focusing
on semi-supervised learning, active learning, and multi-task learning.

5.14.1 Semi-Supervised Learning

Semi-supervised learning refers to the idea of trying to use a large unlabeled data set U to
augment a given labeled data set L in order to produce more accurate rules than would
have been achieved using just L alone. The motivation is that in many settings (e.g.,
document classification, image classification, speech recognition), unlabeled data is much
more plentiful than labeled data, so one would like to make use of it if possible. Of course,
unlabeled data is missing the labels! Nonetheless it often contains information that an
algorithm can take advantage of.

As an example, suppose one believes the target function is a linear separator that
separates most of the data by a large margin. By observing enough unlabeled data to es-
timate the probability mass near to any given linear separator, one could in principle then
discard separators in advance that slice through dense regions and instead focus attention
on just those that indeed separate most of the distribution by a large margin. This is the
high level idea behind a technique known as Semi-Supervised SVMs. Alternatively, sup-
pose data objects can be described by two different “kinds” of features (e.g., a webpage
could be described using words on the page itself or using words on links pointing to the
page), and one believes that each kind should be sufficient to produce an accurate classi-
fier. Then one might want to train a pair of classifiers (one on each type of feature) and
use unlabeled data for which one is confident but the other is not to bootstrap, labeling
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such examples with the confident classifier and then feeding them as training data to the
less-confident one. This is the high-level idea behind a technique known as Co-Training.
Or, if one believes “similar examples should generally have the same label”, one might
construct a graph with an edge between examples that are sufficiently similar, and aim for
a classifier that is correct on the labeled data and has a small cut value on the unlabeled
data; this is the high-level idea behind graph-based methods.

A formal model: The batch learning model introduced in Sections 5.1 and 5.3 in essence
assumes that one’s prior beliefs about the target function be described in terms of a class
of functions H. In order to capture the reasoning used in semi-supervised learning, we
need to also describe beliefs about the relation between the target function and the data
distribution. A clean way to do this is via a notion of compatibility χ between a hypoth-
esis h and a distribution D. Formally, χ maps pairs (h,D) to [0, 1] with χ(h,D) = 1
meaning that h is highly compatible with D and χ(h,D) = 0 meaning that h is very
incompatible with D. The quantity 1−χ(h,D) is called the unlabeled error rate of h, and
denoted errunl(h). Note that for χ to be useful, it must be estimatable from a finite sam-
ple; to this end, let us further require that χ is an expectation over individual examples.
That is, overloading notation for convenience, we require χ(h,D) = Ex∼D[χ(h, x)], where
χ : H×X → [0, 1].

For instance, suppose we believe the target should separate most data by margin γ.
We can represent this belief by defining χ(h, x) = 0 if x is within distance γ of the de-
cision boundary of h, and χ(h, x) = 1 otherwise. In this case, errunl(h) will denote the
probability mass of D within distance γ of h’s decision boundary. As a different exam-
ple, in co-training, we assume each example can be described using two “views” that
each are sufficient for classification; that is, there exist c∗1, c

∗
2 such that for each example

x = 〈x1, x2〉 we have c∗1(x1) = c∗2(x2). We can represent this belief by defining a hypothesis
h = 〈h1, h2〉 to be compatible with an example 〈x1, x2〉 if h1(x1) = h2(x2) and incompatible
otherwise; errunl(h) is then the probability mass of examples on which h1 and h2 disagree.

As with the class H, one can either assume that the target is fully compatible (i.e.,
errunl(c

∗) = 0) or instead aim to do well as a function of how compatible the target is.
The case that we assume c∗ ∈ H and errunl(c

∗) = 0 is termed the “doubly realizable
case”. The concept class H and compatibility notion χ are both viewed as known.

Intuition: In this framework, the way that unlabeled data helps in learning can be in-
tuitively described as follows. Suppose one is given a concept class H (such as linear
separators) and a compatibility notion χ (such as penalizing h for points within distance
γ of the decision boundary). Suppose also that one believes c∗ ∈ H (or at least is close)
and that errunl(c

∗) = 0 (or at least is small). Then, unlabeled data can help by allowing
one to estimate the unlabeled error rate of all h ∈ H, thereby in principle reducing the
search space from H (all linear separators) down to just the subset of H that is highly
compatible with D. The key challenge is how this can be done efficiently (in theory,
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in practice, or both) for natural notions of compatibility, as well as identifying types of
compatibility that data in important problems can be expected to satisfy.

A theorem: The following is a semi-supervised analog of our basic sample complexity
theorem, Theorem 5.1. First, fix some set of functions H and compatibility notion χ.
Given a labeled sample L, define êrr(h) to be the fraction of mistakes of h on L. Given
an unlabeled sample U , define χ(h, U) = Ex∼U [χ(h, x)] and define êrrunl(h) = 1−χ(h, U).
That is, êrr(h) and êrrunl(h) are the empirical error rate and unlabeled error rate of h,
respectively. Finally, given α > 0, define HD,χ(α) to be the set of functions f ∈ H such
that errunl(f) ≤ α.

Theorem 5.22 If c∗ ∈ H then with probability at least 1 − δ, for labeled set L and
unlabeled set U drawn from D, the h ∈ H that optimizes êrrunl(h) subject to êrr(h) = 0
will have errD(h) ≤ ε for

|U | ≥ 2

ε2

[
ln |H|+ ln

4

δ

]
, and |L| ≥ 1

ε

[
ln |HD,χ(errunl(c

∗) + 2ε)|+ ln
2

δ

]
.

Equivalently, for |U | satisfying this bound, for any |L|, whp the h ∈ H that minimizes
êrrunl(h) subject to êrr(h) = 0 has

errD(h) ≤ 1

|L|

[
ln |HD,χ(errunl(c

∗) + 2ε)|+ ln
2

δ

]
.

Proof: By Hoeffding bounds, |U | is sufficiently large so that with probability at least
1− δ/2, all h ∈ H have |êrrunl(h)− errunl(h)| ≤ ε. Thus we have:

{f ∈ H : êrrunl(f) ≤ errunl(c
∗) + ε} ⊆ HD,χ(errunl(c

∗) + 2ε).

The given bound on |L| is sufficient so that with probability at least 1− δ, all h ∈ H with
êrr(h) = 0 and êrrunl(h) ≤ errunl(c

∗) + ε have errD(h) ≤ ε; furthermore, êrrunl(c
∗) ≤

errunl(c
∗) + ε, so such a function h exists. Therefore, with probability at least 1− δ, the

h ∈ H that optimizes êrrunl(h) subject to êrr(h) = 0 has errD(h) ≤ ε, as desired.

One can view Theorem 5.22 as bounding the number of labeled examples needed to learn
well as a function of the “helpfulness” of the distribution D with respect to χ. Namely,
a helpful distribution is one in which HD,χ(α) is small for α slightly larger than the
compatibility of the true target function, so we do not need much labeled data to identify a
good function among those inHD,χ(α). For more information on semi-supervised learning,
see [BB10, BM98, CSZ06, Joa99, Zhu06, ZGL03].

5.14.2 Active Learning

Active learning refers to algorithms that take an active role in the selection of which ex-
amples are labeled. The algorithm is given an initial unlabeled set U of data points drawn
from distribution D and then interactively requests for the labels of a small number of
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these examples. The aim is to reach a desired error rate ε using much fewer labels than
would be needed by just labeling random examples (i.e., passive learning).

As a simple example, suppose that data consists of points on the real line and H =
{fa : fa(x) = 1 iff x ≥ a} for a ∈ R. That is, H is the set of all threshold functions on
the line. It is not hard to show (see Exercise 5.2) that a random labeled sample of size
O(1

ε
log(1

δ
)) is sufficient to ensure that with probability ≥ 1− δ, any consistent threshold

a′ has error at most ε. Moreover, it is not hard to show that Ω(1
ε
) random examples are

necessary for passive learning. However, with active learning we can achieve error ε using
only O(log(1

ε
) + log log(1

δ
)) labels. Specifically, first draw an unlabeled sample U of size

O(1
ε

log(1
δ
)). Then query the leftmost and rightmost points: if these are both negative

then output a′ =∞, and if these are both positive then output a′ = −∞. Otherwise (the
leftmost is negative and the rightmost is positive), perform binary search to find two ad-
jacent examples x, x′ such that x is negative and x′ is positive, and output a′ = (x+x′)/2.
This threshold a′ is consistent with the labels on the entire set U , and so by the above
argument, has error ≤ ε with probability ≥ 1− δ.

The agnostic case, where the target need not belong in the given class H is quite a bit
more subtle, and addressed in a quite general way in the “A2” Agnostic Active learning
algorithm [BBL09]. For more information on active learning, see [Das11, BU14].

5.14.3 Multi-Task Learning

In this chapter we have focused on scenarios where our goal is to learn a single target
function c∗. However, there are also scenarios where one would like to learn multiple target
functions c∗1, c

∗
2, . . . , c

∗
n. If these functions are related in some way, then one could hope to

do so with less data per function than one would need to learn each function separately.
This is the idea of multi-task learning.

One natural example is object recognition. Given an image x, c∗1(x) might be 1 if x is
a coffee cup and 0 otherwise; c∗2(x) might be 1 if x is a pencil and 0 otherwise; c∗3(x) might
be 1 if x is a laptop and 0 otherwise. These recognition tasks are related in that image
features that are good for one task are likely to be helpful for the others as well. Thus,
one approach to multi-task learning is to try to learn a common representation under
which each of the target functions can be described as a simple function. Another natural
example is personalization. Consider a speech recognition system with n different users.
In this case there are n target tasks (recognizing the speech of each user) that are clearly
related to each other. Some good references for multi-task learning are [TM95, Thr96].

5.15 Bibliographic Notes

The basic theory underlying learning in the distributional setting was developed by Vapnik
[Vap82], Vapnik and Chervonenkis [VC71], and Valiant [Val84]. The connection of this
to the notion of Occam’s razor is due to [BEHW87]. For more information on uniform
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convergence, regularization and complexity penalization, see [Vap98]. The Perceptron
algorithm for online learning of linear separators was first analyzed by Block [Blo62]
and Novikoff [Nov62]; the proof given here is from [MP69]. A formal description of
the online learning model and its connections to learning in the distributional setting is
given in [Lit87]. Support Vector Machines and their connections to kernel functions were
first introduced by [BGV92], and extended by [CV95], with analysis in terms of margins
given by [STBWA98]. For further reading on SVMs, learning with kernel functions, and
regularization, see [SS01]. VC dimension is due to Vapnik and Chervonenkis [VC71]
with the results presented here given in Blumer, Ehrenfeucht, Haussler and Warmuth
[BEHW89]. A good discussion of Rademacher complexity is given in [BM02]. Boosting
was first introduced by Schapire [Sch90], and Adaboost and its guarantees are due to
Freund and Schapire [FS97]. Analysis of the problem of combining expert advice via
multiplicative weights was given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
et al. [CBFH+97]; the analysis given here of the more general sleeping experts problem is
from [BM07].

A good discussion of deep learning is given by Bengio [Ben09]. For more information
on semi-supervised learning, see [BB10, BM98, CSZ06, Joa99, Zhu06, ZGL03], for more on
active learning, see [BBL09, Das11, BU14], and for multi-task learning, see [TM95, Thr96].

There are many excellent reference books on machine learning in addition to those
noted above, including Mitchell [Mit97], Kearns and Vazirani [KV95], and Shalev-Shwartz
and Ben-David [SSBD14].
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5.16 Exercises

Exercise 5.1 (Section 5.2 and 5.3) Consider the instance space X = {0, 1}d and let
H be the class of 3-CNF formulas. That is, H is the set of concepts that can be described
as a conjunction of clauses where each clause is an OR of up to 3 literals. (These are also
called 3-SAT formulas). For example c∗ might be (x1∨x̄2∨x3)(x2∨x4)(x̄1∨x3)(x2∨x3∨x4).
Assume we are in the PAC learning setting, so examples are drawn from some underlying
distribution D and labeled by some 3-CNF formula c∗.

1. Give a number of samples m that would be sufficient to ensure that with probability
≥ 1 − δ, all 3-CNF formulas consistent with the sample have error at most ε with
respect to D.

2. Give a polynomial-time algorithm for PAC-learning the class of 3-CNF formulas.

Exercise 5.2 (Section 5.2) Consider the instance space X = R, and the class of func-
tions H = {fa : fa(x) = 1 iff x ≥ a} for a ∈ R. That is, H is the set of all threshold
functions on the line. Prove that for any distribution D, a sample S of size O(1

ε
log(1

δ
))

is sufficient to ensure that with probability ≥ 1 − δ, any fa′ such that errS(fa′) = 0 has
errD(fa′) ≤ ε. Note that you can answer this question from first principles, without using
the concept of VC-dimension.

Exercise 5.3 (Perceptron; Section 5.5.3) Consider running the Perceptron algorithm
in the online model on some sequence of examples S. Let S ′ be the same set of examples
as S but presented in a different order. Does the Perceptron algorithm necessarily make
the same number of mistakes on S as it does on S ′? If so, why? If not, show such an S
and S ′ (consisting of the same set of examples in a different order) where the Perceptron
algorithm makes a different number of mistakes on S ′ than it does on S.

Exercise 5.4 (representation and linear separators) Show that any disjunction (see
Section 5.3.1) over {0, 1}d can be represented as a linear separator. Show that moreover
the margin of separation is Ω(1/

√
d).

Exercise 5.5 (Linear separators; easy) Show that the parity function on d ≥ 2
Boolean variables cannot be represented by a linear threshold function. The parity function
is 1 if and only if an odd number of inputs is 1.

Exercise 5.6 (Perceptron; Section 5.5.3) We know the Perceptron algorithm makes
at most 1/γ2 mistakes on any sequence of examples that is separable by margin γ (we
assume all examples are normalized to have length 1). However, it need not find a sep-
arator of large margin. If we also want to find a separator of large margin, a natural
alternative is to update on any example x such that f ∗(x)(w · x) < 1; this is called the
margin perceptron algorithm.

1. Argue why margin perceptron is equivalent to running stochastic gradient descent on
the class of linear predictors (fw(x) = w · x) using hinge loss as the loss function
and using λt = 1.
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2. Prove that on any sequence of examples that are separable by margin γ, this algorithm
will make at most 3/γ2 updates.

3. In part 2 you probably proved that each update increases |w|2 by at most 3. Use
this (and your result from part 2) to conclude that if you have a dataset S that
is separable by margin γ, and cycle through the data until the margin perceptron
algorithm makes no more updates, that it will find a separator of margin at least
γ/3.

Exercise 5.7 (Decision trees, regularization; Section 5.3) Pruning a decision tree:
Let S be a labeled sample drawn iid from some distribution D over {0, 1}n, and suppose
we have used S to create some decision tree T . However, the tree T is large, and we are
concerned we might be overfitting. Give a polynomial-time algorithm for pruning T that
finds the pruning h of T that optimizes the right-hand-side of Corollary 5.6, i.e., that for
a given δ > 0 minimizes:

errS(h) +

√
size(h) ln(4) + ln(2/δ)

2|S|
.

To discuss this, we need to define what we mean by a “pruning” of T and what we mean
by the “size” of h. A pruning h of T is a tree in which some internal nodes of T have been
turned into leaves, labeled “+” or “−” depending on whether the majority of examples in
S that reach that node are positive or negative. Let size(h) = L(h) log(n) where L(h) is
the number of leaves in h.

Hint #1: it is sufficient, for each integer L = 1, 2, . . . , L(T ), to find the pruning of T
with L leaves of lowest empirical error on S, that is, hL = argminh:L(h)=LerrS(h). Then
you can just plug them all into the displayed formula above and pick the best one.

Hint #2: use dynamic programming.

Exercise 5.8 (Decision trees, sleeping experts; Sections 5.3, 5.12) “Pruning” a
Decision Tree Online via Sleeping Experts: Suppose that, as in the above problem, we are
given a decision tree T , but now we are faced with a sequence of examples that arrive
online. One interesting way we can make predictions is as follows. For each node v of
T (internal node or leaf) create two sleeping experts: one that predicts positive on any
example that reaches v and one that predicts negative on any example that reaches v. So,
the total number of sleeping experts is O(L(T )).

1. Say why any pruning h of T , and any assignment of {+,−} labels to the leaves of h,
corresponds to a subset of sleeping experts with the property that exactly one sleeping
expert in the subset makes a prediction on any given example.

2. Prove that for any sequence S of examples, and any given number of leaves L, if

we run the sleeping-experts algorithm using ε =
√

L log(L(T ))
|S| , then the expected error

rate of the algorithm on S (the total number of mistakes of the algorithm divided by
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|S|) will be at most errS(hL) + O(
√

L log(L(T ))
|S| ), where hL = argminh:L(h)=LerrS(h)

is the pruning of T with L leaves of lowest error on S.

3. In the above question, we assumed L was given. Explain how we can remove this as-

sumption and achieve a bound of minL

[
errS(hL) +O(

√
L log(L(T ))
|S| )

]
by instantiating

L(T ) copies of the above algorithm (one for each value of L) and then combining
these algorithms using the experts algorithm (in this case, none of them will be
sleeping).

Exercise 5.9 Kernels; (Section 5.6) Prove Theorem 5.10.

Exercise 5.10 What is the VC-dimension of right corners with axis aligned edges that
are oriented with one edge going to the right and the other edge going up?

Exercise 5.11 (VC-dimension; Section 5.9) What is the VC-dimension V of the
class H of axis-parallel boxes in Rd? That is, H = {ha,b : a,b ∈ Rd} where ha,b(x) = 1
if ai ≤ xi ≤ bi for all i = 1, . . . , d and ha,b(x) = −1 otherwise.

1. Prove that the VC-dimension is at least your chosen V by giving a set of V points
that is shattered by the class (and explaining why it is shattered).

2. Prove that the VC-dimension is at most your chosen V by proving that no set of
V + 1 points can be shattered.

Exercise 5.12 (VC-dimension, Perceptron, and Margins; Sections 5.5.3, 5.9)
Say that a set of points S is shattered by linear separators of margin γ if every labeling
of the points in S is achievable by a linear separator of margin at least γ. Prove that no
set of 1/γ2 + 1 points in the unit ball is shattered by linear separators of margin γ.

Hint: think about the Perceptron algorithm and try a proof by contradiction.

Exercise 5.13 (Linear separators) Suppose the instance space X is {0, 1}d and con-
sider the target function c∗ that labels an example x as positive if the least index i for
which xi = 1 is odd, else labels x as negative. In other words, c∗(x) = “if x1 = 1 then
positive else if x2 = 1 then negative else if x3 = 1 then positive else ... else negative”.
Show that the rule can be represented by a linear threshold function.

Exercise 5.14 (Linear separators; harder) Prove that for the problem of Exercise
5.13, we cannot have a linear separator with margin at least 1/f(d) where f(d) is bounded
above by a polynomial function of d.

Exercise 5.15 VC-dimension Prove that the VC-dimension of circles in the plane is
three.

Exercise 5.16 VC-dimension Show that the VC-dimension of arbitrary right triangles
in the plane is seven.
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Exercise 5.17 VC-dimension Prove that the VC-dimension of triangles in the plane
is seven.

Exercise 5.18 VC-dimension Prove that the VC dimension of convex polygons in the
plane is infinite.

Exercise 5.19 At present there are many interesting research directions in deep learning
that are being explored. This exercise focuses on whether gates in networks learn the same
thing independent of the architecture or how the network is trained. On the web there
are several copies of Alexnet that have been trained starting from different random initial
weights. Select two copies and form a matrix where the columns of the matrix correspond
to gates in the first copy of Alexnet and the rows of the matrix correspond to gates of
the same level in the second copy. The ijth entry of the matrix is the covariance of the
activation of the jth gate in the first copy of Alexnet with the ith gate in the second copy.
The covariance is the expected value over all images in the data set.

1. Match the gates in the two copies of the network using a bipartite graph matching
algorithm. What is the fraction of matches that have a high covariance?

2. It is possible that there is no good one to one matching of gates but that some small
set of gates in the first copy of the network learn what some small set of gates in the
second copy learn. Explore a clustering technique to match sets of gates and carry
out an experiment to do this.

Exercise 5.20

1. Input an image to a deep learning network. Reproduce the image from the activation
vector, aimage, it produced by inputting a random image and producing an activation
vector arandom. Then by gradient descent modify the pixels in the random image to
minimize the error function |aimage − arandom|2.

2. Train a deep learning network to produce an image from an activation network.

Exercise 5.21

1. Create and train a simple deep learning network consisting of a convolution level with
pooling, a fully connected level, and then softmax. Keep the network small. For input
data use the MNIST data set http://yann.lecun.com/exdb/mnist/ with 28×28
images of digits. Use maybe 20 channels for the convolution level and 100 gates for
the fully connected level.

2. Create and train a second network with two fully connected levels, the first level with
200 gates and the second level with 100 gates. How does the accuracy of the second
network compare to the first?
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3. Train the second network again but this time use the activation vector of the 100
gate level and train the second network to produce that activation vector and only
then train the softmax. How does the accuracy compare to direct training of the
second network and the first network?

convolution

first network second network
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6 Algorithms for Massive Data Problems: Stream-

ing, Sketching, and Sampling

6.1 Introduction

This chapter deals with massive data problems where the input data is too large to be
stored in random access memory. One model for such problems is the streaming model,
where n data items a1, a2, . . . , an arrive one at a time. For example, the ai might be
IP addresses being observed by a router on the internet. The goal is for our algorithm
to compute some statistics, property, or summary of these data items without using too
much memory, much less than n. More specifically, we assume each ai itself is a b-bit
quantity where b is not too large. For example, each ai might be an integer in {1, . . . ,m}
where m = 2b. Our goal will be to produce some desired output using space polynomial
in b and log n; see Figure 6.1.

For example, a very easy problem to solve in the streaming model is to compute the
sum of all the ai. If each ai is an integer between 1 and m = 2b, then the sum of all the ai
is an integer between 1 and mn and so the number of bits of memory needed to maintain
the sum is O(b + log n). A harder problem, which we discuss shortly, is computing the
number of distinct numbers in the input sequence.

One natural approach for tackling a range of problems in the streaming model is to
perform random sampling of the input “on the fly”. To introduce the basic flavor of
sampling on the fly, consider a stream a1, a2, . . . , an from which we are to select an index
i with probability proportional to the value of ai. When we see an element, we do not
know the probability with which to select it since the normalizing constant depends on
all of the elements including those we have not yet seen. However, the following method
works. Let s be the sum of the ai’s seen so far. Maintain s and an index i selected
with probability ai

s
. Initially i = 1 and s = a1. Having seen symbols a1, a2, . . . , aj, s will

equal a1 + a2 + · · · + aj and for each i in {1, . . . , j}, the selected index will be i with
probability ai

s
. On seeing aj+1, change the selected index to j + 1 with probability

aj+1

s+aj+1

and otherwise keep the same index as before with probability 1 − aj+1

s+aj+1
. If we change

the index to j + 1, clearly it was selected with the correct probability. If we keep i as our
selection, then it will have been selected with probability(

1− aj+1

s+ aj+1

)
ai
s

=
s

s+ aj+1

ai
s

=
ai

s+ aj+1

which is the correct probability for selecting index i. Finally s is updated by adding aj+1

to s. This problem comes up in many areas such as sleeping experts where there is a
sequence of weights and we want to pick an expert with probability proportional to its
weight. The ai’s are the weights and the subscript i denotes the expert.
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stream a1, a2, . . . , an Algorithm
(low space)

some output

Figure 6.1: High-level representation of the streaming model

6.2 Frequency Moments of Data Streams

An important class of problems concerns the frequency moments of data streams. As
mentioned above, a data stream a1, a2, . . . , an of length n consists of symbols ai from
an alphabet of m possible symbols which for convenience we denote as {1, 2, . . . ,m}.
Throughout this section, n,m, and ai will have these meanings and s (for symbol) will
denote a generic element of {1, 2, . . . ,m}. The frequency fs of the symbol s is the number
of occurrences of s in the stream. For a nonnegative integer p, the pth frequency moment
of the stream is

m∑
s=1

fps .

Note that the p = 0 frequency moment corresponds to the number of distinct symbols
occurring in the stream using the convention 00 = 0. The first frequency moment is just
n, the length of the string. The second frequency moment,

∑
s f

2
s , is useful in computing

the variance of the stream, i.e., the average squared difference from the average frequency.

1

m

m∑
s=1

(
fs −

n

m

)2

=
1

m

m∑
s=1

(
f 2
s − 2

n

m
fs +

( n
m

)2
)

=

(
1

m

m∑
s=1

f 2
s

)
− n2

m2

In the limit as p becomes large,

(
m∑
s=1

fps

)1/p

is the frequency of the most frequent ele-

ment(s).

We will describe sampling based algorithms to compute these quantities for streaming
data shortly. First a note on the motivation for these problems. The identity and fre-
quency of the the most frequent item, or more generally, items whose frequency exceeds a
given fraction of n, is clearly important in many applications. If the items are packets on
a network with source and/or destination addresses, the high frequency items identify the
heavy bandwidth users. If the data consists of purchase records in a supermarket, the high
frequency items are the best-selling items. Determining the number of distinct symbols
is the abstract version of determining such things as the number of accounts, web users,
or credit card holders. The second moment and variance are useful in networking as well
as in database and other applications. Large amounts of network log data are generated
by routers that can record the source address, destination address, and the number of
packets for all the messages passing through them. This massive data cannot be easily
sorted or aggregated into totals for each source/destination. But it is important to know
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if some popular source-destination pairs have a lot of traffic for which the variance is one
natural measure.

6.2.1 Number of Distinct Elements in a Data Stream

Consider a sequence a1, a2, . . . , an of n elements, each ai an integer in the range 1 to m
where n and m are very large. Suppose we wish to determine the number of distinct ai in
the sequence. Each ai might represent a credit card number extracted from a sequence of
credit card transactions and we wish to determine how many distinct credit card accounts
there are. Note that this is easy to do in O(m) space by just storing a bit-vector that
records which symbols have been seen so far and which have not. It is also easy to do in
O(n logm) space by storing a list of all distinct symbols that have been seen. However,
our goal is to use space logarithmic in m and n. We first show that this is impossible
using an exact deterministic algorithm. Any deterministic algorithm that determines the
number of distinct elements exactly must use at least m bits of memory on some input
sequence of length O(m). We then will show how to get around this problem using ran-
domization and approximation.

Lower bound on memory for exact deterministic algorithm

We show that any exact deterministic algorithm must use at least m bits of memory
on some sequence of length m+1. Suppose we have seen a1, . . . , am, and suppose for sake
of contradiction that our algorithm uses less than m bits of memory on all such sequences.
There are 2m − 1 possible subsets of {1, 2, . . . ,m} that the sequence could contain and
yet only 2m−1 possible states of our algorithm’s memory. Therefore there must be two
different subsets S1 and S2 that lead to the same memory state. If S1 and S2 are of
different sizes, then clearly this implies an error for one of the input sequences. On the
other hand, if they are the same size, then if the next symbol is in S1 but not S2, the
algorithm will give the same answer in both cases and therefore must give an incorrect
answer on at least one of them.

Algorithm for the Number of distinct elements

To beat the above lower bound, consider approximating the number of distinct el-
ements. Our algorithm will produce a number that is within a constant factor of the
correct answer using randomization and thus a small probability of failure. First, the
idea: suppose the set S of distinct elements was itself chosen uniformly at random from
{1, . . . ,m}. Let min denote the minimum element in S. What is the expected value of
min? If there was one distinct element, then its expected value would be roughly m

2
. If

there were two distinct elements, the expected value of the minimum would be roughly
m
3

. More generally, for a random set S, the expected value of the minimum is approxi-
mately m

|S|+1
. See Figure 6.2. Solving min = m

|S|+1
yields |S| = m

min
− 1. This suggests

keeping track of the minimum element in O(logm) space and using this equation to give
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m
|S|+1

︷ ︸︸ ︷|S|+ 1 subsets

Figure 6.2: Estimating the size of S from the minimum element in S which has value
approximately m

|S|+1
. The elements of S partition the set {1, 2, . . . ,m} into |S|+ 1 subsets

each of size approximately m
|S|+1

.

an estimate of |S|.

Converting the intuition into an algorithm via hashing

In general, the set S might not have been chosen uniformly at random. If the el-
ements of S were obtained by selecting the |S| smallest elements of {1, 2, . . . ,m}, the
above technique would give a very bad answer. However, we can convert our intuition
into an algorithm that works well with high probability on every sequence via hashing.
Specifically, we will use a hash function h where

h : {1, 2, . . . ,m} → {0, 1, 2, . . . ,M − 1} ,

and then instead of keeping track of the minimum element ai ∈ S, we will keep track of
the minimum hash value. The question now is: what properties of a hash function do
we need? Since we need to store h, we cannot use a totally random mapping since that
would take too many bits. Luckily, a pairwise independent hash function, which can be
stored compactly is sufficient.

We recall the formal definition of pairwise independence below. But first recall that
a hash function is always chosen at random from a family of hash functions and phrases
like “probability of collision” refer to the probability in the choice of hash function.

2-Universal (Pairwise Independent) Hash Functions

A set of hash functions

H =
{
h | h : {1, 2, . . . ,m} → {0, 1, 2, . . . ,M − 1}

}
is 2-universal or pairwise independent if for all x and y in {1, 2, . . . ,m} with x 6= y,
h(x) and h(y) are each equally likely to be any element of {0, 1, 2, . . . ,M − 1} and are
statistically independent. It follows that a set of hash functions H is 2-universal if and
only if for all x and y in {1, 2, . . . ,m}, x 6= y, h(x) and h(y) are each equally likely to be
any element of {0, 1, 2, . . . ,M − 1}, and for all w, z we have:

Prob
h∼H

(
h (x) = w and h (y) = z

)
= 1

M2 .
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We now give an example of a 2-universal family of hash functions. Let M be a prime
greater than m. For each pair of integers a and b in the range [0,M − 1], define a hash
function

hab (x) = ax+ b (mod M)

To store the hash function hab, store the two integers a and b. This requires only O(logM)
space. To see that the family is 2-universal note that h(x) = w and h(y) = z if and only
if (

x 1
y 1

)(
a
b

)
=

(
w
z

)
(mod M)

If x 6= y, the matrix

(
x 1
y 1

)
is invertible modulo M .28 Thus

(
a

b

)
=

(
x 1
y 1

)−1(
w

z

)
(mod M)

and for each
(
w
z

)
there is a unique

(
a
b

)
. Hence

Prob
(
h(x) = w and h(y) = z

)
=

1

M2

and H is 2-universal.

Analysis of distinct element counting algorithm

Let b1, b2, . . . , bd be the distinct values that appear in the input. Then the set S =
{h(b1), h(b2), . . . , h(bd)} is a set of d random and pairwise independent values from the
set {0, 1, 2, . . . ,M − 1}. We now show that M

min
is a good estimate for d, the number of

distinct elements in the input, where min = min(S).

Lemma 6.1 With probability at least 2
3
− d

M
, we have d

6
≤ M

min
≤ 6d, where min is the

smallest element of S.

Proof: First, we show that Prob
(
M

min
> 6d

)
< 1

6
+ d

M
. This part does not require pairwise

independence.

Prob

(
M

min
> 6d

)
= Prob

(
min <

M

6d

)
= Prob

(
∃k, h (bk) <

M

6d

)
≤

d∑
i=1

Prob

(
h(bi) <

M

6d

)
≤ d

(
dM

6d
e

M

)
≤ d

(
1

6d
+

1

M

)
≤ 1

6
+

d

M
.

28The primality of M ensures that inverses of elements exist in Z∗M and M > m ensures that if x 6= y,
then x and y are not equal mod M .
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Next, we show that Prob
(
M

min
< d

6

)
< 1

6
. This part will use pairwise independence.

First, Prob
(
M

min
< d

6

)
= Prob

(
min > 6M

d

)
= Prob

(
∀k, h (bk) >

6M
d

)
. For i = 1, 2, . . . , d,

define the indicator variable

yi =

{
0 if h (bi) >

6M
d

1 otherwise

and let

y =
d∑
i=1

yi.

We want to show that with good probability, we will see a hash value in [0, 6M
d

], i.e., that
Prob(y = 0) is small. Now Prob (yi = 1) ≥ 6

d
, E (yi) ≥ 6

d
, and E (y) ≥ 6. For 2-way

independent random variables, the variance of their sum is the sum of their variances. So
Var (y) = dVar (y1). Further, since y1 is 0 or 1, Var(y1) = E

[
(y1 − E(y1))2] = E(y2

1) −
E2(y1) = E(y1)− E2(y1) ≤ E (y1) . Thus Var(y) ≤ E (y). By the Chebyshev inequality,

Prob

(
M

min
<
d

6

)
= Prob

(
min > 6M

d

)
= Prob

(
∀k h (bi) >

6M

d

)
= Prob (y = 0)

≤ Prob (|y − E (y)| ≥ E (y))

≤ Var(y)

E2 (y)
≤ 1

E (y)
≤ 1

6

Since M
min

> 6d with probability at most 1
6

+ d
M

and M
min

< d
6

with probability at most 1
6
,

d
6
≤ M

min
≤ 6d with probability at least 2

3
− d

M
.

6.2.2 Number of Occurrences of a Given Element.

To count the number of occurrences of a given element in a stream requires at most
log n space where n is the length of the stream. Clearly, for any length stream that occurs
in practice, one can afford log n space. For this reason, the following material may never
be used in practice, but the technique is interesting and may give insight into how to solve
some other problem.

Consider a string of 0’s and 1’s of length n in which we wish to count the number of
occurrences of 1’s. Clearly with log n bits of memory we could keep track of the exact
number of 1’s. However, the number can be approximated with only log log n bits.

Let m be the number of 1’s that occur in the sequence. Keep a value k such that 2k

is approximately the number m of occurrences. Storing k requires only log log n bits of
memory. The algorithm works as follows. Start with k=0. For each occurrence of a 1,
add one to k with probability 1/2k. At the end of the string, the quantity 2k − 1 is the
estimate of m. To obtain a coin that comes down heads with probability 1/2k, flip a fair
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coin, one that comes down heads with probability 1/2, k times and report heads if the fair
coin comes down heads in all k flips.

Given k, on average it will take 2k ones before k is incremented. Thus, the expected
number of 1’s to produce the current value of k is 1 + 2 + 4 + · · ·+ 2k−1 = 2k − 1.

6.2.3 Frequent Elements

The Majority and Frequent Algorithms

First consider the very simple problem of n people voting. There are m candidates,
{1, 2, . . . ,m}. We want to determine if one candidate gets a majority vote and if so
who. Formally, we are given a stream of integers a1, a2, . . . , an, each ai belonging to
{1, 2, . . . ,m}, and want to determine whether there is some s ∈ {1, 2, . . . ,m} which oc-
curs more than n/2 times and if so which s. It is easy to see that to solve the problem
exactly on read-once streaming data with a deterministic algorithm, requires Ω(min(n,m))
space. Suppose n is even and the last n/2 items are identical. Suppose also that after
reading the first n/2 items, there are two different sets of elements that result in the same
content of our memory. In that case, a mistake would occur if the second half of the
stream consists solely of an element that is in one set, but not in the other. If n/2 ≥ m
then there are at least 2m − 1 possible subsets of the first n/2 elements. If n/2 ≤ m

then there are
∑n/2

i=1

(
m
i

)
subsets. By the above argument, the number of bits of mem-

ory must be at least the base 2 logarithm of the number of subsets, which is Ω(min(m,n)).

Surprisingly, we can bypass the above lower bound by slightly weakening our goal.
Again let’s require that if some element appears more than n/2 times, then we must
output it. But now, let us say that if no element appears more than n/2 times, then our
algorithm may output whatever it wants, rather than requiring that it output “no”. That
is, there may be “false positives”, but no “false negatives”.

Majority Algorithm

Store a1 and initialize a counter to one. For each subsequent ai, if ai is the
same as the currently stored item, increment the counter by one. If it differs,
decrement the counter by one provided the counter is nonzero. If the counter
is zero, then store ai and set the counter to one.

To analyze the algorithm, it is convenient to view the decrement counter step as “elim-
inating” two items, the new one and the one that caused the last increment in the counter.
It is easy to see that if there is a majority element s, it must be stored at the end. If
not, each occurrence of s was eliminated; but each such elimination also causes another
item to be eliminated. Thus for a majority item not to be stored at the end, more than
n items must have eliminated, a contradiction.
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Next we modify the above algorithm so that not just the majority, but also items
with frequency above some threshold are detected. More specifically, the algorithm below
finds the frequency (number of occurrences) of each element of {1, 2, . . . ,m} to within an
additive term of n

k+1
. That is, for each symbol s, the algorithm produces a value f̃s in

[fs − n
k+1

, fs], where fs is the true number of occurrences of symbol s in the sequence.
It will do so using O(k log n + k logm) space by keeping k counters instead of just one
counter.

Algorithm Frequent

Maintain a list of items being counted. Initially the list is empty. For each
item, if it is the same as some item on the list, increment its counter by one.
If it differs from all the items on the list, then if there are less than k items
on the list, add the item to the list with its counter set to one. If there are
already k items on the list, decrement each of the current counters by one.
Delete an element from the list if its count becomes zero.

Theorem 6.2 At the end of Algorithm Frequent, for each s ∈ {1, 2, . . . ,m}, its counter
on the list f̃s satisfies f̃s ∈ [fs − n

k+1
, fs]. If some s does not occur on the list, its counter

is zero and the theorem asserts that fs ≤ n
k+1

.

Proof: The fact that f̃s ≤ fs is immediate. To show f̃s ≥ fs− n
k+1

, view each decrement
counter step as eliminating some items. An item is eliminated if the current ai being read
is not on the list and there are already k symbols different from it on the list; in this case, ai
and k other distinct symbols are simultaneously eliminated. Thus, the elimination of each
occurrence of an s ∈ {1, 2, . . . ,m} is really the elimination of k + 1 items corresponding
to distinct symbols. Thus, no more than n/(k + 1) occurrences of any symbol can be
eliminated. It is clear that if an item is not eliminated, then it must still be on the list at
the end. This proves the theorem.

Theorem 6.2 implies that we can compute the true frequency of every s ∈ {1, 2, . . . ,m}
to within an additive term of n

k+1
.

6.2.4 The Second Moment

This section focuses on computing the second moment of a stream with symbols from
{1, 2, . . . ,m}. Again, let fs denote the number of occurrences of the symbol s in the
stream, and recall that the second moment of the stream is given by

∑m
s=1 f

2
s . To calculate

the second moment, for each symbol s, 1 ≤ s ≤ m, independently set a random variable
xs to ±1 with probability 1/2. In particular, think of xs as the output of a random hash
function h(s) whose range is just the two buckets {−1, 1}. For now, think of h as a fully
independent hash function. Maintain a sum by adding xs to the sum each time the symbol
s occurs in the stream. At the end of the stream, the sum will equal

∑m
s=1 xsfs. The
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expected value of the sum will be zero where the expectation is over the choice of the ±1
value for the xs.

E

(
m∑
s=1

xsfs

)
= 0

Although the expected value of the sum is zero, its actual value is a random variable and
the expected value of the square of the sum is given by

E

(
m∑
s=1

xsfs

)2

= E

(
m∑
s=1

x2
sf

2
s

)
+ 2E

(∑
s 6=t

xsxtfsft

)
=

m∑
s=1

f 2
s ,

The last equality follows since E (xsxt) = E(xs)E(xt) = 0 for s 6= t, using pairwise
independence of the random variables. Thus

a =

(
m∑
s=1

xsfs

)2

is an unbiased estimator of
∑m

s=1 f
2
s in that it has the correct expectation. Note that at

this point we could use Markov’s inequality to state that Prob(a ≥ 3
∑m

s=1 f
2
s ) ≤ 1/3, but

we want to get a tighter guarantee. To do so, consider the second moment of a:

E(a2) = E

(
m∑
s=1

xsfs

)4

= E

( ∑
1≤s,t,u,v≤m

xsxtxuxvfsftfufv

)
.

The last equality is by expansion. Assume that the random variables xs are 4-wise inde-
pendent, or equivalently that they are produced by a 4-wise independent hash function.
Then, since the xs are independent in the last sum, if any one of s, u, t, or v is distinct
from the others, then the expectation of the term is zero. Thus, we need to deal only
with terms of the form x2

sx
2
t for t 6= s and terms of the form x4

s.

Each term in the above sum has four indices, s, t, u, v, and there are
(

4
2

)
ways of

choosing two indices that have the same x value. Thus,

E(a2) ≤
(

4

2

)
E

(
m∑
s=1

m∑
t=s+1

x2
sx

2
tf

2
s f

2
t

)
+ E

(
m∑
s=1

x4
sf

4
s

)

= 6
m∑
s=1

m∑
t=s+1

f 2
s f

2
t +

m∑
s=1

f 4
s

≤ 3

(
m∑
s=1

f 2
s

)2

= 3E2(a).

Therefore, V ar(a) = E(a2)− E2(a) ≤ 2E2(a).
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Since the variance is comparable to the square of the expectation, repeating the pro-
cess several times and taking the average, gives high accuracy with high probability.
Specifically,

Theorem 6.3 If we use r = 2
ε2δ

independently chosen 4-way independent sets of random
variables, and let x be the average of the estimates a1, . . . , ar produced, then

Prob (|x− E(x)| > εE(x)) <
V ar(x)

ε2E(x)
≤ δ.

Proof: The proof follows from the fact that taking the average of r independent repe-
titions reduces variance by a factor of r, so that V ar(x) ≤ δε2E(x), and then applying
Chebyshev’s inequality.

It remains to show that we can implement the desired 4-way independent random vari-
ables using O(logm) space. We earlier gave a construction for a pairwise-independent set
of hash functions; now we need 4-wise independence, though only into a range of {−1, 1}.
Below we present one such construction.

Error-Correcting codes, polynomial interpolation and limited-way indepen-
dence

Consider the problem of generating a random m-dimensional vector x of ±1’s so that
any four coordinates are mutually independent. Such an m-dimensional vector may be
generated from a truly random “seed” of only O(logm) mutually independent bits. Thus,
we need only store the O(logm) bits and can generate any of the m coordinates when
needed. For any k, there is a finite field F with exactly 2k elements, each of which can
be represented with k bits and arithmetic operations in the field can be carried out in
O(k2) time. Here, k is the ceiling of log2m. A basic fact about polynomial interpolation
is that a polynomial of degree at most three is uniquely determined by its value over
any field F at four points. More precisely, for any four distinct points a1, a2, a3, a4 ∈ F
and any four possibly not distinct values b1, b2, b3, b4 ∈ F , there is a unique polynomial
f(x) = f0 + f1x + f2x

2 + f3x
3 of degree at most three, so that with computations done

over F , f(a1) = b1, f(a2) = b2, f(a3) = b3, and f(a4) = b4.

The definition of the pseudo-random ±1 vector x with 4-way independence is simple.
Choose four elements f0, f1, f2, f3 at random from F and form the polynomial f(s) =
f0 + f1s + f2s

2 + f3s
3. This polynomial represents x as follows. For s = 1, 2, . . . ,m, xs

is the leading bit of the k-bit representation of f(s).29 Thus, the m-dimensional vector x
requires only O(k) bits where k = dlogme.

Lemma 6.4 The x defined above has 4-way independence.

29Here we have numbered the elements of the field F s = 1, 2, . . . ,m.
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Proof: Assume that the elements of F are represented in binary using ±1 instead of the
traditional 0 and 1. Let s, t, u, and v be any four coordinates of x and let α, β, γ, and
δ have values in ±1. There are exactly 2k−1 elements of F whose leading bit is α and
similarly for β, γ, and δ. So, there are exactly 24(k−1) 4-tuples of elements b1, b2, b3, and
b4 in F so that the leading bit of b1 is α, the leading bit of b2 is β, the leading bit of b3

is γ, and the leading bit of b4 is δ. For each such b1, b2, b3, and b4, there is precisely one
polynomial f so that f(s) = b1, f(t) = b2, f(u) = b3, and f(v) = b4. The probability
that xs = α, xt = β, xu = γ, and xv = δ is precisely

24(k−1)

total number of f
=

24(k−1)

24k
=

1

16
.

Four way independence follows since Prob(xs = α) = Prob(xt = β) = Prob(xu = γ) =
Prob(xv = δ) = 1/2 and thus

Prob(xs = α)Prob(xt = β)Prob(xu = γ)Prob(xv = δ)

= Prob(xs = α, xt = β, xu = γ and xs = δ)

Lemma 6.4 describes how to get one vector x with 4-way independence. However, we
need r = O(1/ε2) vectors. Also the vectors must be mutually independent. Choose r
independent polynomials at the outset.

To implement the algorithm with low space, store only the polynomials in memory.
This requires 4k = O(logm) bits per polynomial for a total of O( logm

ε2
) bits. When a

symbol s in the stream is read, compute each polynomial at s to obtain the value for the
corresponding value of the xs and update the running sums. xs is just the leading bit of
the value of the polynomial evaluated at s. This calculation requires O(logm) time. Thus,
we repeatedly compute the xs from the “seeds”, namely the coefficients of the polynomials.

This idea of polynomial interpolation is also used in other contexts. Error-correcting
codes is an important example. Say we wish to transmit n bits over a channel which may
introduce noise. One can introduce redundancy into the transmission so that some channel
errors can be corrected. A simple way to do this is to view the n bits to be transmitted
as coefficients of a polynomial f(x) of degree n− 1. Now transmit f evaluated at points
1, 2, 3, . . . , n + m. At the receiving end, any n correct values will suffice to reconstruct
the polynomial and the true message. So up to m errors can be tolerated. But even if
the number of errors is at most m, it is not a simple matter to know which values are
corrupted. We do not elaborate on this here.

6.3 Matrix Algorithms using Sampling

We now move from the streaming model to a model where the input is stored in
memory, but because the input is so large, one would like to produce a much smaller
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approximation to it, or perform an approximate computation on it in low space. For
instance, the input might be stored in a large slow memory and we would like a small
“sketch” that can be stored in smaller fast memory and yet retains the important prop-
erties of the original input. In fact, one can view a number of results from the chapter on
machine learning in this way: we have a large population, and we want to take a small
sample, perform some optimization on the sample, and then argue that the optimum
solution on the sample will be approximately optimal over the whole population. In the
chapter on machine learning, our sample consisted of independent random draws from
the overall population or data distribution. Here we will be looking at matrix algorithms
and to achieve errors that are small compared to the Frobenius norm of the matrix rather
than compared to the total number of entries, we will perform non-uniform sampling.

Algorithms for matrix problems like matrix multiplication, low-rank approximations,
singular value decomposition, compressed representations of matrices, linear regression
etc. are widely used. Some of these algorithms take O(n3) time for n × n matrices with
improvements to O(nα) time for some α ∈ (2, 3), but with worse constants and so are
difficult to carry out for large modern matrices.

The natural alternative to working on the whole input matrix is to pick a random
sub-matrix and compute with that. Here, we will pick a subset of columns or rows of the
input matrix. If the sample size s is the number of columns we are willing to work with,
we will do s independent identical trials. In each trial, we select a column of the matrix.
All that we have to decide is what the probability of picking each column is. Sampling
uniformly at random is one option, but it is not always good if we want our error to be
a small fraction of the Frobenius norm of the matrix. For example, suppose the input
matrix has all entries in the range [−1, 1] but most columns are close to the zero vector
with only a few significant columns. Then, uniformly sampling a small number of columns
is unlikely to pick up any of the significant columns and essentially will approximate the
original matrix with the all-zeroes matrix. This may have low error in terms of the size
of A but the error relative to the Frobenius norm of A would be very large.30

We will see that the “optimal” probabilities are proportional to the squared length of
columns. This is referred to as length squared sampling and since its first discovery in the
mid-90’s, has been proved to have several desirable properties which we will see. Note
that all sampling we will discuss here is done with replacement.

Two general notes on this approach:

30There are, on the other hand, many positive statements one can make about uniform sampling.
For example, suppose the columns of A are datapoints in an m-dimensional space (one dimension per
row). Fix any k-dimensional subspace, such as the subspace spanned by the k top singular vectors. If
we randomly sample Õ(k/ε2) columns uniformly, by the VC-dimension bounds given in Chapter 6, with
high probability for every vector v in the k-dimensional space and every threshold τ , the fraction of the
sampled columns a that satisfy vTa ≥ τ will be within ±ε of the fraction of the columns a in the overall
matrix A satisfying vTa ≥ τ .
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(i) We will prove error bounds which hold for all input matrices. Our algorithms
are randomized, i.e., use a random number generator, so the error bounds are random
variables. The bounds are on the expected error or tail probability bounds on large errors
and apply to any matrix. Note that this contrasts with the situation where we have a
stochastic model of the input matrix and only assert error bounds for “most” matrices
drawn from the probability distribution of the stochastic model. A mnemoic is - our
algorithms can toss coins, but our data does not toss coins. A reason for proving error
bounds for any matrix is that in real problems, like the analysis of the web hypertext link
matrix or the patient-genome expression matrix, it is the one matrix the user is interested
in, not a random matrix. In general, we focus on general algorithms and theorems, not
specific applications, so the reader need not be aware of what the two matrices above
mean.

(ii) There is “no free lunch”. Since we only work on a small random sample and
not on the whole input matrix, our error bounds will not be good for certain matrices.
For example, if the input matrix is the identity, it is intuitively clear that picking a few
random columns will miss the other directions. Indeed, the initial error bounds we prove
using length squared sampling are useful only for “numerically low-rank matrices”, which
we define later. But there are important applications, for example, Principal Component
Analysis, where one has numerically low-rank input matrices and these techniques are
useful. There are more sophisticated and time-consuming sampling methods which have
error bounds which are good even for non-numerically-low-rank matrices.

To the Reader: Why aren’t (i) and (ii) mutually contradictory?

6.3.1 Matrix Multiplication using Sampling

Suppose A is an m×n matrix and B is an n×p matrix and the product AB is desired.
We show how to use sampling to get an approximate product faster than the traditional
multiplication. Let A (:, k) denote the kth column of A. A (:, k) is a m × 1 matrix. Let
B (k, :) be the kth row of B. B (k, :) is a 1× n matrix. It is easy to see that

AB =
n∑
k=1

A (:, k)B (k, :) .

Note that for each value of k, A(:, k)B(k, :) is an m× p matrix each element of which is a
single product of elements of A and B. An obvious use of sampling suggests itself. Sample
some values for k and compute A (:, k)B (k, :) for the sampled k’s and use their suitably
scaled sum as the estimate of AB. It turns out that nonuniform sampling probabilities
are useful. Define a random variable z that takes on values in {1, 2, . . . , n}. Let pk denote
the probability that z assumes the value k. We will solve for a good choice of probabilities
later, but for now just consider the pk as nonnegative numbers that sum to one. Define
an associated random matrix variable that has value

X =
1

pk
A (:, k)B (k, :) (6.1)
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with probability pk. Let E (X) denote the entry-wise expectation.

E (X) =
n∑
k=1

Prob(z = k)
1

pk
A (:, k)B (k, :) =

n∑
k=1

A (:, k)B (k, :) = AB.

This explains the scaling by 1
pk

in X. In particular, X is a matrix-valued random variable
each of whose components is correct in expectation. We will be interested in

E
(
||AB −X||2F

)
.

This can be viewed as the variance of X, defined as the sum of the variances of all its
entries.

Var(X) =
m∑
i=1

p∑
j=1

Var (xij) =
∑
ij

E
(
x2
ij

)
− E (xij)

2 =

(∑
ij

∑
k

pk
1

p2
k

a2
ikb

2
kj

)
− ||AB||2F .

We want to choose pk to minimize this quantity, and notice that we can ignore the ||AB||2F
term since it doesn’t depend on the pk’s at all. We can now simplify by exchanging the
order of summations to get

∑
ij

∑
k

pk
1

p2
k

a2
ikb

2
kj =

∑
k

1

pk

(∑
i

a2
ik

)(∑
j

b2
kj

)
=
∑
k

1

pk
|A (:, k) |2|B (k, :) |2.

What is the best choice of pk to minimize this sum? It can be seen by calculus31 that the
minimizing pk are proportional to |A(:, k)||B(k, :)|. In the important special case when
B = AT , pick columns of A with probabilities proportional to the squared length of the
columns. Even in the general case when B is not AT , doing so simplifies the bounds, so
we will use it. This sampling is called “length squared sampling”. If pk is proportional to

|A (:, k) |2, i.e, pk = |A(:,k)|2
||A||2F

, then

E
(
||AB −X||2F

)
= Var(X) ≤ ||A||2F

∑
k

|B (k, :) |2 = ||A||2F ||B||2F .

To reduce the variance, we can do s independent trials. Each trial i, i = 1, 2, . . . , s
yields a matrix Xi as in (6.1). We take 1

s

∑s
i=1Xi as our estimate of AB. Since the

variance of a sum of independent random variables is the sum of variances, the variance
of 1

s

∑s
i=1Xi is 1

s
Var(X) and so is at most 1

s
||A||2F ||B||2F . Let k1, . . . , ks be the k’s chosen

in each trial. Expanding this, gives:

1

s

s∑
i=1

Xi =
1

s

(
A (:, k1)B (k1, :)

pk1
+
A (:, k2)B (k2, :)

pk2
+ · · ·+ A (:, ks)B (ks, :)

pks

)
. (6.2)

31By taking derivatives, for any set of nonnegative numbers ck,
∑
k
ck
pk

is minimized with pk proportional

to
√
ck.
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Figure 6.3: Approximate Matrix Multiplication using sampling

We will find it convieneint to write this as the product of an m × s matrix with a s × p
matrix as follows: Let C be the m × s matrix consisting of the following columns which
are scaled versions of the chosen columns of A:

A(:, k1)
√
spk1

,
A(:, k2)
√
spk2

, . . .
A(:, ks)√
spks

.

Note that the scaling has a nice property, which the reader is asked to verify:

E
(
CCT

)
= AAT . (6.3)

Define R to be the s×p matrix with the corresponding rows of B similarly scaled, namely,
R has rows

B(k1, :)√
spk1

,
B(k2, :)√
spk2

, . . .
B(ks, :)√
spks

.

The reader may verify that
E
(
RTR

)
= BTB. (6.4)

From (6.2), we see that 1
s

∑s
i=1Xi = CR. This is represented in Figure 6.3. We summarize

our discussion in Theorem 6.3.1.

Theorem 6.5 Suppose A is an m × n matrix and B is an n × p matrix. The product
AB can be estimated by CR, where C is an m × s matrix consisting of s columns of A
picked according to length-squared distribution and scaled to satisfy (6.3) and R is the
s× p matrix consisting of the corresponding rows of B scaled to satisfy (6.4). The error
is bounded by:

E
(
||AB − CR||2F

)
≤ ||A||

2
F ||B||2F
s

.

Thus, to ensure E (||AB − CR||2F ) ≤ ε2||A||2F ||B||2F , it suffices to make s greater than or
equal to 1/ε2. If ε is Ω(1), so s ∈ O(1), then the multiplication CR can be carried out in
time O(mp).
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When is this error bound good and when is it not? Let’s focus on the case that B = AT

so we have just one matrix to consider. If A is the identity matrix, then the guarantee is
not very good. In this case, ||AAT ||2F = n, but the right-hand-side of the inequality is n2

s
.

So we would need s > n for the bound to be any better than approximating the product
with the zero matrix.

More generally, the trivial estimate of the all zero matrix for AAT makes an error in
Frobenius norm of ||AAT ||F . What s do we need to ensure that the error is at most this?
If σ1, σ2, . . . are the singular values of A, then the singular values of AAT are σ2

1, σ
2
2, . . .

and
||AAT ||2F =

∑
t

σ4
t and ||A||2F =

∑
t

σ2
t .

So from Theorem 6.3.1, E(||AAT − CR||2F ) ≤ ||AAT ||2F provided

s ≥ (σ2
1 + σ2

2 + . . .)2

σ4
1 + σ4

2 + . . .
.

If rank(A) = r, then there are r non-zero σt and the best general upper bound on the

ratio
(σ2

1+σ2
2+...)2

σ4
1+σ4

2+...
is r, so in general, s needs to be at least r. If A is full rank, this means

sampling will not gain us anything over taking the whole matrix!

However, if there is a constant c and a small integer p such that

σ2
1 + σ2

2 + . . .+ σ2
p ≥ c(σ2

1 + σ2
2 + · · ·+ σ2

r), (6.5)

then,
(σ2

1 + σ2
2 + . . .)2

σ4
1 + σ4

2 + . . .
≤ c2

(σ2
1 + σ2

2 + . . .+ σ2
p)

2

σ4
1 + σ4

2 + . . .+ σ2
p

≤ c2p,

and so s ≥ c2p gives us a better estimate than the zero matrix. Increasing s by a factor
decreases the error by the same factor. Condition 6.5 is indeed the hypothesis of the
subject of Principal Component Analysis (PCA) and there are many situations when the
data matrix does satisfy the condition and sampling algorithms are useful.

6.3.2 Implementing Length Squared Sampling in Two Passes

Traditional matrix algorithms often assume that the input matrix is in random access
memory (RAM) and so any particular entry of the matrix can be accessed in unit time.
For massive matrices, RAM may be too small to hold the entire matrix, but may be able
to hold and compute with the sampled columns and rows.

Consider a high-level model where the input matrix or matrices have to be read from
external memory using one pass in which one can read sequentially all entries of the ma-
trix and sample.
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It is easy to see that two passes suffice to draw a sample of columns of A according
to length squared probabilities, even if the matrix is not in row-order or column-order
and entries are presented as a linked list. In the first pass, compute the length squared of
each column and store this information in RAM. The lengths squared can be computed as
running sums. Then, use a random number generator in RAM to determine according to
length squared probability the columns to be sampled. Then, make a second pass picking
the columns to be sampled.

If the matrix is already presented in external memory in column-order? Then, one
pass will do. The idea is to use the primitive in Section 6.1: given a read-once stream of
positive numbers a1, a2, . . . , an, at the end have an i ∈ {1, 2, . . . , n} such that the proba-
bility that i was chosen is ai∑n

j=1 aj
. Filling in the specifics is left as an exercise for the reader.

6.3.3 Sketch of a Large Matrix

The main result of this section is that for any matrix, a sample of columns and rows,
each picked according to length squared distribution provides a good sketch of the matrix.
Let A be an m×n matrix. Pick s columns of A according to length squared distribution.
Let C be the m× s matrix containing the picked columns scaled so as to satisy (6.3), i.e.,
if A(:, k) is picked, it is scaled by 1/

√
spk. Similarly, pick r rows of A according to length

squared distribution on the rows of A. Let R be the r×n matrix of the picked rows, scaled
as follows: If row k of A is picked, it is scaled by 1/

√
rpk. We then have E(RTR) = ATA.

From C and R, one can find a matrix U so that A ≈ CUR. The schematic diagram is
given in Figure 6.4.

One may recall that the top k singular vectors of the SVD of A give a similar picture;
however, the SVD takes more time to compute, requires all of A to be stored in RAM,
and does not have the property that the rows and columns are directly from A. The last
property, that the approximation involves actual rows/columns of the matrix rather than
linear combinations, is called an interpolative approximation and is useful in many con-
texts. On the other hand, the SVD yields the best 2-norm approximation. Error bounds
for the approximation CUR are weaker.

We briefly touch upon two motivations for such a sketch. Suppose A is the document-
term matrix of a large collection of documents. We are to “read” the collection at the
outset and store a sketch so that later, when a query represented by a vector with one
entry per term arrives, we can find its similarity to each document in the collection.
Similarity is defined by the dot product. In Figure 6.4 it is clear that the matrix-vector
product of a query with the right hand side can be done in time O(ns+ sr + rm) which
would be linear in n and m if s and r are O(1). To bound errors for this process, we
need to show that the difference between A and the sketch of A has small 2-norm. Re-
call that the 2-norm ||A||2 of a matrix A is max

|x|=1
|Ax|. The fact that the sketch is an
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Figure 6.4: Schematic diagram of the approximation of A by a sample of s columns and
r rows.

interpolative approximation means that our approximation essentially consists a subset
of documents and a subset of terms, which may be thought of as a representative set of
documents and terms. Additionally, if A is sparse in its rows and columns, each document
contains only a small fraction of the terms and each term is in only a small fraction of
the documents, then this sparsity property will be preserved in C and R, unlike with SVD.

A second motivation comes from analyzing gene microarray data. Here, A is a matrix
in which each row is a gene and each column is a condition. Entry (i, j) indicates the
extent to which gene i is expressed in condition j. In this context, a CUR decomposition
provides a sketch of the matrix A in which rows and columns correspond to actual genes
and conditions, respectively. This can often be easier for biologists to interpret than a
singular value decomposition in which rows and columns would be linear combinations of
the genes and conditions.

It remains now to describe how to find U from C and R. There is a n × n matrix P
of the form P = QR that acts as the identity on the space spanned by the rows of R and
zeros out all vectors orthogonal to this space. We state this now and postpone the proof.

Lemma 6.6 If RRT is invertible, then P = RT (RRT )−1R has the following properties:

(i) It acts as the identity matrix on the row space of R. I.e., Px = x for every vector x
of the form x = RTy (this defines the row space of R). Furthermore,

(ii) if x is orthogonal to the row space of R, then Px = 0.

If RRT is not invertible, let rank (RRT ) = r and RRT =
∑r

t=1 σtutvt
T be the SVD of

RRT . Then,

P = RT

(
r∑
t=1

1

σ2
t

utvt
T

)
R

satisfies (i) and (ii).
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We begin with some intuition. In particular, we first present a simpler idea that does
not work, but that motivates an idea that does. Write A as AI, where I is the n × n
identity matrix. Approximate the product AI using the algorithm of Theorem 6.3.1, i.e.,
by sampling s columns of A according to a length-squared distribution. Then, as in the
last section, write AI ≈ CW , where W consists of a scaled version of the s rows of I
corresponding to the s columns of A that were picked. Theorem 6.3.1 bounds the error
||A−CW ||2F by ||A||2F ||I||2F/s = n

s
||A||2F . But we would like the error to be a small fraction

of ||A||2F which would require s ≥ n, which clearly is of no use since this would pick as
many or more columns than the whole of A.

Let’s use the identity-like matrix P instead of I in the above discussion. Using the
fact that R is picked according to length squared sampling, we will show the following
proposition later.

Proposition 6.7 A ≈ AP and the error E (||A− AP ||22) is at most 1√
r
||A||2F .

We then use Theorem 6.3.1 to argue that instead of doing the multiplication AP , we can
use the sampled columns of A and the corresponding rows of P . The s sampled columns
of A form C. We have to take the corresponding s rows of P = RT (RRT )−1R, which is
the same as taking the corresponding s rows of RT , and multiplying this by (RRT )−1R. It
is easy to check that this leads to an expression of the form CUR. Further, by Theorem
6.3.1, the error is bounded by

E
(
||AP − CUR||22

)
≤ E

(
||AP − CUR||2F

)
≤ ||A||

2
F ||P ||2F
s

≤ r

s
||A||2F , (6.6)

since we will show later that:

Proposition 6.8 ||P ||2F ≤ r.

Putting (6.6) and Proposition 6.7 together, and using the fact that by triangle inequality
||A−CUR||2 ≤ ||A−AP ||2 + ||AP −CUR||2, which in turn implies that ||A−CUR||22 ≤
2||A− AP ||22 + 2||AP − CUR||22, the main result below follows.

Theorem 6.9 Let A be an m × n matrix and r and s be positive integers. Let C be an
m× s matrix of s columns of A picked according to length squared sampling and let R be
a matrix of r rows of A picked according to length squared sampling. Then, we can find
from C and R an s× r matrix U so that

E
(
||A− CUR||22

)
≤ ||A||2F

(
2√
r

+
2r

s

)
.

If s is fixed, the error is minimized when r = s2/3. Choosing s = 1/ε3 and r = 1/ε2,
the bound becomes O(ε)||A||2F . When is this bound meaningful? We discuss this further
after first proving all the claims used in the discussion above.
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Proof of Lemma 6.6: First consider the case that RRT is invertible. For x = RTy,
RT (RRT )−1Rx = RT (RRT )−1RRTy = RTy = x. If x is orthogonal to every row of R,
then Rx = 0, so Px = 0. More generally, if RRT =

∑
t σtutvt

T , then, RT
∑

t
1
σ2
t
R =∑

t vtvt
T and clearly satisfies (i) and (ii).

Next we prove Proposition 6.7. First, recall that

||A− AP ||22 = max
{x:|x|=1}

|(A− AP )x|2.

Now suppose x is in the row space V of R. From Lemma 6.6, Px = x, so for x ∈ V ,
(A−AP )x = 0. Since every vector can be written as a sum of a vector in V plus a vector
orthogonal to V , this implies that the maximum must therefore occur at some x ∈ V ⊥.
For such x, by Lemma 6.6, (A−AP )x = Ax. Thus, the question becomes: for unit-length
x ∈ V ⊥, how large can |Ax|2 be? To analyze this, write:

|Ax|2 = xTATAx = xT (ATA−RTR)x ≤ ||ATA−RTR||2|x|2 ≤ ||ATA−RTR||2.

This implies that ||A − AP ||22 ≤ ||ATA − RTR||2. So, it suffices to prove that ||ATA −
RTR||22 ≤ ||A||4F/r which follows directly from Theorem 6.3.1, since we can think of RTR
as a way of estimating ATA by picking according to length-squared distribution columns
of AT , i.e., rows of A. This proves Proposition 6.7.

Proposition 6.8 is easy to see. By Lemma 6.6, P is the identity on the space V spanned
by the rows of R, and Px = 0 for x perpendicular to the rows of R. Thus ||P ||2F is the
sum of its singular values squared which is at most r as claimed.

We now briefly look at the time needed to compute U . The only involved step in
computing U is to find (RRT )−1 or do the SVD of RRT . But note that RRT is an r × r
matrix and since r is much smaller than n and m, this is fast.

Understanding the bound in Theorem 6.9: To better understand the bound in
Theorem 6.9 consider when it is meaningful and when it is not. First, choose parameters
s = Θ(1/ε3) and r = Θ(1/ε2) so that the bound becomes E(||A − CUR||22) ≤ ε||A||2F .
Recall that ||A||2F =

∑
i σ

2
i (A), i.e., the sum of squares of all the singular values of A.

Also, for convenience scale A so that σ2
1(A) = 1. Then

σ2
1(A) = ||A||22 = 1 and E(||A− CUR||22) ≤ ε

∑
i

σ2
i (A).

This, gives an intuitive sense of when the guarantee is good and when it is not. If the
top k singular values of A are all Ω(1) for k � m1/3, so that

∑
i σ

2
i (A) � m1/3, then

the guarantee is only meaningful when ε = o(m−1/3), which is not interesting because it
requires s > m. On the other hand, if just the first few singular values of A are large
and the rest are quite small, e.g, A represents a collection of points that lie very close
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Figure 6.5: Samples of overlapping sets A and B.

to a low-dimensional subspace, and in particular if
∑

i σ
2
i (A) is a constant, then to be

meaningful the bound requires ε to be a small constant. In this case, the guarantee is
indeed meaningful because it implies that a constant number of rows and columns provides
a good 2-norm approximation to A.

6.4 Sketches of Documents

Suppose one wished to store all the web pages from the WWW. Since there are billions
of web pages, one might want to store just a sketch of each page where a sketch is some
type of compact description that captures sufficient information to do whatever task one
has in mind. For the current discussion, we will think of a web page as a string of charac-
ters, and the task at hand will be one of estimating similarities between pairs of web pages.

We begin this section by showing how to estimate similarities between sets via sam-
pling, and then how to convert the problem of estimating similarities between strings into
a problem of estimating similarities between sets.

Consider subsets of size 1000 of the integers from 1 to 106. Suppose one wished to
compute the resemblance of two subsets A and B by the formula

resemblance (A,B) = |A∩B|
|A∪B|

Suppose that instead of using the sets A and B, one sampled the sets and compared ran-
dom subsets of size ten. How accurate would the estimate be? One way to sample would
be to select ten elements uniformly at random from A and B. Suppose A and B were
each of size 1000, over lapped by 500, and both were represented by six samples.Even
though half of the six samples of A were in B they would not likely be among the samples
representing B. See Figure 6.5 However, this method is unlikely to produce overlapping
samples. Another way would be to select the ten smallest elements from each of A and
B. If the sets A and B overlapped significantly one might expect the sets of ten smallest
elements from each of A and B to also overlap. One difficulty that might arise is that the
small integers might be used for some special purpose and appear in essentially all sets
and thus distort the results. To overcome this potential problem, rename all elements
using a random permutation.

Suppose two subsets of size 1000 overlapped by 900 elements. What might one expect
the overlap of the 10 smallest elements from each subset to be? One would expect the
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nine smallest elements from the 900 common elements to be in each of the two sampled
subsets for an overlap of 90%. The expected resemblance(A,B) for the size ten sample
would be 9/11=0.81.

Another method would be to select the elements equal to zero mod m for some inte-
ger m. If one samples mod m the size of the sample becomes a function of n. Sampling
mod m allows one to handle containment.

In another version of the problem one has a string of characters rather than a set.
Here one converts the string into a set by replacing it by the set of all of its substrings
of some small length k. Corresponding to each string is a set of length k substrings. If
k is modestly large, then two strings are highly unlikely to give rise to the same set of
substrings. Thus, we have converted the problem of sampling a string to that of sampling
a set. Instead of storing all the substrings of length k, we need only store a small subset
of the length k substrings.

Suppose you wish to be able to determine if two web pages are minor modifications
of one another or to determine if one is a fragment of the other. Extract the sequence of
words occurring on the page, viewing each word as a character. Then define the set of
substrings of k consecutive words from the sequence. Let S(D) be the set of all substrings
of k consecutive words occurring in document D. Define resemblance of A and B by

resemblance (A,B) = |S(A)∩S(B)|
|S(A)∪S(B)|

And define containment as

containment (A,B) = |S(A)∩S(B)|
|S(A)|

Let π be a random permutation of all length k substrings. Define F (A) to be the s
smallest elements of A and V (A) to be the set mod m in the ordering defined by the
permutation.

Then
F (A) ∩ F (B)

F (A) ∪ F (B)

and
|V (A)∩V (B)|
|V (A)∪V (B)|

are unbiased estimates of the resemblance of A and B. The value

|V (A)∩V (B)|
|V (A)|

is an unbiased estimate of the containment of A in B.

6.5 Bibliographic Notes

TO DO
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6.6 Exercises

Exercise 6.1 Given a stream of symbols a1, a2, . . . , an, each an integer in {1, . . . ,m},
give an algorithm that will select one symbol uniformly at random from the stream. How
much memory does your algorithm require?

Exercise 6.2 Give an algorithm to select an ai from a stream of symbols a1, a2, . . . , an
with probability proportional to a2

i .

Exercise 6.3 How would one pick a random word from a very large book where the prob-
ability of picking a word is proportional to the number of occurrences of the word in the
book?

Exercise 6.4 Consider a matrix where each element has a probability of being selected.
Can you select a row according to the sum of probabilities of elements in that row by just
selecting an element according to its probability and selecting the row that the element is
in?

Exercise 6.5 For the streaming model give an algorithm to draw t independent samples
of indices i, each with probability proportional to the value of ai. Some images may be
drawn multiple times. What is its memory usage?

Exercise 6.6 For some constant c > 0, it is possible to create 2cm subsets of {1, . . . ,m},
each with m/2 elements, such that no two of the subsets share more than 3m/8 elements
in common.32 Use this fact to argue that any deterministic algorithm that even guarantees
to approximate the number of distinct elements in a data stream with error less than m

16

must use Ω(m) bits of memory on some input sequence of length n ≤ 2m.

Exercise 6.7 Consider an algorithm that uses a random hash function and gives an
estimate x̂ of the true value x of some variable. Suppose that x

4
≤ x̂ ≤ 4x with probability

at least 0.6. The probability of the estimate is with respect to choice of the hash function.
How would you improve the probability that x

4
≤ x̂ ≤ 4x to 0.8? Hint: Since we do not

know the variance taking average may not help and we need to use some other function
of multiple runs.

Exercise 6.8 Give an example of a set H of hash functions such that h(x) is equally
likely to be any element of {0, . . . ,M − 1} (H is 1-universal) but H is not 2-universal.

Exercise 6.9 Let p be a prime. A set of hash functions

H = {h| {0, 1, . . . , p− 1} → {0, 1, . . . , p− 1}}
32For example, choosing them randomly will work with high probability. You expect two subsets of size

m/2 to share m/4 elements in common, and with high probability they will share no more than 3m/8.
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is 3-universal if for all x,y,z,u,v,w in {0, 1, . . . , p− 1} , where x, y, z are distinct we have

Prob
(
h (x) = u, h (y) = v, h (z) = w

)
=

1

p3
.

(a) Is the set {hab(x) = ax+ b mod p | 0 ≤ a, b < p} of hash functions 3-universal?

(b) Give a 3-universal set of hash functions.

Exercise 6.10 Select a value for k and create a set

H =
{
x|x = (x1, x2, . . . , xk), xi ∈ {0, 1, . . . , k − 1}

}
where the set of vectors H is pairwise independent and |H| < kk. We say that a set of vec-
tors is pairwise independent if for any subset of two of the coordinates, all of the k2 possible
pairs of values that could appear in those coordinates such as (0, 0), (0, 1), . . . , (1, 0), (1, 1), . . .
occur the exact same number of times.

Exercise 6.11

(a) What is the variance of the method in Section 6.2.2 of counting the number of occur-
rences of a 1 with log log n memory?

(b) Can the algorithm be iterated to use only log log log n memory? What happens to the
variance?

Exercise 6.12 Consider a coin that comes down heads with probability p. Prove that the
expected number of flips needed to see a heads is 1/p.

Exercise 6.13 Randomly generate a string x1x2 · · ·xn of 106 0’s and 1’s with probability
1/2 of xi being a 1. Count the number of ones in the string and also estimate the number
of ones by the coin-flip approximate counting algorithm. Repeat the process for p=1/4,
1/8, and 1/16. How close is the approximation?

Counting Frequent Elements
The Majority and Frequent Algorithms
The Second Moment

Exercise 6.14 Construct an example in which the majority algorithm gives a false posi-
tive, i.e., stores a non majority element at the end.

Exercise 6.15 Construct an example where the frequent algorithm in fact does as badly
as in the theorem, i.e., it under counts some item by n/(k+1).

Exercise 6.16 Recall basic statistics on how an average of independent trials cuts down

variance and complete the argument for relative error ε estimate of
m∑
s=1

f 2
s .
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Exercise 6.17 Let p be a prime and n ≥ 2 be an integer. In doing arithmetic in the
finite field with pn elements how do you do multiplication?

Error-Correcting codes, polynomial interpolation and limited-way indepen-
dence

Exercise 6.18 Let F be a field. Prove that for any four distinct points a1, a2, a3, and a4

in F and any four possibly not distinct values b1, b2, b3, and b4 in F , there is a unique
polynomial f(x) = f0+f1x+f2x

2+f3x
3 of degree at most three so that f(a1) = b1, f(a2) =

b2, f(a3) = b3, and f(a4) = b4 with all computations done over F . If you use the
Vandermonde matrix you can use the fact that the matrix is nonsingular.

Sketch of a Large Matrix

Exercise 6.19 Suppose we want to pick a row of a matrix at random where the probability
of picking row i is proportional to the sum of squares of the entries of that row. How would
we do this in the streaming model?

(a) Do the problem when the matrix is given in column order.

(b) Do the problem when the matrix is represented in sparse notation: it is just presented
as a list of triples (i, j, aij), in arbitrary order.

Matrix Multiplication Using Sampling

Exercise 6.20 Suppose A and B are two matrices. Prove that AB =
n∑
k=1

A (:, k)B (k, :).

Exercise 6.21 Generate two 100 by 100 matrices A and B with integer values between
1 and 100. Compute the product AB both directly and by sampling. Plot the difference
in L2 norm between the results as a function of the number of samples. In generating
the matrices make sure that they are skewed. One method would be the following. First
generate two 100 dimensional vectors a and b with integer values between 1 and 100. Next
generate the ith row of A with integer values between 1 and ai and the ith column of B
with integer values between 1 and bi.

Approximating a Matrix with a Sample of Rows and Columns

Exercise 6.22 Suppose a1, a2, . . . , am are nonnegative reals. Show that the minimum

of
m∑
k=1

ak
xk

subject to the constraints xk ≥ 0 and
∑
k

xk = 1 is attained when the xk are

proportional to
√
ak.

Sketches of Documents
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Exercise 6.23 Construct two different strings of 0’s and 1’s having the same set of sub-
strings of length k = 3.

Exercise 6.24 (Random strings, empirical analysis). Consider random strings of length
n composed of the integers 0 through 9, where we represent a string A by its set Sk(A)
of length k-substrings. Perform the following experiment: choose two random strings A
and B of length n = 10, 000 and compute their resemblance |Sk(A)∩Sk(B)|

|Sk(A)∪Sk(B)| for k = 1, 2, 3 . . ..
What does the graph of resemblance as a function of k look like?

Exercise 6.25 (Random strings, theoretical analysis). Consider random strings of length
n composed of the integers 0 through 9, where we represent a string A by its set Sk(A) of
length k-substrings. Consider now drawing two random strings A and B of length n and
computing their resemblance |Sk(A)∩Sk(B)|

|Sk(A)∪Sk(B)| .

1. Prove that for k ≤ 1
2

log10(n), with high probability as n goes to infinity the two
strings have resemblance equal to 1.

2. Prove that for k ≥ 3 log10(n), with high probability as n goes to infinity the two
strings have resemblance equal to 0.

Exercise 6.26 Discuss how you might go about detecting plagiarism in term papers.

Exercise 6.27 Suppose you had one billion web pages and you wished to remove dupli-
cates. How might you do this?

Exercise 6.28 Consider the following lyrics:

When you walk through the storm hold your head up high and don’t be afraid
of the dark. At the end of the storm there’s a golden sky and the sweet silver
song of the lark.
Walk on, through the wind, walk on through the rain though your dreams be
tossed and blown. Walk on, walk on, with hope in your heart and you’ll never
walk alone, you’ll never walk alone.

How large must k be to uniquely recover the lyric from the set of all subsequences of
symbols of length k? Treat the blank as a symbol.

Exercise 6.29 Blast: Given a long string A, say of length 109 and a shorter string B,
say 105, how do we find a position in A which is the start of a substring B′ that is close
to B? This problem can be solved by dynamic programming in polynomial time, but find
a faster algorithm to solve this problem.
Hint: (Shingling approach) One possible approach would be to fix a small length, say
seven, and consider the shingles of A and B of length seven. If a close approximation to
B is a substring of A, then a number of shingles of B must be shingles of A. This should
allows us to find the approximate location in A of the approximation of B. Some final
algorithm should then be able to find the best match.
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7 Clustering

7.1 Introduction

Clustering refers to partitioning a set of objects into subsets according to some de-
sired criterion. Often it is an important step in making sense of large amounts of data.
Clustering comes up in many contexts. One might want to partition a set of news articles
into clusters based on the topics of the articles. Given a set of pictures of people, one
might want to group them into clusters based on who is in the image. Or one might want
to cluster a set of protein sequences according to the protein function. A related problem
is not finding a full partitioning but rather just identifying natural clusters that exist.
For example, given a collection of friendship relations among people, one might want to
identify any tight-knit groups that exist. In some cases we have a well-defined correct
answer, e.g., in clustering photographs of individuals by who is in them, but in other cases
the notion of a good clustering may be more subjective.

Before running a clustering algorithm, one first needs to choose an appropriate repre-
sentation for the data. One common representation is as vectors in Rd. This corresponds
to identifying d real-valued features that are then computed for each data object. For ex-
ample, to represent documents one might use a “bag of words” representation, where each
feature corresponds to a word in the English language and the value of the feature is how
many times that word appears in the document. Another common representation is as
vertices in a graph, with edges weighted by some measure of how similar or dissimilar the
two endpoints are. For example, given a set of protein sequences, one might weight edges
based on an edit-distance measure that essentially computes the cost of transforming one
sequence into the other. This measure is typically symmetric and satisfies the triangle
inequality, and so can be thought of as a finite metric. A point worth noting up front
is that often the “correct” clustering of a given set of data depends on your goals. For
instance, given a set of photographs of individuals, we might want to cluster the images by
who is in them, or we might want to cluster them by facial expression. When representing
the images as points in space or as nodes in a weighted graph, it is important that the
features we use be relevant to the criterion we care about. In any event, the issue of how
best to represent data to highlight the relevant information for a given task is generally
addressed using knowledge of the specific domain. From our perspective, the job of the
clustering algorithm begins after the data has been represented in some appropriate way.

In this chapter, our goals are to discuss (a) some commonly used clustering algorithms
and what one can prove about them, and (b) models and assumptions on data under which
we can find a clustering close to the correct clustering.

7.1.1 Preliminaries

We will follow the standard notation of using n to denote the number of data points
and k to denote the number of desired clusters. We will primarily focus on the case that
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k is known up front, but will also discuss algorithms that produce a sequence of solutions,
one for each value of k, as well as algorithms that produce a cluster tree that can encode
multiple clusterings at each value of k. We will generally use A = {a1, . . . , an} to denote
the n data points. We also think of A as a matrix with rows a1, . . . , an.

7.1.2 Two General Assumptions on the Form of Clusters

Before choosing a clustering algorithm, it is useful to have some general idea of what
a good clustering should look like. In general, there are two types of assumptions often
made that in turn lead to different classes of clustering algorithms.

Center-based clusters: One assumption commonly made is that clusters are center-
based. This means that the clustering can be defined by k “center points” c1, . . . , ck,
with each data point assigned to whichever center point is closest to it. Note that this
assumption does not yet tell us whether one choice of centers is better than another. For
this, one needs an objective, or optimization criterion. Three standard criteria often used
are k-center, k-median, and k-means clustering, defined as follows.

k-center clustering: Find a partition C = {C1, . . . , Ck} of A into k clusters, with corre-
sponding centers c1, . . . , ck, to minimize the maximum distance between any data
point and the center of its cluster. That is, we want to minimize

Φkcenter(C) =
k

max
j=1

max
ai∈Cj

d(ai, cj).

k-center clustering makes sense when we believe clusters should be local regions in
space. It is also often thought of as the “firehouse location problem” since one can
think of it as the problem of locating k fire-stations in a city so as to minimize the
maximum distance a fire-truck might need to travel to put out a fire.

k-median clustering: Find a partition C = {C1, . . . , Ck} of A into k clusters, with corre-
sponding centers c1, . . . , ck, to minimize the sum of distances between data points
and the centers of their clusters. That is, we want to minimize

Φkmedian(C) =
k∑
j=1

∑
ai∈Cj

d(ai, cj).

k-median clustering is more noise-tolerant than k-center clustering because we are
taking a sum rather than a max. A small number of outliers will typically not
change the optimal solution by much, unless they are very far away or there are
several quite different near-optimal solutions.

k-means clustering: Find a partition C = {C1, . . . , Ck} of A into k clusters, with cor-
responding centers c1, . . . , ck, to minimize the sum of squares of distances between
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data points and the centers of their clusters. That is, we want to minimize

Φkmeans(C) =
k∑
j=1

∑
ai∈Cj

d2(ai, cj).

k-means clustering puts more weight on outliers than k-median clustering, because
we are squaring the distances, which magnifies large values. This puts it somewhat
in between k-median and k-center clustering in that regard. Using distance squared
has some mathematical advantages over using pure distances when data are points in
Rd. For example Corollary 7.2 that asserts that with the distance squared criterion,
the optimal center for a given group of data points is its centroid.

The k-means criterion is more often used when data consists of points in Rd, whereas
k-median is more commonly used when we have a finite metric, that is, data are nodes in
a graph with distances on edges.

When data are points in Rd, there are in general two variations of the clustering prob-
lem for each of the criteria. We could require that each cluster center be a data point or
allow a cluster center to be any point in space. If we require each center to be a data
point, the optimal clustering of n data points into k clusters can be solved in time

(
n
k

)
times a polynomial in the length of the data. First, exhaustively enumerate all sets of k
data points as the possible sets of k cluster centers, then associate each point to its nearest
center and select the best clustering. No such naive enumeration procedure is available
when cluster centers can be any point in space. But, for the k-means problem, Corol-
lary 7.2 shows that once we have identified the data points that belong to a cluster, the
best choice of cluster center is the centroid of that cluster, which might not be a data point.

When k is part of the input or may be a function of n, the above optimization prob-
lems are all NP-hard.33 So, guarantees on algorithms will typically involve either some
form of approximation or some additional assumptions, or both.

High-density clusters: If we do not believe our desired clusters will be center-based,
an alternative assumption often made is that clusters consist of high-density regions sur-
rounded by low-density “moats” between them. For example, in the clustering of Figure
7.1 we have one natural cluster A that looks center-based but the other cluster B consists
of a ring around cluster A. As seen in the figure, this assumption does not require clus-
ters to correspond to convex regions and it can allow them to be long and stringy. We
describe a non-center-based clustering method in Section 7.7. In Section 7.9 we prove the
effectiveness of an algorithm which finds a “moat”, cuts up data “inside” the moat and
‘outside” into two pieces and recursively applies the same procedure to each piece.

33If k is a constant, then as noted above, the version where the centers must be data points can be
solved in polynomial time.
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B

A

Figure 7.1: Example where the natural clustering is not center-based.

7.1.3 Spectral Clustering

An important part of a clustering toolkit when data lies in Rd is Singular Value De-
composition. Spectral Clustering refers to the following algorithm: Find the space V
spanned by the top k right singular vectors of the matrix A whose rows are the data
points. Project data points to V and cluster in the projection.

An obvious reason to do this is dimension reduction - clustering in the d dimensional
space where data lies is reduced to clustering in a k dimensional space (usually, k << d).
A more important point is that under certain assumptions one can prove that spectral
clustering gives a clustering close to the true clustering. We already saw this in the
case when data is from a mixture of spherical Gaussians, Chapter 3, Section 3.9.3. The
assumption used is “the means separated by a constant number of Standard Deviations”.
In Section 7.5, we will see that in a much more general setting which includes common
stochastic models, the same assumption, in spirit, yields similar conclusions. In Section
7.4, we will see another setting with a similar result.

7.2 k-Means Clustering

We assume in this section that data points lie in Rd and focus on the k-means criterion.

7.2.1 A Maximum-Likelihood Motivation

We now consider a maximum-likelihood motivation for using the k-means criterion.
Suppose that the data was generated according to an equal weight mixture of k spherical
well-separated Gaussian densities centered at µ1, µ2, . . . , µk, each with variance one in
every direction. Then the density of the mixture is

Prob(x) =
1

(2π)d/2
1

k

k∑
i=1

e−|x−µi|2 .
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Denote by µ(x) the center nearest to x. Since the exponential function falls off fast, we
can approximate

∑k
i=1 e

−|x−µi|2 by e−|x−µ(x)|2 . Thus

Prob(x) ≈ 1

(2π)d/2k
e−|x−µ(x)|2 .

The likelihood of drawing the sample of points x1,x2, . . . ,xn from the mixture, if the
centers were µ1, µ2, . . . , µk, is approximately

1

kn
1

(2π)nd/2

n∏
i=1

e−|x
(i)−µ(x(i))|2 = ce−

∑n
i=1 |x(i)−µ(x(i))|2 .

Minimizing the sum of squared distances to cluster centers finds the maximum likelihood
µ1, µ2, . . . , µk. This motivates using the sum of distance squared to the cluster centers.

7.2.2 Structural Properties of the k-Means Objective

Suppose we have already determined the clustering or the partitioning into C1, C2, . . . , Ck.
What are the best centers for the clusters? The following lemma shows that the answer
is the centroids, the coordinate means, of the clusters.

Lemma 7.1 Let {a1, a2, . . . , an} be a set of points. The sum of the squared distances of
the ai to any point x equals the sum of the squared distances to the centroid of the ai plus
n times the squared distance from x to the centroid. That is,∑

i

|ai − x|2 =
∑
i

|ai − c|2 + n |c− x|2

where c = 1
n

n∑
i=1

ai is the centroid of the set of points.

Proof: ∑
i

|ai − x|2 =
∑
i

|ai − c + c− x|2

=
∑
i

|ai − c|2 + 2(c− x) ·
∑
i

(ai − c) + n |c− x|2

Since c is the centroid,
∑
i

(ai − c) = 0. Thus,
∑
i

|ai − x|2 =
∑
i

|ai − c|2 + n |c− x|2

A corollary of Lemma 7.1 is that the centroid minimizes the sum of squared distances
since the first term,

∑
i

|ai− c|2, is a constant independent of x and setting x = c sets the

second term, n ‖c− x‖2, to zero.

Corollary 7.2 Let {a1, a2, . . . , an} be a set of points. The sum of squared distances of
the ai to a point x is minimized when x is the centroid, namely x = 1

n

∑
i

ai.
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7.2.3 Lloyd’s Algorithm

Corollary 7.2 suggests the following natural strategy for k-means clustering, known as
Lloyd’s algorithm. Lloyd’s algorithm does not necessarily find a globally optimal solution
but will find a locally-optimal one. An important but unspecified step in the algorithm is
its initialization: how the starting k centers are chosen. We discuss this after discussing
the main algorithm.

Lloyd’s algorithm:

Start with k centers.

Cluster each point with the center nearest to it.

Find the centroid of each cluster and replace the set of old centers with the centroids.

Repeat the above two steps until the centers converge (according to some criterion, such
as the k-means score no longer improving).

This algorithm always converges to a local minimum of the objective. To show conver-
gence, we argue that the sum of the squares of the distances of each point to its cluster
center always improves. Each iteration consists of two steps. First, consider the step
that finds the centroid of each cluster and replaces the old centers with the new centers.
By Corollary 7.2, this step improves the sum of internal cluster distances squared. The
second step reclusters by assigning each point to its nearest cluster center, which also
improves the internal cluster distances.

A problem that arises with some implementations of the k-means clustering algorithm
is that one or more of the clusters becomes empty and there is no center from which to
measure distance. A simple case where this occurs is illustrated in the following example.
You might think how you would modify the code to resolve this issue.

Example: Consider running the k-means clustering algorithm to find three clusters on
the following 1-dimension data set: {2,3,7,8} starting with centers {0,5,10}.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

The center at 5 ends up with no items and there are only two clusters instead of the
desired three.

206



(0,1) 

(0,-1) 

(3,0) 

Figure 7.2: A locally-optimal but globally-suboptimal k-means clustering.

As noted above, Lloyd’s algorithm only finds a local optimum to the k-means objec-
tive that might not be globally optimal. Consider, for example, Figure 7.2. Here data
lies in three dense clusters in R2: one centered at (0, 1), one centered at (0,−1) and
one centered at (3, 0). If we initialize with, say, one center at (0, 1) and two centers
near (3, 0), then the center at (0, 1) will move to near (0, 0) and capture the points near
(0, 1) and (0,−1), whereas the centers near (3, 0) will just stay there, splitting that cluster.

Because the initial centers can substantially influence the quality of the result, there
has been significant work on initialization strategies for Lloyd’s algorithm. One popular
strategy is called “farthest traversal”. Here, we begin by choosing one data point as initial
center c1 (say, randomly), then pick the farthest data point from c1 to use as c2, then
pick the farthest data point from {c1, c2} to use as c3, and so on. These are then used
as the initial centers. Notice that this will produce the correct solution in the example in
Figure 7.2.

Farthest traversal can unfortunately get fooled by a small number of outliers. To
address this, a smoother, probabilistic variation known as k-means++ instead weights
data points based on their distance from the previously chosen centers, specifically, pro-
portional to distance squared. Then it selects the next center probabilistically according
to these weights. This approach has the nice property that a small number of outliers
will not overly influence the algorithm so long as they are not too far away, in which case
perhaps they should be their own clusters anyway.

An alternative SVD-based method for initialization is described and analyzed in Sec-
tion 7.5. Another approach is to run some other approximation algorithm for the k-means
problem, and then use its output as the starting point for Lloyd’s algorithm. Note that
applying Lloyd’s algorithm to the output of any other algorithm can only improve its
score.
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7.2.4 Ward’s Algorithm

Another popular heuristic for k-means clustering is Ward’s algorithm. Ward’s algo-
rithm begins with each datapoint in its own cluster, and then repeatedly merges pairs of
clusters until only k clusters remain. Specifically, Ward’s algorithm merges the two clus-
ters that minimize the immediate increase in k-means cost. That is, for a cluster C, define
cost(C) =

∑
ai∈C d

2(ai, c), where c is the centroid of C. Then Ward’s algorithm merges
the pair (C,C ′) minimizing cost(C ∪ C ′) − cost(C) − cost(C ′). Thus, Ward’s algorithm
can be viewed as a greedy k-means algorithm.

7.2.5 k-Means Clustering on the Line

One case where the optimal k-means clustering can be found in polynomial time is
when points lie in R1, i.e., on the line. This can be done using dynamic programming, as
follows.

First, assume without loss of generality that the data points a1, . . . , an have been
sorted, so a1 ≤ a2 ≤ . . . ≤ an. Now, suppose that for some i ≥ 1 we have already
computed the optimal k′-means clustering for points a1, . . . , ai for all k′ ≤ k; note that
this is trivial to do for the base case of i = 1. Our goal is to extend this solution to points
a1, . . . , ai+1. To do so, observe that each cluster will contain a consecutive sequence of
data points. So, given k′, for each j ≤ i + 1, compute the cost of using a single center
for points aj, . . . , ai+1, which is the sum of distances of each of these points to their mean
value. Then add to that the cost of the optimal k′ − 1 clustering of points a1, . . . , aj−1

which we computed earlier. Store the minimum of these sums, over choices of j, as our
optimal k′-means clustering of points a1, . . . , ai+1. This has running time of O(kn) for a
given value of i. So overall our running time is O(kn2).

7.3 k-Center Clustering

In this section, instead of using the k-means clustering criterion, we use the k-center
criterion. Recall that the k-center criterion partitions the points into k clusters so as to
minimize the maximum distance of any point to its cluster center. Call the maximum dis-
tance of any point to its cluster center the radius of the clustering. There is a k-clustering
of radius r if and only if there are k spheres, each of radius r, which together cover all
the points. Below, we give a simple algorithm to find k spheres covering a set of points.
The following lemma shows that this algorithm only needs to use a radius that is at most
twice that of the optimal k-center solution. Note that this algorithm is equivalent to the
farthest traversal strategy for initializing Lloyd’s algorithm.

The Farthest Traversal k-clustering Algorithm

Pick any data point to be the first cluster center. At time t, for t = 2, 3, . . . , k,
pick the farthest data point from any existing cluster center; make it the tth cluster
center.
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Theorem 7.3 If there is a k-clustering of radius r
2
, then the above algorithm finds a

k-clustering with radius at most r.

Proof: Suppose for contradiction that there is some data point x that is distance greater
than r from all centers chosen. This means that each new center chosen was distance
greater than r from all previous centers, because we could always have chosen x. This
implies that we have k+1 data points, namely the centers chosen plus x, that are pairwise
more than distance r apart. Clearly, no two such points can belong to the same cluster
in any k-clustering of radius r

2
, contradicting the hypothesis.

7.4 Finding Low-Error Clusterings

In the previous sections we saw algorithms for finding a local optimum to the k-means
clustering objective, for finding a global optimum to the k-means objective on the line, and
for finding a factor 2 approximation to the k-center objective. But what about finding
a clustering that is close to the correct answer, such as the true clustering of proteins
by function or a correct clustering of news articles by topic? For this we need some
assumption about the data and what the correct answer looks like. The next few sections
consider algorithms based on different such assumptions.

7.5 Spectral Clustering

Let A be a n×d data matrix with each row a data point and suppose we want to partition
the data points into k clusters. Spectral Clustering refers to a class of clustering algorithms
which share the following outline:

• Find the space V spanned by the top k (right) singular vectors of A.

• Project data points into V .

• Cluster the projected points.

7.5.1 Why Project?

The reader may want to read Section 3.9.3, which shows the efficacy of spectral clustering
for data stochastically generated from a mixture of spherical Gaussians. Here, we look at
general data which may not have a stochastic generation model.

We will later describe the last step in more detail. First, lets understand the central
advantage of doing the projection to V . It is simply that for any reasonable (unknown)
clustering of data points, the projection brings data points closer to their cluster centers!
This statement sounds mysterious and likely false, since the assertion is for ANY reason-
able unknown clustering. We quantify it in the following theorem. First some notation:
We represent a k-clustering by a n×d matrix C (same dimensions as A), where row i of C
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Figure 7.3: Clusters in the full space and their projections

is the center of the cluster to which data point i belongs. So, there are only k distinct rows
of C and each other row is a copy of one of these rows. The k-means objective function,
namely, the sum of squares of the distances of data points to their cluster centers is

n∑
i=1

|ai − ci|2 = ||A− C||2F .

What the projection does is to reduce the sum of distance squares to cluster centers from
||A−C||2F to at most 8k||A−C||22 in the projection. Recall that ||A−C||2 is the spectral
norm, which is the top singular value of A− C. Now, ||A− C||2F =

∑
t σ

2
t (A) and often,

||A−C||F >>
√
k||A−C||2 and so the projection substantially reduces the sum of squared

distances to cluster centers.

We will see later that in many clustering problems, including models like mixtures of
Gaussians and Stochastic Block Models of communities, there is a desired clustering C
where the regions overlap in the whole space, but are separated in the projection. Figure
7.3 is a schematic illustration. Now, we are ready to state the theorem and give its sur-
prisingly simple proof.

Theorem 7.4 Let A be an n × d matrix with Ak the projection of the rows of A to the
subspace of the first k right singular vectors of A. For any matrix C of rank less than or
equal to k

||Ak − C||2F ≤ 8k||A− C||22.
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Ak is a matrix that is close to every C, in the sense ||Ak−C||2F ≤ 8k||A−C||22. While
this seems contradictory, another way to state this is that for C far away from Ak in
Frobenius norm, ||A− C||2 will also be high.

Proof: Since the rank of (Ak − C) is less than or equal to 2k,

||Ak − C||2F ≤ 2k||Ak − C||22 and

||Ak − C||2 ≤ ||Ak − A||2 + ||A− C||2 ≤ 2||A− C||2.

The last inequality follows since Ak is the best rank k approximation in spectral norm
(Theorem 3.9) and C has rank at most k. The theorem follows.

Suppose now in the clustering C we would like to find, the cluster centers that are pairwise
at least Ω(

√
k||A − C||2) apart. This holds for many clustering problems including data

generated by stochastic models. Then, it will be easy to see that in the projection,
most data points are a constant factor farther from centers of other clusters than their
own cluster center and this makes it very easy for the following algorithm to find the
clustering C modulo a small fraction of errors.

7.5.2 The Algorithm

Denote ||A−C||2/
√
n by σ(C). In the next section, we give an interpretation of ||A−C||2

which indicates that σ(C) is akin to the standard deviation of clustering C and hence the
notation σ(C). We assume for now that σ(C) is known to us for the desired clustering C.
This assumption can be removed by essentially doing a binary search.

Spectral Clustering - The Algorithm

1. Find the top k right singular vectors of data matrix A and project rows of A to the
space spanned by them to get Ak.(cf. Section 3.5).

2. Select a random row from Ak and form a cluster with all rows of Ak at distance less
than 6kσ(C)/ε from it.

3. Repeat Step 2 k times.

Theorem 7.5 If in a k-clustering C, every pair of centers is separated by at least 15kσ(C)/ε
and every cluster has at least εn points in it, then with probability at least 1− ε, Spectral
Clustering finds a clustering C ′ that differs from C on at most ε2n points.

Proof: Let vi denote row i of Ak. We first show that for most data points, the projection
of data point is within distance 3kσ(C)/ε of its cluster center. I.e., we show that |M | is
small, where,

M = {i : |vi − ci| ≥ 3kσ(C)/ε}.
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Now, ||Ak−C||2F =
∑

i |vi−ci|2 ≥
∑

i∈M |vi−ci|2 ≥ |M |9k
2σ2(C)
ε2

. So, using Theorem 7.4,
we get:

|M |9k
2σ2(C)

ε2
≤ ||Ak − C||2F ≤ 8knσ2(C) =⇒ |M | ≤ 8ε2n

9k
. (7.1)

Call a data point i “good” if i /∈ M . For any two good data points i, j belonging
to the same cluster, since, their projections are within 3kσ(C)/ε of the center of the
cluster, projections of the two data points are within 6kσ(C)/ε of each other. On the
other hand, if two good data points i, k are in different clusters, since, the centers of
the two clusters are at least 15kσ(C)/ε apart, their projections must be greater than
15kσ(C)/ε− 6kσ(C)/ε = 9kσ(C)/ε apart. So, if we picked a good data point (say point
i) in Step 2, the set of good points we put in its cluster is exactly the set of good points
in the same cluster as i. Thus, if in each of the k executions of Step 2, we picked a good
point, all good points are correctly clustered and since |M | ≤ ε2n, the Theorem would
hold.

To complete the proof, we must argue that the probability of any pick in step 2 being
bad is small. The probability that the first pick in step 2 is bad is at most |M |/n ≤ ε2/k.
For each subsequent execution of Step 2, all the good points in at least one cluster are
remaining candidates. So there are at least (ε−ε2)n good points left and so the probability
that we pick a bad point is at most |M |/(ε−ε2)n which is at most ε/k. The union bound
over the k executions yields the desired result.

7.5.3 Means Separated by Ω(1) Standard Deviations

For probability distribution on the real line, the mnemonic “means separated by six
standard deviations” suffices to distinguish different distributions. Spectral Clustering
enables us to do the same thing in higher dimensions provided k ∈ O(1) and six is
replaced by some constant. First we define standard deviation for general not necessarily
stochastically generated data: it is just the maximum over all unit vectors v of the square
root of the mean squared distance of data points from their cluster centers in the direction
v, namely, the standard deviation σ(C) of clustering C is defined as:

σ(C)2 =
1

n
Maxv:|v|=1

n∑
i=1

[(ai − ci) · v]2 =
1

n
Maxv:|v|=1|(A− C)v|2 =

1

n
||A− C||22.

This coincides with the definition of σ(C) we made earlier. Now, it is easy to see that the
Theorem 7.5 can be restated (assuming k ∈ O(1)) as

If cluster centers in C are separated by Ω(σ(C)), then, the spectral clustering algorithm
finds C ′ which differs from C only in a small fraction of data points.

It can be seen that the “means separated by Ω(1) standard deviations” condition holds
for many stochastic models. We illustrate with two examples here. First, suppose we have
a mixture of k ∈ O(1) spherical Gaussians, each with standard deviation one. The data
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is generated according to this mixture. If the means of the Gaussians are Ω(1) apart,
then the condition - means separated by Ω(1) standard deviations- is satisfied and so if
we project to the SVD subspace and cluster, we will get (nearly) the correct clustering.
This was already discussed in detail in Chapter ??.

We discuss a second example. Stochastic Block Models are models of communities.
Suppose there are k communities C1, C2, . . . , Ck among a population of n people. Sup-
pose the probability of two people in the same community knowing each other is p and
if they are in different communities, the probability is q, where, q < p.34 We assume the
events that person i knows person j are independent across all i and j.

Specifically, we are given an n × n data matrix A, where aij = 1 if and only if i and
j know each other. We assume the aij are independent random variables, and use ai to
denote the ith row of A. It is useful to think of A as the adjacency matrix of a graph, such
as the friendship network in Facebook. We will also think of the rows ai as data points.
The clustering problem is to classify the data points into the communities they belong to.
In practice, the graph is fairly sparse, i.e., p and q are small, namely, O(1/n) or O(lnn/n).

Consider the simple case of two communities with n/2 people in each and with

p =
α

n
q =

β

n
where α, β ∈ O(lnn).

Let u and v be the centroids of the data points in community one and community two
respectively; so ui ≈ p for i ∈ C1 and uj ≈ q for j ∈ C2 and vi ≈ q for i ∈ C1 and vj ≈ p
for j ∈ C2. We have

|u− v|2 =
n∑
j=1

(uj − vj)2 ≈ (α− β)2

n2
n =

(α− β)2

n
.

Inter-centroid distance ≈ α− β√
n
. (7.2)

We need to upper bound ||A − C||2. This is non-trivial since we have to prove a
uniform upper bound on |(A − C)v| for all unit vectors v. Fortunately, the subject to
Random Matrix Theory (RMT) already does this for us. RMT tells that

||A− C||2 ≤ O∗(
√
np) = O∗(

√
α),

where, the O∗ hides logarithmic factors. So as long as α − β ∈ Ω∗(
√
α), we have the

means separated by Ω(1) standard deviations and spectral clustering works.

34More generally, for each pair of communities a and b, there could be a probability pab that a person
from community a knows a person from community b. But for the discussion here, we take paa = p for
all a and pab = q, for all a 6= b.
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One important observation is that in these examples as well as many others, the k-
means objective function in the whole space is too high and so the projection is essential
before we can cluster.

7.5.4 Laplacians

An important special case of spectral clustering is when k = 2. If we have an algorithm
to cut data into two pieces, this may be recursively applied. A case where such a spectral
algorithm is used is on the Laplacian matrix L of a graph, which is defined as

L = D − A

where A is the adjacency matrix and D is a diagonal matrix of degrees. Since we took A
with a negative sign, we look at the lowest two singular values and corresponding vectors
rather than the highest,

L is a symmetric matrix and is easily seen to be posiitve semi-definite: for any vector
x, we have

xTLx =
∑
i

diix
2
i −

∑
(i,j)∈E

xixj =
1

2

∑
(i,j)∈E

(xi − xj)2.

Also since all row sums of L (and L is symmetric) are zero, its lowest eignvalue is 0 with
the eigenvector 1 of all 1’s. This is also the lowest singular vector of L. The projection
of all data points (rows) to this vector is just the origin and so gives no information. If
we take the second lowest singular vector and project to it which is essentially projecting
to the space of the bottom two singular vectors, we get the very simple problem of n real
numbers which we need to cluster into two clusters.

7.6 Approximation Stability

7.6.1 The Conceptual Idea

We now consider another condition that will allow us to produce accurate clusters
from data. To think about this condition, imagine that we are given a few thousand news
articles that we want to cluster by topic. These articles could be represented as points in
a high-dimensional space (e.g., axes could correspond to different meaningful words, with
coordinate i indicating the frequency of that word in a given article). Or, alternatively,
it could be that we have developed some text-processing program that given two articles
x and x′ computes some measure of distance d(x, x′) between them. We assume there
exists some correct clustering CT of our news articles into k topics; of course, we do not
know what CT is—that is what we want our algorithm to find.

Now, if we are thinking about clustering with an algorithm that aims minimize the
k-means score of its solution, then implicitly this means we believe that the clustering
COPTkmeans of minimum k-means score is either equal to, or very similar to, the clustering CT .
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Unfortunately, finding the clustering of minimum k-means score is NP-hard. So, let us
broaden our belief a bit and assume that any clustering C whose k-means score is within
10% of the minimum is also very similar to CT . This should give us a little bit more
slack. Unfortunately, finding a clustering of score within 10% of the minimum is also an
NP-hard problem. Nonetheless, we will be able to use this assumption to efficiently find a
clustering that is close to CT . The trick is that NP-hardness is a worst-case notion, whereas
in contrast, this assumption implies structure on our data—in particular, it implies that
all clusterings that have score within 10% of the minimum have to be similar to each
other. We will then be able to utilize this structure in a natural “ball-growing” clustering
algorithm.

7.6.2 Making this Formal

To make this discussion formal, we first need to specify what we mean when we say
that two different ways of clustering some data are “similar” to each other. So, let
C = {C1, . . . , Ck} and C ′ = {C ′1, . . . , C ′k} be two different k-clusterings of some dataset A;
for example, C could be the clustering that our algorithm produces, and C ′ could be the
clustering CT . Let us define the distance between these two clusterings to be the fraction
of points that would have to be re-clustered in C to make C match C ′, where by “match”
we mean that there should be a bijection between the clusters of C and the clusters of C ′.
We can write this distance mathematically as:

dist(C, C ′) = min
σ

1

n

k∑
i=1

|Ci \ C ′σ(i)|,

where the minimum is over all permutations σ of {1, . . . , k}.

For c > 1 and ε > 0 we say that a data set satisfies (c, ε)-approximation-stability
with respect to a given objective (such as k-means or k-median) if every clustering C
whose cost is within a factor c of the minimum-cost clustering for that objective satisfies
dist(C, CT ) < ε. That is, it is sufficient to be within a factor c of optimal to the our
objective in order for the fraction of points clustered incorrectly to be less than ε. We will
specifically focus in this discussion on the k-median objective rather than the k-means
objective, since it is a bit easier to work with.

What we will now show is that under this condition, even though it may be NP-hard
in general to find a clustering that is within a factor c of optimal, we can nonetheless
efficiently find a clustering C ′ such that dist(C ′, CT ) ≤ ε, so long as all clusters in CT are
reasonably large. To simplify notation, let C∗ denote the clustering of minimum k-median
cost, and to keep the discussion simpler, let us also assume that CT = C∗; that is, the
target clustering is also the clustering with the minimum k-median score.
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7.6.3 Algorithm and Analysis

Before presenting an algorithm, we begin with a helpful lemma that will guide our
design. For a given data point ai, define its weight w(ai) to be its distance to the center
of its cluster in C∗. Notice that the k-median cost of C∗ is OPT =

∑n
i=1w(ai). Define

wavg = OPT/n to be the average weight of the points in A. Finally, define w2(ai) to be
the distance of ai to its second-closest center in C∗.

Lemma 7.6 Assume dataset A satisfies (c, ε) approximation-stability with respect to the
k-median objective, each cluster in CT has size at least 2εn, and CT = C∗. Then,

1. Fewer than εn points ai have w2(ai)− w(ai) ≤ (c− 1)wavg/ε.

2. At most 5εn/(c− 1) points ai have w(ai) ≥ (c− 1)wavg/(5ε).

Proof: For part (1), suppose that εn points ai have w2(ai) − w(ai) ≤ (c − 1)wavg/ε.
Consider modifying CT to a new clustering C ′ by moving each of these points ai into
the cluster containing its second-closest center. By assumption, the k-means cost of the
clustering has increased by at most εn(c − 1)wavg/ε = (c − 1) · OPT. This means that
the cost of the new clustering is at most cȮPT . However, dist(C ′, CT ) = ε because (a) we
moved εn points to different clusters, and (b) each cluster in CT has size at least 2εn so the
optimal permutation σ in the definition of dist remains the identity. So, this contradicts
approximation stability. Part (2) follows from the definition of “average”; if it did not
hold then

∑n
i=1w(ai) > nwavg, a contradiction.

A datapoint ai is bad if it satisfies either item (1) or (2) of Lemma 7.6 and good if it
satisfies neither one. So, there are at most b = εn+ 5εn

c−1
bad points and the rest are good.

Define “critical distance” dcrit = (c−1)wavg
5ε

. So, Lemma 7.6 implies that the good points
have distance at most dcrit to the center of their own cluster in C∗ and distance at least
5dcrit to the center of any other cluster in C∗.

This suggests the following algorithm. Suppose we create a graph G with the points
ai as vertices, and edges between any two points ai and aj with d(ai, aj) < 2dcrit. Notice
that by triangle inequality, the good points within the same cluster in C∗ have distance
less than 2dcrit from each other so they will be fully connected and form a clique. Also,
again by triangle inequality, any edge that goes between different clusters must be be-
tween two bad points. In particular, if ai is a good point in one cluster, and it has an edge
to some other point aj, then aj must have distance less than 3dcrit to the center of ai’s
cluster. This means that if aj had a different closest center, which obviously would also
be at distance less than 3dcrit, then ai would have distance less than 2dcrit+3dcrit = 5dcrit
to that center, violating its goodness. So, bridges in G between different clusters can only
occur between bad points.

Assume now that each cluster in CT has size at least 2b+1; this is the sense in which we
are requiring that εn be small compared to the smallest cluster in CT . In this case, create
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a new graph H by connecting any two points ai and aj that share at least b+ 1 neighbors
in common in G, themselves included. Since every cluster has at least 2b+ 1− b = b+ 1
good points, and these points are fully connected in G, this means that H will contain an
edge between every pair of good points in the same cluster. On the other hand, since the
only edges in G between different clusters are between bad points, and there are at most
b bad points, this means that H will not have any edges between different clusters in CT .
Thus, if we take the k largest connected components in H, these will all correspond to
subsets of different clusters in CT , with at most b points remaining.

At this point we have a correct clustering of all but at most b points in A. Call these
clusters C1, . . . , Ck, where Cj ⊆ C∗j . To cluster the remaining points ai, we assign them
to the cluster Cj that minimizes the median distance between ai and points in Cj. Since
each Cj has more good points than bad points, and each good point in Cj has distance at
most dcrit to center c∗j , by triangle inequality the median of these distances must lie in the
range [d(ai, c∗i ) − dcrit, d(ai, c

∗
i ) + dcrit]. This means that this second step will correctly

cluster all points ai for which w2(ai)− w(ai) > 2dcrit. In particular, we correctly cluster
all points except possibly for some of the at most εn satisfying item (1) of Lemma 7.6.

The above discussion assumes the value dcrit is known to our algorithm; we leave it as
an exercise to the reader to modify the algorithm to remove this assumption. Summariz-
ing, we have the following algorithm and theorem.

Algorithm k-Median Stability (given c, ε, dcrit)

1. Create a graph G with a vertex for each datapoint in A, and an edge between
vertices i and j if d(ai, aj) ≤ 2dcrit.

2. Create a graph H with a vertex for each vertex in G and an edge between vertices i
and j if i and j share at least b+ 1 neighbors in common, themselves included, for
b = εn+ 5εn

c−1
. Let C1, . . . , Ck denote the k largest connected components in H.

3. Assign each point not in C1∪ . . .∪Ck to the cluster Cj of smallest median distance.

Theorem 7.7 Assume A satisfies (c, ε) approximation-stability with respect to the k-
median objective, that each cluster in CT has size at least 10ε

c−1
n+2εn+1, and that CT = C∗.

Then Algorithm k-Median Stability will find a clustering C such that dist(C, CT ) ≤ ε.

7.7 High-Density Clusters

We now turn from the assumption that clusters are center-based to the assumption
that clusters consist of high-density regions, separated by low-density moats such as in
Figure 7.1.
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7.7.1 Single Linkage

One natural algorithm for clustering under the high-density assumption is called single
linkage. This algorithm begins with each point in its own cluster and then repeatedly
merges the two “closest” clusters into one, where the distance between two clusters is
defined as the minimum distance between points in each cluster. That is, dmin(C,C ′) =
minx∈C,y∈C′ d(x,y), and the algorithm merges the two clusters C and C ′ whose dmin value
is smallest over all pairs of clusters breaking ties arbitrarily. It then continues until there
are only k clusters. This is called an agglomerative clustering algorithm because it begins
with many clusters and then starts merging, or agglomerating them together.35 Single-
linkage is equivalent to running Kruskal’s minimum-spanning-tree algorithm, but halting
when there are k trees remaining. The following theorem is fairly immediate.

Theorem 7.8 Suppose the desired clustering C∗1 , . . . , C
∗
k satisfies the property that there

exists some distance σ such that

1. any two data points in different clusters have distance at least σ, and

2. for any cluster C∗i and any partition of C∗i into two non-empty sets A and C∗i \ A,
there exist points on each side of the partition of distance less than σ.

Then, single-linkage will correctly recover the clustering C∗1 , . . . , C
∗
k .

Proof: Consider running the algorithm until all pairs of clusters C and C ′ have dmin(C,C ′) ≥ σ.
At that point, by (2), each target cluster C∗i will be fully contained within some cluster
of the single-linkage algorithm. On the other hand, by (1) and by induction, each cluster
C of the single-linkage algorithm will be fully contained within some C∗i of the target
clustering, since any merger of subsets of distinct target clusters would require dmin ≥ σ.
Therefore, the single-linkage clusters are indeed the target clusters.

7.7.2 Robust Linkage

The single-linkage algorithm is fairly brittle. A few points bridging the gap between
two different clusters can cause it to do the wrong thing. As a result, there has been
significant work developing more robust versions of the algorithm.

One commonly used robust version of single linkage is Wishart’s algorithm. We can
view single-linkage as growing balls of radius r around each datapoint, starting with r = 0
and then gradually increasing r, connecting two points when the balls around them touch.
The clusters are the connected components of this graph. To address the issue of a few
points causing an incorrect merger, Wishart’s algorithm has a parameter t, and only con-
siders a point to be live if its ball of radius r contains at least t points. It then only makes

35Other agglomerative algorithms include complete linkage which merges the two clusters whose max-
imum distance between points is smallest, and Ward’s algorithm described earlier that merges the two
clusters that cause the k-means cost to increase by the least.
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a connection between live points. The idea is that if t is modestly large, then a thin string
of points between two dense clusters will not cause a spurious merger.

In fact, if one slightly modifies the algorithm to define a point to be live if its ball
of radius r/2 contains at least t points, then it is known [CD10] that a value of t =
O(d log n) is sufficient to recover a nearly correct solution under a natural distributional
formulation of the clustering problem. Specifically, suppose data points are drawn from
some probability distribution D over Rd, and that the clusters correspond to high-density
regions surrounded by lower-density moats. More specifically, the assumption is that

1. for some distance σ > 0, the σ-interior of each target cluster C∗i has density at least
some quantity λ (the σ-interior is the set of all points at distance at least σ from
the boundary of the cluster),

2. the region between target clusters has density less than λ(1− ε) for some ε > 0,

3. the clusters should be separated by distance greater than 2σ, and

4. the σ-interior of the clusters contains most of their probability mass.

Then, for sufficiently large n, the algorithm will with high probability find nearly correct
clusters. In this formulation, we allow points in low-density regions that are not in any
target clusters at all. For details, see [CD10].

Robust Median Neighborhood Linkage robustifies single linkage in a different way.
This algorithm guarantees that if it is possible to delete a small fraction of the data such
that for all remaining points x, most of their |C∗(x)| nearest neighbors indeed belong to
their own cluster C∗(x), then the hierarchy on clusters produced by the algorithm will
include a close approximation to the true clustering. We refer the reader to [BLG14] for
the algorithm and proof.

7.8 Kernel Methods

Kernel methods combine aspects of both center-based and density-based clustering.
In center-based approaches like k-means or k-center, once the cluster centers are fixed, the
Voronoi diagram of the cluster centers determines which cluster each data point belongs
to. This implies that clusters are pairwise linearly separable.

If we believe that the true desired clusters may not be linearly separable, and yet we
wish to use a center-based method, then one approach, as in the chapter on learning,
is to use a kernel. Recall that a kernel function K(x,y) can be viewed as performing
an implicit mapping φ of the data into a possibly much higher dimensional space, and
then taking a dot-product in that space. That is, K(x,y) = φ(x) · φ(y). This is then
viewed as the affinity between points x and y. We can extract distances in this new
space using the equation |z1 − z2|2 = z1 · z1 + z2 · z2 − 2z1 · z2, so in particular we have
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|φ(x)−φ(y)|2 = K(x,x)+K(y,y)−2K(x,y). We can then run a center-based clustering
algorithm on these new distances.

One popular kernel function to use is the Gaussian kernel. The Gaussian kernel uses
an affinity measure that emphasizes closeness of points and drops off exponentially as the
points get farther apart. Specifically, we define the affinity between points x and y by

K(x,y) = e−
1

2σ2
‖x−y‖2 .

Another way to use affinities is to put them in an affinity matrix, or weighted graph.
This graph can then be separated into clusters using a graph partitioning procedure such
as in the following section.

7.9 Recursive Clustering based on Sparse Cuts

We now consider the case that data are nodes in an undirected connected graph
G(V,E) where an edge indicates that the end point vertices are similar. Recursive clus-
tering starts with all vertices in one cluster and recursively splits a cluster into two parts
whenever there is a small number of edges from one part to the other part of the cluster.
Formally, for two disjoint sets S and T of vertices, define

Φ(S, T ) =
Number of edges from S to T

Total number of edges incident to S in G
.

Φ(S, T ) measures the relative strength of similarities between S and T . Let d(i) be the
degree of vertex i and for a subset S of vertices, let d(S) =

∑
i∈S d(i). Let m be the total

number of edges. The following algorithm aims to cut only a small fraction of the edges
and to produce clusters that are internally consistent in that no subset of the cluster has
low similarity to the rest of the cluster.

Recursive Clustering: Select an appropriate value for ε. If a current cluster
W has a subset S with d(S) ≤ 1

2
d(W ) and Φ(S, T ) ≤ ε, then split W into two

clusters S and W \ S. Repeat until no such split is possible.

Theorem 7.9 At termination of Recursive Clustering, the total number of edges between
vertices in different clusters is at most O(εm lnn).

Proof: Each edge between two different clusters at the end was deleted at some stage
by the algorithm. We will “charge” edge deletes to vertices and bound the total charge.
When the algorithm partitions a cluster W into S and W \S with d(S) ≤ (1/2)d(W ), each

k ∈ S is charged d(k)
d(W )

times the number of edges being deleted. Since Φ(S,W \ S) ≤ ε,

the charge added to each k ∈ W is a most εd(k). A vertex is charged only when it is
in the smaller part, d(S) ≤ d(W )/2, of the cut. So between any two times it is charged,
d(W ) is reduced by a factor of at least two and so a vertex can be charged at most
log2m ≤ O(lnn) times, proving the theorem.
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Implementing the algorithm requires computing MinS⊆WΦ(S,W \S) which is an NP-
hard problem. So the theorem cannot be implemented right away. Luckily, eigenvalues and
eigenvectors, which can be computed fast, give an approximate answer. The connection
between eigenvalues and sparsity, known as Cheeger’s inequality, is deep with applications
to Markov chains among others. We do not discuss this here.

7.10 Dense Submatrices and Communities

Represent n data points in d-space by the rows of an n× d matrix A. Assume that A
has all nonnegative entries. Examples to keep in mind for this section are the document-
term matrix and the customer-product matrix. We address the question of how to define
and find efficiently a coherent large subset of rows. To this end, the matrix A can be
represented by a bipartite graph. One side has a vertex for each row and the other side a
vertex for each column. Between the vertex for row i and the vertex for column j, there
is an edge with weight aij.

We want a subset S of row vertices and a subset T of column vertices so that

A(S, T ) =
∑

i∈S,j∈T

aij

is high. This simple definition is not good since A(S, T ) will be maximized by taking
all rows and columns. We need a balancing criterion that ensures that A(S, T ) is high

relative to the sizes of S and T . One possibility is to maximize A(S,T )
|S||T | . This is not a good

measure either, since it is maximized by the single edge of highest weight. The definition
we use is the following. Let A be a matrix with nonnegative entries. For a subset S of
rows and a subset T of columns, the density d(S, T ) of S and T is d(S, T ) = A(S,T )√

|S||T |
. The

density d(A) of A is defined as the maximum value of d(S, T ) over all subsets of rows and
columns. This definition applies to bipartite as well as non bipartite graphs.

One important case is when A’s rows and columns both represent the same set and
aij is the similarity between object i and object j. Here d(S, S) = A(S,S)

|S| . If A is an n× n
0-1 matrix, it can be thought of as the adjacency matrix of an undirected graph, and
d(S, S) is the average degree of a vertex in S. The subgraph of maximum average degree
in a graph can be found exactly by network flow techniques, as we will show in the next
section. We do not know an efficient (polynomial-time) algorithm for finding d(A) exactly
in general. However, we show that d(A) is within a O(log2 n) factor of the top singular
value of A assuming |aij| ≤ 1 for all i and j. This is a theoretical result. The gap may be
much less than O(log2 n) for many problems, making singular values and singular vectors
quite useful. Also, S and T with d(S, T ) ≥ Ω(d(A)/ log2 n) can be found algorithmically.

Theorem 7.10 Let A be an n× d matrix with entries between 0 and 1. Then

σ1(A) ≥ d(A) ≥ σ1(A)

4 log n log d
.
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Figure 7.4: Example of a bipartite graph.

Furthermore, subsets S and T satisfying d(S, T ) ≥ σ1(A)
4 logn log d

may be found from the top
singular vector of A.

Proof: Let S and T be the subsets of rows and columns that achieve d(A) = d(S, T ).
Consider an n-vector u which is 1√

|S|
on S and 0 elsewhere and a d-vector v which is 1√

|T |
on T and 0 elsewhere. Then,

σ1 (A) ≥ uTAv =
∑
ij

uivjaij = d(S, T ) = d(A)

establishing the first inequality.

To prove the second inequality, express σ1 (A) in terms of the first left and right
singular vectors x and y.

σ1(A) = xTAy =
∑
i,j

xiaijyj, |x| = |y| = 1.

Since the entries of A are nonnegative, the components of the first left and right singular
vectors must all be nonnegative, that is, xi ≥ 0 and yj ≥ 0 for all i and j. To bound∑
i,j

xiaijyj, break the summation into O (log n log d) parts. Each part corresponds to a

given α and β and consists of all i such that α ≤ xi < 2α and all j such that β ≤ yi < 2β.
The log n log d parts are defined by breaking the rows into log n blocks with α equal to
1
2

1√
n
, 1√

n
, 2 1√

n
, 4 1√

n
, . . . , 1 and by breaking the columns into log d blocks with β equal to

1
2

1√
d
, 1√

d
, 2√

d
, 4√

d
, . . . , 1. The i such that xi <

1
2
√
n

and the j such that yj <
1

2
√
d

will be

ignored at a loss of at most 1
4
σ1(A). Exercise (7.28) proves the loss is at most this amount.

Since
∑
i

x2
i = 1, the set S = {i|α ≤ xi < 2α} has |S| ≤ 1

α2 and similarly,
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T = {j|β ≤ yj ≤ 2β} has |T | ≤ 1
β2 . Thus∑

i
α≤xi≤2α

∑
j

β≤yj≤2β

xiyjaij ≤ 4αβA(S, T )

≤ 4αβd(S, T )
√
|S||T |

≤ 4d(S, T )

≤ 4d(A).

From this it follows that
σ1 (A) ≤ 4d (A) log n log d

or
d (A) ≥ σ1(A)

4 logn log d

proving the second inequality.

It is clear that for each of the values of (α, β), we can compute A(S, T ) and d(S, T )
as above and taking the best of these d(S, T ) ’s gives us an algorithm as claimed in the
theorem.

Note that in many cases, the nonzero values of xi and yj after zeroing out the low
entries will only go from 1

2
1√
n

to c√
n

for xi and 1
2

1√
d

to c√
d

for yj, since the singular vectors
are likely to be balanced given that aij are all between 0 and 1. In this case, there will
be O(1) groups only and the log factors disappear.

Another measure of density is based on similarities. Recall that the similarity between
objects represented by vectors (rows of A) is defined by their dot products. Thus, simi-
larities are entries of the matrix AAT . Define the average cohesion f(S) of a set S of rows
of A to be the sum of all pairwise dot products of rows in S divided by |S|. The average
cohesion of A is the maximum over all subsets of rows of the average cohesion of the subset.

Since the singular values of AAT are squares of singular values of A, we expect f(A)
to be related to σ1(A)2 and d(A)2. Indeed it is. We state the following without proof.

Lemma 7.11 d(A)2 ≤ f(A) ≤ d(A) log n. Also, σ1(A)2 ≥ f(A) ≥ cσ1(A)2

logn
.

f(A) can be found exactly using flow techniques as we will see later.

7.11 Community Finding and Graph Partitioning

Assume that data are nodes in a possibly weighted graph where edges represent some
notion of affinity between their endpoints. In particular, let G = (V,E) be a weighted
graph. Given two sets of nodes S and T , define

E(S, T ) =
∑
i∈S
j∈T

eij.
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We then define the density of a set S to be

d(S, S) =
E(S, S)

|S|
.

If G is an undirected graph, then d(S, S) can be viewed as the average degree in the
vertex-induced subgraph over S. The set S of maximum density is therefore the subgraph
of maximum average degree. Finding such a set can be viewed as finding a tight-knit
community inside some network. In the next section, we describe an algorithm for finding
such a set using network flow techniques.

7.11.1 Flow Methods

Here we consider dense induced subgraphs of a graph. An induced subgraph of a
graph consisting of a subset of the vertices of the graph along with all edges of the graph
that connect pairs of vertices in the subset of vertices. We show that finding an induced
subgraph with maximum average degree can be done by network flow techniques. This
is simply maximizing the density d(S, S) over all subsets S of the graph. First consider
the problem of finding a subset of vertices such that the induced subgraph has average
degree at least λ for some parameter λ. Then do a binary search on the value of λ until
the maximum λ for which there exists a subgraph with average degree at least λ is found.

Given a graph G in which one wants to find a dense subgraph, construct a directed
graph H from the given graph and then carry out a flow computation on H. H has a
node for each edge of the original graph, a node for each vertex of the original graph,
plus two additional nodes s and t. There is a directed edge with capacity one from s to
each node corresponding to an edge of the original graph and a directed edge with infinite
capacity from each node corresponding to an edge of the original graph to the two nodes
corresponding to the vertices the edge connects. Finally, there is a directed edge with
capacity λ from each node corresponding to a vertex of the original graph to t.

Notice there are three types of cut sets of the directed graph that have finite capacity.
The first cuts all arcs from the source. It has capacity e, the number of edges of the
original graph. The second cuts all edges into the sink. It has capacity λv, where v is the
number of vertices of the original graph. The third cuts some arcs from s and some arcs
into t. It partitions the set of vertices and the set of edges of the original graph into two
blocks. The first block contains the source node s, a subset of the edges es, and a subset
of the vertices vs defined by the subset of edges. The first block must contain both end
points of each edge in es; otherwise an infinite arc will be in the cut. The second block
contains t and the remaining edges and vertices. The edges in this second block either
connect vertices in the second block or have one endpoint in each block. The cut set will
cut some infinite arcs from edges not in es coming into vertices in vs. However, these
arcs are directed from nodes in the block containing t to nodes in the block containing s.
Note that any finite capacity cut that leaves an edge node connected to s must cut the
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Figure 7.5: The directed graph H used by the flow technique to find a dense subgraph

two related vertex nodes from t. Thus, there is a cut of capacity e − es + λvs where vs
and es are the vertices and edges of a subgraph. For this cut to be the minimal cut, the
quantity e − es + λvs must be minimal over all subsets of vertices of the original graph
and the capcity must be less than e and also less than λv.

If there is a subgraph with vs vertices and es edges where the ratio es
vs

is sufficiently
large so that eS

vS
> e

v
, then for λ such that eS

vS
> λ > e

v
, es − λvs > 0 and e− es + λvs < e.

Similarly e < λv and thus e− es + λvs < λv. This implies that the cut e− es + λvs is less
than either e or λv and the flow algorithm will find a nontrivial cut and hence a proper
subset. For different values of λ in the above range there maybe different nontrivial cuts.

Note that for a given density of edges, the number of edges grows as the square of the
number of vertices and es

vs
is less likely to exceed e

v
if vS is small. Thus, the flow method

works well in finding large subsets since it works with eS
vS

. To find small communities one
would need to use a method that worked with eS

v2S
as the following example illustrates.

Example: Consider finding a dense subgraph of 1,000 vertices and 2,000 internal edges in
a graph of 106 vertices and 6×106 edges. For concreteness, assume the graph was generated
by the following process. First, a 1,000-vertex graph with 2,000 edges was generated as a
random regular degree four graph. The 1,000-vertex graph was then augmented to have
106 vertices and edges were added at random until all vertices were of degree 12. Note
that each vertex among the first 1,000 has four edges to other vertices among the first
1,000 and eight edges to other vertices. The graph on the 1,000 vertices is much denser
than the whole graph in some sense. Although the subgraph induced by the 1,000 vertices
has four edges per vertex and the full graph has twelve edges per vertex, the probability
of two vertices of the 1,000 being connected by an edge is much higher than for the graph
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as a whole. The probability is given by the ratio of the actual number of edges connecting
vertices among the 1,000 to the number of possible edges if the vertices formed a complete
graph.

p =
e((
v
2

)) =
2e

v(v − 1)

For the 1,000 vertices, this number is p = 2×2,000
1,000×999

∼= 4× 10−3. For the entire graph this

number is p = 2×6×106

106×106
= 12 × 10−6. This difference in probability of two vertices being

connected should allow us to find the dense subgraph.

In our example, the cut of all arcs out of s is of capacity 6 × 106, the total number
of edges in the graph, and the cut of all arcs into t is of capacity λ times the number
of vertices or λ × 106. A cut separating the 1,000 vertices and 2,000 edges would have
capacity 6× 106− 2, 000 + λ× 1, 000. This cut cannot be the minimum cut for any value
of λ since es

vs
= 2 and e

v
= 6, hence es

vs
< e

v
. The point is that to find the 1,000 vertices, we

have to maximize A(S, S)/|S|2 rather than A(S, S)/|S|. Note that A(S, S)/|S|2 penalizes
large |S| much more and therefore can find the 1,000 node “dense” subgraph.

7.12 Spectral clustering applied to social networks

Finding communities in social networks is different from other clustering for several
reasons. First we often want to find communities of size say 20 to 50 in networks with
100 million vertices. Second a person is in a number of overlapping communities and thus
we are not finding disjoint clusters. Third there often are a number of levels of structure
and a set of dominant communities may be hiding a set of weaker communities that are
of interest. Spectral clustering is one approach to these issues.

226



A =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 V =


1 0
1 0
1 0
0 1
0 1



Figure 7.7: Illustration of spectral clustering.

In spectral clustering of the vertices of a graph, one creates a matrix V whose columns
correspond to the first k singular vectors of the adjacency matrix. Each row of V is
the projection of a row of the adjacency matrix to the space spanned by the k singular
vectors. In the example below, the graph has five vertices divided into two cliques, one
consisting of the first three vertices and the other the last two vertices. The top two right
singular vectors of the adjacency matrix, not normalized to length one, are (1, 1, 1, 0, 0)T

and (0, 0, 0, 1, 1)T . The five rows of the adjacency matrix projected to these vectors form
the 5 × 2 matrix in Figure 7.7. Here, there are two ideal clusters with all edges inside a
cluster being present including self-loops and all edges between clusters being absent. The
five rows project to just two points, depending on which cluster the rows are in. If the
clusters were not so ideal and instead of the graph consisting of two disconnected cliques,
the graph consisted of two dense subsets of vertices where the two sets were connected by
only a few edges, then the singular vectors would not be indicator vectors for the clusters
but close to indicator vectors. The rows would be mapped to two clusters of points instead
of two points. A k-means clustering algorithm would find the clusters.

If the clusters were overlapping, then instead of two clusters of points, there would be
three clusters of points where the third cluster corresponds to the overlapping vertices of
the two clusters. Instead of using k-means clustering, we might instead find the minimum
1-norm vector in the space spanned by the two singular vectors. The minimum 1-norm
vector will not be an indicator vector, so we would threshold its values to create an
indicator vector for a cluster. Instead of finding the minimum 1-norm vector in the space
spanned by the singular vectors in V, we might look for a small 1-norm vector close to
the subspace.

min
x

(1− |x|1 + α cos(θ))

Here θ is the cosine of the angle between x and the space spanned by the two singular
vectors. α is a control parameter that determines how close we want the vector to be to
the subspace. When α is large, x must be close to the subspace. When α is zero, x can
be anywhere.

Finding the minimum 1-norm vector in the space spanned by a set of vectors can be
formulated as a linear programming problem. To find the minimum 1-norm vector in V,
write V x = y where we want to solve for both x and y. Note that the format is different
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from the usual format for a set of linear equations Ax = b where b is a known vector.

Finding the minimum 1-norm vector looks like a nonlinear problem.

min |y|1 subject to V x = y

To remove the absolute value sign, write y = y1−y2 with y1 ≥ 0 and y2 ≥ 0. Then solve

min

(
n∑
i=1

y1i +
n∑
i=1

y2i

)
subject to V x = y, y1 ≥ 0, and y2 ≥ 0.

Write V x = y1 − y2 as V x− y1 + y2 = 0. then we have the linear equations in a format
we are accustomed to.

[V,−I, I]

 x
y1

y2

 =


0
0
...
0


This is a linear programming problem. The solution, however, happens to be x = 0,
y1 = 0, and y2 = 0. To resolve this, add the equation y1i = 1 to get a community con-
taining the vertex i.

Often we are looking for communities of 50 or 100 vertices in graphs with hundreds of
million of vertices. We want a method to find such communities in time proportional to
the size of the community and not the size of the entire graph. Here spectral clustering
can be used but instead of calculating singular vectors of the entire graph, we do some-
thing else. Consider a random walk on a graph. If we walk long enough the probability
distribution converges to the first eigenvector. However, if we take only a few steps from a
start vertex or small group of vertices that we believe define a cluster, the probability will
distribute over the cluster with some of the probability leaking out to the remainder of
the graph. To get the early convergence of several vectors that ultimately converge to the
first few singular vectors, take a subspace [x, Ax, A2x, A3x] and propagate the subspace.
At each iteration find an orthonormal basis and then multiply each basis vector by A.
Then take the resulting basis vectors after a few steps, say five, and find a minimum
1-norm vector in the subspace.

A third issue that arises is when a dominant structure hides an important weaker
structure. One can run their algorithm to find the dominant structure and then weaken the
dominant structure by randomly removing edges in the clusters so that the edge density is
similar to the remainder of the network. Then reapplying the algorithm often will uncover
weaker structure. Real networks often have several levels of structure. The technique
can also be used to improve state of the art clustering algorithms. After weakening the
dominant structure to find the weaker hidden structure one can go back to the original data
and weaken the hidden structure and reapply the algorithm to again find the dominant
structure. This improves most state of the art clustering algorithms.
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Section 7.9 is a simplified version of [KVV04]. Section 7.10 is from [RV99].
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7.14 Exercises

Exercise 7.1 Construct examples where using distances instead of distance squared gives
bad results for Gaussian densities. For example, pick samples from two 1-dimensional
unit variance Gaussians, with their centers 10 units apart. Cluster these samples by trial
and error into two clusters, first according to k-means and then according to the k-median
criteria. The k-means clustering should essentially yield the centers of the Gaussians as
cluster centers. What cluster centers do you get when you use the k-median criterion?

Exercise 7.2 Let v = (1, 3). What is the L1 norm of v? The L2 norm? The square of
the L1 norm?

Exercise 7.3 Show that in 1-dimension, the center of a cluster that minimizes the sum
of distances of data points to the center is in general not unique. Suppose we now require
the center also to be a data point; then show that it is the median element (not the mean).
Further in 1-dimension, show that if the center minimizes the sum of squared distances
to the data points, then it is unique.

Exercise 7.4 Construct a block diagonal matrix A with three blocks of size 50. Each
matrix element in a block has value p = 0.7 and each matrix element not in a block has
value q = 0.3. Generate a 150 × 150 matrix B of random numbers in the range [0,1]. If
bij ≥ aij replace aij with the value one. Otherwise replace aij with value zero. The rows
of A have three natural clusters. Generate a random permutation and use it to permute
the rows and columns of the matrix A so that the rows and columns of each cluster are
randomly distributed.

1. Apply the k-mean algorithm to A with k = 3. Do you find the correct clusters?

2. Apply the k-means algorithm to A for 1 ≤ k ≤ 10. Plot the value of the sum of
squares to the cluster centers versus k. Was three the correct value for k?

Exercise 7.5 Let M be a k × k matrix whose elements are numbers in the range [0,1].
A matrix entry close to one indicates that the row and column of the entry correspond to
closely related items and an entry close to zero indicates unrelated entities. Develop an
algorithm to match each row with a closely related column where a column can be matched
with only one row.

Exercise 7.6 The simple greedy algorithm of Section 7.3 assumes that we know the clus-
tering radius r. Suppose we do not. Describe how we might arrive at the correct r?

Exercise 7.7 For the k-median problem, show that there is at most a factor of two ratio
between the optimal value when we either require all cluster centers to be data points or
allow arbitrary points to be centers.

Exercise 7.8 For the k-means problem, show that there is at most a factor of four ratio
between the optimal value when we either require all cluster centers to be data points or
allow arbitrary points to be centers.
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Exercise 7.9 Consider clustering points in the plane according to the k-median criterion,
where cluster centers are required to be data points. Enumerate all possible clustering’s
and select the one with the minimum cost. The number of possible ways of labeling n
points, each with a label from {1, 2, . . . , k} is kn which is prohibitive. Show that we can
find the optimal clustering in time at most a constant times

(
n
k

)
+ k2. Note that

(
n
k

)
≤ nk

which is much smaller than kn when k << n.

Exercise 7.10 Suppose in the previous exercise, we allow any point in space (not neces-
sarily data points) to be cluster centers. Show that the optimal clustering may be found
in time at most a constant times n2k2.

Exercise 7.11 Corollary 7.2 shows that for a set of points {a1, a2, . . . , an}, there is a

unique point x, namely their centroid, which minimizes
n∑
i=1

|ai − x|2. Show examples

where the x minimizing
n∑
i=1

|ai − x| is not unique. (Consider just points on the real line.)

Show examples where the x defined as above are far apart from each other.

Exercise 7.12 Let {a1, a2, . . . , an} be a set of unit vectors in a cluster. Let c = 1
n

n∑
i=1

ai

be the cluster centroid. The centroid c is not in general a unit vector. Define the similarity
between two points ai and aj as their dot product. Show that the average cluster similarity
1
n2

∑
i,j

aiaj
T is the same whether it is computed by averaging all pairs or computing the

average similarity of each point with the centroid of the cluster.

Exercise 7.13 For some synthetic data estimate the number of local minima for k-means
by using the birthday estimate. Is your estimate an unbaised estimate of the number? an
upper bound? a lower bound? Why?

Exercise 7.14 Examine the example in Figure 7.8 and discuss how to fix it. Optimizing
according to the k-center or k-median criteria would seem to produce clustering B while
clustering A seems more desirable.

Exercise 7.15 Prove that for any two vectors a and b, |a− b|2 ≥ 1
2
|a|2 − |b|2.

Exercise 7.16 Let A be an n×d data matrix, B its best rank k approximation, and C the
optimal centers for k-means clustering of rows of A. How is it possible that ‖A−B‖2

F <
‖A− C‖2

F?

Exercise 7.17 Suppose S is a finite set of points in space with centroid µ(S). If a set T
of points is added to S, show that the centroid µ(S ∪ T ) of S ∪ T is at distance at most
|T |
|S|+|T | |µ(T )− µ(S)| from µ(S).
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Exercise 7.18 What happens if we relax this restriction, for example, if we allow for S,
the entire set?

Exercise 7.19 Given the graph G = (V,E) of a social network where vertices represent
individuals and edges represent relationships of some kind, one would like to define the
concept of a community. A number of different definitions are possible.

1. A subgraph S = (VS, ES) whose density ES
V 2
S

is greater than that of the graph E
V 2 .

2. A subgraph S with a low conductance like property such as the number of graph edges
leaving the subgraph normalized by the minimum size of S or V − S where size is
measured by the sum of degrees of vertices in S or in V − S.

3. A subgraph that has more internal edges than in a random graph with the same
degree distribution.

Which would you use and why?

Exercise 7.20 A stochastic matrix is a matrix with non negative entries in which each
row sums to one. Show that for a stochastic matrix, the largest eigenvalue is one. Show
that the eigenvalue has multiplicity one if and only if the corresponding Markov Chain is
connected.

Exercise 7.21 Show that if P is a stochastic matrix and π satisfies πipij = πjpji, then
for any left eigenvector v of P , the vector u with components ui = vi

πi
is a right eigenvector

with the same eigenvalue.

Exercise 7.22 In Theorem (??), how can one clustering C(0) be close to any proper
clustering? What if there are several proper clusterings?

Exercise 7.23 Give an example of a clustering problem where the clusters are not linearly
separable in the original space, but are separable in a higher dimensional space.
Hint: Look at the example for Gaussian kernels in the chapter on learning.
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Exercise 7.24 The Gaussian kernel maps points to a higher dimensional space. What is
this mapping?

Exercise 7.25 Agglomerative clustering requires that one calculate the distances between
all pairs of points. If the number of points is a million or more, then this is impractical.
One might try speeding up the agglomerative clustering algorithm by maintaining a 100
clusters at each unit of time. Start by randomly selecting a hundred points and place each
point in a cluster by itself. Each time a pair of clusters is merged randomly select one of
the remaining data points and create a new cluster containing that point. Suggest some
other alternatives.

Exercise 7.26 Let A be the adjacency matrix of an undirected graph. Let d(S, S) = A(S,S)
|S|

be the density of the subgraph induced by the set of vertices S. Prove that d (S, S) is the
average degree of a vertex in S. Recall that A(S, T ) =

∑
i∈S,j∈T

aij

Exercise 7.27 Suppose A is a matrix with non negative entries. Show that A(S, T )/(|S||T |)
is maximized by the single edge with highest aij. Recall that A(S, T ) =

∑
i∈S,j∈T

aij

Exercise 7.28 Suppose A is a matrix with non negative entries and

σ1(A) = xTAy =
∑
i,j

xiaijyj, |x| = |y| = 1.

Zero out all xi less than 1/2
√
n and all yj less than 1/2

√
d. Show that the loss is no more

than 1/4th of σ1(A).

Exercise 7.29 Consider other measures of density such as A(S,T )
|S|ρ|T |ρ for different values of

ρ. Discuss the significance of the densest subgraph according to these measures.

Exercise 7.30 Let A be the adjacency matrix of an undirected graph. Let M be the
matrix whose ijth element is aij − didj

2m
. Partition the vertices into two groups S and S̄.

Let s be the indicator vector for the set S and let s̄ be the indicator variable for S̄. Then
sTMs is the number of edges in S above the expected number given the degree distribution
and sTMs̄ is the number of edges from S to S̄ above the expected number given the degree
distribution. Prove that if sTMs is positive sTMs̄ must be negative.

Exercise 7.31 Which of the three axioms, scale invariance, richness, and consistency
are satisfied by the following clustering algorithms.

1. k-means

2. Spectral Clustering.

Exercise 7.32 (Research Problem): What are good measures of density that are also
effectively computable? Is there empirical/theoretical evidence that some are better than
others?
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8 Random Graphs

Large graphs appear in many contexts such as the World Wide Web, the internet,
social networks, journal citations, and other places. What is different about the modern
study of large graphs from traditional graph theory and graph algorithms is that here
one seeks statistical properties of these very large graphs rather than an exact answer
to questions on specific graphs. This is akin to the switch physics made in the late 19th

century in going from mechanics to statistical mechanics. Just as the physicists did, one
formulates abstract models of graphs that are not completely realistic in every situation,
but admit a nice mathematical development that can guide what happens in practical
situations. Perhaps the most basic model is the G (n, p) model of a random graph. In
this chapter, we study properties of the G(n, p) model as well as other models.

8.1 The G(n, p) Model

The G (n, p) model, due to Erdös and Rényi, has two parameters, n and p. Here n is
the number of vertices of the graph and p is the edge probability. For each pair of distinct
vertices, v and w, p is the probability that the edge (v,w) is present. The presence of each
edge is statistically independent of all other edges. The graph-valued random variable
with these parameters is denoted by G (n, p). When we refer to “the graph G (n, p)”, we
mean one realization of the random variable. In many cases, p will be a function of n
such as p = d/n for some constant d. For example, if p = d/n then the expected degree
of a vertex of the graph is (n− 1) d

n
≈ d. In order to simplify calculations in this chapter,

we will often use the approximation that n−1
n
≈ 1. In fact, conceptually it is helpful to

think of n as both the total number of vertices and as the number of potential neighbors
of any given node, even though the latter is really n− 1; for all our calculations, when n
is large, the correction is just a low-order term.

The interesting thing about the G(n, p) model is that even though edges are chosen
independently with no “collusion”, certain global properties of the graph emerge from the
independent choices. For small p, with p = d/n, d < 1, each connected component in the
graph is small. For d > 1, there is a giant component consisting of a constant fraction of
the vertices. In addition, there is a rapid transition at the threshold d = 1. Below the
threshold, the probability of a giant component is very small, and above the threshold,
the probability is almost one.

The phase transition at the threshold d = 1 from very small o(n) size components to a
giant Ω(n) sized component is illustrated by the following example. Suppose the vertices
represent people and an edge means the two people it connects know each other. Given a
chain of connections, such as A knows B, B knows C, C knows D, ..., and Y knows Z, we
say that A indirectly knows Z. Thus, all people belonging to a connected component of
the graph indirectly know each other. Suppose each pair of people, independent of other
pairs, tosses a coin that comes up heads with probability p = d/n. If it is heads, they
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1− ε 1 + ε

o(1)

1− o(1)

Expected number of friends per person

Probability
of a giant
component

Figure 8.1: Probability of a giant component as a function of the expected number of
people each person knows directly.

know each other; if it comes up tails, they don’t. The value of d can be interpreted as the
expected number of people a single person directly knows. The question arises as to how
large are sets of people who indirectly know each other?

If the expected number of people each person knows is more than one, then a giant
component of people, all of whom indirectly know each other, will be present consisting
of a constant fraction of all the people. On the other hand, if in expectation, each person
knows less than one person, the largest set of people who know each other indirectly is a
vanishingly small fraction of the whole. Furthermore, the transition from the vanishing
fraction to a constant fraction of the whole, happens abruptly between d slightly less than
one to d slightly more than one. See Figure 8.1. Note that there is no global coordination
of who knows whom. Each pair of individuals decides independently. Indeed, many large
real-world graphs, with constant average degree, have a giant component. This is perhaps
the most important global property of the G(n, p) model.

8.1.1 Degree Distribution

One of the simplest quantities to observe in a real graph is the number of vertices
of given degree, called the vertex degree distribution. It is also very simple to study
these distributions in G (n, p) since the degree of each vertex is the sum of n independent
random variables, which results in a binomial distribution.

Example: In G(n, 1
2
), each vertex is of degree close to n/2. In fact, for any ε > 0, the

degree of each vertex almost surely is within 1± ε times n/2. To see this, note that the
degree of a vertex is the sum of n − 1 ≈ n indicator variables that take on value one or
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A randomly generated G(n, p) graph with 40 vertices and 24 edges

Figure 8.2: Two graphs, each with 40 vertices and 24 edges. The second graph was
randomly generated using the G(n, p) model with p = 1.2/n. A graph similar to the top
graph is almost surely not going to be randomly generated in the G(n, p) model, whereas
a graph similar to the lower graph will almost surely occur. Note that the lower graph
consists of a giant component along with a number of small components that are trees.
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Power law distribution

Binomial distribution

Figure 8.3: Illustration of the binomial and the power law distributions.

zero depending on whether the edge is present or not, each of mean 1
2

and variance 1
4
. The

expected value of the sum is the sum of the expected values and the variance of the sum
is the sum of the variances, and hence the degree has mean ≈ n

2
and variance ≈ n

4
. Thus,

the probability mass is within an additive term of ±c
√
n of the mean for some constant

c and thus within a multiplicative factor of 1± ε of n
2

for sufficiently large n.

The degree distribution of G (n, p) for general p is also binomial. Since p is the prob-
ability of an edge being present, the expected degree of a vertex is p(n − 1) ≈ pn. The
degree distribution is given by

Prob(vertex has degree k) =
(
n−1
k

)
pk(1− p)n−k−1 ≈

(
n
k

)
pk(1− p)n−k.

The quantity
(
n
k

)
is the number of ways of choosing k edges, out of the possible n edges,

and pk(1−p)n−k is the probability that the k selected edges are present and the remaining
n− k are not.

The binomial distribution falls off exponentially fast as one moves away from the mean.
However, the degree distributions of graphs that appear in many applications do not ex-
hibit such sharp drops. Rather, the degree distributions are much broader. This is often
referred to as having a “heavy tail”. The term tail refers to values of a random variable
far away from its mean, usually measured in number of standard deviations. Thus, al-
though the G (n, p) model is important mathematically, more complex models are needed
to represent real world graphs.

Consider an airline route graph. The graph has a wide range of degrees from degree
one or two for a small city to degree 100 or more, for a major hub. The degree distribution
is not binomial. Many large graphs that arise in various applications appear to have power
law degree distributions. A power law degree distribution is one in which the number of
vertices having a given degree decreases as a power of the degree, as in
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Number(degree k vertices) = c n
kr

,

for some small positive real r, often just slightly less than three. Later, we will consider
a random graph model giving rise to such degree distributions.

The following theorem states that the degree distribution of the random graph G (n, p)
is tightly concentrated about its expected value. That is, the probability that the degree
of a vertex differs from its expected degree by more than λ

√
np, drops off exponentially

fast with λ.

Theorem 8.1 Let v be a vertex of the random graph G(n, p). Let α be a real number in
(0,
√
np).

Prob(|np− deg(v)| ≥ α
√
np) ≤ 3e−α

2/8.

Proof: The degree deg(v) is the sum of n − 1 independent Bernoulli random variables,
x1, x2, . . . , xn−1, where, xi is the indicator variable that the ith edge from v is present. So,
approximating n − 1 with n, the theorem follows from Theorem 12.6 in the appendix.

Although the probability that the degree of a single vertex differs significantly from
its expected value drops exponentially, the statement that the degree of every vertex is
close to its expected value requires that p is Ω( logn

n
). That is, the expected degree grows

at least logarithmically with the number of vertices.

Corollary 8.2 Suppose ε is a positive constant. If p ≥ 9 lnn
nε2

, then almost surely every
vertex has degree in the range (1− ε)np to (1 + ε)np.

Proof: Apply Theorem 8.1 with α = ε
√
np to get that the probability that an individual

vertex has degree outside the range [(1 − ε)np, (1 + ε)np] is at most 3e−ε
2np/8. By the

union bound, the probability that some vertex has degree outside this range is at most
3ne−ε

2np/8. For this to be o(1), it suffices for p ≥ 9 lnn
nε2

.

Note that the assumption p is Ω( logn
n

) is necessary. If p = d/n for d a constant,
then some vertices may well have degrees outside the range [(1 − ε)d, (1 + ε)d]. Indeed,
shortly we will see that it is highly likely that for p = 1

n
there is a vertex of degree

Ω(log n/ log log n). Moreover, for p = 1
n

it is easy to see that with high probability there
will be at least one vertex of degree zero.

When p is a constant, the expected degree of vertices in G (n, p) increases with n. In
G
(
n, 1

2

)
the expected degree of a vertex is approximately n/2. In many real applications,

we will be concerned with G (n, p) where p = d/n, for d a constant, i.e., graphs whose
expected degree is a constant d independent of n. As n goes to infinity, the binomial
distribution with p = d

n

Prob(k) =

(
n

k

)(
d

n

)k (
1− d

n

)n−k
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approaches the Poisson distribution

Prob(k) =
dk

k!
e−d.

To see this, assume k = o(n) and use the approximations
(
n
k

)
≈ nk

k!
, n − k ≈ n, and(

1− d
n

)n−k ≈ (1− d
n

)n ≈ e−d. Then

lim
n→∞

(
n

k

)(
d

n

)k (
1− d

n

)n−k
=
nk

k!

dk

nk
e−d =

dk

k!
e−d.

Note that for p = d
n
, where d is a constant independent of n, the probability of the

binomial distribution falls off rapidly for k > d, and is essentially zero once k! dominates
dk. This justifies the k = o(n) assumption. Thus, the Poisson distribution is a good
approximation.

Example: In G(n, 1
n
) many vertices are of degree one, but not all. Some are of degree

zero and some are of degree greater than one. In fact, it is highly likely that there is a
vertex of degree Ω(log n/ log log n). The probability that a given vertex is of degree k is

Prob (k) =

(
n− 1

k

)(
1

n

)k(
1− 1

n

)n−1−k

≈
(
n

k

)(
1

n

)k(
1− 1

n

)n−k
≈ e−1

k!
.

If k = log n/ log log n,

log kk = k log k =
log n

log log n
(log log n− log log log n) ≤ log n

and thus kk ≤ n. Since k! ≤ kk ≤ n, the probability that a vertex has degree k =
log n/ log log n is at least 1

k!
e−1 ≥ 1

en
. If the degrees of vertices were independent random

variables, then this would be enough to argue that there would be a vertex of degree

log n/ log log n with probability at least 1−
(
1− 1

en

)n
= 1− e−

1
e ∼= 0.31. But the degrees

are not quite independent since when an edge is added to the graph it affects the degree
of two vertices. This is a minor technical point, which one can get around.

8.1.2 Existence of Triangles in G(n, d/n)

What is the expected number of triangles in G
(
n, d

n

)
, when d is a constant? As the

number of vertices increases one might expect the number of triangles to increase, but this
is not the case. Although the number of triples of vertices grows as n3, the probability
of an edge between two specific vertices decreases linearly with n. Thus, the probability
of all three edges between the pairs of vertices in a triple of vertices being present goes
down as n−3, exactly canceling the rate of growth of triples.
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A random graph with n vertices and edge probability d/n, has an expected number
of triangles that is independent of n, namely d3/6. There are

(
n
3

)
triples of vertices.

Each triple has probability
(
d
n

)3
of being a triangle. Let ∆ijk be the indicator variable

for the triangle with vertices i, j, and k being present. That is, all three edges (i, j),
(j, k), and (i, k) being present. Then the number of triangles is x =

∑
ijk ∆ijk. Even

though the existence of the triangles are not statistically independent events, by linearity
of expectation, which does not assume independence of the variables, the expected value
of a sum of random variables is the sum of the expected values. Thus, the expected
number of triangles is

E(x) = E
(∑

ijk

∆ijk

)
=
∑
ijk

E(∆ijk) =

(
n

3

)(
d

n

)3

≈ d3

6
.

Even though on average there are d3

6
triangles per graph, this does not mean that with

high probability a graph has a triangle. Maybe half of the graphs have d3

3
triangles and

the other half have none for an average of d3

6
triangles. Then, with probability 1/2, a

graph selected at random would have no triangle. If 1/n of the graphs had d3

6
n triangles

and the remaining graphs had no triangles, then as n goes to infinity, the probability that
a graph selected at random would have a triangle would go to zero.

We wish to assert that with some nonzero probability there is at least one triangle
in G(n, p) when p = d

n
. If all the triangles were on a small number of graphs, then the

number of triangles in those graphs would far exceed the expected value and hence the
variance would be high. A second moment argument rules out this scenario where a small
fraction of graphs have a large number of triangles and the remaining graphs have none.

Let’s calculate E(x2) where x is the number of triangles. Write x as x =
∑

ijk ∆ijk,
where ∆ijk is the indicator variable of the triangle with vertices i, j, and k being present.
Expanding the squared term

E(x2) = E
(∑

i,j,k

∆ijk

)2

= E
( ∑

i, j, k
i′,j′,k′

∆ijk∆i′j′k′

)
.

Split the above sum into three parts. In Part 1, let S1 be the set of i, j, k and i′, j′, k′

which share at most one vertex and hence the two triangles share no edge. In this case,
∆ijk and ∆i′j′k′ are independent and

E
(∑

S1

∆ijk∆i′j′k′

)
=
∑
S1

E(∆ijk)E(∆i′j′k′) ≤
(∑

all
ijk

E(∆ijk)
)( ∑

all
i′j′k′

E(∆i′j′k′)
)

= E2(x).
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or

The two triangles of Part 1 are either
disjoint or share at most one vertex

The two triangles
of Part 2 share an
edge

The two triangles in
Part 3 are the same tri-
angle

Figure 8.4: The triangles in Part 1, Part 2, and Part 3 of the second moment argument
for the existence of triangles in G(n, d

n
).

In Part 2, i, j, k and i′, j′, k′ share two vertices and hence one edge. See Figure 8.4.
Four vertices and five edges are involved overall. There are at most

(
n
4

)
∈ O(n4), 4-vertex

subsets and
(

4
2

)
ways to partition the four vertices into two triangles with a common edge.

The probability of all five edges in the two triangles being present is p5, so this part sums
to O(n4p5) = O(d5/n) and is o(1). There are so few triangles in the graph, the probability
of two triangles sharing an edge is extremely unlikely.

In Part 3, i, j, k and i′, j′, k′ are the same sets. The contribution of this part of the
summation to E(x2) is

(
n
3

)
p3 = d3

6
. Thus, putting all three parts together, we have:

E(x2) ≤ E2(x) +
d3

6
+ o(1),

which implies

Var(x) = E(x2)− E2(x) ≤ d3

6
+ o(1).

For x to be equal to zero, it must differ from its expected value by at least its expected
value. Thus,

Prob(x = 0) ≤ Prob
(
|x− E(x)| ≥ E(x)

)
.

By Chebychev inequality,

Prob(x = 0) ≤ Var(x)

E2(x)
≤ d3/6 + o(1)

d6/36
≤ 6

d3
+ o(1). (8.1)

Thus, for d > 3
√

6 ∼= 1.8, Prob(x = 0) < 1 and G(n, p) has a triangle with nonzero
probability. For d < 3

√
6, E(x) = d3

6
< 1 and there simply are not enough edges in the

graph for there to be a triangle.

8.2 Phase Transitions

Many properties of random graphs undergo structural changes as the edge probability
passes some threshold value. This phenomenon is similar to the abrupt phase transitions in
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physics, as the temperature or pressure increases. Some examples of this are the abrupt
appearance of cycles in G(n, p) when p reaches 1/n and the disappearance of isolated
vertices when p reaches lnn

n
. The most important of these transitions is the emergence of

a giant component, a connected component of size Θ(n), which happens at d = 1. Recall
Figure 8.1.

Probability Transition

p = o( 1
n
)

Forest of trees, no component
of size greater than O(log n)

p = d
n
, d < 1

Cycles appear, no component
of size greater than O(log n)

p = d
n
, d = 1 Components of size O(n

2
3 )

p = d
n
, d > 1

Giant component plus O(log n)
components

p = 1
2

lnn
n

Giant component plus isolated
vertices

p =
√

2 lnn
n

Diameter two

p = lnn
n

Disappearance of isolated vertices
Appearance of Hamilton circuit
Diameter O(log n)

p = 1
2

Clique of size (2− ε) lnn

Table 1: Phase transitions

For these and many other properties of random graphs, a threshold exists where an
abrupt transition from not having the property to having the property occurs. If there
exists a function p (n) such that when lim

n→∞
p1(n)
p(n)

= 0, G (n, p1 (n)) almost surely does not

have the property, and when lim
n→∞

p2(n)
p(n)

=∞, G (n, p2 (n)) almost surely has the property,

then we say that a phase transition occurs, and p (n) is the threshold. Recall that G(n, p)
“almost surely does not have the property” means that the probability that it has the
property goes to zero in the limit, as n goes to infinity. We shall soon see that every
increasing property has a threshold. This is true not only for increasing properties of
G (n, p), but for increasing properties of any combinatorial structure. If for cp (n), c < 1,
the graph almost surely does not have the property and for cp (n) , c > 1, the graph
almost surely has the property, then p (n) is a sharp threshold. The existence of a giant
component has a sharp threshold at 1/n. We will prove this later.

In establishing phase transitions, we often use a variable x(n) to denote the number
of occurrences of an item in a random graph. If the expected value of x(n) goes to zero as
n goes to infinity, then a graph picked at random almost surely has no occurrence of the
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Figure 8.5: Figure 8.5(a) shows a phase transition at p = 1
n
. The dotted line shows an

abrupt transition in Prob(x) from 0 to 1. For any function asymptotically less than 1
n
,

Prob(x)>0 is zero and for any function asymptotically greater than 1
n
, Prob(x)>0 is one.

Figure 8.5(b) expands the scale and shows a less abrupt change in probability unless
the phase transition is sharp as illustrated by the dotted line. Figure 8.5(c) is a further
expansion and the sharp transition is now more smooth.

item. This follows from Markov’s inequality. Since x is a nonnegative random variable
Prob(x ≥ a) ≤ 1

a
E(x), which implies that the probability of x(n) ≥ 1 is at most E(x(n)).

That is, if the expected number of occurrences of an item in a graph goes to zero, the
probability that there are one or more occurrences of the item in a randomly selected
graph goes to zero. This is called the first moment method.

The previous section showed that the property of having a triangle has a threshold at
p(n) = 1/n. If the edge probability p1(n) is o(1/n), then the expected number of triangles
goes to zero and by the first moment method, the graph almost surely has no triangle.
However, if the edge probability p2(n) satisfies p2(n)

1/n
→∞, then from (8.1), the probability

of having no triangle is at most 6/d3 +o(1) = 6/(np2(n))3 +o(1), which goes to zero. This
latter case uses what we call the second moment method. The first and second moment
methods are broadly used. We describe the second moment method in some generality
now.

When the expected value of x(n), the number of occurrences of an item, goes to
infinity, we cannot conclude that a graph picked at random will likely have a copy since
the items may all appear on a vanishingly small fraction of the graphs. We resort to a
technique called the second moment method. It is a simple idea based on Chebyshev’s
inequality.

Theorem 8.3 (Second Moment method) Let x(n) be a random variable with E(x) > 0.
If

Var(x) = o
(
E2(x)

)
,

then x is almost surely greater than zero.
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E(x) ≥ 0.1

At least one
occurrence
of item in
10% of the
graphs

For 10% of the
graphs, x ≥ 1

Figure 8.6: If the expected fraction of the number of graphs in which an item occurs did
not go to zero, then E (x), the expected number of items per graph, could not be zero.
Suppose 10% of the graphs had at least one occurrence of the item. Then the expected
number of occurrences per graph must be at least 0.1. Thus, E (x) → 0 implies the
probability that a graph has an occurrence of the item goes to zero. However, the other
direction needs more work. If E (x) is large, a second moment argument is needed to
conclude that the probability that a graph picked at random has an occurrence of the
item is nonnegligible, since there could be a large number of occurrences concentrated on
a vanishingly small fraction of all graphs. The second moment argument claims that for
a nonnegative random variable x with E (x) > 0, if Var(x) is o(E2 (x)) or alternatively if
E (x2) ≤ E2 (x) (1 + o(1)), then almost surely x > 0.

Proof: If E(x) > 0, then for x to be less than or equal to zero, it must differ from its
expected value by at least its expected value. Thus,

Prob(x ≤ 0) ≤ Prob
(
|x− E(x)| ≥ E(x)

)
.

By Chebyshev inequality

Prob
(
|x− E(x)| ≥ E(x)

)
≤ Var(x)

E2(x)
→ 0.

Thus, Prob(x ≤ 0) goes to zero if Var(x) is o (E2(x)) .

Corollary 8.4 Let x be a random variable with E(x) > 0. If

E(x2) ≤ E2(x)
(
1 + o(1)

)
,

then x is almost surely greater than zero.

Proof: If E(x2) ≤ E2(x)(1 + o(1)), then

V ar(x) = E(x2)− E2(x) ≤ E2(x)o(1) = o
(
E2(x)

)
.
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Second moment arguments are more difficult than first moment arguments since they
deal with variance and without independence we do not have E(xy) = E(x)E(y). In the
triangle example, dependence occurs when two triangles share a common edge. However,
if p = d

n
, there are so few triangles that almost surely no two triangles share a common

edge and the lack of statistical independence does not affect the answer. In looking for
a phase transition, almost always the transition in probability of an item being present
occurs when the expected number of items transitions.

Threshold for graph diameter two (two degrees of separation)

We now present the first example of a sharp phase transition for a property. This
means that slightly increasing the edge probability p near the threshold takes us from
almost surely not having the property to almost surely having it. The property is that
of a random graph having diameter less than or equal to two. The diameter of a graph
is the maximum length of the shortest path between a pair of nodes. In other words, the
property is that every pair of nodes has “at most two degrees of separation”.

The following technique for deriving the threshold for a graph having diameter two
is a standard method often used to determine the threshold for many other objects. Let
x be a random variable for the number of objects such as triangles, isolated vertices, or
Hamiltonian circuits, for which we wish to determine a threshold. Then we determine
the value of p, say p0, where the expected value of x goes from vanishingly small to un-
boundedly large. For p < p0 almost surely a graph selected at random will not have a
copy of the item. For p > p0, a second moment argument is needed to establish that the
items are not concentrated on a vanishingly small fraction of the graphs and that a graph
picked at random will almost surely have a copy.

Our first task is to figure out what to count to determine the threshold for a graph
having diameter two. A graph has diameter two if and only if for each pair of vertices i
and j, either there is an edge between them or there is another vertex k to which both i
and j have an edge. So, what we will count is the number of pairs i and j that fail, i.e.,
the number of pairs i and j that have more than two degrees of separation. The set of
neighbors of i and the set of neighbors of j are random subsets of expected cardinality
np. For these two sets to intersect requires np ≈

√
n or p ≈ 1√

n
. Such statements often

go under the general name of “birthday paradox” though it is not a paradox. In what
follows, we will prove a threshold of O(

√
lnn/

√
n) for a graph to have diameter two. The

extra factor of
√

lnn ensures that every one of the
(
n
2

)
pairs of i and j has a common

neighbor. When p = c
√

lnn
n

, for c <
√

2, the graph almost surely has diameter greater

than two and for c >
√

2, the graph almost surely has diameter less than or equal to two.

Theorem 8.5 The property that G (n, p) has diameter two has a sharp threshold at

p =
√

2
√

lnn
n

.

245



Proof: If G has diameter greater than two, then there exists a pair of nonadjacent ver-
tices i and j such that no other vertex of G is adjacent to both i and j. This motivates
calling such a pair bad .

Introduce a set of indicator variables Iij, one for each pair of vertices (i, j) with i < j,
where Iij is 1 if and only if the pair (i, j) is bad. Let

x =
∑
i<j

Iij

be the number of bad pairs of vertices. Putting i < j in the sum ensures each pair (i, j)
is counted only once. A graph has diameter at most two if and only if it has no bad pair,
i.e., x = 0. Thus, if lim

n→∞
E (x) = 0, then for large n, almost surely, a graph has no bad

pair and hence has diameter at most two.

The probability that a given vertex is adjacent to both vertices in a pair of vertices
(i, j) is p2. Hence, the probability that the vertex is not adjacent to both vertices is
1− p2. The probability that no vertex is adjacent to the pair (i, j) is (1− p2)

n−2
and the

probability that i and j are not adjacent is 1 − p. Since there are
(
n
2

)
pairs of vertices,

the expected number of bad pairs is

E (x) =

(
n

2

)
(1− p)

(
1− p2

)n−2
.

Setting p = c
√

lnn
n

,

E (x) ∼= n2

2

(
1− c

√
lnn
n

) (
1− c2 lnn

n

)n
∼= n2

2
e−c

2 lnn

∼= 1
2
n2−c2 .

For c >
√

2, lim
n→∞

E (x) = 0. By the first moment method, for p = c
√

lnn
n

with c >
√

2,

G (n, p) almost surely has no bad pair and hence has diameter at most two.

Next, consider the case c <
√

2 where lim
n→∞

E (x) =∞. We appeal to a second moment

argument to claim that almost surely a graph has a bad pair and thus has diameter greater
than two.

E(x2) = E

(∑
i<j

Iij

)2

= E

(∑
i<j

Iij
∑
k<l

Ikl

)
= E

∑
i<j
k<l

IijIkl

 =
∑
i<j
k<l

E (IijIkl).

The summation can be partitioned into three summations depending on the number of
distinct indices among i, j, k, and l. Call this number a.
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E
(
x2
)

=
∑
i < j
k < l

a = 4

E (IijIkl) +
∑
{i, j, k}
i < j

a = 3

E (IijIik) +
∑
i < j

a = 2

E
(
I2
ij

)
. (8.2)

Consider the case a = 4 where i, j, k, and l are all distinct. If IijIkl = 1, then both
pairs (i, j) and (k, l) are bad and so for each u not in {i, j, k, l}, at least one of the edges
(i, u) or (j, u) is absent and, in addition, at least one of the edges (k, u) or (l, u) is absent.
The probability of this for one u not in {i, j, k, l} is (1 − p2)2. As u ranges over all the
n− 4 vertices not in {i, j, k, l}, these events are all independent. Thus,

E(IijIkl) ≤
(
1− p2

)2(n−4) ≤
(

1− c2 lnn

n

)2n(
1 + o(1)

)
≤ n−2c2

(
1 + o(1)

)
and the first sum is ∑

i < j
k < l

E(IijIkl) ≤
1

4
n4−2c2

(
1 + o(1)

)
,

where, the 1
4

is because only a fourth of the 4-tupples (i, j, k, l) have i < j and k < l.

For the second summation, observe that if IijIik = 1, then for every vertex u not equal
to i, j, or k, either there is no edge between i and u or there is an edge (i, u) and both
edges (j, u) and (k, u) are absent. The probability of this event for one u is

1− p+ p(1− p)2 = 1− 2p2 + p3 ≈ 1− 2p2.

Thus, the probability for all such u is (1− 2p2)
n−3

. Substituting c
√

lnn
n

for p yields(
1− 2c2 lnn

n

)n−3 ∼= e−2c2 lnn = n−2c2 ,

which is an upper bound on E(IijIkl) for one i, j, k, and l with a = 3. Summing over all
distinct triples yields n3−2c2 for the second summation in (8.2).

For the third summation, since the value of Iij is zero or one, E
(
I2
ij

)
= E (Iij). Thus,∑

ij

E
(
I2
ij

)
= E (x) .

Hence, E (x2) ≤ 1
4
n4−2c2 + n3−2c2 + n2−c2 and E (x) ∼= 1

2
n2−c2 , from which it follows that

for c <
√

2, E (x2) ≤ E2 (x) (1 + o(1)). By a second moment argument, Corollary 8.4, a
graph almost surely has at least one bad pair of vertices and thus has diameter greater
than two. Therefore, the property that the diameter of G(n, p) is less than or equal to

two has a sharp threshold at p =
√

2
√

lnn
n
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Disappearance of Isolated Vertices

The disappearance of isolated vertices in G (n, p) has a sharp threshold at lnn
n

. At
this point the giant component has absorbed all the small components and with the
disappearance of isolated vertices, the graph becomes connected.

Theorem 8.6 The disappearance of isolated vertices in G (n, p) has a sharp threshold of
lnn
n
.

Proof: Let x be the number of isolated vertices in G (n, p). Then,

E (x) = n (1− p)n−1 .

Since we believe the threshold to be lnn
n

, consider p = c lnn
n

. Then,

lim
n→∞

E (x) = lim
n→∞

n
(
1− c lnn

n

)n
= lim

n→∞
ne−c lnn = lim

n→∞
n1−c.

If c >1, the expected number of isolated vertices, goes to zero. If c < 1, the expected
number of isolated vertices goes to infinity. If the expected number of isolated vertices
goes to zero, it follows that almost all graphs have no isolated vertices. On the other
hand, if the expected number of isolated vertices goes to infinity, a second moment ar-
gument is needed to show that almost all graphs have an isolated vertex and that the
isolated vertices are not concentrated on some vanishingly small set of graphs with almost
all graphs not having isolated vertices.

Assume c < 1. Write x = I1 + I2 + · · ·+ In where Ii is the indicator variable indicating

whether vertex i is an isolated vertex. Then E (x2) =
n∑
i=1

E (I2
i ) + 2

∑
i<j

E (IiIj). Since Ii

equals 0 or 1, I2
i = Ii and the first sum has value E (x). Since all elements in the second

sum are equal

E
(
x2
)

= E (x) + n (n− 1)E (I1I2)

= E (x) + n (n− 1) (1− p)2(n−1)−1 .

The minus one in the exponent 2(n − 1) − 1 avoids counting the edge from vertex 1 to
vertex 2 twice. Now,

E (x2)

E2 (x)
=
n (1− p)n−1 + n (n− 1) (1− p)2(n−1)−1

n2 (1− p)2(n−1)

=
1

n (1− p)n−1 +
(

1− 1

n

) 1

1− p
.

For p = c lnn
n

with c < 1, lim
n→∞

E (x) =∞ and

lim
n→∞

E (x2)

E2 (x)
= lim

n→∞

[
1

n1−c +
(

1− 1

n

) 1

1− c lnn
n

]
= lim

n→∞

(
1 + c

lnn

n

)
= o(1) + 1.
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Figure 8.7: A degree three vertex with three adjacent degree two vertices. Graph cannot
have a Hamilton circuit.

By the second moment argument, Corollary 8.4, the probability that x = 0 goes to zero
implying that almost all graphs have an isolated vertex. Thus, lnn

n
is a sharp threshold

for the disappearance of isolated vertices. For p = c lnn
n

, when c > 1 there almost surely
are no isolated vertices, and when c < 1 there almost surely are isolated vertices.

Hamilton circuits

So far in establishing phase transitions in the G(n, p) model for an item such as the
disappearance of isolated vertices, we introduced a random variable x that was the number
of occurrences of the item. We then determined the probability p for which the expected
value of x went from zero to infinity. For values of p for which E(x)→ 0, we argued that
with high probability, a graph generated at random had no occurrences of x. For values of
x for which E(x)→∞, we used the second moment argument to conclude that with high
probability, a graph generated at random had occurrences of x. That is, the occurrences
that forced E(x) to infinity were not all concentrated on a vanishingly small fraction of
the graphs. One might raise the question for the G(n, p) graph model, do there exist
items that are so concentrated on a small fraction of the graphs that the value of p where
E(x) goes from zero to infinity is not the threshold? An example where this happens is
Hamilton circuits.

A Hamilton circuit is a simple cycle that includes all the vertices. For example, in a
graph of 4 vertices, there are three possible Hamilton circuits: (1, 2, 3, 4), (1, 2, 4, 3), and
(1, 3, 2, 4). Note that our graphs are undirected, so the circuit (1, 2, 3, 4) is the same as
the circuit (1, 4, 3, 2).

Let x be the number of Hamilton circuits in G(n, p) and let p = d
n

for some constant
d. There are 1

2
(n − 1)! potential Hamilton circuits in a graph and each has probability
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( d
n
)n of actually being a Hamilton circuit. Thus,

E(x) =
1

2
(n− 1)!

(
d

n

)n
'
(n
e

)n(d
n

)n
→
{

0 d < e
∞ d > e

.

This suggests that the threshold for Hamilton circuits occurs when d equals Euler’s con-
stant e. This is not possible since the graph still has isolated vertices and is not even
connected for p = e

n
. Thus, the second moment argument is indeed necessary.

The actual threshold for Hamilton circuits is 1
n

log n. For any p(n) asymptotically
greater, G(n, p) will have a Hamilton circuit with probability one. This is the same
threshold as for the disappearance of degree one vertices. Clearly a graph with a degree
one vertex cannot have a Hamilton circuit. But it may seem surprising that Hamilton
circuits appear as soon as degree one vertices disappear. You may ask why at the moment
degree one vertices disappear there cannot be a subgraph consisting of a degree three
vertex adjacent to three degree two vertices as shown in Figure 8.7. The reason is that the
frequency of degree two and three vertices in the graph is very small and the probability
that four such vertices would occur together in such a subgraph is too small for it to
happen with nonnegligible probability.

8.3 Giant Component

Consider G(n, p) for p = 1+ε
n

where ε is a constant greater than zero. We now show that
with high probability, such a graph contains a giant component, namely a component of
size Ω(n). Moreover, with high probability, the graph contains only one such component,
and all other components are much smaller, of size only O(log n). We begin by arguing
existence of a giant component.

8.3.1 Existence of a giant component

To see that with high probability the graph has a giant component, do a depth first search
(dfs) on G(n, p) where p = (1 + ε)/n with 0 < ε < 1/8. Note that it suffices to consider
this range of ε since increasing the value of p only increases the probability that the graph
has a giant component.

To perform the dfs, generate
(
n
2

)
Bernoulli(p) independent random bits and answer
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frontier

unvisited vertices

Small connected
components
already found

E

U

F

Figure 8.8: Picture after εn2/2 edge queries. The potential edges from the small connected
components to unvisited vertices do not exist in the graph. However, since many edges
must have been found the frontier must be big and hence there is a giant component.

the tth edge query according to the tth bit. As the dfs proceeds, let

E = set of fully explored vertices whose exploration is complete

U = set of unvisited vertices

F = frontier of visited and still being explored vertices .

Initially the set of fully explored vertices, E, and the frontier, F are empty and the
set of unvisited vertices, U equals {1, 2, . . . , n}. If the frontier is not empty and u is the
active vertex of the dfs, the dfs queries each unvisited vertex in U until it finds a vertex
v for which there is an edge (u, v) and moves v from U to the frontier and v becomes the
active vertex. If no edge is found from u to an unvisited vertex in U, then u is moved from
the frontier to the set of fully explored vertices E. If frontier is empty, the dfs moves an
unvisited vertex from U to frontier and starts a new component. If both frontier and U
are empty all connected components of G have been found. At any time all edges between
the current fully explored vertices, E, and the current unvisited vertices, U, have been
queried since a vertex is moved from the frontier to E only when there is no edge from
the vertex to U.

Intuitively, after εn2/2 edge queries a large number of edges must have been found since
p = 1+ε

n
. None of these can connect components already found with the set of unvisited

vertices, and we will use this to show that with high probability the frontier must be large.
Since the frontier will be in a connected component, a giant component exists with high
probability. We first prove that after εn2/2 edge queries the set of fully explored vertices
is of size less than n/3.

Lemma 8.7 After εn2/2 edge queries, with high probability |E| < n/3.

Proof: If not, at some t ≤ εn2/2, |E| = n/3. A vertex is added to frontier only when
an edge query is answered yes. So at time t, |F | is less than or equal to the sum of εn2/2
Bernoulli(p) random variables, which with high probability is at most εn2p ≤ n/3. So,
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at t, |U | = n− |E| − |F | ≥ n/3. Since there are no edges between fully explored vertices
and unvisited vertices, |E| |U | ≥ n2/9 edge queries must have already been answered in
the negative. But t > n2/9 contradicts t ≤ εn2/2 ≤ n2/16. Thus |E| ≤ n/3.

The frontier vertices in the search of a connected component are all in the component
being searched. Thus if at any time the frontier set has Ω(n) vertices there is a giant
component.

Lemma 8.8 After εn2/2 edge queries, with high probability the set F consists of at least
ε2n/30 vertices.

Proof: After εn2/2 queries, say, |F | < ε2n/30. Thus

|U | = n− |E| − |F | = n− n

3
− ε2n

30
≥ 1

and so the dfs is still active. Each positive answer to an edge query so far resulted in some
vertex moving from U to F, which possibly later moved to E. The expected number of
yes answers so far is pεn2/2 = (1 + ε)εn/2 and with high probability, the number of yes
answers is at least (εn/2) + (ε2n/3). So,

|E|+ |F | ≥ εn

2
+
ε2n

3
=⇒ |E| ≥ εn

2
+

3ε2n

10
.

We must have |E| |U | ≤ εn2/2. Now, |E||U | = |E|(n−|E|−|F |) increases as |E| increases
from εn

2
+ 3ε2n

10
to n/3, so we have

|E||U | ≥
(
εn

2
+

3ε2n

10

)(
n− εn

2
− 3ε2n

10
− ε2n

30

)
>
εn2

2
,

a contradiction.

8.3.2 No other large components

We now argue that for p = (1 + ε)/n for constant ε > 0, with high probability there is
only one giant component, and in fact all other components have size O(log n).

We begin with a preliminary observation. Suppose that a G(n, p) graph had at least
a δ probability of having two (or more) components of size ω(log n), i.e., asymptotically
greater than log n. Then, there would be at least a δ/2 probability of the graph having
two (or more) components with ω(log n) vertices inside the subset A = {1, 2, . . . , εn/2}.
The reason is that an equivalent way to construct a graph G(n, p) is to first create it in the
usual way and then to randomly permute the vertices. Any component of size ω(log n)
will with high probability after permutation have at least an ε/4 fraction of its vertices
within the first εn/2. Thus, it suffices to prove that with high probability at most one
component has ω(log n) vertices within the set A to conclude that with high probability
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the graph has only one component with ω(log n) vertices overall.

We now prove that with high probability, a G(n, p) graph for p = (1 + ε)/n has at
most one component with ω(log n) vertices inside the set A. To do so, let B be the set
of (1 − ε/2)n vertices not in A. Now, construct the graph as follows. First, randomly
flip coins of bias p to generate the edges within set A and the edges within set B. At
this point, with high probability, B has at least one giant component, by the argument
from Section 8.3.1, since p = (1 + ε)/n ≥ (1 + ε/4)/|B| for 0 < ε ≤ 1/2. Let C∗ be
a giant component inside B. Now, flip coins of bias p to generate the edges between A
and B except for those incident to C∗. At this point, let us name all components with
ω(log n) vertices inside A as C1, C2, C3, . . .. Finally, flip coins of bias p to generate the
edges between A and C∗.

In the final step above, notice that with high probability, each Ci is connected to C∗.
In particular, there are ω(n log n) possible edges between any given Ci and C∗, each one
of which is present with probability p. Thus the probability that this particular Ci is not
connected to C∗ is at most (1 − p)ω(n logn) = 1/nω(1). Thus, by the union bound, with
high probability all such Ci are connected to C∗, and there is only one component with
ω(log n) vertices within A as desired.

8.3.3 The case of p < 1/n

When p < 1/n, then with high probability all components in G(n, p) are of size O(log n).
This is easiest to see by considering a variation on the above dfs that (a) begins with
F containing a specific start vertex ustart, and then (b) when a vertex u is taken from
F to explore, it pops u off of F , explores u fully by querying to find all edges between
u and U , and then pushes the endpoints v of those edges onto F . Thus, this is like an
explicit-stack version of dfs, compared to the previous recursive-call version of dfs. Let us
call the exploration of such a vertex u a step. To make this process easier to analyze, let
us say that if F ever becomes empty, we create a brand-new, fake “red vertex”, connect it
to each vertex in U with probability p, place the new red vertex into F , and then continue
the dfs from there.

Let zk denote the number of real (non-red) vertices discovered after k steps, not in-
cluding ustart. For any given real vertex u 6= ustart, the probability that u is not discovered
in k steps is (1− p)k, and notice that these events are independent over the different ver-
tices u 6= ustart. Therefore, the distribution of zk is Binomial

(
n− 1, 1− (1− p)k

)
. Note

that if zk < k then the process must have required creating a fake red vertex by step k,
meaning that ustart is in a component of size at most k. Thus, it suffices to prove that
Prob(zk ≥ k) < 1/n2, for k = c lnn for a suitably large constant c, to then conclude by
union bound over choices of ustart that with high probability all vertices are in components
of size at most c lnn.
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To prove that Prob(zk ≥ k) < 1/n2 for k = c lnn, we use the fact that (1−p)k ≥ 1−pk
so 1− (1− p)k ≤ pk. So, the probability that zk is greater than or equal to k is at most
the probability that a coin of bias pk flipped n− 1 times will have at least k heads. But
since pk(n − 1) ≤ (1 − ε)k for some constant ε > 0, by Chernoff bounds this probability
is at most e−c0k for some constant c0 > 0. When k = c lnn for a suitably large constant
c, this probability is at most 1/n2, as desired.

8.4 Cycles and Full Connectivity

This section considers when cycles form and when the graph becomes fully connected.
For both of these problems, we look at each subset of k vertices and see when they form
either a cycle or when they form a connected component.

8.4.1 Emergence of Cycles

The emergence of cycles in G (n, p) has a threshold when p equals to 1/n. However,
the threshold is not sharp.

Theorem 8.9 The threshold for the existence of cycles in G (n, p) is p = 1/n.

Proof: Let x be the number of cycles in G (n, p). To form a cycle of length k, the vertices
can be selected in

(
n
k

)
ways. Given the k vertices of the cycle, they can be ordered by

arbitrarily selecting a first vertex, then a second vertex in one of k-1 ways, a third in one
of k − 2 ways, etc. Since a cycle and its reversal are the same cycle, divide by 2. Thus,
there are

(
n
k

)
(k−1)!

2
possible cycles of length k and

E (x) =
n∑
k=3

(
n

k

)
(k−1)!

2
pk ≤

n∑
k=3

nk

2k
pk ≤

n∑
k=3

(np)k = (np)3 1−(np)n−2

1−np ≤ 2(np)3,

provided that np < 1/2. When p is asymptotically less than 1/n, then lim
n→∞

np = 0 and

lim
n→∞

n∑
k=3

(np)k = 0. So, as n goes to infinity, E(x) goes to zero. Thus, the graph almost

surely has no cycles by the first moment method. A second moment argument can be
used to show that for p = d/n, d > 1, a graph will have a cycle with probability tending
to one.

The argument above does not yield a sharp threshold since we argued that E(x)→ 0
only under the assumption that p is asymptotically less than 1

n
. A sharp threshold requires

E(x)→ 0 for p = d/n, d < 1.
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Property Threshold
cycles 1/n
giant component 1/n
giant component
+ isolated vertices

1
2

lnn
n

connectivity, disappearance
of isolated vertices

lnn
n

diameter two
√

2 lnn
n

Table 2: Thresholds for various properties

Consider what happens in more detail when p = d/n, d a constant.

E (x) =
n∑
k=3

(
n

k

)
(k − 1)!

2
pk

=
1

2

n∑
k=3

n(n− 1) · · · (n− k + 1)

k!
(k − 1)! pk

=
1

2

n∑
k=3

n(n− 1) · · · (n− k + 1)

nk
dk

k
.

E (x) converges if d < 1, and diverges if d ≥ 1. If d < 1, E (x) ≤ 1
2

n∑
k=3

dk

k
and lim

n→∞
E (x)

equals a constant greater than zero. If d = 1, E (x) = 1
2

n∑
k=3

n(n−1)···(n−k+1)
nk

1
k
. Consider

only the first log n terms of the sum. Since n
n−i = 1 + i

n−i ≤ ei/n−i, it follows that
n(n−1)···(n−k+1)

nk
≥ 1/2. Thus,

E (x) ≥ 1
2

logn∑
k=3

n(n−1)···(n−k+1)
nk

1
k
≥ 1

4

logn∑
k=3

1
k
.

Then, in the limit as n goes to infinity

lim
n→∞

E (x) ≥ lim
n→∞

1
4

logn∑
k=3

1
k
≥ lim

n→∞
(log log n) =∞.

For p = d/n, d < 1, E (x) converges to a nonzero constant. For d > 1, E(x) converges
to infinity and a second moment argument shows that graphs will have an unbounded
number of cycles increasing with n.

8.4.2 Full Connectivity

As p increases from p = 0, small components form. At p = 1/n a giant component
emerges and swallows up smaller components, starting with the larger components and
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ending up swallowing isolated vertices forming a single connected component at p = lnn
n
,

at which point the graph becomes connected. We begin our development with a technical
lemma.

Lemma 8.10 The expected number of connected components of size k in G(n, p) is at
most (

n

k

)
kk−2pk−1(1− p)kn−k2 .

Proof: The probability that k vertices form a connected component consists of the prod-
uct of two probabilities. The first is the probability that the k vertices are connected,
and the second is the probability that there are no edges out of the component to the
remainder of the graph. The first probability is at most the sum over all spanning trees
of the k vertices, that the edges of the spanning tree are present. The ”at most” in the
lemma statement is because G (n, p) may contain more than one spanning tree on these
nodes and, in this case, the union bound is higher than the actual probability. There are
kk−2 spanning trees on k nodes. See Section 12.9.6 in the appendix. The probability of
all the k − 1 edges of one spanning tree being present is pk−1 and the probability that
there are no edges connecting the k vertices to the remainder of the graph is (1− p)k(n−k).
Thus, the probability of one particular set of k vertices forming a connected component

is at most kk−2pk−1 (1− p)kn−k
2

. Thus, the expected number of connected components of
size k is at most

(
n
k

)
kk−2pk−1(1− p)kn−k2 .

We now prove that for p = 1
2

lnn
n
, the giant component has absorbed all small compo-

nents except for isolated vertices.

Theorem 8.11 For p = c lnn
n

with c > 1/2, almost surely there are only isolated vertices
and a giant component. For c > 1, almost surely the graph is connected.

Proof: We prove that almost surely for c > 1/2, there is no connected component with
k vertices for any k, 2 ≤ k ≤ n/2. This proves the first statement of the theorem since, if
there were two or more components that are not isolated vertices, both of them could not
be of size greater than n/2. The second statement that for c > 1 the graph is connected
then follows from Theorem 8.6 which states that isolated vertices disappear at c = 1.

We now show that for p = c lnn
n
, the expected number of components of size k,

2 ≤ k ≤ n/2, is less than n1−2c and thus for c > 1/2 there are no components, except
for isolated vertices and the giant component. Let xk be the number of connected com-

ponents of size k. Substitute p = c lnn
n

into
(
n
k

)
kk−2pk−1 (1− p)kn−k

2

and simplify using(
n
k

)
≤ (en/k)k, 1− p ≤ e−p, k − 1 < k, and x = elnx to get

E(xk) ≤ exp

(
lnn+ k + k ln lnn− 2 ln k + k ln c− ck lnn+ ck2 lnn

n

)
.
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Keep in mind that the leading terms here for large k are the last two and, in fact, at k = n,
they cancel each other so that our argument does not prove the fallacious statement for
c ≥ 1 that there is no connected component of size n, since there is. Let

f(k) = lnn+ k + k ln lnn− 2 ln k + k ln c− ck lnn+ ck2 lnn

n
.

Differentiating with respect to k,

f ′(k) = 1 + ln lnn− 2

k
+ ln c− c lnn+

2ck lnn

n

and

f ′′ (k) =
2

k2
+

2c lnn

n
> 0.

Thus, the function f(k) attains its maximum over the range [2, n/2] at one of the extreme
points 2 or n/2. At k = 2, f(2) ≈ (1 − 2c) lnn and at k = n/2, f(n/2) ≈ −cn

4
lnn. So

f(k) is maximum at k = 2. For k = 2, E(xk) = ef(k) is approximately e(1−2c) lnn = n1−2c

and is geometrically falling as k increases from 2. At some point E(xk) starts to increase
but never gets above n−

c
4
n. Thus, the expected sum of the number of components of size

k, for 2 ≤ k ≤ n/2 is

E

 n/2∑
k=2

xk

 = O(n1−2c).

This expected number goes to zero for c > 1/2 and the first-moment method implies that,
almost surely, there are no components of size between 2 and n/2. This completes the
proof of Theorem 8.11.

8.4.3 Threshold for O(lnn) Diameter

We now show that within a constant factor of the threshold for graph connectivity, not
only is the graph connected, but its diameter is O(lnn). That is, if p > c lnn

n
for sufficiently

large constant c, the diameter of G(n, p) is O(lnn) with high probability.

Consider a particular vertex v. Let Si be the set of vertices at distance i from v. We
argue that as i increases, with high probability |S1|+ |S2|+ · · ·+ |Si| grows by at least a
factor of two, up to a size of n/1000. This implies that in O(lnn) steps, at least n/1000
vertices are connected to v. Then, there is a simple argument at the end of the proof of
Theorem 8.13 that a pair of n/1000 sized subsets, connected to two different vertices v
and w, have an edge between them with high probability.

Lemma 8.12 Consider G(n, p) for sufficiently large n with p = c lnn
n

for any c > 0. Let
Si be the set of vertices at distance i from some fixed vertex v. If |S1|+ |S2|+ · · ·+ |Si| ≤
n/1000, then

Prob
(
|Si+1| < 2(|S1|+ |S2|+ · · ·+ |Si|)

)
≤ e−10|Si|.
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Proof: Let |Si| = k. For each vertex u not in S1 ∪ S2 ∪ . . . ∪ Si, the probability that
u is not in Si+1 is (1 − p)k and these events are independent. So, |Si+1| is the sum of
n− (|S1|+ |S2|+ · · ·+ |Si|) independent Bernoulli random variables, each with probability
of

1− (1− p)k ≥ 1− e−ck lnn/n

of being one. Note that n− (|S1|+ |S2|+ · · ·+ |Si|) ≥ 999n/1000. So,

E(|Si+1|) ≥
999n

1000
(1− e−ck

lnn
n ).

Subtracting 200k from each side

E(|Si+1|)− 200k ≥ n

2

(
1− e−ck

lnn
n − 400

k

n

)
.

Let α = k
n

and f(α) = 1− e−cα lnn − 400α. By differentiation f ′′(α) ≤ 0, so f is concave
and the minimum value of f over the interval [0, 1/1000] is attained at one of the end
points. It is easy to check that both f(0) and f(1/1000) are greater than or equal to
zero for sufficiently large n. Thus, f is nonnegative throughout the interval proving that
E(|Si+1|) ≥ 200|Si|. The lemma follows from Chernoff bounds.

Theorem 8.13 For p ≥ c lnn/n, where c is a sufficiently large constant, almost surely,
G(n, p) has diameter O(lnn).

Proof: By Corollary 8.2, almost surely, the degree of every vertex is Ω(np) = Ω(lnn),
which is at least 20 lnn for c sufficiently large. Assume that this holds. So, for a fixed
vertex v, S1 as defined in Lemma 8.12 satisfies |S1| ≥ 20 lnn.

Let i0 be the least i such that |S1|+|S2|+· · ·+|Si| > n/1000. From Lemma 8.12 and the
union bound, the probability that for some i, 1 ≤ i ≤ i0−1, |Si+1| < 2(|S1|+|S2|+· · ·+|Si|)
is at most

∑n/1000
k=20 lnn e

−10k ≤ 1/n4. So, with probability at least 1 − (1/n4), each Si+1 is
at least double the sum of the previous Sj ’s, which implies that in O(lnn) steps, i0 + 1
is reached.

Consider any other vertex w. We wish to find a short O(lnn) length path between
v and w. By the same argument as above, the number of vertices at distance O(lnn)
from w is at least n/1000. To complete the argument, either these two sets intersect in
which case we have found a path from v to w of length O(lnn) or they do not intersect.
In the latter case, with high probability there is some edge between them. For a pair of
disjoint sets of size at least n/1000, the probability that none of the possible n2/106 or
more edges between them is present is at most (1−p)n2/106 = e−Ω(n lnn). There are at most
22n pairs of such sets and so the probability that there is some such pair with no edges
is e−Ω(n lnn)+O(n) → 0. Note that there is no conditioning problem since we are arguing
this for every pair of such sets. Think of whether such an argument made for just the n
subsets of vertices, which are vertices at distance at most O(lnn) from a specific vertex,
would work.
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8.5 Phase Transitions for Increasing Properties

For many graph properties such as connectivity, having no isolated vertices, having a
cycle, etc., the probability of a graph having the property increases as edges are added to
the graph. Such a property is called an increasing property. Q is an increasing property
of graphs if when a graph G has the property, any graph obtained by adding edges to G
must also have the property. In this section we show that any increasing property has a
threshold, although not necessarily a sharp one.

The notion of increasing property is defined in terms of adding edges. The following
intuitive lemma proves that if Q is an increasing property, then increasing p in G (n, p)
increases the probability of the property Q.

Lemma 8.14 If Q is an increasing property of graphs and 0 ≤ p ≤ q ≤ 1, then the
probability that G (n, q) has property Q is greater than or equal to the probability that
G (n, p) has property Q.

Proof: This proof uses an interesting relationship betweenG (n, p) andG (n, q). Generate
G (n, q) as follows. First generate G (n, p). This means generating a graph on n vertices

with edge probabilities p. Then, independently generate another graph G
(
n, q−p

1−p

)
and

take the union by including an edge if either of the two graphs has the edge. Call the
resulting graph H. The graph H has the same distribution as G (n, q). This follows since
the probability that an edge is in H is p+ (1− p) q−p

1−p = q, and, clearly, the edges of H are

independent. The lemma follows since whenever G (n, p) has the property Q, H also has
the property Q.

We now introduce a notion called replication. An m-fold replication of G(n, p) is a
random graph obtained as follows. Generate m independent copies of G(n, p) on the
same set of vertices. Include an edge in the m-fold replication if the edge is in any one
of the m copies of G(n, p). The resulting random graph has the same distribution as
G(n, q) where q = 1− (1− p)m since the probability that a particular edge is not in the
m-fold replication is the product of probabilities that it is not in any of the m copies
of G(n, p). If the m-fold replication of G(n, p) does not have an increasing property Q,
then none of the m copies of G(n, p) has the property. The converse is not true. If no
copy has the property, their union may have it. Since Q is an increasing property and
q = 1− (1− p)m ≤ 1− (1−mp) = mp

Prob
(
G(n,mp) has Q

)
≥ Prob

(
G(n, q) has Q

)
(8.3)

We now show that every increasing property Q has a phase transition. The transition
occurs at the point p(n) at which the probability that G(n, p(n)) has property Q is 1

2
.

We will prove that for any function asymptotically less then p(n) that the probability of
having property Q goes to zero as n goes to infinity.
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︸ ︷︷ ︸
copies of G The m-fold

replication H
If any graph has three or more edges, then the
m-fold replication has three or more edges.

︸ ︷︷ ︸
copies of G The m-fold

replication H
Even if no graph has three or more edges, the
m-fold replication might have three or more edges.

Figure 8.9: The property that G has three or more edges is an increasing property. Let
H be the m-fold replication of G. If any copy of G has three or more edges, H has three
or more edges. However, H can have three or more edges even if no copy of G has three
or more edges.

Theorem 8.15 Each increasing property Q of G(n, p) has a phase transition at p(n),
where for each n, p(n) is the minimum real number an for which the probability that
G(n, an) has property Q is 1/2.

Proof: Let p0(n) be any function such that

lim
n→∞

p0(n)

p(n)
= 0.

We assert that almost surely G(n, p0) does not have the property Q. Suppose for con-
tradiction, that this is not true. That is, the probability that G(n, p0) has the property
Q does not converge to zero. By the definition of a limit, there exists ε > 0 for which
the probability that G(n, p0) has property Q is at least ε on an infinite set I of n. Let
m = d(1/ε)e. Let G(n, q) be the m-fold replication of G(n, p0). The probability that
G(n, q) does not have Q is at most (1 − ε)m ≤ e−1 ≤ 1/2 for all n ∈ I. For these n, by
(11.4)

Prob(G(n,mp0) has Q) ≥ Prob(G(n, q) has Q) ≥ 1/2.

Since p(n) is the minimum real number an for which the probability that G(n, an) has

property Q is 1/2, it must be that mp0(n) ≥ p(n). This implies that p0(n)
p(n)

is at least 1/m

infinitely often, contradicting the hypothesis that lim
n→∞

p0(n)
p(n)

= 0.
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A symmetric argument shows that for any p1(n) such that lim
n→∞

p(n)
p1(n)

= 0, G(n, p1)

almost surely has property Q.

8.6 Branching Processes

A branching process is a method for creating a random tree. Starting with the root
node, each node has a probability distribution for the number of its children. The root of
the tree is a parent and its descendants are the children with their descendants being the
grandchildren. The children of the root are the first generation, their children the second
generation, and so on. Branching processes have obvious applications in population stud-
ies.

We analyze a simple case of a branching process where the distribution of the number
of children at each node in the tree is the same. The basic question asked is what is the
probability that the tree is finite, i.e., the probability that the branching process dies out?
This is called the extinction probability.

Our analysis of the branching process will give the probability of extinction, as well
as the expected size of the components conditioned on extinction.

An important tool in our analysis of branching processes is the generating func-
tion. The generating function for a nonnegative integer valued random variable y is

f (x) =
∞∑
i=0

pix
i where pi is the probability that y equals i. The reader not familiar with

generating functions should consult Section 12.8 of the appendix.

Let the random variable zj be the number of children in the jth generation and let
fj (x) be the generating function for zj. Then f1 (x) = f (x) is the generating function for
the first generation where f(x) is the generating function for the number of children at a
node in the tree. The generating function for the 2nd generation is f2(x) = f (f (x)). In
general, the generating function for the j+1st generation is given by fj+1 (x) = fj (f (x)).
To see this, observe two things.

First, the generating function for the sum of two identically distributed integer valued
random variables x1 and x2 is the square of their generating function

f 2 (x) = p2
0 + (p0p1 + p1p0)x+ (p0p2 + p1p1 + p2p0)x2 + · · · .

For x1 + x2 to have value zero, both x1 and x2 must have value zero, for x1 + x2 to have
value one, exactly one of x1 or x2 must have value zero and the other have value one, and
so on. In general, the generating function for the sum of i independent random variables,
each with generating function f (x), is f i (x).
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q x

m > 1

m = 1 and p1 < 1

m < 1

p0

f(x)

Figure 8.10: Illustration of the root of equation f(x) = x in the interval [0,1).

The second observation is that the coefficient of xi in fj (x) is the probability of
there being i children in the jth generation. If there are i children in the jth generation,
the number of children in the j + 1st generation is the sum of i independent random
variables each with generating function f(x). Thus, the generating function for the j+1st

generation, given i children in the jth generation, is f i(x). The generating function for
the j + 1st generation is given by

fj+1(x) =
∞∑
i=0

Prob(zj = i)f i(x).

If fj(x) =
∞∑
i=0

aix
i, then fj+1 is obtained by substituting f(x) for x in fj(x).

Since f (x) and its iterates, f2, f3, . . ., are all polynomials in x with nonnegative co-
efficients, f (x) and its iterates are all monotonically increasing and convex on the unit
interval. Since the probabilities of the number of children of a node sum to one, if p0 < 1,
some coefficient of x to a power other than zero in f (x) is nonzero and f (x) is strictly
increasing.

Let q be the probability that the branching process dies out. If there are i children
in the first generation, then each of the i subtrees must die out and this occurs with
probability qi. Thus, q equals the summation over all values of i of the product of the
probability of i children times the probability that i subtrees will die out. This gives
q =

∑∞
i=0 piq

i. Thus, q is the root of x =
∑∞

i=0 pix
i, that is x = f(x).

This suggests focusing on roots of the equation f(x) = x in the interval [0,1]. The value

x = 1 is always a root of the equation f (x) = x since f (1) =
∞∑
i=0

pi = 1. When is there a

smaller nonnegative root? The derivative of f (x) at x = 1 is f ′(1) = p1 + 2p2 + 3p3 + · · · .
Let m = f ′(1). Thus, m is the expected number of children of a node. If m > 1, one
might expect the tree to grow forever, since each node at time j is expected to have more
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f(f(x)) f(x) x

f(x)

p0

q

Figure 8.11: Illustration of convergence of the sequence of iterations f1(x), f2(x), . . . to q.

than one child. But this does not imply that the probability of extinction is zero. In fact,
if p0 > 0, then with positive probability, the root will have no children and the process
will become extinct right away. Recall that for G(n, d

n
), the expected number of children

is d, so the parameter m plays the role of d.

If m < 1, then the slope of f (x) at x = 1 is less than one. This fact along with
convexity of f (x) implies that f (x) > x for x in [0, 1) and there is no root of f(x) = x in
the interval [0, 1).

If m = 1 and p1 < 1, then once again convexity implies that f(x) > x for x ∈ [0, 1)
and there is no root of f(x) = x in the interval [0, 1). If m = 1 and p1 = 1, then f(x) is
the straight line f(x) = x.

If m >1, then the slope of f (x) is greater than the slope of x at x = 1. This fact,
along with convexity of f (x), implies f (x) = x has a unique root in [0,1). When p0 = 0,
the root is at x = 0.

Let q be the smallest nonnegative root of the equation f(x) = x. For m < 1 and for
m=1 and p0 < 1, q equals one and for m >1, q is strictly less than one. We shall see
that the value of q is the extinction probability of the branching process and that 1− q is
the immortality probability. That is, q is the probability that for some j, the number of
children in the jth generation is zero. To see this, note that for m > 1, lim

j→∞
fj (x) = q for

0 ≤ x < 1. Figure 8.11 illustrates the proof which is given in Lemma 8.16. Similarly note
that when m < 1 or m = 1 with p0 < 1, fj (x) approaches one as j approaches infinity.

Lemma 8.16 Assume m > 1. Let q be the unique root of f(x)=x in [0,1). In the limit as
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j goes to infinity, fj (x) = q for x in [0, 1).

Proof: If 0 ≤ x ≤ q, then x < f(x) ≤ f(q) and iterating this inequality

x < f1 (x) < f2 (x) < · · · < fj (x) < f (q) = q.

Clearly, the sequence converges and it must converge to a fixed point where f (x) = x.
Similarly, if q ≤ x < 1, then f(q) ≤ f(x) < x and iterating this inequality

x > f1 (x) > f2 (x) > · · · > fj (x) > f (q) = q.

In the limit as j goes to infinity fj (x) = q for all x, 0 ≤ x < 1. That is

lim
j→∞

fj(x) = q + 0x+ 0x2 + · · ·

and there are no children with probability q and no finite number of children with prob-
ability zero.

Recall that fj (x) is the generating function
∞∑
i=0

Prob (zj = i)xi. The fact that in the

limit the generating function equals the constant q, and is not a function of x, says that
Prob (zj = 0) = q and Prob (zj = i) = 0 for all finite nonzero values of i. The remaining
probability is the probability of a nonfinite component. Thus, when m >1, q is the
extinction probability and 1-q is the probability that zj grows without bound.

Theorem 8.17 Consider a tree generated by a branching process. Let f(x) be the gener-
ating function for the number of children at each node.

1. If the expected number of children at each node is less than or equal to one, then the
probability of extinction is one unless the probability of exactly one child is one.

2. If the expected number of children of each node is greater than one, then the proba-
bility of extinction is the unique solution to f(x) = x in [0, 1).

Proof: Let pi be the probability of i children at each node. Then f(x) = p0 + p1x +
p2x

2 + · · · is the generating function for the number of children at each node and f ′(1) =
p1 + 2p2 + 3p3 + · · · is the slope of f(x) at x = 1. Observe that f ′(1) is the expected
number of children at each node.

Since the expected number of children at each node is the slope of f(x) at x = 1, if
the expected number of children is less than or equal to one, the slope of f(x) at x = 1
is less than or equal to one and the unique root of f(x) = x in (0, 1] is at x = 1 and the
probability of extinction is one unless f ′(1) = 1 and p1 = 1. If f ′(1) = 1 and p1 = 1,
f(x) = x and the tree is an infinite degree one chain. If the slope of f(x) at x = 1 is
greater than one, then the probability of extinction is the unique solution to f(x) = x in
[0, 1).
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A branching process can be viewed as the process of creating a component in an infi-
nite graph. In a finite graph, the probability distribution of descendants is not a constant
as more and more vertices of the graph get discovered.

The simple branching process defined here either dies out or goes to infinity. In bio-
logical systems there are other factors, since processes often go to stable populations. One
possibility is that the probability distribution for the number of descendants of a child
depends on the total population of the current generation.

Expected size of extinct families

We now show that the expected size of an extinct family is finite, provided that m 6= 1.
Note that at extinction, the size must be finite. However, the expected size at extinction
could conceivably be infinite, if the probability of dying out did not decay fast enough. For
example, suppose that with probability 1

2
it became extinct with size 3, with probability

1
4

it became extinct with size 9, with probability 1
8

it became extinct with size 27, etc. In
such a case the expected size at extinction would be infinite even though the process dies
out with probability one. We now show this does not happen.

Lemma 8.18 If the slope m = f ′ (1) does not equal one, then the expected size of an
extinct family is finite. If the slope m equals one and p1 = 1, then the tree is an infinite
degree one chain and there are no extinct families. If m=1 and p1 < 1, then the expected
size of the extinct family is infinite.

Proof: Let zi be the random variable denoting the size of the ith generation and let q be
the probability of extinction. The probability of extinction for a tree with k children in
the first generation is qk since each of the k children has an extinction probability of q.
Note that the expected size of z1, the first generation, over extinct trees will be smaller
than the expected size of z1 over all trees since when the root node has a larger number
of children than average, the tree is more likely to be infinite.

By Bayes rule

Prob (z1 = k|extinction) = Prob (z1 = k)
Prob (extinction|z1 = k)

Prob (extinction)
= pk

qk

q
= pkq

k−1.

Knowing the probability distribution of z1 given extinction, allows us to calculate the
expected size of z1 given extinction.

E (z1|extinction) =
∞∑
k=0

kpkq
k−1 = f ′ (q) .

We now prove, using independence, that the expected size of the ith generation given
extinction is
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E (zi|extinction) =
(
f ′ (q)

)i
.

For i = 2, z2 is the sum of z1 independent random variables, each independent of the ran-
dom variable z1. So, E(z2|z1 = j and extinction) = E( sum of j copies of z1|extinction) =
jE(z1|extinction). Summing over all values of j

E(z2|extinction) =
∞∑
j=1

E(z2|z1 = j and extinction)Prob(z1 = j|extinction)

=
∞∑
j=1

jE(z1|extinction)Prob(z1 = j|extinction)

= E(z1|extinction)
∞∑
j=1

jProb(z1 = j|extinction) = E2(z1|extinction).

Since E(z1|extinction) = f ′(q), E (z2|extinction) = (f ′ (q))2. Similarly, E (zi|extinction) =
(f ′ (q))i . The expected size of the tree is the sum of the expected sizes of each generation.
That is,

Expected size of
tree given extinction

=
∞∑
i=0

E (zi|extinction) =
∞∑
i=0

(f ′ (q))
i

=
1

1− f ′ (q)
.

Thus, the expected size of an extinct family is finite since f ′ (q) < 1 provided m 6= 1.

The fact that f ′(q) < 1 is illustrated in Figure 8.10. If m <1, then q=1 and f ′(q) = m
is less than one. If m >1, then q ∈ [0, 1) and again f ′(q) <1 since q is the solution to
f(x) = x and f ′(q) must be less than one for the curve f(x) to cross the line x. Thus,
for m <1 or m >1, f ′(q) <1 and the expected tree size of 1

1−f ′(q) is finite. For m=1 and

p1 < 1, one has q=1 and thus f ′(q) = 1 and the formula for the expected size of the tree
diverges.

8.7 CNF-SAT

Phase transitions occur not only in random graphs, but in other random structures
as well. An important example is that of satisfiability of Boolean formulas in conjunctive
normal form. A conjunctive normal form (CNF) formula over n variables x1, . . . , xn is
an AND of ORs of literals, where a literal is a variable or its negation. For example, the
following is a CNF formula over the variables {x1, x2, x3, x4}:

(x1 ∨ x̄2 ∨ x3)(x2 ∨ x̄4)(x1 ∨ x4)(x3 ∨ x4)(x2 ∨ x̄3 ∨ x4).

Each OR of literals is called a clause; for example, the above formula has five clauses. A
k-CNF formula is a CNF formula in which each clause has size at most k, so the above
formula is a 3-CNF formula. An assignment of true/false values to variables is said to
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satisfy a CNF formula if it satisfies every clause in it. Setting all variables to true satisfies
the above CNF formula, and in fact this formula has multiple satisfying assignments. A
formula is said to be satisfiable it there exists at least one assignment of truth values to
variables that satisfies it.

Many important problems can be converted into questions of finding satisfying as-
signments of CNF formulas. Indeed, the CNF-SAT problem of whether a given CNF
formula is satisfiable is NP-Complete, meaning that any problem in the class NP can be
converted into it. As a result, it is believed to be highly unlikely that there will ever
exist an efficient algorithm for worst-case instances. However, there are solvers that turn
out to work very well in practice on instances arising from a wide range of applications.
There is also substantial structure and understanding of the satisfiability of random CNF
formulas. The next two sections discuss each in turn.

8.7.1 SAT-solvers in practice

While the SAT problem is NP-complete, a number of algorithms have been developed
that perform extremely well in practice on SAT formulas arising in a range of applica-
tions. Such applications include hardware and software verification, creating action plans
for robots and robot teams, solving combinatorial puzzles, and even proving mathematical
theorems.

Broadly, there are two classes of solvers: complete solvers and incomplete solvers. Com-
plete solvers are guaranteed to find a satisfying assignment whenever one exists; if they
do not return a solution, then you know the formula is not satisfiable. Complete solvers
are often based on some form of recursive tree search. Incomplete solvers instead make a
“best effort”; they are typically based on some local-search heuristic, and they may fail
to output a solution even when a formula is satisfiable. However, they are typically much
faster than complete solvers.

An example of a complete solver is the following DPLL (Davis-Putnam-Logemann-
Loveland) style procedure. First, if there are any variables xi that never appear in negated
form in any clause, then set those variables to true and delete clauses where the literal xi
appears. Similarly, if there are any xi that only appear in negated form, then set those
variables to false and delete clauses where the literal x̄i appears. Second, if there are
any clauses that have only one literal in them (such clauses are called unit clauses), then
set that literal as needed to satisfy the clause. E.g., if the clause was “(x̄3)” then one
would set x3 to false. Then remove that clause along with any other clause containing
that literal, and shrink any clause containing the negation of that literal (e.g., a clause
such as (x3 ∨ x4) would now become just (x4), and one would then run this rule again
on this clause). Finally, if neither of the above two cases applies, then one chooses some
literal and recursively tries both settings for it. Specifically, choose some literal ` and re-
cursively check if the formula is satisfiable conditioned on setting ` to true; if the answer
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is “yes” then we are done, but if the answer is “no” then recursively check if the formula
is satisfiable conditioned on setting ` to false. Notice that this procedure is guaranteed to
find a satisfying assignment whenever one exists.

An example of an incomplete solver is the following local-search procedure called
Walksat. Walksat begins with a random assignment of truth-values to variables. If this
happens to satisfy the formula, then it outputs success. If not, then it chooses some
unsatisfied clause C at random. If C contains some variable xi whose truth-value can
be flipped (causing C to be satisfied) without causing any other clause to be unsatisfied,
then xi’s truth-value is flipped. Otherwise, Walksat either (a) flips the truth-value of the
variable in C that causes the fewest other clauses to become unsatisfied, or else (b) flips
the truth-value of a random xi in C; the choice of whether to perform (a) or (b) is deter-
mined by flipping a coin of bias p. Thus, Walksat is performing a kind of random walk
in the space of truth-assignments, hence the name. Walksat also has two time-thresholds
Tflips and Trestarts. If the above procedure has not found a satisfying assignment after
Tflips flips, it then restarts with a fresh initial random assignment and tries again; if that
entire process has not found a satisfying assignment after Trestarts restarts, then it outputs
“no assignment found”.

The above solvers are just two simple examples. Due to the importance of the CNF-
SAT problem, development of faster SAT-solvers is an active area of computer science
research. SAT-solving competitions are held each year, and solvers are routinely being
used to solve challenging verification, planning, and scheduling problems.

8.7.2 Phase Transitions for CNF-SAT

We now consider the question of phase transitions in the satisfiability of random k-
CNF formulas.

Generate a random CNF formula f with n variables, m clauses, and k literals per
clause, where recall that a literal is a variable or its negation. Specifically, each clause
in f is selected independently at random from the set of all

(
n
k

)
2k possible clauses of size

k. Equivalently, to generate a clause, choose a random set of k distinct variables, and
then for each of those variables choose to either negate it or not with equal probabil-
ity. Here, the number of variables n is going to infinity, m is a function of n, and k is
a fixed constant. A reasonable value to think of for k is k = 3. Unsatisfiability is an
increasing property since adding more clauses preserves unsatisfiability. By arguments
similar to Section 8.5, there is a phase transition, i.e., a function m(n) such that if m1(n)
is o(m(n)), a random formula with m1(n) clauses is, almost surely, satisfiable and for
m2(n) with m2(n)/m(n) → ∞, a random formula with m2(n) clauses is, almost surely,
unsatisfiable. It has been conjectured that there is a constant rk independent of n such
that rkn is a sharp threshold.
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Here we derive upper and lower bounds on rk. It is relatively easy to get an upper
bound on rk. A fixed truth assignment satisfies a random k clause with probability
1 − 1

2k
because of the 2k truth assignments to the k variables in the clause, only one

fails to satisfy the clause. Thus, with probability 1
2k
, the clause is not satisfied, and with

probability 1 − 1
2k
, the clause is satisfied. Let m = cn. Now, cn independent clauses are

all satisfied by the fixed assignment with probability
(
1− 1

2k

)cn
. Since there are 2n truth

assignments, the expected number of satisfying assignments for a formula with cn clauses
is 2n

(
1− 1

2k

)cn
. If c = 2k ln 2, the expected number of satisfying assignments is

2n
(
1− 1

2k

)n2k ln 2
.(

1− 1
2k

)2k
is at most 1/e and approaches 1/e in the limit. Thus,

2n
(
1− 1

2k

)n2k ln 2 ≤ 2ne−n ln 2 = 2n2−n = 1.

For c > 2k ln 2, the expected number of satisfying assignments goes to zero as n → ∞.
Here the expectation is over the choice of clauses which is random, not the choice of a
truth assignment. From the first moment method, it follows that a random formula with
cn clauses is almost surely not satisfiable. Thus, rk ≤ 2k ln 2.

The other direction, showing a lower bound for rk, is not that easy. From now on, we
focus only on the case k = 3. The statements and algorithms given here can be extended
to k ≥ 4, but with different constants. It turns out that the second moment method
cannot be directly applied to get a lower bound on r3 because the variance is too high. A
simple algorithm, called the Smallest Clause Heuristic (abbreviated SC), yields a satisfy-
ing assignment with probability tending to one if c < 2

3
, proving that r3 ≥ 2

3
. Other more

difficult to analyze algorithms, push the lower bound on r3 higher.

The Smallest Clause Heuristic repeatedly executes the following. Assign true to a
random literal in a random shortest clause and delete the clause since it is now satisfied.
In more detail, pick at random a 1-literal clause, if one exists, and set that literal to
true. If there is no 1-literal clause, pick a 2-literal clause, select one of its two literals and
set the literal to true. Otherwise, pick a 3-literal clause and a literal in it and set the
literal to true. If we encounter a 0-length clause, then we have failed to find a satisfying
assignment; otherwise, we have found one.

A related heuristic, called the Unit Clause Heuristic, selects a random clause with one
literal, if there is one, and sets the literal in it to true. Otherwise, it picks a random as
yet unset literal and sets it to true. Another variation is the “pure literal” heuristic. It
sets a random “pure literal”, a literal whose negation does not occur in any clause, to
true, if there are any pure literals; otherwise, it sets a random literal to true.

When a literal w is set to true, all clauses containing w are deleted, since they are
satisfied, and w̄ is deleted from any clause containing w̄. If a clause is reduced to length
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zero (no literals), then the algorithm has failed to find a satisfying assignment to the
formula. The formula may, in fact, be satisfiable, but the algorithm has failed.

Example: Consider a 3-CNF formula with n variables and cn clauses. With n variables
there are 2n literals, since a variable and its complement are distinct literals. The expected
number of times a literal occurs is calculated as follows. Each clause has three literals.
Thus, each of the 2n different literals occurs (3cn)

2n
= 3

2
c times on average. Suppose c = 5.

Then each literal appears 7.5 times on average. If one sets a literal to true, one would
expect to satisfy 7.5 clauses. However, this process is not repeatable since after setting a
literal to true there is conditioning so that the formula is no longer random.

Theorem 8.19 If the number of clauses in a random 3-CNF formula grows as cn where
c is a constant less than 2/3, then with probability 1 − o(1), the Shortest Clause (SC)
Heuristic finds a satisfying assignment.

The proof of this theorem will take the rest of the section. A general impediment to
proving that simple algorithms work for random instances of many problems is condition-
ing. At the start, the input is random and has properties enjoyed by random instances.
But, as the algorithm is executed, the data is no longer random; it is conditioned on the
steps of the algorithm so far. In the case of SC and other heuristics for finding a satisfying
assignment for a Boolean formula, the argument to deal with conditioning is relatively
simple.

We supply some intuition before giving the proof. Imagine maintaining a queue of 1
and 2-clauses. A 3-clause enters the queue when one of its literals is set to false and it
becomes a 2-clause. SC always picks a 1 or 2-clause if there is one and sets one of its
literals to true. At any step when the total number of 1 and 2-clauses is positive, one of
the clauses is removed from the queue. Consider the arrival rate, that is, the expected
number of arrivals into the queue at a given time t. For a particular clause to arrive into
the queue at time t to become a 2-clause, it must contain the negation of the literal being
set to true at time t. It can contain any two other literals not yet set. The number of
such clauses is

(
n−t

2

)
22. So, the probability that a particular clause arrives in the queue at

time t is at most (
n−t

2

)
22(

n
3

)
23
≤ 3

2(n− 2)
.

Since there are cn clauses in total, the arrival rate is 3c
2

, which for c < 2/3 is a constant
strictly less than one. The arrivals into the queue of different clauses occur independently
(Lemma 8.20), the queue has arrival rate strictly less than one, and the queue loses one
or more clauses whenever it is nonempty. This implies that the queue never has too many
clauses in it. A slightly more complicated argument will show that no clause remains as
a 1 or 2-clause for ω(lnn) steps (Lemma 8.21). This implies that the probability of two
contradictory 1-length clauses, which is a precursor to a 0-length clause, is very small.

270



Lemma 8.20 Let Ti be the first time that clause i turns into a 2-clause. Ti is∞ if clause
i gets satisfied before turning into a 2-clause. The Ti are mutually independent over the
randomness in constructing the formula and the randomness in SC, and for any t,

Prob(Ti = t) ≤ 3

2(n− 2)
.

Proof: For the proof, generate the clauses in a different way. The important thing is
that the new method of generation, called the method of “deferred decisions”, results in
the same distribution of input formulae as the original. The method of deferred decisions
is tied in with the SC algorithm and works as follows. At any time, the length of each
clause (number of literals) is all that we know; we have not yet picked which literals are
in each clause. At the start, every clause has length three and SC picks one of the clauses
uniformly at random. Now, SC wants to pick one of the three literals in that clause to
set to true, but we do not know which literals are in the clause. At this point, we pick
uniformly at random one of the 2n possible literals. Say for illustration, we picked x̄102.
The literal x̄102 is placed in the clause and set to true. The literal x102 is set to false. We
must also deal with occurrences of the literal or its negation in all other clauses, but again,
we do not know which clauses have such an occurrence. We decide that now. For each
clause, independently, with probability 3/n include either the literal x̄102 or its negation
x102, each with probability 1/2. In the case that we included x̄102 (the literal we had set
to true), the clause is now deleted, and if we included x102 (the literal we had set to false),
we decrease the residual length of the clause by one.

At a general stage, suppose the fates of i variables have already been decided and
n − i remain. The residual length of each clause is known. Among the clauses that are
not yet satisfied, choose a random shortest length clause. Among the n − i variables
remaining, pick one uniformly at random, then pick it or its negation as the new literal.
Include this literal in the clause thereby satisfying it. Since the clause is satisfied, the
algorithm deletes it. For each other clause, do the following. If its residual length is
l, decide with probability l/(n − i) to include the new variable in the clause and if so
with probability 1/2 each, include it or its negation. If the literal that was set to true is
included in a clause, delete the clause as it is now satisfied. If its negation is included
in a clause, then just delete the literal and decrease the residual length of the clause by one.

Why does this yield the same distribution as the original one? First, observe that the
order in which the variables are picked by the method of deferred decisions is independent
of the clauses; it is just a random permutation of the n variables. Look at any one clause.
For a clause, we decide in order whether each variable or its negation is in the clause. So
for a particular clause and a particular triple i, j, and k with i < j < k, the probability
that the clause contains the ith, the jth, and kth literal (or their negations) in the order
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determined by deferred decisions is:(
1− 3

n

) (
1− 3

n−1

)
· · ·
(
1− 3

n−i+2

)
3

n−i+1(
1− 2

n−i

) (
1− 2

n−i−1

)
· · ·
(

1− 2
n−j+2

)
2

n−j+1(
1− 1

n−j

)(
1− 1

n−j−1

)
· · ·
(
1− 1

n−k+2

)
1

n−k+1
= 3

n(n−1)(n−2)
,

where the (1 − · · · ) factors are for not picking the current variable or negation to be in-
cluded and the others are for including the current variable or its negation. Independence
among clauses follows from the fact that we have never let the occurrence or nonoccur-
rence of any variable in any clause influence our decisions on other clauses.

Now, we prove the lemma by appealing to the method of deferred decisions to generate
the formula. Ti = t if and only if the method of deferred decisions does not put the current
literal at steps 1, 2, . . . , t − 1 into the ith clause, but puts the negation of the literal at
step t into it. Thus, the probability is precisely

1
2

(
1− 3

n

) (
1− 3

n−1

)
· · ·
(
1− 3

n−t+2

)
3

n−t+1
≤ 3

2(n−2)
,

as claimed. Clearly the Ti are independent since again deferred decisions deal with differ-
ent clauses independently.

Lemma 8.21 There exists a constant c2 such that with probability 1 − o(1), no clause
remains a 2 or 1-clause for more than c2 lnn steps. I.e., once a 3-clause becomes a
2-clause, it is either satisfied or reduced to a 0-clause in O(lnn) steps.

Proof: Say that t is a “busy time” if there exists at least one 2-clause or 1-clause at time
t, and define a time-window [r + 1, s] to be a “busy window” if time r is not busy but
then each t ∈ [r + 1, s] is a busy time. We will prove that for some constant c2, with
probability 1− o(1), all busy windows have length at most c2 lnn.
Fix some r and s and consider the event that [r+ 1, s] is a busy window. Since SC always
decreases the total number of 1 and 2-clauses by one whenever it is positive, we must have
generated at least s− r new 2-clauses between r and s. Now, define an indicator variable
for each 3-clause which has value one if the clause turns into a 2-clause between r and
s. By Lemma 8.20 these variables are independent and the probability that a particular
3-clause turns into a 2-clause at a time t is at most 3/(2(n−2)). Summing over t between
r and s,

Prob
(
a 3-clause turns into a 2-clause during [r, s]

)
≤ 3(s− r)

2(n− 2)
.

Since there are cn clauses in all, the expected sum of the indicator variables is cn 3(s−r)
2(n−2)

≈
3c(s−r)

2
. Note that 3c/2 < 1, which implies the arrival rate into the queue of 2 and 1-

clauses is a constant strictly less than one. Using Chernoff bounds, if s − r ≥ c2 lnn for
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appropriate constant c2, the probability that more than s− r clauses turn into 2-clauses
between r and s is at most 1/n3. Applying the union bound over all O(n2) possible choices
of r and s, we get that the probability that any clause remains a 2 or 1-clause for more
than c2 lnn steps is o(1).

Now, assume the 1 − o(1) probability event of Lemma 8.21 that no clause remains a
2 or 1-clause for more than c2 lnn steps. We will show that this implies it is unlikely the
SC algorithm terminates in failure.

Suppose SC terminates in failure. This means that at some time t, the algorithm
generates a 0-clause. At time t − 1, this clause must have been a 1-clause. Suppose the
clause consists of the literal w. Since at time t − 1, there is at least one 1-clause, the
shortest clause rule of SC selects a 1-clause and sets the literal in that clause to true.
This other clause must have been w̄. Let t1 be the first time either of these two clauses,
w or w̄, became a 2-clause. We have t− t1 ≤ c2 lnn. Clearly, until time t, neither of these
two clauses is picked by SC. So, the literals which are set to true during this period are
chosen independent of these clauses. Say the two clauses were w + x + y and w̄ + u + v
at the start. x, y, u, and v must all be negations of literals set to true during steps t1 to
t. So, there are only O

(
(lnn)4

)
choices for x, y, u, and v for a given value of t. There are

O(n) choices of w, O(n2) choices of which two clauses i and j of the input become these
w and w̄, and n choices for t. Thus, there are O

(
n4(lnn)4

)
choices for what these clauses

contain and which clauses they are in the input. On the other hand, for any given i and j,
the probability that clauses i and j both match a given set of literals is O(1/n6). Thus the
probability that these choices are actually realized is therefore O

(
n4(lnn)4/n6

)
= o(1),

as required.

8.8 Nonuniform Models of Random Graphs

So far we have considered the G(n, p) random graph model in which all vertices have
the same expected degree, and moreover degrees are concentrated close to their expecta-
tion. However, large graphs occurring in the real world tend to have power law degree
distributions. For a power law degree distribution, the number f(d) of vertices of degree
d scales as 1/dα for some constant α > 0.

One way to generate such graphs is to stipulate that there are f(d) vertices of degree
d and choose uniformly at random from the set of graphs with this degree distribution.
Clearly, in this model the graph edges are not independent and this makes these random
graphs harder to analyze. But the question of when phase transitions occur in random
graphs with arbitrary degree distributions is still of interest. In this section, we consider
when a random graph with a nonuniform degree distribution has a giant component. Our
treatment in this section, and subsequent ones, will be more intuitive without providing
rigorous proofs.
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Consider a graph in which half of the vertices are degree one and half
are degree two. If a vertex is selected at random, it is equally likely to be
degree one or degree two. However, if we select an edge at random and
walk to a random endpoint, the vertex is twice as likely to be degree
two as degree one. In many graph algorithms, a vertex is reached
by randomly selecting an edge and traversing the edge to reach an
endpoint. In this case, the probability of reaching a degree i vertex is
proportional to iλi where λi is the fraction of vertices that are degree
i.

Figure 8.12: Probability of encountering a degree d vertex when following a path in a
graph.

8.8.1 Giant Component in Graphs with Given Degree Distribution

Molloy and Reed address the issue of when a random graph with a nonuniform degree
distribution has a giant component. Let λi be the fraction of vertices of degree i. There

will be a giant component if and only if
∞∑
i=0

i(i− 2)λi > 0.

To see intuitively that this is the correct formula, consider exploring a component
of a graph starting from a given seed vertex. Degree zero vertices do not occur except
in the case where the vertex is the seed. If a degree one vertex is encountered, then
that terminates the expansion along the edge into the vertex. Thus, we do not want to
encounter too many degree one vertices. A degree two vertex is neutral in that the vertex
is entered by one edge and left by the other. There is no net increase in the size of the
frontier. Vertices of degree i greater than two increase the frontier by i− 2 vertices. The
vertex is entered by one of its edges and thus there are i− 1 edges to new vertices in the
frontier for a net gain of i− 2. The iλi in (i− 2) iλi is proportional to the probability of
reaching a degree i vertex and the i − 2 accounts for the increase or decrease in size of
the frontier when a degree i vertex is reached.

Example: Consider applying the Molloy Reed conditions to the G(n, p) model, and use
pi to denote the probability that a vertex has degree i, i.e., in analog to λi. It turns out
that the summation

∑n
i=0 i(i − 2)pi gives value zero precisely when p = 1/n, the point

at which the phase transition occurs. At p = 1/n, the average degree of each vertex is
one and there are n/2 edges. However, the actual degree distribution of the vertices is
binomial, where the probability that a vertex is of degree i is given by pi =

(
n
i

)
pi(1−p)n−i.

We now show that lim
n→∞

n∑
i=0

i(i− 2)pi = 0 for pi =
(
n
i

)
pi(1− p)n−i when p = 1/n.
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lim
n→∞

n∑
i=0

i(i− 2)

(
n

i

)(
1

n

)i(
1− 1

n

)n−i
= lim

n→∞

n∑
i=0

i(i− 2)
n(n− 1) · · · (n− i+ 1)

i! ni

(
1− 1

n

)n(
1− 1

n

)−i
=

1

e
lim
n→∞

n∑
i=0

i(i− 2)
n(n− 1) · · · (n− i+ 1)

i! ni

(
n

n− 1

)i
≤

∞∑
i=0

i(i− 2)

i!
.

To see that
∞∑
i=0

i(i−2)
i!

= 0, note that

∞∑
i=0

i

i!
=
∞∑
i=1

i

i!
=
∞∑
i=1

1

(i− 1)!
=
∞∑
i=0

1

i!

and
∞∑
i=0

i2

i!
=
∞∑
i=1

i

(i− 1)!
=
∞∑
i=0

i+ 1

i!
=
∞∑
i=0

i

i!
+
∞∑
i=0

1

i!
= 2

∞∑
i=0

1

i!
.

Thus,

∞∑
i=0

i(i−2)
i!

=
∞∑
i=0

i2

i!
− 2

∞∑
i=0

i
i!

= 0.

8.9 Growth Models

Many graphs that arise in the outside world started as small graphs that grew over
time. In a model for such graphs, vertices and edges are added to the graph over time.
In such a model there are many ways in which to select the vertices for attaching a new
edge. One is to select two vertices uniformly at random from the set of existing vertices.
Another is to select two vertices with probability proportional to their degree. This latter
method is referred to as preferential attachment. A variant of this method would be to
add a new vertex at each unit of time and with probability δ add an edge where one
end of the edge is the new vertex and the other end is a vertex selected with probability
proportional to its degree. The graph generated by this latter method is a tree with a
power law degree distribution.
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8.9.1 Growth Model Without Preferential Attachment

Consider a growth model for a random graph without preferential attachment. Start
with zero vertices. At each unit of time a new vertex is created and with probability δ
two vertices chosen at random are joined by an edge. The two vertices may already have
an edge between them. In this case, we add another edge. So, the resulting structure is a
multi-graph, rather then a graph. Since at time t, there are t vertices and in expectation
only O(δt) edges where there are t2 pairs of vertices, it is very unlikely that there will be
many multiple edges.

The degree distribution for this growth model is calculated as follows. The number of
vertices of degree k at time t is a random variable. Let dk(t) be the expectation of the
number of vertices of degree k at time t. The number of isolated vertices increases by one
at each unit of time and decreases by the number of isolated vertices, b(t), that are picked
to be end points of the new edge. b(t) can take on values 0,1, or 2. Taking expectations,

d0(t+ 1) = d0(t) + 1− E(b(t)).

Now b(t) is the sum of two 0-1 valued random variables whose values are the number
of degree zero vertices picked for each end point of the new edge. Even though the
two random variables are not independent, the expectation of b(t) is the sum of the

expectations of the two variables and is 2δ d0(t)
t
. Thus,

d0(t+ 1) = d0(t) + 1− 2δ
d0(t)

t
.

The number of degree k vertices increases whenever a new edge is added to a degree k−1
vertex and decreases when a new edge is added to a degree k vertex. Reasoning as above,

dk (t+ 1) = dk(t) + 2δ
dk−1(t)

t
− 2δ

dk(t)

t
. (8.4)

Note that this formula, as others in this section, is not quite precise. For example, the
same vertex may be picked twice, so that the new edge is a self-loop. For k << t, this
problem contributes a minuscule error. Restricting k to be a fixed constant and letting
t→∞ in this section avoids these problems.

Assume that the above equations are exactly valid. Clearly, d0(1) = 1 and d1(1) =
d2(1) = · · · = 0. By induction on t, there is a unique solution to (8.4), since given dk(t)
for all k, the equation determines dk(t + 1) for all k. There is a solution of the form
dk(t) = pkt, where pk depends only on k and not on t, provided k is fixed and t → ∞.
Again, this is not precisely true since d1(1) = 0 and d1(2) > 0 clearly contradict the
existence of a solution of the form d1(t) = p1t.

Set dk(t) = pkt. Then,

(t+ 1) p0 = p0t+ 1− 2δ
p0t

t
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Figure 8.13: In selecting a component at random, each of the two components is equally
likely to be selected. In selecting the component containing a random vertex, the larger
component is twice as likely to be selected.

p0 = 1− 2δp0

p0 =
1

1 + 2δ

and

(t+ 1) pk = pkt+ 2δ
pk−1t

t
− 2δ

pkt

t

pk = 2δpk−1 − 2δpk

pk =
2δ

1 + 2δ
pk−1

=

(
2δ

1 + 2δ

)k
p0

=
1

1 + 2δ

(
2δ

1 + 2δ

)k
. (8.5)

Thus, the model gives rise to a graph with a degree distribution that falls off exponentially
fast with the degree.

The generating function for component size

Let nk(t) be the expected number of components of size k at time t. Then nk(t) is
proportional to the probability that a randomly picked component is of size k. This is
not the same as picking the component containing a randomly selected vertex (see Figure
8.13). Indeed, the probability that the size of the component containing a randomly se-
lected vertex is k is proportional to knk(t). We will show that there is a solution for nk(t)
of the form akt where ak is a constant independent of t. After showing this, we focus on
the generating function g(x) for the numbers kak(t) and use g(x) to find the threshold
for giant components.

Consider n1(t), the expected number of isolated vertices at time t. At each unit of

time, an isolated vertex is added to the graph and an expected 2δn1(t)
t

many isolated
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vertices are chosen for attachment and thereby leave the set of isolated vertices. Thus,

n1(t+ 1) = n1(t) + 1− 2δ
n1(t)

t
.

For k >1, nk(t) increases when two smaller components whose sizes sum to k are joined
by an edge and decreases when a vertex in a component of size k is chosen for attachment.
The probability that a vertex selected at random will be in a size k component is knk(t)

t
.

Thus,

nk(t+ 1) = nk(t) + δ

k−1∑
j=1

jnj(t)

t

(k − j)nk−j(t)
t

− 2δ
knk(t)

t
.

To be precise, one needs to consider the actual number of components of various sizes,
rather than the expected numbers. Also, if both vertices at the end of the edge are in the
same k-vertex component, then nk(t) does not go down as claimed. These small inaccu-
racies can be ignored.

Consider solutions of the form nk(t) = akt. Note that nk(t) = akt implies the num-
ber of vertices in a connected component of size k is kakt. Since the total number of
vertices at time t is t, kak is the probability that a random vertex is in a connected
component of size k. The recurrences here are valid only for k fixed as t → ∞. So∑∞

k=0 kak may be less than 1, in which case, there are nonfinite size components whose

sizes are growing with t. Solving for ak yields a1 = 1
1+2δ

and ak = δ
1+2kδ

k−1∑
j=1

j(k − j)ajak−j.

Consider the generating function g(x) for the distribution of component sizes where
the coefficient of xk is the probability that a vertex chosen at random is in a component
of size k.

g(x) =
∞∑
k=1

kakx
k.

Now, g(1) =
∑∞

k=0 kak is the probability that a randomly chosen vertex is in a finite sized
component. For δ = 0, this is clearly one, since all vertices are in components of size
one. On the other hand, for δ = 1, the vertex created at time one has expected degree
log n (since its expected degree increases by 2/t and

∑n
t=1(2/t) = Θ(log n)); so, it is in a

nonfinite size component. This implies that for δ = 1, g(1) < 1 and there is a nonfinite
size component. Assuming continuity, there is a δcritical above which g(1) < 1. From the
formula for the a′is, we will derive the differential equation

g = −2δxg′ + 2δxgg′ + x

and then use the equation for g to determine the value of δ at which the phase transition
for the appearance of a nonfinite sized component occurs.

Derivation of g(x)
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From

a1 =
1

1 + 2δ

and

ak =
δ

1 + 2kδ

k−1∑
j=1

j(k − j)ajak−j

derive the equations
a1 (1 + 2δ)− 1 = 0

and

ak (1 + 2kδ) = δ
k−1∑
j=1

j(k − j)ajak−j

for k ≥ 2. The generating function is formed by multiplying the kth equation by kxk and
summing over all k. This gives

−x+
∞∑
k=1

kakx
k + 2δx

∞∑
k=1

akk
2xk−1 = δ

∞∑
k=1

kxk
k−1∑
j=1

j(k − j)ajak−j.

Note that

g(x) =
∞∑
k=1

kakx
k and g′(x) =

∞∑
k=1

akk
2xk−1.

Thus,

−x+ g(x) + 2δxg′(x) = δ
∞∑
k=1

kxk
k−1∑
j=1

j(k − j)ajak−j.

Working with the right hand side

δ
∞∑
k=1

kxk
k−1∑
j=1

j(k − j)ajak−j = δx
∞∑
k=1

k−1∑
j=1

j(k − j)(j + k − j)xk−1ajak−j.

Now breaking the j + k − j into two sums gives

δx
∞∑
k=1

k−1∑
j=1

j2ajx
j−1(k − j)ak−jxk−j + δx

∞∑
k=1

k−1∑
j=1

jajx
j(k − j)2ak−jx

k−j−1.

Notice that the second sum is obtained from the first by substituting k− j for j and that
both terms are δxg′g. Thus,

−x+ g(x) + 2δxg′(x) = 2δxg′(x)g(x).

Hence,

g′ =
1

2δ

1− g
x

1− g
.
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Phase transition for nonfinite components

The generating function g(x) contains information about the finite components of the
graph. A finite component is a component of size 1, 2, . . ., which does not depend on t.

Observe that g(1) =
∞∑
k=0

kak and hence g(1) is the probability that a randomly chosen

vertex will belong to a component of finite size. If g(1) = 1 there are no infinite compo-
nents. When g(1) 6= 1, then 1 − g(1) is the expected fraction of the vertices that are in
nonfinite components. Potentially, there could be many such nonfinite components. But
an argument similar to Part 3 of Theorem ?? concludes that two fairly large components
would merge into one. Suppose there are two connected components at time t, each of
size at least t4/5. Consider the earliest created 1

2
t4/5 vertices in each part. These vertices

must have lived for at least 1
2
t4/5 time after creation. At each time, the probability of an

edge forming between two such vertices, one in each component, is at least δΩ(t−2/5) and

so the probability that no such edge formed is at most
(
1− δt−2/5

)t4/5/2 ≤ e−Ω(δt2/5) → 0.
So with high probability, such components would have merged into one. But this still
leaves open the possibility of many components of size tε, (ln t)2, or some other slowly
growing function of t.

We now calculate the value of δ at which the phase transition for a nonfinite component
occurs. Recall that the generating function for g (x) satisfies

g′ (x) =
1

2δ

1− g(x)
x

1− g (x)
.

If δ is greater than some δcritical, then g(1) 6= 1. In this case the above formula at x = 1
simplifies with 1 − g(1) canceling from the numerator and denominator, leaving just 1

2δ
.

Since kak is the probability that a randomly chosen vertex is in a component of size k,

the average size of the finite components is g′(1) =
∞∑
k=1

k2ak. Now, g′(1) is given by

g′(1) =
1

2δ
(8.6)

for all δ greater than δcritical. If δ is less than δcritical, then all vertices are in finite compo-
nents. In this case g(1) = 1 and both the numerator and the denominator approach zero.
Appling L’Hopital’s rule

lim
x→1

g′(x) = 1
2δ

xg′(x)−g(x)
x2

g′(x)

∣∣∣∣
x=1

or

(g′(1))2 = 1
2δ

(
g′(1)− g(1)

)
.
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The quadratic (g′(1))2 − 1
2δ
g′(1) + 1

2δ
g(1) = 0 has solutions

g′(1) =

1
2δ
±
√

1
4δ2
− 4

2δ

2
=

1±
√

1− 8δ

4δ
. (8.7)

The two solutions given by (8.7) become complex for δ > 1/8 and thus can be valid only
for 0 ≤ δ ≤ 1/8. For δ > 1/8, the only solution is g′(1) = 1

2δ
and an infinite component

exists. As δ is decreased, at δ = 1/8 there is a singular point where for δ < 1/8 there are
three possible solutions, one from (8.6) which implies a giant component and two from
(8.7) which imply no giant component. To determine which one of the three solutions is
valid, consider the limit as δ → 0. In the limit all components are of size one since there
are no edges. Only (8.7) with the minus sign gives the correct solution

g′ (1) =
1−
√

1− 8δ

4δ
=

1−
(
1− 1

2
8δ − 1

4
64δ2 + · · ·

)
4δ

= 1 + 4δ + · · · = 1.

In the absence of any nonanalytic behavior in the equation for g′ (x) in the region
0 ≤ δ < 1/8, we conclude that (8.7) with the minus sign is the correct solution for
0 ≤ δ < 1/8 and hence the critical value of δ for the phase transition is 1/8. As we shall
see, this is different from the static case.

As the value of δ is increased, the average size of the finite components increase from
one to

1−
√

1− 8δ

4δ

∣∣∣∣
δ=1/8

= 2

when δ reaches the critical value of 1/8. At δ = 1/8, the average size of the finite com-
ponents jumps to 1

2δ

∣∣
δ=1/8

= 4 and then decreases as 1
2δ

as the giant component swallows

up the finite components starting with the larger components.

Comparison to static random graph

Consider a static random graph with the same degree distribution as the graph in the
growth model. Again let pk be the probability of a vertex being of degree k. From (8.5)

pk =
(2δ)k

(1 + 2δ)k+1
.

Recall the Molloy Reed analysis of random graphs with given degree distributions which

asserts that there is a phase transition at
∞∑
i=0

i(i − 2)pi = 0. Using this, it is easy to see

that a phase transition occurs for δ = 1/4. For δ = 1/4,

pk = (2δ)k

(1+2δ)k+1 =

(
1
2

)k
(

1+
1
2

)k+1 =

(
1
2

)k
3
2

(
3
2

)k = 2
3

(
1
3

)k
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Figure 8.14: Comparison of the static random graph model and the growth model. The
curve for the growth model is obtained by integrating g′.

and

∞∑
i=0

i(i− 2)2
3

(
1
3

)i
= 2

3

∞∑
i=0

i2
(

1
3

)i − 4
3

∞∑
i=0

i
(

1
3

)i
= 2

3
× 3

2
− 4

3
× 3

4
= 0.

Recall that 1+a+a2 + · · · = 1
1−a , a+2a2 +3a3 · · · = a

(1−a)2
, and a+4a2 +9a3 · · · = a(1+a)

(1−a)3
.

See references at end of the chapter for calculating the fractional size Sstatic of the
giant component in the static graph. The result is

Sstatic =

{
0 δ ≤ 1

4

1− 1
δ+
√
δ2+2δ

δ > 1
4

8.9.2 Growth Model With Preferential Attachment

Consider a growth model with preferential attachment. At each time unit, a vertex is
added to the graph. Then with probability δ, an edge is attached to the new vertex and
to a vertex selected at random with probability proportional to its degree. This model
generates a tree with a power law distribution.

Let di(t) be the expected degree of the ith vertex at time t. The sum of the expected
degrees of all vertices at time t is 2δt and thus the probability that an edge is connected
to vertex i at time t is di(t)

2δt
. The degree of vertex i is governed by the equation

∂

∂t
di(t) = δ

di (t)

2δt
=
di(t)

2t

where δ is the probability that an edge is added at time t and di(t)
2δt

is the probability that
the vertex i is selected for the end point of the edge.
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expected
degree

i = 1, 2, 3 i = δ2

d2
t i = t

←− vertex number −→

︷ ︸︸ ︷ ︷ ︸︸ ︷di(t) > d di(t) < d

δ
√

t
i

d

Figure 8.15: Illustration of degree of ith vertex at time t. At time t, vertices numbered 1
to δ2

d2
t have degrees greater than d.

The two in the denominator governs the solution, which is of the form at
1
2 . The value

of a is determined by the initial condition di (t) = δ at t = i. Thus, δ = ai
1
2 or a = δi−

1
2 .

Hence, di(t) = δ
√

t
i
.

Next, we determine the probability distribution of vertex degrees. Now, di(t) is less
than d provided i > δ2

d2
t. The fraction of the t vertices at time t for which i > δ2

d2
t and thus

that the degree is less than d is 1 − δ2

d2
. Hence, the probability that a vertex has degree

less than d is 1− δ2

d2
. The probability density p(d) satisfies∫ d

0

p(d)∂d = Prob(degree < d) = 1− δ2

d2

and can be obtained from the derivative of Prob(degree < d).

p(d) =
∂

∂d

(
1− δ2

d2

)
= 2

δ2

d3
,

a power law distribution.

8.10 Small World Graphs

In the 1960’s, Stanley Milgram carried out an experiment that indicated that most
pairs of individuals in the United States were connected by a short sequence of acquain-
tances. Milgram would ask a source individual, say in Nebraska, to start a letter on its
journey to a target individual in Massachusetts. The Nebraska individual would be given
basic information about the target including his address and occupation and asked to
send the letter to someone he knew on a first name basis, who was closer to the target
individual, in order to transmit the letter to the target in as few steps as possible. Each
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person receiving the letter would be given the same instructions. In successful experi-
ments, it would take on average five to six steps for a letter to reach its target. This
research generated the phrase “six degrees of separation” along with substantial research
in social science on the interconnections between people. Surprisingly, there was no work
on how to find the short paths using only local information.

In many situations, phenomena are modeled by graphs whose edges can be partitioned
into local and long-distance. We adopt a simple model of a directed graph due to Klein-
berg, having local and long-distance edges. Consider a 2-dimensional n×n grid where each
vertex is connected to its four adjacent vertices via bidirectional local edges. In addition
to these local edges, there is one long-distance edge out of each vertex. The probability
that the long-distance edge from vertex u terminates at v, v 6= u, is a function of the
distance d(u, v) from u to v. Here distance is measured by the shortest path consisting
only of local grid edges. The probability is proportional to 1/dr(u, v) for some constant r.
This gives a one parameter family of random graphs. For r equal zero, 1/d0(u, v) = 1 for
all u and v and thus the end of the long-distance edge at u is uniformly distributed over all
vertices independent of distance. As r increases the expected length of the long-distance
edge decreases. As r approaches infinity, there are no long-distance edges and thus no
paths shorter than that of the lattice path. What is interesting is that for r less than two,
there are always short paths, but no local algorithm to find them. A local algorithm is an
algorithm that is only allowed to remember the source, the destination, and its current
location and can query the graph to find the long-distance edge at the current location.
Based on this information, it decides the next vertex on the path.

The difficulty is that for r < 2, the end points of the long-distance edges are too-
uniformly distributed over the vertices of the grid. Although short paths exist, it is
unlikely on a short path to encounter a long-distance edge whose end point is close to
the destination. When r equals two, there are short paths and the simple algorithm that
always selects the edge that ends closest to the destination will find a short path. For r
greater than two, again there is no local algorithm to find a short path. Indeed, with high
probability, there are no short paths at all.

The probability that the long-distance edge from u goes to v is proportional to
d−r(u, v). Note that the constant of proportionality will vary with the vertex u depend-
ing on where u is relative to the border of the n × n grid. However, the number of
vertices at distance exactly k from u is at most 4k and for k ≤ n/2 is at least k. Let
cr(u) =

∑
v d
−r(u, v) be the normalizing constant. It is the inverse of the constant of

proportionality.

For r > 2, cr(u) is lower bounded by

cr(u) =
∑
v

d−r(u, v) ≥
n/2∑
k=1

(k)k−r =

n/2∑
k=1

k1−r ≥ 1.
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Destination

Figure 8.16: For r < 2, on a short path you are unlikely to encounter a long-distance edge
that takes you close to the destination.

r > 2 The lengths of long distance edges tend to be short so the
probability of encountering a sufficiently long, long-distance edge is
too low.

r = 2 Selecting the edge with end point closest to the destina-
tion finds a short path.

r < 2 The ends of long distance edges tend to be uniformly dis-
tributed. Short paths exist but a polylog length path is unlikely
to encounter a long distance edge whose end point is close to the
destination.

Figure 8.17: Effects of different values of r on the expected length of long-distance edges
and the ability to find short paths.
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No matter how large r is the first term of
∑n/2

k=1 k
1−r is at least one.

For r = 2 the normalizing constant cr(u) is upper bounded by

cr(u) =
∑
v

d−r(u, v) ≤
2n∑
k=1

(4k)k−2 ≤ 4
2n∑
k=1

1

k
= θ(lnn).

For r < 2, the normalizing constant cr(u) is lower bounded by

cr(u) =
∑
v

d−r(u, v) ≥
n/2∑
k=1

(k)k−r ≥
n/2∑

k=n/4

k1−r.

The summation
n/2∑

k=n/4

k1−r has n
4

terms, the smallest of which is
(
n
4

)1−r
or
(
n
2

)1−r
depending

on whether r is greater or less than one. This gives the following lower bound on cr(u).

cr(u) ≥ n

4
ω(n1−r) = ω(n2−r).

No short paths exist for the r > 2 case.

For r > 2, we first show that for at least half of the pairs of vertices, there is no short
path between them. We begin by showing that the expected number of edges of length
greater than n

r+2
2r goes to zero. The probability of an edge from u to v is d−r(u, v)/cr(u)

where cr(u) is lower bounded by a constant. The probability that a particular edge of

length greater than or equal to n
r+2
2r is chosen is upper bounded by cn−( r+2

2 ) for some
constant c. Since there are n2 long edges, the expected number of edges of length at least

n
r+2
2r is at most cn2n−

(r+2)
2 or cn

2−r
2 , which for r > 2 goes to zero. Thus, by the first

moment method, almost surely, there are no such edges.

For at least half of the pairs of vertices, the grid distance, measured by grid edges
between the vertices, is greater than or equal to n/4. Any path between them must have

at least 1
4
n/n

r+2
2r = 1

4
n
r−2
2r edges since there are no edges longer than n

r+2
2r and so there is

no polylog length path.

An algorithm for the r = 2 case

For r = 2, the local algorithm that selects the edge that ends closest to the destination
t finds a path of expected length O(lnn)3. Suppose the algorithm is at a vertex u which
is at distance k from t. Then within an expected O(lnn)2 steps, the algorithm reaches a
point at distance at most k/2. The reason is that there are Ω(k2) vertices at distance at
most k/2 from t. Each of these vertices is at distance at most k+k/2 = O(k) from u. See
Figure 8.18. Recall that the normalizing constant cr is upper bounded by O(lnn), and
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u t

Ω(k2) vertices at
distance k/2 from t

k/2< 3k/2

k

Figure 8.18: Small worlds.

hence, the constant of proportionality is lower bounded by some constant times 1/ lnn.
The probability that the long-distance edge from u goes to one of these vertices is at least

Ω(k2k−2/ lnn) = Ω(1/ lnn).

Consider Ω(lnn)2 steps of the path from u. The long-distance edges from the points
visited at these steps are chosen independently and each has probability Ω(1/ lnn) of
reaching within k/2 of t. The probability that none of them does is(

1− Ω(1/ lnn)
)c(lnn)2

= c1e
− lnn =

c1

n

for a suitable choice of constants. Thus, the distance to t is halved every O(lnn)2 steps
and the algorithm reaches t in an expected O(lnn)3 steps.

A local algorithm cannot find short paths for the r < 2 case

For r < 2 no local polylog time algorithm exists for finding a short path. To illustrate
the proof, we first give the proof for the special case r = 0, and then give the proof for
r < 2.

When r = 0, all vertices are equally likely to be the end point of a long-distance edge.
Thus, the probability of a long-distance edge hitting one of the n vertices that are within
distance

√
n of the destination is 1/n. Along a path of length

√
n, the probability that

the path does not encounter such an edge is (1− 1/n)
√
n . Now,

lim
n→∞

(
1− 1

n

)√n
= lim

n→∞

(
1− 1

n

)n 1√
n

= lim
n→∞

e
− 1√

n = 1.
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Since with probability 1/2 the starting point is at distance at least n/4 from the desti-
nation and in

√
n steps, the path will not encounter a long-distance edge ending within

distance
√
n of the destination, for at least half of the starting points the path length will

be at least
√
n. Thus, the expected time is at least 1

2

√
n and hence not in polylog time.

For the general r < 2 case, we show that a local algorithm cannot find paths of length
O(n(2−r)/4). Let δ = (2 − r)/4 and suppose the algorithm finds a path with at most nδ

edges. There must be a long-distance edge on the path which terminates within distance
nδ of t; otherwise, the path would end in nδ grid edges and would be too long. There are
O(n2δ) vertices within distance nδ of t and the probability that the long-distance edge from
one vertex of the path ends at one of these vertices is at most n2δ

(
1

n2−r

)
= n(r−2)/2. To

see this, recall that the lower bound on the normalizing constant is θ(n2−r) and hence an
upper bound on the probability of a long-distance edge hitting v is θ

(
1

n2−r

)
independent

of where v is. Thus, the probability that the long-distance edge from one of the nδ vertices
on the path hits any one of the n2δ vertices within distance nδ of t is n2δ 1

n2−r = n
r−2
2 .

The probability that this happens for any one of the nδ vertices on the path is at most
n
r−2
2 nδ = n

r−2
2 n

2−r
4 = n(r−2)/4 = o(1) as claimed.

Short paths exist for r < 2

Finally we show for r < 2 that there are O(lnn) length paths between s and t. The
proof is similar to the proof of Theorem 8.13 showing O(lnn) diameter for G(n, p) when
p is Ω(lnn/n), so we do not give all the details here. We give the proof only for the case
when r = 0.

For a particular vertex v, let Si denote the set of vertices at distance i from v. Using
only local edges, if i is O(

√
lnn), then |Si| is Ω(lnn). For later i, we argue a constant

factor growth in the size of Si as in Theorem 8.13. As long as |S1|+|S2|+· · ·+|Si| ≤ n2/2,
for each of the n2/2 or more vertices outside, the probability that the vertex is not in

Si+1 is (1 − 1
n2 )|Si| ≤ 1 − |Si|

2n2 since the long-distance edge from each vertex of Si chooses
a long-distance neighbor at random. So, the expected size of Si+1 is at least |Si|/4 and
using Chernoff, we get constant factor growth up to n2/2. Thus, for any two vertices v
and w, the number of vertices at distance O(lnn) from each is at least n2/2. Any two
sets of cardinality at least n2/2 must intersect giving us a O(lnn) length path from v to
w.
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8.12 Exercises

Exercise 8.1 Search the World Wide Web to find some real world graphs in machine
readable form or data bases that could automatically be converted to graphs.

1. Plot the degree distribution of each graph.

2. Count the number of connected components of each size in each graph.

3. Count the number of cycles in each graph.

4. Describe what you find.

5. What is the average vertex degree in each graph? If the graph were a G(n, p) graph,
what would the value of p be?

6. Spot differences between your graphs and G(n, p) for p from Item 5. Look at sizes
of connected components, cycles, size of giant component.

Exercise 8.2 In G(n, p) the probability of a vertex having degree k is
(
n
k

)
pk(1− p)n−k.

1. Show by direct calculation that the expected degree is np.

2. Compute directly the variance of the degree distribution.

3. Where is the mode of the binomial distribution for a given value of p? The mode is
the point at which the probability is maximum.

Exercise 8.3

1. Plot the degree distribution for G(1000, 0.003).

2. Plot the degree distribution for G(1000, 0.030).

Exercise 8.4 To better understand the binomial distribution plot
(
n
k

)
pk(1 − p)n−k as a

function of k for n = 50 and k = 0.05, 0.5, 0.95. For each value of p check the sum over
all k to ensure that the sum is one.

Exercise 8.5 In G
(
n, 1

n

)
, argue that with high probability there is no vertex of degree

greater than 6 logn
log logn

(i.e.,the probability that such a vertex exists goes to zero as n goes

to infinity). You may use the Poisson approximation and may wish to use the fact that
k! ≥ (k

e
)k.

Exercise 8.6 The example of Section 8.1.1 showed that if the degrees in G(n, 1
n
) were

independent there would almost surely be a vertex of degree Ω(log n/ log log n). However,
the degrees are not independent. Show how to overcome this difficulty.
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Exercise 8.7 Let f (n) be a function that is asymptotically less than n. Some such func-

tions are 1/n, a constant d, log n or n
1
3 . Show that(

1 + f(n)
n

)n
' ef(n)(1±o(1)).

for large n. That is

lim
n→∞

ln
[(

1 + f(n)
n

)n]
f (n)

= 1.

Exercise 8.8

1. In the limit as n goes to infinity, how does
(
1− 1

n

)n lnn
behave.

2. What is lim
n→∞

(
n+1
n

)n
?

Exercise 8.9 Consider a random permutation of the integers 1 to n. The integer i is
said to be a fixed point of the permutation if i is the integer in the ith position of the
permutation. Use indicator variables to determine the expected number of fixed points in
a random permutation.

Exercise 8.10 Generate a graph G
(
n, d

n

)
with n = 1000 and d=2, 3, and 6. Count the

number of triangles in each graph. Try the experiment with n=100.

Exercise 8.11 What is the expected number of squares (4-cycles) in G
(
n, d

n

)
? What is

the expected number of 4-cliques in G
(
n, d

n

)
? A 4-clique consists of four vertices with all(

4
2

)
edges present.

Exercise 8.12 Carry out an argument, similar to the one used for triangles, to show that
p = 1

n2/3 is a threshold for the existence of a 4-clique. A 4-clique consists of four vertices

with all
(

4
2

)
edges present.

Exercise 8.13 What is the expected number of simple paths of length 3, log n,
√
n, and

n − 1 in G(n, d
n
)? A simple path is a path where no vertex appears twice as in a cycle.

The expected number of simple paths of a given length being infinite does not imply that a
graph selected at random has such a path.

Exercise 8.14 Let x be an integer chosen uniformly at random from {1, 2, . . . , n}. Count
the number of distinct prime factors of n. The exercise is to show that the number of prime
factors almost surely is Θ(ln lnn). Let p stand for a prime number between 2 and n.

1. For each fixed prime p, let Ip be the indicator function of the event that p divides x.
Show that E(Ip) = 1

p
+O

(
1
n

)
.
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2. The random variable of interest, y =
∑
p

Ip, is the number of prime divisors of x

picked at random. Show that the variance of y is O(ln lnn). For this, assume the
known result that the number of primes p between 2 and n is O(n/ lnn) and that∑
p

1
p

= ln lnn. To bound the variance of y, think of what E(IpIq) is for p 6= q, both

primes.

3. Use (1) and (2) to prove that the number of prime factors is almost surely θ(ln lnn).

Exercise 8.15 Suppose one hides a clique of size k in a random graph G
(
n, 1

2

)
. I.e., in

the random graph, choose some subset S of k vertices and put in the missing edges to make
S a clique. Presented with the modified graph, the goal is to find S. The larger S is, the
easier it should be to find. In fact, if k is more than c

√
n lnn, then with high probability

the clique leaves a telltale sign identifying S as the k vertices of largest degree. Prove this
statement by appealing to Theorem 8.1. It remains a puzzling open problem to find such
hidden cliques when k is smaller, say, O(n1/3).

Exercise 8.16 The clique problem in a graph is to find the maximal size clique. This
problem is known to be NP-hard and so a polynomial time algorithm is thought unlikely.
We can ask the corresponding question about random graphs. For example, in G

(
n, 1

2

)
there almost surely is a clique of size (2− ε) log n for any ε > 0. But it is not known how
to find one in polynomial time.

1. Show that in G(n, 1
2
) there almost surely are no cliques of size greater than or equal

to 2 log2 n.

2. Use the second moment method to show that in G(n, 1
2
), almost surely there are

cliques of size (2− ε) log2 n.

3. Show that for any ε > 0, a clique of size (2− ε) log n can be found in G
(
n, 1

2

)
in

time nO(lnn) if one exists.

4. Give an O (n2) algorithm that finds a clique of size Ω (log n) in G(n, 1
2
) with high

probability. Hint: use a greedy algorithm. Apply your algorithm to G
(
1000, 1

2

)
.

What size clique do you find?

5. An independent set in a graph is a set of vertices such that no two of them are
connected by an edge. Give a polynomial time algorithm for finding an independent
set in G

(
n, 1

2

)
of size Ω (log n) with high probability.

Exercise 8.17 Suppose H is a fixed graph on cn vertices with 1
4
c2(log n)2 edges. Show

that if c ≥ 2, with high probability, H does not occur as a vertex-induced subgraph of
G(n, 1/4). In other words, there is no subset of cn vertices of G such that the graph G
restricted to these vertices is isomorphic to H. Or, equivalently, for any subset S of cn
vertices of G and any 1-1 mapping f between these vertices and the vertices of H, there is
either an edge (i, j) within S such that the edge (f(i), f(j)) does not exist in H or there
is a non-edge i, j in S such that (f(i), f(j)) does exist in H.
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Exercise 8.18 Given two instances, G1 and G2 of G(n, 1
2
), consider the size of the largest

vertex-induced subgraph common to both G1 and G2. In other words, consider the largest
k such that for some subset S1 of k vertices of G1 and some subset S2 of k vertices of G2,
the graph G1 restricted to S1 is isomorphic to the graph G2 restricted to S2. Prove that
with high probability, k < 4 log2 n.

Exercise 8.19 (Birthday problem) What is the number of integers that must be drawn
with replacement from a set of n integers so that some integer, almost surely, will be
selected twice?

Exercise 8.20 Suppose you have an algorithm for finding communities in a social net-
work. Assume that the way the algorithm works is that given the graph G for the social
network, it finds a subset of vertices satisfying a desired property P. The specifics of prop-
erty P are unimportant for this question. If there are multiple subsets S of vertices that
satisfy property P , assume that the algorithm finds one such set S at random.

In running the algorithm you find thousands of communities and wonder how many
communities there are in the graph. Finally, when you find the 10, 000th community, it is
a duplicate. It is the same community as one found earlier. Use the birthday problem to
derive an estimate of the total number of communities in G.

Exercise 8.21 Do a breadth first search in G(n, d
n
) with d > 1 starting from some vertex.

The number of discovered vertices, zi, after i steps has distribution Binomial(n, pi) where

pi = 1 −
(
1− d

n

)i
. If the connected component containing the start vertex has i vertices,

then zi = i. Show that as n→∞ (and d is a fixed constant), Prob(zi = i) is o(1/n) unless
i ≤ c1 lnn or i ≥ c2n for some constants c1, c2.

Exercise 8.22 For f(x) = 1−e−dx−x, what is the value of xmax = arg max f(x)? What
is the value of f(xmax)? Recall from the text that in a breadth first search of G(n, d

n
), f(x)

is the expected normalized size of the frontier (size of frontier divided by n) at normalized
time x (x = t/n). Where does the maximum expected value of the frontier of a breadth
search in G(n, d

n
) occur as a function of n?

Exercise 8.23 Generate a random graph on 50 vertices by starting with the empty graph
and then adding random edges one at a time. How many edges do you need to add until
cycles first appear (repeat the experiment a few times and take the average)? How many
edges do you need to add until the graph becomes connected (repeat the experiment a few
times and take the average)?

Exercise 8.24 Consider G(n, p) with p = 1
3n

.

1. Use the second moment method to show that with high probability there exists a
simple path of length 10. In a simple path no vertex appears twice.

2. Argue that on the other hand, it is unlikely there exists any cycle of length 10.
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Exercise 8.25 Complete the second moment argument of Theorem 8.9 to show that for
p = d

n
, d > 1, G(n, p) almost surely has a cycle. Hint: If two cycles share one or more

edges, then the union of the two cycles is at least one greater than the union of the vertices.

Exercise 8.26 What is the expected number of isolated vertices in G(n, p) for p = 1
2

lnn
n

as a function of n?

Exercise 8.27 Theorem 8.13 shows that for some c > 0 and p = c lnn/n, G(n, p) has
diameter O (lnn). Tighten the argument to pin down as low a value as possible for c.

Exercise 8.28 What is diameter of G(n,p) for various values of p? Remember that the

graph becomes fully connected at lnn
n

and has diameter two at
√

2/lnn
n
.

Exercise 8.29

1. List five increasing properties of G (n, p).

2. List five non increasing properties .

Exercise 8.30 If y and z are independent, nonnegative, integer valued random variables,
then the generating function of the sum y + z is the product of the generating function of
y and z. Show that this follows from E(xy+z) = E(xyxz) = E(xy)E(xz).

Exercise 8.31 Let fj(x) be the jth iterate of the generating function f(x) of a branch-
ing process. When m > 1, limj→∞fj(x) = q for 0 ≤ x < 1. In the limit this implies
Prob (zj = 0) = q and Prob (zj = i) = 0 for all nonzero finite values of i. Shouldn’t the
probabilities add up to 1? Why is this not a contradiction?

Exercise 8.32 Try to create a probability distribution for a branching process which
varies with the current population in which future generations neither die out, nor grow
to infinity.

Exercise 8.33 Consider generating the edges of a random graph by flipping two coins,
one with probability p1 of heads and the other with probability p2 of heads. Add the edge
to the graph if either coin comes down heads. What is the value of p for the generated
G(n, p) graph?

Exercise 8.34 In the proof of Theorem 8.15 that every increasing property has a thresh-
old, we proved for p0(n) such that lim

n→∞
p0(n)
p(n)

= 0 that G(n, p0) almost surely did not have

property Q. Give the symmetric argument that for any p1(n) such that lim
n→∞

p(n)
p1(n)

= 0,

G(n, p1) almost surely has property Q.

Exercise 8.35 Consider a model of a random subset N(n, p) of integers {1, 2, . . . n} de-
fined by independently at random including each of {1, 2, . . . n} into the set with probability
p. Define what an “increasing property” of N(n, p) means. Prove that every increasing
property of N(n, p) has a threshold.
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Exercise 8.36 N(n, p) is a model of a random subset of integers {1, 2, . . . n} defined by
independently at random including each of {1, 2, . . . n} into the set with probability p.
What is the threshold for N (n, p) to contain

1. a perfect square,

2. a perfect cube,

3. an even number,

4. three numbers such that x+ y = z ?

Exercise 8.37 Explain why the property that N (n, p) contains the integer 1 has a thresh-
old. What is the threshold?

Exercise 8.38 The Sudoku game consists of a 9 × 9 array of squares. The array is
partitioned into nine 3 × 3 squares. Each small square should be filled with an integer
between 1 and 9 so that each row, each column, and each 3 × 3 square contains exactly
one copy of each integer. Initially the board has some of the small squares filled in in such
a way that there is exactly one way to complete the assignments of integers to squares.
Some simple rules can be developed to fill in the remaining squares such as if a row does
not contain a given integer and if every column except one in which the square in the row
is blank contains the integer, then place the integer in the remaining blank square in the
row. Explore phase transitions for the Sudoku game. Some possibilities are:

1. Start with a 9 × 9 array of squares with each square containing a number between
1 and 9 such that no row, column, or 3 × 3 square has two copies of any integer.
Develop a set of simple rules for filling in squares such as if a row does not contain
a given integer and if every column except one in which the square in the row is
blank contains the integer, then place the integer in the remaining blank entry in the
row. How many integers can you randomly erase and your rules will still completely
fill in the board?

2. Generalize the Sudoku game for arrays of size n2 × n2. Develop a simple set of
rules for completing the game. Start with a legitimate completed array and erase k
entries at random. Experimentally determine the threshold for the integer k such
that if only k entries of the array are erased, your set of rules will find a solution?

Exercise 8.39 In a square n × n grid, each of the O(n2) edges is randomly chosen to
be present with probability p and absent with probability 1 − p. Consider the increasing
property that there is a path from the bottom left corner to the top right corner which
always goes to the right or up. Show that p = 1/2 is a threshold for the property. Is it a
sharp threshold?

Exercise 8.40 The threshold property seems to be related to uniform distributions. What
if we considered other distributions? Consider a model where i is selected from the set
{1, 2, . . . , n} with probability proportional to 1

i
. Is there a threshold for perfect squares?

Is there a threshold for arithmetic progressions?
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Exercise 8.41 Modify the proof that every increasing property of G(n, p) has a threshold
to apply to the 3-CNF satisfiability problem.

Exercise 8.42 Evaluate
(
1− 1

2k

)2k
for k=3, 5, and 7. How close is it to 1/e?

Exercise 8.43 For a random 3-CNF formula with n variables and cn clauses for some
constant c, what is the expected number of satisfying assignments?

Exercise 8.44 Which of the following variants of the SC algorithm admit a theorem like
Theorem 8.20?

1. Among all clauses of least length, pick the first one in the order in which they appear
in the formula.

2. Set the literal appearing in most clauses independent of length to 1.

Exercise 8.45 Suppose we have a queue of jobs serviced by one server. There is a total
of n jobs in the system. At time t, each remaining job independently decides to join the
queue to be serviced with probability p = d/n, where d < 1 is a constant. Each job has a
processing time of 1 and at each time the server services one job, if the queue is nonempty.
Show that with high probability, no job waits more than Ω(lnn) time to be serviced once
it joins the queue.

Exercise 8.46 Consider G (n, p). Show that there is a threshold (not necessarily sharp)
for 2-colorability at p = 1/n. In particular, first show that for p = d/n with d < 1, with
high probability G(n, p) is acyclic, so it is bipartite and hence 2-colorable. Next, when
pn → ∞, the expected number of triangles goes to infinity. Show that in that case, there
is a triangle almost surely and therefore almost surely the graph is not 2-colorable.

Exercise 8.47 A vertex cover of size k for a graph is a set of k vertices such that one end
of each edge is in the set. Experimentally play with the following problem. For G(20, 1

2
),

for what value of k is there a vertex cover of size k?

Exercise 8.48 Construct an example of a formula which is satisfiable, but the SC heuris-
tic fails to find a satisfying assignment.

Exercise 8.49 In G(n, p), let xk be the number of connected components of size k. Using
xk, write down the probability that a randomly chosen vertex is in a connected component
of size k. Also write down the expected size of the connected component containing a
randomly chosen vertex.

Exercise 8.50 Describe several methods of generating a random graph with a given degree
distribution. Describe differences in the graphs generated by the different methods.
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Exercise 8.51 Consider generating a random graph adding one edge at a time. Let n(i,t)
be the number of components of size i at time t.

n(1, 1) = n

n(1, t) = 0 t > 1

n(i, t) = n(i, t− 1) +
∑ j(i− j)

n2
n (j, t− 1)n (i− j, t− 1)− 2i

n
n (i)

Compute n(i,t) for a number of values of i and t. What is the behavior? What is the
sum of n(i,t) for fixed t and all i? Can you write a generating function for n(i,t)?

Exercise 8.52 The global clustering coefficient of a graph is defined as follows. Let dv be
the degree of vertex v and let ev be the number of edges connecting pairs of vertices that
are adjacent to vertex v. The global clustering coefficient c is given by

c =
∑
v

2ev
dv(dv−1)

.

In a social network, for example, it measures what fraction of pairs of friends of each
person are themselves friends. If many are, the clustering coefficient is high. What is c
for a random graph with p = d

n
in the limit as n goes to infinity? For a denser graph?

Compare this value to that for some social network.

Exercise 8.53 Consider a structured graph, such as a grid or cycle, and gradually add
edges or reroute edges at random. Let L be the average distance between all pairs of
vertices in a graph and let C be the ratio of triangles to connected sets of three vertices.
Plot L and C as a function of the randomness introduced.

Exercise 8.54 Consider an n× n grid in the plane.

1. Prove that for any vertex u, there are at least k vertices at distance k for 1 ≤ k ≤
n/2.

2. Prove that for any vertex u, there are at most 4k vertices at distance k.

3. Prove that for one half of the pairs of points, the distance between them is at least
n/4.

Exercise 8.55 Recall the definition of a small-world graph in Section 8.10. Show that
in a small-world graph with r ≤ 2, that there exist short paths with high probability. The
proof for r = 0 is in the text.

Exercise 8.56 Change the small worlds graph as follows. Start with a n× n grid where
each vertex has one long-distance edge to a vertex chosen uniformly at random. These are
exactly like the long-distance edges for r = 0. Instead of having grid edges, we have some
other graph with the property that for each vertex, there are Θ(t2) vertices at distance t
from the vertex for t ≤ n. Show that, almost surely, the diameter is O(lnn).
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Exercise 8.57 Consider an n-node directed graph with two random out-edges from each
node. For two vertices s and t chosen at random, prove that with high probability there
exists a path of length at most O(lnn) from s to t.

Exercise 8.58 Explore the concept of small world by experimentally determining the an-
swers to the following questions:

1. How many edges are needed to disconnect a small world graph? By disconnect we
mean at least two pieces each of reasonable size. Is this connected to the emergence
of a giant component?

2. How does the diameter of a graph consisting of a cycle change as one adds a few
random long-distance edges?

Exercise 8.59 In the small world model with r < 2, would it help if the algorithm could
look at edges at any node at a cost of one for each node looked at?

Exercise 8.60 Make a list of the ten most interesting things you learned about random
graphs.
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9 Topic Models, Non-Negative Matrix Factorization,

Hidden Markov Models, and Graphical Models

In the chapter on machine learning, we saw many algorithms for fitting functions to
data. For example, suppose we want to learn a rule to distinguish spam from non-spam
email, and we are able to represent email messages as points in Rd such that the two
categories are linearly separable. Then, we saw we can run an algorithm such as Per-
ceptron or Support Vector Machines to find a linear separator that correctly partitions
our training data. Furthermore, we can use arguments such as VC-dimension or online-
to-batch conversion to argue that if our training sample is large enough, then with high
probability, this translates to high accuracy on future data coming from the same proba-
bility distribution. An interesting point to note here is that these algorithms did not aim
to explicitly learn a model of the distribution D+ of spam emails or the distribution D−

of non-spam emails: instead, they just aimed to learn a separator to distinguish spam
from non-spam. In this chapter, we look at algorithms that, in contrast, aim to explicitly
learn a probabilistic model of the process used to generate the observed data. This is a
more challenging problem, and typically requires making additional assumptions about
the generative process. For example, in the chapter on high-dimensional space, we as-
sumed data comes from a Gaussian distribution, and we learned the parameters of the
distribution. In the chapter on SVD, we considered the more challenging case that data
comes from a mixture of k Gaussian distributions. Note that for k = 2, this can be
thought of as similar to the spam detection problem, but (a) harder in that we are not
told which training emails are spam and which are non-spam, but (b) easier in that we
assume D+ and D− are Gaussian distributions. In this chapter, we will examine other
important model-fitting problems, where we assume a specific type of process is used to
generate data, and then aim to learn the parameters of this process from observations.

9.1 Topic Models

Topic Modeling is the problem of fitting a certain type of stochastic model to a given
collection of documents. The model assumes (a) there exist r “topics”, (b) that each
document is a mixture of these topics, and (c) that the topic mixture of a given document
determines the probabilities of different words appearing in it. For example, for a col-
lection of news articles, the topics may be politics, sports, science, etc. A topic is just a
set of word frequencies. For example, for the topic of politics, words like “president” and
“election” may have high frequencies, whereas for the topic of sports, words like “batter”
and “goal” may have high frequencies. A document (news item) may be 60% politics and
40% sports, say. In that case, the word frequencies in the document are assumed to be
convex combinations of word frequencies for each of those topics with weights 0.6 and 0.4
respectively.

Each document is viewed as a “bag of words”. Namely, we disregard the order and
context in which each word occurs in the document and instead only list the frequency
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of occurrences of each word. Frequency is the number of occurrences of the word divided
by the total count of all words in the document; we will also refer to words as terms.36

Throwing away context information may seem wasteful, but this approach works fairly
well in practice. So now, each document is a vector with d components where d is the
total number of different terms that exist; each component of the vector is the frequency
of a particular term in the document.

We can represent a collection of n documents by a d × n matrix A called the term-
document matrix, with one column per document and one row per term. The topic model
hypothesizes that there exist r topics (r is typically small) such that each document is
a mixture of these topics. In particular, each document has an associated vector with r
components (non-negative with components summing to 1) telling us the fraction of the
document that is on each of the topics. E.g., in the example above, this vector will have
0.6 in the component for politics and 0.4 in the component for sports. We can arrange
these vectors as the columns of a r × n matrix C, called the topic-document matrix.
Finally, there is a third matrix B for the topics, which is d × r. Each column of B is a
vector corresponding to one topic; it is the vector of expected frequencies of terms in that
topic. The vector of expected frequencies for a document is then a convex combination
of the expected frequencies for topics, with the topic weights as given by the vector in C
for that document. In matrix notation, let P be a n× d matrix with column p·j denoting
the expected frequencies of terms in document j. Then, we have:

P = BC. (9.1)

Pictorially, we can represent this as:
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Topic Models are stochastic models that generate documents according to the ex-
pected frequency matrix P above. Pij is viewed as the probability that a random term of
document j is the ith term in the dictionary, and we make the assumption that terms in a
document are drawn independently. In general, B is assumed to be a fixed (not random)
matrix, whereas C is random. So, the process to generate n documents, each containing
m terms, is the following:

36In practice, terms are typically words or phrases, and not all words are chosen as terms. For example,
articles and simple verbs, pronouns etc. may not be considered terms.
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Definition 9.1 (Document Generation Process) Let D be a distribution over mix-
tures of topics (perhaps known). Let B be the term-topic matrix (unknown). Create a
d× n term-document matrix A as follows:

• Intialize aij = 0 for i = 1, 2, . . . , d; j = 1, 2, . . . , n.37

• For j = 1, 2, . . . , n in i.i.d. trials, do:

– Pick column j of C from distribution D. This will be the topic mixture for
document j, and induces p·j = Bc·j.

– For t = 1, 2, . . . ,m, do:

∗ Generate the tth term xt of document j from the multinomial distribution
over {1, 2, . . . , d} with probability vector p·j i.e., Prob(xt = i) = pij.

∗ Add 1/m to axt,j.

(Equivalently, draw m values x1, . . . , xm from the distribution p·j over {1, . . . , d}
and then let aij = 1

m

∑
t Ixt=i)

The assumption is that we are not given B or C. We are only given A and possibly r
and D. The topic modeling problem is to infer B and C from A. The probability distri-
bution D, of the columns of C is not yet specified. The most commonly used distribution
is the Dirichlet distribution which we will study in detail in Section 9.6.

Often, m is much smaller than n and d. I.e., we are given fewer terms of each document
than the dictionary size or the number of documents. This says that even though we have

E(aij|P ) = pij, (9.2)

so in expectation, A equals P , the variance is high. For example, for the case when say
pij = 1/d for all i, and m much less than

√
d, A·,j is likely to have 1/m in a random subset

of m coordinates since no term is likely to be picked more than once. Thus

||A·,j −P·,j||1 = m

(
1

m
− 1

d

)
+ (d−m)

(
1

d

)
≈ 2,

the maximum possible. This says that in l1 norm, which is the right norm when dealing
with probability vectors, the “noise” a·,j − p·,j is likely to be larger than p·,j. This is one
of the reasons why the model inference problem is hard. Lets write

A = BC +N, (9.3)

where, A is again the d×n data matrix (term-document matrix), B is a d× r term-topic
matrix and C is a r× n topic-document matrix. N stands for noise, which can have high
norm, namely, we could have the l1 norm of each column of N be as high as that of BC.

37We will use i to index into the set of all terms, j to index documents and l to index topics.
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There are two main ways of tackling the computational difficulty of finding B and C
from A. One is to make assumptions on the matrices B and C which are both realistic
and also admit efficient computation of B and C. The trade-off between these two de-
sirable properties is not easy to strike and we will see several approaches beginning with
the strongest assumptions on B and C in Section 9.2. The other way is to restrict N .
Here again, an idealized way would be to assume N = 0 which leads to what is called the
Non-negative Matrix Factorization (NMF) (Section 9.3) problem of factoring the given
matrix A into the product of two non-negative matrices B and C. With a further restric-
tion on B, called Anchor terms, (Section 9.4), there is a polynomial time algorithm to
do NMF. The strong restriction of N = 0 can be relaxed (Section ??), but at the cost of
computational efficiency.

The most common approach to topic modeling makes an assumption on the probabil-
ity distribution of C, namely, that the columns of C are independent Dirichlet distributed
random vectors. This is called the Latent Dirichlet Allocation model (Section 9.6), which
does not admit an efficient computational procedure. We show that the Dirichlet distri-
bution leads to many documents having a “primary topic,” whose weight is much larger
than average in the document. This motivates a model called the “Dominant Admixture
model” (9.7) which admits an efficient algorithm.

Note that on top of whatever other assumptions are being made, in all these analyses
we are assuming that in each document, the m terms in it are drawn iid as in Definition
9.1; this is perhaps the biggest assumption of all.

9.2 An Idealized Model

The Topic Model inference problem is in general computationally hard. But under
certain reasonable assumptions, it can be solved in polynomial time as we will see in this
chapter. We start here with a highly idealized model that was historically the first for
which a polynomial time algorithm was devised. In this model, we make two assumptions:

The Pure Topic Assumption: Each document is purely on a single topic. I.e., each
column j of C has a single entry equal to 1, and the rest of the entries are 0.

Separability Assumption: The sets of terms occurring in different topics are disjoint.
I.e., for each row i of B, there is a unique column l with bil 6= 0.

Under these assumptions, clearly the data matrix A has a block structure. Let Tl
denote the set of documents on topic l and Sl the set of terms occurring in topic l. After
rearranging columns and rows so that the rows in each Sl occur consecutively and the
columns of each Tl occur consecutively (note: this is only to help conceptualize; in reality,
we do not know either Sl or Tl ), A looks like:
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A =



T1 T2 T3

∗ ∗ ∗ 0. 0 0 0 0 0
S1 ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0

S2 0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗

S3 0 0 0 0 0 0 ∗ ∗ ∗
0. 0 0 0 0 0 ∗ ∗ ∗


Clearly, if we can solve the Clustering problem of partitioning the set of documents

into r clusters, one for each topic (namely, into T1, T2, . . . , Tr), we can take the average of
each cluster and that should be a good approximation to the corresponding column of B.
It would also suffice to find the sets Sl, since from them we could read off the sets Tl. We
now formally state the document generation process under the Pure Topic Assumption
and the associated clustering problem. Note that under the Pure Topics Assumption, the
distribution D over columns of C is specified just by the probability that we pick each
topic to be the only topic of a document. Let α1, α2, . . . , αr be these probabilities.

Document Generation Process under Pure Topics Assumption:

• Let w1, w2, . . . , wd be the list of all terms. Intialize all aij to zero.

• For j = 1, 2, . . . , n, do:

– Pick l ∈ {1, 2, . . . , r} from the distribution given by {α1, α2, . . . , αr}.
– For t = 1, 2, . . . ,m:

∗ Generate the tth term xt of document j from the distribution given by
column l of B. I.e., Prob(xt = i) = bil.

∗ Add 1/m to axt,j.

(Equivalently, draw m values x1, . . . , xm from the distribution b·l over
{1, . . . , d} and then let aij = 1

m

∑
t Ixt=i)

Definition 9.2 (Clustering Problem) Given A generated as above and r, partition
{1, 2, . . . , n} into r clusters, each specified by a topic (i.e., into T1, T2, . . . , Tr). Approx-
imate Version: Partition into r clusters, where at most εn of the j ∈ {1, 2, . . . , n} are
mis-clustered.

The approximate version of Definition 9.2 will suffice since all we are doing is tak-
ing the average of the document vectors in each cluster j and returning the result as
our approximation to column j of B. Note that even if we clustered perfectly, the aver-
age will still only be approximately (and not necessarily exactly) the column of B. We
now show how we can find the Sl, which then can be used to solve the Clustering Problem.
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Construct a graph G on d vertices, with one vertex per term, and put an edge between
two vertices if they co-occur in any document. By the separability assumption, we know
that there are no edges between vertices belonging to different Sl. This means that if each
Sl is a connected component in this graph, then we will be done. Note that we need to
assume m ≥ 2 (each document has at least two words) since if all documents have just
one word, there will be no edges in the graph at all and the task is hopeless.

Let us now focus on a specific topic l and ask how many documents nl we need to
see so that with high probability, Sl is a connected component. One annoyance here is
that some words may have very low probability and not become connected to the rest of
Sl. On the other hand, words of low probability can’t cause much harm since they are
unlikely to be the only words in a document, and so it doesn’t matter that much if we
fail to cluster them. We make this argument formal here.

Let ε < (1/3)m be some small quantity and define γ = ε1/m < 1/3. Consider a parti-
tion of Sl into two subsets W and W = Sl \W that each have probability mass at least γ
in the distribution b·l over terms in topic l. Suppose that for every such partition, there
is at least one edge between W and W . This would imply that the largest connected
component Ŝl in Sl must have probability mass at least 1 − γ. In particular, if Ŝl had
probability mass between γ and 1 − γ then using W = Ŝl would violate the assumption
about partitions, and if Ŝl had probability mass less than γ then one could create a union
of connected components W that violates the assumption. Since Prob(Ŝl) ≥ 1 − γ, the
probability that a new random document of topic l contains only words not in Ŝl is at
most γm = ε. Thus, if we can prove the statement about partitions, we will be able to
correctly cluster nearly all new random documents.

To prove the statement about partitions, fix some partition of Sl into W and W that
each have probability mass at least γ. The probability that no document creates an edge
between W and W is(

Prob(W )m + Prob(W )m
)nl ≤ (γm + (1− γ)m)nl

≤ ((1− γ/2)m)nl

≤ e−γmnl/2

where the first inequality is due to convexity and the second is a calculation. Now, since
there are at most 2d different possible partitions of Sl into W and W , the union bound
ensures at most a δ probability of failure by having

2de−γmnl/2 ≤ δ.

This in turn is satisfied for

mnl ≥
2

γ

(
d ln 2 + ln

1

δ

)
.

Thus, we have proven the following result.
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Lemma 9.1 If nlm ≥ 2
γ

(
d ln 2 + ln 1

δ

)
, then with probability at least 1 − δ, the largest

connected component in Sl has probability mass at least 1 − γ. This in turn implies that
the probability we fail to correctly cluster a new random document of topic l is at most
ε = γ1/m.

9.3 Non-Negative Matrix Factorization - NMF

We saw in Section 9.1, while E(A|B,C) = P = BC, the variance can be high. Write

A = BC +N,

where, N stands for noise. In topic modeling, N can be high. But it will be useful to first
look at the problem when there is no noise. This can be thought of as the limiting case
as the number of words per document goes to infinity.

Suppose we have the exact equations A = BC, where A is the given matrix which
has all column sums equal to 1. Given A and the number of topics r, can we find B
and C such that A = BC where B and C have non-negative entries? This is called the
Non-negative Matrix Factorization (NMF) problem and has applications besides topic
modeling. Note that if B and C are allowed to have negative entries, we can do Singular
Value Decomposition on A and just use the top r singular vectors of A.

Before discussing NMF, we will take care of one technical issue. In topic modeling,
besides requiring B and C to be non-negative, we have additional constraints stemming
from the fact that frequencies of terms in one particular topic are non-negative reals
summing to one, and that the fractions of each topic that a particular document is on are
also non-negative reals summing to one. All together, the constraints are:

1. A = BC.

2. The entries of B and C are all non-negative.

3. Columns of both B and C sums to one.

It will suffice to ensure the first two conditions.

Lemma 9.2 The problem of finding a factorization BC of A where the column of A are
one satisfying the three conditions above is reducible to the NMF problem of finding a
factorization BC satisfying conditions (1) and (2) above.

Proof: Suppose we have a factorization BC that satisfies (1) and (2) of a matrix A
whose columns each sum to one. We can multiply the l th column of B by a positive
real number and divide the l th row of C by the same real number without violating
A = BC. By doing this, we may assume that each column of B sums to one. Now we
have aij =

∑
l bilclj which implies

∑
i aij =

∑
i,l bilclj =

∑
l clj, the sum of the j column of

C. But,
∑

i aij is 1. And so, C also has column sums equal to one; thus we get (3).
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Given an d × n matrix A and an integer r, the exact NMF problem is: Determine
whether there exists a factorization of A into BC, where, B is an d × r matrix with
non-negative entries and C is r × n matrix with non-negative entries and if so, find such
a factorization.38

Non-negative matrix factorization is a general problem and there are many heuristic
algorithms to solve the problem. But in general, they suffer from one of two problems -
they could get stuck at local optima which are not solutions or take exponential time. In
fact, the NMF problem is NP-hard. But in practice, often r is much smaller than n, d.
We show first that while the NMF problem as formulated above is a non-linear problem
in r(n+d) unknowns (the entries of B,C), it can be reformulated as a non-linear problem
with just 2r2 unknowns under the simple non-degeneracy assumption that A has rank
r. This, in turn, will allow for an algorithm that runs in polynomial time when r is a
constant.

Lemma 9.3 If A has rank r, then the NMF problem can be formulated as a problem with
2r2 unknowns. Using this, the exact NMF problem can be solved in polynomial time if r
is constant.

Proof: If A = BC, then, each row of A is a linear combination of the rows of C. So we
have that the space spanned by the rows of A must be contained in the space spanned by
the rows of C. The latter space has dimension at most r, while, the former has dimension r
by assumption. So they must be equal. Thus every row of C must be a linear combination
of the rows of A. Choose any set of r independent rows of A to form a r ×m matrix A1.
Then C = SA1 for some r × r matrix S. By analogous reasoning, if A2 is a n× r matrix
of r independent columns of A, there is a r × r matrix T such that B = A2T . Now we
can easily cast NMF in terms of unknowns S and T :

A = A2TSA1 ; (SA1)ij ≥ 0 ; (A2T )kl ≥ 0 ∀i, j, k, l.

It remains to solve the non-linear problem in 2r2 variables. There is a classical algo-
rithm which solves such problems in time exponential only in r2 (polynomial in the other
parameters). In fact, there is a logical theory, called the Theory of Reals, of which this
is a special case and any problem in this theory can be solved in time exponential in the
number of variables. We do not give details here.

9.4 NMF with Anchor Terms

Besides the special case when r is small, there is another important case of NMF in
topic modeling which can be solved efficiently. This is the case when there are anchor
terms. An anchor term for a topic is a term which occurs in that topic and does not occur
in any other topic. For example, the term “batter” may an anchor term for the topic
baseball and “election” for the topic politics. Consider the case that each topic has an

38B’s columns form a “basis” in which A’s columns can be expressed as non-negative linear combina-
tions, the “coefficients” being given by matrix C.
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anchor term. This assumption is weaker than the separability assumption of Section 9.2;
indeed, that assumption translates to saying that all terms are anchor terms.

In matrix notation, the assumption that each topic has an anchor term says that for
each column of the term-topic matrix B, there is a row whose sole non-zero entry is in
that column.

Definition 9.3 (Anchor Term) For each l = 1, 2, . . . r, there is an index i(l) such that

bi(l),l 6= 0 and ∀l′ 6= l bi(l),l′ = 0 .

In this case, it is easy to see that each row of the topic-document matrix C has a
scalar multiple of it occurring as a row of the given term-document matrix A. Here is an
illustrative diagram:


0.3× c4

A

0.2× c2


=


election 0 0 0 0.3

B

batter 0 0.2 0 0




← c1 →
← c2 →

← c4 →

 .

If we knew which rows of A were copies of rows of C, call these special rows of A,
we would be done since then we could find C and once C is known, we can solve linear
equations and inequalities (A = BC; bij ≥ 0) to get B. The following lemma shows that
indeed we can find which rows of A are special, after we make one modification. Suppose
some row of C is a non-negative linear combination of the other rows of C. Then, we can
eliminate that row of C as well as the corresponding column of B (and suitably modify
the other columns of B) and still maintain A = BC. For example, if:

c5 = 4× c3 + 3× c6,

then delete row 5 of C, then add 4 times column 5 of B to column 3 of B and add 3 times
column 5 of B to column 6 of B and thereafter delete column 5 of B.

After repeating this, we may assume that each row of C is positively independent of
the other rows of C, i.e., it cannot be expressed as a non-negative linear combination of
the other rows. We still have a scaled copy of each row of C in A. Further, the other
rows of A are all non-negative linear combinations of rows of C and thus are non-negative
linear combinations of the special rows of A.

Lemma 9.4 Suppose A has a non-negative factorization A = BC, where the rows of C
are positively independent. Further, suppose for each l = 1, 2, . . . , r there is an index i(l)
such that the only non-zero entry in row i(l) of B is in column l. If for some l, more
than one such index exists, let i(l) be the least such index. Call {i(1), i(2), . . . , i(r)} the
“special rows” of A. Then,
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1. for each l = 1, 2, . . . , r, row i(l) of A is a scalar multiple of row l of C;

2. row i of A is special if and only if

(a) it is not a scalar multiple of a previous row of A and

(b) it is not a non-negative combination of rows of A which are not scalar multiples
of it;

3. all special rows can be identified in polynomial time.

Proof: (1) is obvious. To prove the “if” part of (2): Each row of A is a non-negative
combination of the rows of C, since A = BC and B is non-negative. If i 6= i(l), for any l,
then, either ai,· is a scalar multiple of some ai(l),· or if not, (since it is a non-negative combi-
nation of the rows of C) by (1), it is a non-negative combination of {ai(l),· , l = 1, 2, . . . , r}.

Now we prove the “only if” part of (2). Suppose i = i(l). By definition, ai,· is not
a scalar multiple of a previous row. Suppose for contradiction that ai,· is a non-negative
combination of rows of A which are not scalar multiples of it, say,

ai,· =
∑
i′∈I

αi′ai′,·,

where none of the ai′,· is a scalar multiple of ai,· and αi′ > 0 for all i′ ∈ I. Then, each
ai′,· contains a positive multiple of some cl′,·, l

′ 6= l, and therefore so does ai,· (since all
coefficients are non-negative and there are no cancelations.). Now, ai,· is a scalar multiple
of cl,· and so we have an equation:

βcl,· = γcl′,· + x,

where, β, γ are non-negative and x is a non-negative combination of the rows of A and
hence of C. We can bring all cl,· terms to the left hand side of this equation, thus ex-
pressing cl,· as a non-negative combination of other rows of C producing a contradiction.

To prove (3): We may at the outset find and remove all rows of A which are scalar mul-
tiples of previous rows in polynomial time. Now what is left are just the special rows and
non-negative combinations of them. To check if ai,· is a non-negative linear combination
of other rows, all we need to check is: if there are real numbers x1, x2, . . . xi−1, xi+1, . . . xn
such that ∑

j 6=i

xjaj = ai xj ≥ 0.

This is a linear program and can be solved in polynomial time.

While the algorithm runs in polynomial time, it requires solving one linear program
per term. An improved method solves just one linear program.We do not present it here.
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Figure 9.1: Geometry of Topic Modeling. The corners of the triangle are the columns
of B. Circles are columns of A with primary topic 1, squares with primary topic 2 and
ellipses with primary topic 3. Columns of BC (not shown) are always inside the big
triangle, but not necessarily the columns of A.

9.5 Hard and Soft Clustering

In Section 9.2, we saw that under the assumptions that each document is purely on
one topic and each term occurs in only one topic, approximately finding B was reducible
to the problem of clustering documents according to their topic. Clustering here has the
usual meaning of partitioning the set of documents into clusters. We call this hard clus-
tering, meaning each data point is to be assigned to a single cluster.

The more general situation is that each document has a mixture of several topics. We
may still view each topic as a cluster and each topic vector, i.e., each column of B, as
a “cluster center”. But now, each document belongs fractionally to several clusters, the
fractions being given by the column of C corresponding to the document. We may then
view p·,j = Bc·,j as the “cluster center” for document j. The document vector a·,j is its
cluster center plus an offset or noise n·,j.

Barring ties, each column of C has a largest entry, i.e., for each j, there is an l so
that clj > cl′,j for all l′ 6= l. This l can be thought of as the primary topic of document j
in topic modeling. Identifying the primary topic of each document is a “hard clustering”
problem which intuitively should be a useful step in solving the “soft clustering” problem
of finding the fraction of each cluster each data point belongs to. “Soft Clustering” just
refers to finding B and C so that N = A− BC is small. So in this sense, soft clustering
is equivalent to NMF.
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We will see in sections 9.8 and 9.9 that indeed the intuition of doing hard clustering
to identify the primary topic first and using that to solve the soft clustering problem can
be carried out under some assumptions. The primary topic of each document is used to
find the “catchwords” of each topic, the important words in a weaker sense than anchor
words, and then using the catchwords to find the term-topic matrix B and then C. But
as stated earlier, the general NMF problem is NP-hard. So, we make some assumptions
before we can solve the problem. For this, we first look at the most studied topic model
- Latent Dirichlet Allocation (LDA) which guides us towards reasonable assumptions.

9.6 The Latent Dirichlet Allocation Model for Topic Modeling

The most widely used model for topic modeling is the Latent Dirichlet Allocation
(LDA) model. In this model, the topic weight vectors of the documents, the columns of
C, are picked independently from what is known as a Dirichlet distribution. The term-
topic matrix B is fixed. It is not random. The Dirichlet distribution has a parameter ν
called the “concentration parameter”, which is a real number in (0, 1), typically set to
1/r. For each vector v with r non-negative components summing to one,

Prob density ( column j of C = v) =
1

g(ν)

r∏
l=1

vν−1
l ,

where, g(ν) is the normalizing constant so that the total probability mass is one. Since
ν < 1, if any vl = 0, then the probability density is infinite.

Once C is generated, the LDA model hypothesizes that the matrix

P = BC

acts as the probability matrix for the data matrix A, namely,

E(A|P ) = P.

Assume the model picks m terms from each document. The m terms for document j
are picked in m independent identically distributed trials. Each trial is according to
the multinomial distribution with probability vector p·,j; so the probability that the first
term we pick to include in the document j is the ith term in the dictionary is pij. Then,
aij is set equal to the fraction out of m of the number of times term i occurs in document j.

The Dirichlet density favors low vl, but since the vl have to sum to one, there is at
least one component that is high. We show that if ν is small, then with high probability,
the highest entry of the column is typically much larger than the average. So, in each
document, one topic, which may be thought as the “primary topic” of the document, gets
disproportionately high weight. To prove this, we have to work out some properties of
the Dirichlet distribution. The first property says that the marginal probability density
of each coordinate of a Dirichlet distributed random variable has the beta distribution:
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Lemma 9.5 Suppose the joint distribution of y = (y1, y2, . . . , yr) is the Dirichlet distri-
bution with concentration parameter ν. Then, the marginal probability density q(y) of y1

is given by

q(y) =
Γ(rν + 1)

Γ(ν)Γ((r − 1)ν + 1)
yν−1(1− y)(r−1)ν , ν ∈ (0, 1].

Proof: By definition of the marginal,

q(y) =
1

g(ν)
yν−1

∫
y2+y3+···+yr=1−y

(y2 y3 · · · yr)ν−1 dy2 dy3 . . . dyr.

Put zl = yl/(1− y). With this change of variables,

q(y) =
1

g(ν)
yν−1(1− y)(r−1)ν

(∫
z2+z3+···+zr=1−y

(z2z3 · · · zr)ν−1 dz2 dz3 . . . dzr

)
.

The quantity inside the parentheses is independent of y, so for some c we have

q(y) = cyν−1(1− y)(r−1)ν .

Since
∫ 1

0
q(y) dy = 1, we must have

c =
1∫ 1

0
yν−1(1− y)(r−1)ν

=
Γ(rν + 1)

Γ(ν)Γ((r − 1)ν + 1)
.

Lemma 9.6 Suppose the joint distribution of y = (y1, y2, . . . , yr) is the Dirichlet distri-
bution with parameter ν ∈ (0, 1). For ζ ∈ (0, 1),

Prob (y1 ≥ 1− ζ) ≥ 0.85νζ(r−1)ν+1

(r − 1)ν + 1
.

Hence for ν = 1/r, we have Prob(y1 ≥ 1− ζ) ≥ 0.4ζ2/r. If also, ζ < 0.5, then,

Prob (Maxrl=1yl ≥ 1− ζ) ≥ 0.4ζ2.

Proof: Since ν < 1, we have yν−1 > 1 for y < 1 and so q(y) ≥ c(1− y)(r−1)ν , so∫ 1

1−ζ
q(y) dy ≥ c

(r − 1)ν + 1
ζ(r−1)ν+1.

To lower bound c, note that Γ(ν) ≤ 1/ν for ν ∈ (0, 1). Also, Γ(x) is an increasing function
for x ≥ 1.5, so if (r − 1)ν + 1 ≥ 1.5, then, Γ(rν + 1) ≥ Γ((r − 1)ν + 1) and in this case,
the first assertion of the lemma follows. If (r−1)ν+ 1 ∈ [1, 1.5], then, Γ((r−1)ν+ 1) ≤ 1
and Γ(rν + 1) ≥ min

z∈[1,2]
Γ(z) ≥ 0.85, so again, the first assertion follows.

If now, ν = 1/r, then (r − 1)ν + 1 < 2 and so ζ(r−1)ν+1/((r − 1)ν + 1) ≥ ζ2/2. So the
second assertion of the lemma follows easily. For the third asserion, note that yl > 1− ζ,
l = 1, 2, . . . , r are mutually exclusive events for ζ < 0.5 (since at most one yl can be

greater than 1/2), so Prob
(

r
max
l=1

yl ≥ 1− ζ
)

= r Prob(y1 > 1− ζ).
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For example, from the last lemma, it follows that

1. With high probabilty, a constant fraction of the documents have a primary topic of
weight at least 0.6. In expectation, the fraction of documents for which this holds
is at least 0.4(0.6)2.

2. Also with high probability, a smaller constant fraction of the documents are nearly
pure (weight at least 0.95 on a single topic). Take ζ = 0.05.

Now, if n, the total number of documents, is large, there will be many nearly pure
documents. Since for nearly pure documents, cl,j ≥ 0.95, (BC)·,j = B·,l + ∆, where,
||∆||1 ≤ 0.05. If we could find the nearly pure documents for a given topic l, then the
average of the A columns corresponding to these documents will be close to the average
of those columns in the matrix BC (though this is not true for individual columns) and
it is intuitively clear that we would be done.

We pursue (1) and (2) in the next section, where we see that under these assumptions,
plus one more assumption, we can indeed find B.

More generally, the concentration parameter may be different for different topics. We
then have ν1, ν2, . . . , νr so that

Prob density ( column j of C = v) ∝
r∏
l=1

vνl−1
l ,

The model fitting problem for LDA given A, find the B, the term-topic matrix, is in
general NP-hard. There are heuristics, however, which are widely used. LDA is known
to work well in several application areas.

9.7 The Dominant Admixture Model

In this section, we formulate a model with three key assumptions. The first two are
motivated by Latent Dirichlet Allocation, respectively by (1) and (2) of the last section.
The third assumption is also natural; it is more realistic than the anchor words assump-
tions discussed earlier. This section is self-contained and no familiarity with LDA is
needed.

We first recall the notation. A is a d× n data matrix with one document per column,
which is the frequency vector of the d terms in that document. m is the number of words
in each document. r is the “inner dimension”, i.e., B is d× r and C is r × n. We always
index topics by l and l′, terms by i, and documents by j.

We give an intuitive description of the model assumptions first and then make formal
statements.
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1. Primary Topic Each document has a primary topic. The weight of the primary
topic in the document is high and the weight of each non-primary topic is low.

2. Pure Document Each topic has a at least one pure document that is mostly on
that topic.

3. Catchword Each topic has a at least one catchword, which has high frequency in
that topic and low frequency in other topics.

In the next section, we state quantitative versions of the assumptions and show that
these assumptions suffice to yield a simple polynomial time algorithm to find the primary
topic of each document. The primary topic classification can then be used to find B
approximately, but this requires a further assumption (4) below, which is a robust version
of the Pure Document assumption.

Let’s provide some intuition for how we are able to do the primary topic classification.
By using the primary topic and catchword assumptions, we can show (quantitative version
in Claim 9.1 below) that if i is a catchword for topic l, then there is a threshold νi, which
we can compute for each catchword, so that for each j with primary topic l, pij is above
νi and for each j whose primary topic is not l, pij is substantially below νi. So, if

1. we were given P , and

2. knew a catchword for each topic and the threshold, we can find the primary topic
of each document.

We illustrate the situation in Figure 9.4, where rows 1, 2, . . . , r of P correspond to
catchwords for topics 1, 2, . . . , r and we have rearranged columns in order of primary
topic. H stands for a high entry and L for a low entry.

H H H L L L L L L L L L
L L L H H H L L L L L L
L L L L L L H H H L L L
L L L L L L L L L H H H
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .


(9.4)

We are only given A, not P . While E(A|P ) = P , A could be far off from P . In fact, if
in column j of P , there are many entries smaller than c/m in A (since we are doing only
m multinomial trials), they could all be zeros and so are not a good approximation to the
entries of P·,j. However, note that if pij > c/m, for a large value c, then we would have
aij ≈ pij. Think of tossing a coin m times whose probability of heads is pij. If pij ≥ c/m,
then the number of heads one gets is close to pijm. We will assume c larger than Ω(log(nd))
for catchwords so that for every such i and j we have pij ≈ aij. See the formal catchwords
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assumption in the next section. This addresses (1), namely, A ≈ B, at least in these rows.

One can ask if this is a reasonable assumption. If m in in the hundreds, the assump-
tion is arguably reasonable. But a weaker and more reasonable assumption would be that
there is a set of catchwords, not just one, with total frequency higher than c/m. However,
here we use the stronger assumption of a single high frequency catchword.

(2) is more difficult to address. Let l(i) = arg maxrl′=1 bil′ . Let Tl be the set of j with
primary topic l. Whether or not i is a catchword, the primary topic assumption will imply
that pij does not drop by more than a certain factor α among j ∈ Tl(i). We prove this
formally in Claim 9.1 of Section 9.8. That claim also proves that if i is a catchword for
topic l, that there is a sharp drop in pij between j ∈ Tl and j /∈ Tl.

But for non-catchwords, there is no guarantee of a sharp fall in pij between j ∈ Tl(i)
and j /∈ Tl(i). However, we can identify for each i, where the first fall of roughly α factor
from the maximum occurs in row i of A. For catchwords, we show below (9.9) that this
happens precisely between Tl(i) and [n] \ Tl(i). For non-catchwords, we show that the fall
does not occur among j ∈ Tl(i). So, the minimal sets where the fall occurs are the Tl and
we use this to identify them. We call this process Pruning.

9.8 Formal Assumptions

Parameters α, β, ρ and δ are real numbers in (0, 0.4] satisfying

β + ρ ≤ (1− 3δ)α. (9.5)

(1) Primary Topic There is a partition of [n] into T1, T2, . . . , Tk with:

clj

{
≥ α for j ∈ Tl
≤ β. for j /∈ Tl.

. (9.6)

(2) Pure Document For each l, there is some j with

clj ≥ 1− δ.

(3) Catchwords For each l, there is at least one catchword i satisfying:

bil′ ≤ ρbil for l′ 6= l (9.7)

bil ≥ ν , where, ν =
c log(10nd/δ)

mα2δ2
, c constant. (9.8)

Let
l(i) = arg

r
max
l′=1

bil′ . (9.9)

Another way of stating the assumption bil ≥ ν is that the expected number of times term
i occurs in topic l among m i.i.d. trials is at least c log(10nd/δ)/α2δ2 which grows only
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logarithmically in n and d. As stated at the end of the last section, the point of requiring
bil ≥ ν for catchwords is so that using the Hoeffding-Chernoff inequality, we can assert
that aij ≈ pij. We state the Hoeffding-Chernoff inequality in the form we use it:

Lemma 9.7

Prob(|aij − pij| ≥ δαMax(pij, ν)/4) ≤ δ

10nd
.

So, with probability at least 1− (δ/10), we have

|aij − pij| ≤ δαMax(ν, pij)/4 ∀i, j

simultaneously. After paying the failure probability of δ/10, we henceforth assume that
the above holds.

Proof: Since aij is the average of m independent Bernoulli trials, each with expectation
pij, the Hoeffding-Chernoff inequality asserts that

Prob (|aij − pij| ≥ ∆) ≤ 2 exp

(
−cmMin

(
∆2

pij
,∆

))
.

Plugging in ∆ = αδMax(pij, ν)/4, the first statement of the lemma follows with some
calculation. The second statement is proved by a union bound over the nd possible (i, j)
values.

Algorithm

1. Compute Thresholds: νi = α(1− δ) max
j
aij.

2. Do thresholding: Define a matrix Â by

âij =

{
1 if aij ≥ νi and νi ≥ να

(
1− 5δ

2

)
.

0 otherwise .
.

3. Pruning: Let Ri = {j|âij = 1}. If any Ri strictly contains another, set all

entries of row i of Â to zero.

Theorem 9.8 For i = 1, 2, . . . , d, let Ri = {j|âij = 1} at the end of the algorithm. Then,
each non-empty Ri = Tl(i), with l(i) as in (9.9).

Proof: We start with a lemma which proves the theorem for catchwords. This is the
bulk of the work in the proof of the theorem.

Lemma 9.9 If i is a catchword for topic l, then Ri = Tl.

315



Proof: Assume throughout this proof that i is a catchword for topic l. The proof consists
of three claims. The first argues that for j ∈ Tl, pij is high and for j /∈ Tl, pij is low. The
second claim argues the same for aij instead of pij. It follows from the Hoeffding-Chernoff
inequality since aij is just the average of m Bernoulli trials, each with probability pij.
The third claim shows that the threshold computed in the first step of the algorithm falls
between the high and the low.

Claim 9.1 For i, a catchword for topic l,

bil ≥ pij ≥ bilα for j ∈ Tl
pij ≤ bilα(1− 3δ) for j /∈ Tl.

For j ∈ Tl, using (9.6)

pij =
r∑

l′=1

bil′cl′,j ∈ [bilα, bil]

since bil = max
l′

bil′ . For j /∈ Tl,

pij = bilclj +
∑
l′ 6=l

bil′cl′j ≤ bilclj + ρbil(1− clj) ≤ bil(β + ρ) ≤ bilα(1− 3δ), (9.10)

where, the first inequality is from (9.7) and the second inequality is because subject to the
constraint clj ≤ β imposed by the Primary Topic Assumption (9.6), bilclj + ρbil(1− clj) is
maximized when clj = β. We have also used (9.5).

Claim 9.2 With probability at least 1− δ/10, for every l and every catchword i of l:

aij

{
≥ bilα(1− δ/4) for j ∈ Tl
≤ bilα(1− (11/4)δ), for j /∈ Tl

Proof: Suppose the first inequality does not hold. Then, since pij ≥ bilα by Claim
(9.1), |aij − pij| ≥ δαbil/4 by Claim (9.1). Since i is a catchword, bil ≥ ν and so
|aij − pij| ≥ δαbil/4 ≥ (δαMax(pij, ν)/4) and we get the first inequality of the current
claim using Lemma 9.7.

For the second inequality: for j /∈ Tl, pij ≤ bilα(1 − 3δ) by Claim 9.1 and so if this
inequality is violated, |aij − pij| ≥ bilαδ/4 and we get a contradiction to Lemma (9.7).

Claim 9.3 With probability at least 1−δ, for every topic l and every catchword i of topic l,
the νi computed in step 1 of the algorithm satisfies: νi ∈

(
(1−(5/2)δ)bilα , bilα(1−δ/2)

)
.
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Proof: If i is a catchword for topic l and j0 a pure document for l, then

pij0 =
k∑

l′=1

bil′cl′j0 ≥ bilclj0 ≥ (1− δ)bil.

Applying Lemma 9.7, aij0 > (1− (3/2)δ)bil. Thus, νi computed in step 1 of the algorithm
satisfies νi > (1 − (3δ/2))(1 − δ)bilα ≥ (1 − (5/2)δ)αbil. Hence, âij is not set to zero for
all j. Now, since pij ≤ bil for all j, we have aij ≤ (1 + δ/4)bil by Lemma 9.7 implying

νi = Maxjaij(1− δ)α ≤ bil(1 + (δ/4))(1− δ)α ≤ bilα(1− δ/2).

Claims 9.2 and 9.3, complete the proof of Lemma 9.9.

The lemma proves Theorem 9.8 for catchwords. Note that since each topic has at least
one catchword, for each l, there is some i with Ri = Tl.

Suppose i is a non-catchword. Let a = maxj aij. If a < ν(1 − (5δ/2)) , then νi <

να(1− (5δ/2)) and the entire row of Â will be set to all zeros by the algorithm, so Ri = ∅
and there is nothing to prove. Assume that a ≥ ν(1 − (5δ/2)). Let j0 = arg maxj aij.
Then a = aij0 ≥ ν(1− (5δ/2)). We claim pi,j0 ≥ a(1− δ/2). If not, pij0 < a(1− δ/2) and

|aij0 − pij0| > max

(
pij0δ

4
,
ναδ

4

)
,

which contradicts Lemma 9.7. So,

bil ≥ pij0 ≥ ν(1− 3δ). (9.11)

Let l = l(i). Then

a(1− δ/2) ≤ pij0 =
r∑

l′=1

bil′cl′j0 ≤ bil.

Also, if j1 is a pure document for topic l, cl,j1 ≥ (1 − δ) so, pi,j1 ≥ bilcl,j1 ≥ bil(1 − δ).
Now, we claim that

ai,j1 ≥ bil(1− (3δ/2)). (9.12)

If not,

pij1 − aij1 > bil(1− δ)− bil(1− (3δ/2)) = bil(δ/2) ≥ max

(
νδ

4
,
pij1δ

4

)
,

contradicting Lemma 9.7. So (9.12) holds and thus,

a ≥ bil(1− (3δ/2)) (9.13)
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Now, for all j ∈ Tl, pij ≥ bilclj ≥ a(1− δ/2)α. So, by applying Lemma 9.7 again, we see
that for all j ∈ Tl,

aij ≥ a(1− δ)α.

By step 1 of the algorithm, νi = a(1 − δ)α, so aij ≥ νi for all j ∈ Tl. So, either Ri = Tl
or Tl ( Ri. In the latter case, the pruning step will set âij = 0 for all j, since topic l has
some catchword i0 for which Ri0 = Tl by Lemma 9.9.

9.9 Finding the Term-Topic Matrix

For this, we need an extra assumption, which we first motivate. Suppose as in Section
9.8, we assume that there is a single pure document for each topic. In terms of the Figure
9.1 of three topics, this says that there is a column of P close to each vertex of the tri-
angle. But the corresponding column of A can be very far from this. So, even if we were
told which document is pure for each topic, we cannot find the column of B. However, if
we had a large number of nearly pure documents for each topic, since the corresponding
columns of A are independent even conditioned on P , the average of these columns gives
us a good estimate of the column of B. We also note that there is a justification for
assuming the existence of a number of documents which are nearly pure for each topic
based on the Latent Dirichlet Allocation model, (See (2) of Section 9.6). The assumption
is:

Set of Pure Documents For each l, there is a set Wl of at least δn documents with

clj ≥ 1− δ

4
∀j ∈ Wl.

If we could find the set of pure documents for each topic with possibly a small fraction
of errors, we could average them. The major task of this section is to state and prove an
algorithm that does this. For this, we use the primary topic classification, T1, T2, . . . , Tr
from the last section. We know that a for catchword i of topic l, the maximum value of
pij, j = 1, 2, . . . , n occurs for a pure document and indeed if the assumption above holds,
the set of δn/4 documents with the top δn/4 values of pij should be all pure documents.
But to make use of this, we need to know the catchword, which we are not given. To
discover them, we use another property of catchwords. If i is a catchword for topic l,
then on Tl′ , l

′ 6= l, the values of pij are (substantially) lower. So we know that if i is a
catchword of topic l, then it has the property:

Property (XX) δn/4 th maximum value among pij, j ∈ Tl is substantially higher
than than the δn/4 th maximum value among pij, j ∈ Tl′ for any l′ 6= l.

We can computationally recognize property (XX) for A (not P ) and on the lines of
Lemma 9.7, we can show that it holds essentially for A if and only if it holds for P .
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But then, we need to prove a converse of the statement above, namely we need to
show that if Property (XX) holds for i and l, then i is a catchword for topic l. Since
catchwords are not necessarily unique, this is not quite true. But we will prove that any i
satisfying Property (XX) for topic l does have bil′ < αbil ∀l′ 6= l (Lemma 9.12) and so acts
essentially like a catchword. Using this, we will show that the δn/4 documents among all
documents with the highest values of aij for an i satisfying Property (XX), will be nearly
pure documents on topic l in Lemma 9.13 and use this to argue that their average gives
a good approximation to column l of B (Theorem 9.14).

The extra steps in the Algorithm: (By the theorem, the Tl, l = 1, 2, . . . , r are now
known.)

1. For l = 1, 2, . . . , r, and for i = 1, 2, . . . , d, let g(i, l) be the (1− (δ/4))/;/;th fractile of
{Aij : j ∈ Tl}. 39

2. For each l, choose an i(l), (we will prove there is at least 1) such that

g(i(l), l) ≥ (1− (δ/2))ν ; g(i(l), l′) ≤ (1− 2δ) α g(i(l), l) ∀l′ 6= l. (9.14)

3. Let Rl be the set of δn/4 j’s among j = 1, 2, . . . , n with the highest Ai(l),j.

4. Return B̃·,l = 1
|Rl|
∑

j∈Rl A·,j as our approximation to B·,l.

Lemma 9.10 i(l) satisfying (9.14) exists for each l.

Proof: Let i be a catchword for l. Then, since, ∀j ∈ Wl, pij ≥ bilclj ≥ bil(1 − (δ/4))
and bil ≥ ν, we have aij ≥ bil(1− (δ/2)) and so g(i, l) ≥ (1− (δ/2))bil ≥ (1− (δ/2))ν, by
Lemma 9.7. For j /∈ Tl,

aij ≤ bilα(1− (5δ/2))

by Claim 1.2 and so g(i, l′) ≤ bilα(1 − (5δ/2)). So g(i, l) satisfies both the requirements
of step 2 of the algorithm.

Fix attention on one l. Let i = i(l). Let

ρi =
r

max
k=1

bik.

Lemma 9.11 ρi ≥
(
1− 3

4
δ
)
ν.

Proof: We have pij =
∑r

k=1 bikckj ≤ ρi for all i. So, aij ≤ ρi+
αδ
4

max(ν, ρi), from Lemma
9.7. So, either, ρi ≥ ν whence the lemma clearly holds or ρi < ν and

∀j, aij ≤ ρi +
αδ

4
ν ∀j =⇒ g(i, l) ≤ ρi + (αδ/4)ν.

39The γth fractile of a set S of real numbers is the largest real number a so that at least γ|S| elements
of S are each greter than or equal to a.
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By definition of i(l), g(i, l) ≥ (1− (δ/2))ν, so

ρi +
αδ

4
ν ≥ (1− (δ/2))ν,

from which the lemma follows.

Lemma 9.12 bik ≤ αbil for all k 6= l.

Proof: Suppose not. Let
l′ = arg max

k:k 6=l
bik.

We have bil′ > αbil and

ρi = Max(bil, bil′) <
bil′

α
. (9.15)

Since for j ∈ Wl′ , at most δ/4 weight is put on topics other than l′,

∀j ∈ Wl′ , pij ≤ bil′(1−
δ

4
)) +

δ

4
ρi < bil′

(
1− δ

4
+

δ

4α

)
. (9.16)

Also, for j ∈ Wl′ ,

pij ≥ bil′cl′j ≥ bil′(1−
δ

4
). (9.17)

By Lemma 9.7,

∀j ∈ Wl′ , aij ≥ pij −
αδ

4
max(ν, pij) ≥ bil′(1−

δ

4
)− αδ

4

ρi
1− (3δ/4)

by Lemma 9.11

≥ bil′

(
1− 3

4
δ

)
, (9.18)

using (9.15) and δ ≤ 0.4. From (9.18), it follows that

g(i, l′) ≥ bil′

(
1− 3

4
δ

)
. (9.19)

Since pij ≤ ρi for all j, using Lemma 9.11,

∀j, aij ≤ ρi + (αδ/4)Max(ν, pij) ≤ ρi

(
1 +

αδ

4

1

1− (3δ/4)

)
< bil′

1 + (5δ/6)

α
,

by (9.15); this implies

g(i, l) ≤ bil′(1 + (5δ/6))

α
. (9.20)

Now, the defintion of i(l) implies

g(i, l′) ≤ g(i, l)α(1− 2δ) ≤ bil′(1 + (5δ/6))α(1− 2δ)/α ≤ bil′(1− δ)

contradicting (9.19) and proving Lemma 9.12.
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Lemma 9.13 For each j ∈ Rl of step 3 of the algorithm, we have

clj ≥ 1− 2δ.

Proof: Let J = {j : clj < 1− 2δ}. Take a j ∈ J . We argue that j /∈ Rl.

pij ≤ bil(1− 2δ) + 2δαbil ≤ bil(1− 1.2δ),

by Lemma 9.12 using α ≤ 0.4. So for j ∈ J , we have

aij ≤ bil(1− 1.2δ) +
αδ

4
max(ν, bil) < bil(1− δ).

But

∀j ∈ Wl, pij ≥ bil(1−
δ

4
) =⇒ aij ≥ bil(1− δ) =⇒ g(i, l) ≥ bil(1− δ).

So for no j ∈ J is aij ≥ g(i, l) and hence no j ∈ J belong sto Rl.

Theorem 9.14 Assume

n ≥ cd

mδ3
; m ≥ c

δ2
.

For all l, 1 ≤ l ≤ r, the b̂·,l returned by step 4 of the Algorithm satisfies

||b·,l − b̂·,l||1 ≤ 6δ.

Proof: Recall that BC = P . Let V = A− P . From Lemma 9.13, we know that for each
j ∈ Rl, clj ≥ 1− 2δ. So

P·,j = (1− γ)B·,l + v,

where, γ ≤ 2δ and v is a combination of other columns of B with ||v||1 ≤ γ ≤ 2δ. Thus,
we have that ∣∣∣∣∣

∣∣∣∣∣ 1

|Rl|
∑
j∈Rl

p·,j − b·,l

∣∣∣∣∣
∣∣∣∣∣
1

≤ 2δ. (9.21)

So it suffices now to show that∣∣∣∣∣
∣∣∣∣∣ 1

|Rl|
∑
j∈Rl

p·,j − a·,l

∣∣∣∣∣
∣∣∣∣∣
1

≤ 2δ. (9.22)

Note that for an individual j ∈ Rl, ||a·,j − p·,j||1 can be almost two. For example, if each
pi,j = 1/d, then, Aij would be 1/m for a random subset of m j ’s and zero for the rest.
What we exploit is that when we average over Ω(n) j ’s in Rl, the error is small. For this,
the independence of a·,j, j ∈ Rl would be useful. But they are not necessarily independent,
there being conditioning on the fact that they all belong to Rl. But there is a simple way
around this conditioning. Namely, we prove (9.22) with very high probability for each
R ⊆ [n], |R| = δn/4 and then just take the union bound over all

(
n

(δn/4)

)
such subsets.
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We know that E (a·,j) = p·,j. Now consider the random variable x defined by

x =
1

|R|

∣∣∣∣∣
∣∣∣∣∣∑
j∈R

v·,j

∣∣∣∣∣
∣∣∣∣∣
1

.

x is a function of m|R| independent random variables, namely, the choice of m|R| terms
in the |R| documents. Changing any one, changes x by at most 1/m|R|. So the Bounded
Difference Inequality from probability (??? REF ???) implies that

Prob (|x− Ex| > δ) ≤ 2 exp
(
−δ2δmn/8

)
. (9.23)

We also have to bound E(x).

E(x) =
1

|R|
E

(
||
∑
j∈R

V·,j||1

)
=

1

|R|

d∑
i=1

E

∣∣∣∣∣∑
j∈R

vij

∣∣∣∣∣
≤ 1

|R|

d∑
i=1

√√√√√E

(∑
j∈R

vij

)2
Jensen’s inequality:E(y) ≤

√
E(y2)

=
1

|R|

d∑
i=1

√∑
j∈R

E(v2
ij) since {vij, j ∈ R}are indep. and var adds up

≤
√
d

|R|

(
d∑
i=1

∑
j∈R

E(v2
ij)

)1/2

Chauchy-Schwartz

=

√
d

|R|

√√√√∑
j

d∑
i=1

E(v2
ij) ≤

√
d√

mδn
≤ δ,

since E(v2
ij) = pij/m and

∑
i pij = 1 and by hypothesis, n ≥ cd/mδ3. Using this along

with (9.23), we see that for a single R ⊆ {1, 2, . . . , n} with |R| = δn/4,

Prob

∣∣∣∣∣
∣∣∣∣∣ 1

|R|
∑
j∈R

v·,j

∣∣∣∣∣
∣∣∣∣∣
1

≥ 2δ

 ≤ 2 exp
(
−cδ3mn

)
,

which implies using the union bound that

Prob

∃R, |R| = δn

4
:

∣∣∣∣∣
∣∣∣∣∣ 1

|R|
∑
j∈R

v·,j

∣∣∣∣∣
∣∣∣∣∣
1

≥ 2δ

 ≤ 2 exp
(
−cδ3mn+ cδn

)
≤ δ,

because the number of R is
(

n
(δn/4)

)
≤ (cn/δn)δn/4 ≤ exp(cδn) and m ≥ c/δ2 by hypothesis.

This completes the proof of the theorem.
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9.10 Hidden Markov Models

A hidden Markov model (HMM) consists of a finite set of states with a transition
between each pair of states. There is an initial probability distribution α on the states
and a transition probability aij associated with the transition from state i to state j. Each
state also has a probability distribution p(O, i) giving the probability of outputting the
symbol O in state i. A transition consists of two components. A state transition to a
new state followed by the output of a symbol. The HMM starts by selecting a start state
according to the distribution α and outputting a symbol.

Example: An example of an HMM with two states q and p and two output symbols h
and t is illustrated below.

q
1
2
h1

2
t

p
2
3
h1

3
t

1
2

1
2

1
4

3
4

The initial distribution is α(q) = 1 and α(p) = 0. At each step a change of state occurs
followed by the output of heads or tails with probability determined by the new state.

We consider three problems in increasing order of difficulty. First, given an HMM
what is the probability of a given output sequence? Second, given an HMM and an out-
put sequence, what is the most likely sequence of states? And third, knowing that the
HMM has at most n states and given an output sequence, what is the most likely HMM?
Only the third problem concerns a “hidden” Markov model. In the other two problems,
the model is known and the questions can be answered in polynomial time using dynamic
programming. There is no known polynomial time algorithm for the third question.

How probable is an output sequence

Given an HMM, how probable is the output sequence O = O0O1O2 · · ·OT of length
T+1? To determine this, calculate for each state i and each initial segment of the sequence
of observations, O0O1O2 · · ·Ot of length t+ 1, the probability of observing O0O1O2 · · ·Ot

ending in state i. This is done by a dynamic programming algorithm starting with t = 0
and increasing t. For t = 0 there have been no transitions. Thus, the probability of
observing O0 ending in state i is the initial probability of starting in state i times the
probability of observing O0 in state i. The probability of observing O0O1O2 · · ·Ot ending
in state i is the sum of the probabilities over all states j of observing O0O1O2 · · ·Ot−1

ending in state j times the probability of going from state j to state i and observing Ot.
The time to compute the probability of a sequence of length T when there are n states is
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O(n2T ). The factor n2 comes from the calculation for each time unit of the contribution
from each possible previous state to the probability of each possible current state. The
space complexity is O(n) since one only needs to remember the probability of reaching
each state for the most recent value of t.

Algorithm to calculate the probability of the output sequence

The probability, Prob(O0O1 · · ·OT , i) of the output sequence O0O1 · · ·OT ending in
state i is given by

Prob(O0, i) = α(i)p(O0, i)

and for t = 1 to T

Prob(O0O1 · · ·Ot, i) =
∑
j

Prob(O0O1 · · ·Ot−1, j)aijp(Ot+1, i).

Example: What is the probability of the sequence hhht by the HMM in the above two
state example?

t = 3 3
32

1
2

1
2

+ 5
72

3
4

1
2

= 19
384

3
32

1
2

1
3

+ 5
72

1
4

1
3

= 37
64×27

t = 2 1
8

1
2

1
2

+ 1
6

3
4

1
2

= 3
32

1
8

1
2

2
3

+ 1
6

1
4

2
3

= 5
72

t = 1 1
2

1
2

1
2

= 1
8

1
2

1
2

2
3

= 1
6

t = 0 1
2

0

q p

For t = 0, the q entry is 1/2 since the probability of being in state q is one and the proba-
bility of outputting heads is 1

2
. The entry for p is zero since the probability of starting in

state p is zero. For t = 1, the q entry is 1
8

since for t = 0 the q entry is 1
2

and in state q
the HMM goes to state q with probability 1

2
and outputs heads with probability 1

2
. The

p entry is 1
6

since for t = 0 the q entry is 1
2

and in state q the HMM goes to state p with
probability 1

2
and outputs heads with probability 2

3
. For t = 2, the q entry is 3

32
which

consists of two terms. The first term is the probability of ending in state q at t = 1 times
the probability of staying in q and outputting h. The second is the probability of ending
in state p at t = 1 times the probability of going from state p to state q and outputting h.

From the table, the probability of producing the sequence hhht is 19
384

+ 37
1728

= 0.0709.

The most likely sequence of states - the Viterbi algorithm
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Given an HMM and an observation O = O0O1 · · ·OT , what is the most likely sequence
of states? The solution is given by the Viterbi algorithm, which is a slight modification
to the dynamic programming algorithm just given for determining the probability of an
output sequence. For t = 0, 1, 2, . . . , T and for each state i, we calculate the probability
of the most likely sequence of states to produce the output O0O1O2 · · ·Ot ending in state
i as follows. For each state j, we have already computed the probability of the most
likely sequence producing O0O1O2 · · ·Ot−1 ending in state j, and we multiply this by the
probability of the transition from j to i producing Ot. We then select the j for which this
product is largest. Note that in the previous example, we added the probabilities of each
possibility together. Now we take the maximum and also record where the maximum
came from. The time complexity is O(n2T ) and the space complexity is O(nT ). The
space complexity bound is argued as follows. In calculating the probability of the most
likely sequence of states that produces O0O1 . . . Ot ending in state i, we remember the
previous state j by putting an arrow with edge label t from i to j. At the end, can find
the most likely sequence by tracing backwards as is standard for dynamic programming
algorithms.

Example: For the earlier example what is the most likely sequence of states to produce
the output hhht?

t = 3 max{ 1
48

1
2

1
2
, 1

24
3
4

1
2
} = 1

64
q or p max{ 3

48
1
2

1
3
, 1

24
1
4

1
3
} = 1

96
q

t = 2 max{1
8

1
2

1
2
, 1

6
3
4

1
2
} = 3

48
p max{1

8
1
2

2
3
, 1

6
1
4

2
3
} = 1

24
q

t = 1 1
2

1
2

1
2

= 1
8

q 1
2

1
2

2
3

= 1
6

q

t = 0 1
2

q 0 p

q p

Note that the two sequences of states, qqpq and qpqq, are tied for the most likely se-
quences of states.

Determining the underlying hidden Markov model

Given an n-state HMM, how do we adjust the transition probabilities and output prob-
abilities to maximize the probability of an output sequence O1O2 · · ·OT ? The assumption
is that T is much larger than n.40 There is no known computationally efficient method
for solving this problem. However, there are iterative techniques that converge to a local
optimum.

Let aij be the transition probability from state i to state j and let bj(Ok) be the
probability of output Ok given that the HMM is in state j. Given estimates for the HMM
parameters, aij and bj, and the output sequence O, we can improve the estimates by

40If T ≤ n then one can just have the HMM be a linear sequence that outputs O1O2 . . . OT with
probability 1.
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aij transition probability from state i to state j

bj(Ot+1) probability of Ot+1 given that the HMM is in state j at time t+ 1

αt(i) probability of seeing O0O1 · · ·Ot and ending in state i at time t

βt+1(j) probability of seeing the tail of the sequence Ot+2Ot+3 · · ·OT given state j
at time t+ 1

δ(i, j) probability of going from state i to state j at time t given the sequence
of outputs O

st(i) probability of being in state i at time t given the sequence of outputs O

p(O) probability of output sequence O

calculating for each time step the probability that the HMM goes from state i to state j
and outputs the symbol Ok, conditioned on O being the output sequence.

Given estimates for the HMM parameters, aij and bj, and the output sequence O, the
probability δt(i, j) of going from state i to state j at time t is given by the probability of
producing the output sequence O and going from state i to state j at time t divided by
the probability of producing the output sequence O.

δt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

p(O)

The probability p(O) is the sum over all pairs of states i and j of the numerator in the
above formula for δt(i, j). That is,

p(O) =
∑
i

∑
j

αt(j)aijbj(Ot+1)βt+1(j).

The probability of being in state i at time t is given by

st(i) =
n∑
j=1

δt(i, j).

Summing st(i) over all time periods gives the expected number of times state i is visited
and the sum of δt(i, j) over all time periods gives the expected number of times edge i to
j is traversed.
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Given estimates of the HMM parameters ai,j and bj(Ok), we can calculate by the above
formulas estimates for

1.
∑T−1

i=1 st(i), the expected number of times state i is visited and departed from

2.
∑T−1

i=1 δt(i, j), the expected number of transitions from state i to state j

Using these estimates we can obtain new estimates of the HMM parameters

aij =
expected number of transitions from state i to state j

expected number of transitions out of state i
=

∑T−1
t=1 δt(i, j)∑T−1
t=1 st(i)

bj(Ok) =
expected number of times in state j observing symbol Ok

expected number of times in state j
=

T−1∑
t=1

subject to

Ot=Ok

st(j)

∑T−1
t=1 st(j)

By iterating the above formulas we can arrive at a local optimum for the HMM parameters
ai,j and bj(Ok).

9.11 Graphical Models and Belief Propagation

A graphical model is a compact representation of a probability distribution over n
variables x1, x2, . . . , xn. It consists of a graph, directed or undirected, whose vertices cor-
respond to variables that take on values from some set. In this chapter, we consider the
case where the set of values the variables take on is finite, although graphical models are
often used to represent probability distributions with continuous variables. The edges of
the graph represent relationships or constraints between the variables.

In the directed model, it is assumed that the directed graph is acyclic. This model
represents a joint probability distribution that factors into a product of conditional prob-
abilities.

p (x1, x2, . . . , xn) =
n∏
i=1

p (xi|parents of xi)

The directed graphical model is called a Bayesian or belief network and appears frequently
in the artificial intelligence and the statistics literature.

The undirected graphical model, called a Markov random field, can also represent a
joint probability distribution of the random variables at its vertices. In many applications
the Markov random field represents a function of the variables at the vertices which is to
be optimized by choosing values for the variables.

A third model called the factor model is akin to the Markov random field, but here
the dependency sets have a different structure. In the following sections we describe all
these models in more detail.
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D1
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symptoms

diseases

causes

Figure 9.2: A Bayesian network

9.12 Bayesian or Belief Networks

A Bayesian network is a directed acyclic graph where vertices correspond to variables
and a directed edge from y to x represents a conditional probability p(x|y). If a vertex x
has edges into it from y1, y2, . . . , yk, then the conditional probability is p (x | y1, y2, . . . , yk).
The variable at a vertex with no in edges has an unconditional probability distribution.
If the value of a variable at some vertex is known, then the variable is called evidence.
An important property of a Bayesian network is that the joint probability is given by the
product over all nodes of the conditional probability of the node conditioned on all its
immediate predecessors.

In the example of Fig. 9.1, a patient is ill and sees a doctor. The doctor ascertains
the symptoms of the patient and the possible causes such as whether the patient was in
contact with farm animals, whether he had eaten certain foods, or whether the patient
has an hereditary predisposition to any diseases. Using the above Bayesian network where
the variables are true or false, the doctor may wish to determine one of two things. What
is the marginal probability of a given disease or what is the most likely set of diseases. In
determining the most likely set of diseases, we are given a T or F assignment to the causes
and symptoms and ask what assignment of T or F to the diseases maximizes the joint
probability. This latter problem is called the maximum a posteriori probability (MAP).

Given the conditional probabilities and the probabilities p (C1) and p (C2) in Figure
9.1, the joint probability p (C1, C2, D1, . . .) can be computed easily for any combination
of values of C1, C2, D1, . . .. However, we might wish to find the value of the variables of
highest probability (MAP) or we might want one of the marginal probabilities p (D1) or
p (D2). The obvious algorithms for these two problems require evaluating the probabil-
ity p (C1, C2, D1, . . .) over exponentially many input values or summing the probability
p (C1, C2, D1, . . .) over exponentially many values of the variables other than those for
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which we want the marginal probability. In certain situations, when the joint probability
distribution can be expressed as a product of factors, a belief propagation algorithm can
solve the maximum a posteriori problem or compute all marginal probabilities quickly.

9.13 Markov Random Fields

The Markov random field model arose first in statistical mechanics where it was called
the Ising model. It is instructive to start with a description of it. The simplest version
of the Ising model consists of n particles arranged in a rectangular

√
n×
√
n grid. Each

particle can have a spin that is denoted ±1. The energy of the whole system depends
on interactions between pairs of neighboring particles. Let xi be the spin, ±1, of the ith

particle. Denote by i ∼ j the relation that i and j are adjacent in the grid. In the Ising
model, the energy of the system is given by

f(x1, x2, . . . , xn) = exp

(
c
∑
i∼j

|xi − xj|

)
.

The constant c can be positive or negative. If c < 0, then energy is lower if many adjacent
pairs have opposite spins and if c > 0 the reverse holds. The model was first used to
model probabilities of spin configurations in physical materials.

In most computer science settings, such functions are mainly used as objective func-
tions that are to be optimized subject to some constraints. The problem is to find the
minimum energy set of spins under some constraints on the spins. Usually the constraints
just specify the spins of some particles. Note that when c > 0, this is the problem of
minimizing

∑
i∼j
|xi − xj| subject to the constraints. The objective function is convex and

so this can be done efficiently. If c < 0, however, we need to minimize a concave function
for which there is no known efficient algorithm. The minimization of a concave function
in general is NP-hard. Intuitively, this is because the set of inputs for which f(x) is less
than some given value can be non-convex or even consist of many disconnected regions.

A second important motivation comes from the area of vision. It has to to do with
reconstructing images. Suppose we are given noisy observations of the intensity of light at
individual pixels, x1, x2, . . . , xn, and wish to compute the true values, the true intensities,
of these variables y1, y2, . . . , yn. There may be two sets of constraints, the first stipulating
that the yi should generally be close to the corresponding xi and the second, a term
correcting possible observation errors, stipulating that yi should generally be close to the
values of yj for j ∼ i. This can be formulated as

min
y

(∑
i

|xi − yi|+
∑
i∼j

|yi − yj|

)
,

where the values of xi are constrained to be the observed values. The objective function
is convex and polynomial time minimization algorithms exist. Other objective functions
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x1 x2 x3

x1 + x2 + x3 x1 + x2 x1 + x3 x2 + x3

Figure 9.3: The factor graph for the function
f(x1, x2, x3) = (x1 + x2 + x3)(x1 + x̄2)(x1 + x̄3)(x̄2 + x̄3).

using say sum of squares instead of sum of absolute values can be used and there are
polynomial time algorithms as long as the function to be minimized is convex.

More generally, the correction term may depend on all grid points within distance
two of each point rather than just immediate neighbors. Even more generally, we may
have n variables y1, y2, . . . yn with the value of some of them already specified and subsets
S1, S2, . . . Sm of these variables constrained in some way. The constraints are accumulated
into one objective function which is a product of functions f1, f2, . . . , fm, where function fi
is evaluated on the variables in subset Si. The problem is to minimize

∏m
i=1 fi(yj, j ∈ Si)

subject to constrained values. Note that the vision example had a sum instead of a prod-
uct, but by taking exponentials we can turn the sum into a product as in the Ising model.

In general, the fi are not convex; indeed they may be discrete. So the minimization
cannot be carried out by a known polynomial time algorithm. The most used forms of the
Markov random field involve Si which are cliques of a graph. So we make the following
definition.

A Markov Random Field consists of an undirected graph and an associated function
that factorizes into functions associated with the cliques of the graph. The special case
when all the factors correspond to cliques of size one or two is of interest.

9.14 Factor Graphs

Factor graphs arise when we have a function f of a variables x = (x1, x2, . . . , xn) that
can be expressed as f (x) =

∏
α

fα (xα) where each factor depends only on some small

number of variables xα. The difference from Markov random fields is that the variables
corresponding to factors do not necessarily form a clique. Associate a bipartite graph
where one set of vertices correspond to the factors and the other set to the variables.
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Place an edge between a variable and a factor if the factor contains that variable. See
Figure 9.3.

9.15 Tree Algorithms

Let f(x) be a function that is a product of factors. When the factor graph is a tree
there are efficient algorithms for solving certain problems. With slight modifications, the
algorithms presented can also solve problems where the function is the sum of terms rather
than a product of factors.

The first problem is called marginalization and involves evaluating the sum of f over
all variables except one. In the case where f is a probability distribution the algorithm
computes the marginal probabilities and thus the word marginalization. The second prob-
lem involves computing the assignment to the variables that maximizes the function f .
When f is a probability distribution, this problem is the maximum a posteriori probabil-
ity or MAP problem.

If the factor graph is a tree (such as in Figure 9.4), then there exists an efficient al-
gorithm for solving these problems. Note that there are four problems: the function f
is either a product or a sum and we are either marginalizing or finding the maximizing
assignment to the variables. All four problems are solved by essentially the same algo-
rithm and we present the algorithm for the marginalization problem when f is a product.
Assume we want to “sum out” all the variables except x1, leaving a function of x1.

Call the variable node associated with some variable xi node xi. First, make the node
x1 the root of the tree. It will be useful to think of the algorithm first as a recursive
algorithm and then unravel the recursion. We want to compute the product of all factors
occurring in the sub-tree rooted at the root with all variables except the root-variable
summed out. Let gi be the product of all factors occurring in the sub-tree rooted at
node xi with all variables occurring in the subtree except xi summed out. Since this is a
tree, x1 will not reoccur anywhere except the root. Now, the grandchildren of the root
are variable nodes and suppose inductively, each grandchild xi of the root, has already
computed its gi. It is easy to see that we can compute g1 as follows.

Each grandchild xi of the root passes its gi to its parent, which is a factor node. Each
child of x1 collects all its children’s gi, multiplies them together with its own factor and
sends the product to the root. The root multiplies all the products it gets from its children
and sums out all variables except its own variable, namely here x1.

Unraveling the recursion is also simple, with the convention that a leaf node just re-
ceives 1, product of an empty set of factors, from its children. Each node waits until it
receives a message from each of its children. After that, if the node is a variable node,
it computes the product of all incoming messages, and sums this product function over
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x1 x2 x3 x4 x5

x1
x1 + x2 + x3 x3 + x4 + x5 x4 x5

Figure 9.4: The factor graph for the function f = x1 (x1 + x2 + x3) (x3 + x4 + x5)x4x5.

all assignments to the variables except for the variable of the node. Then, it sends the
resulting function of one variable out along the edge to its parent. If the node is a factor
node, it computes the product of its factor function along with incoming messages from
all the children and sends the resulting function out along the edge to its parent.

The reader should prove that the following invariant holds assuming the graph is a tree:

Invariant The message passed by each variable node to its parent is the product of
all factors in the subtree under the node with all variables in the subtree except its own
summed out.

Consider the following example where

f = x1 (x1 + x2 + x3) (x3 + x4 + x5)x4x5

and the variables take on values 0 or 1. Consider marginalizing f by computing

f (x1) =
∑

x2x3x4x5

x1 (x1 + x2 + x3) (x3 + x4 + x5)x4x5,

In this case the factor graph is a tree as shown in Figure 9.4. The factor graph as a
rooted tree and the messages passed by each node to its parent are shown in Figure 9.5.
If instead of computing marginals, one wanted the variable assignment that maximizes
the function f , one would modify the above procedure by replacing the summation by a
maximization operation. Obvious modifications handle the situation where f(x) is a sum
of products.

f (x) =
∑

x1,...,xn

g (x)

9.16 Message Passing in General Graphs

The simple message passing algorithm in the last section gives us the one variable
function of x1 when we sum out all the other variables. For a general graph that is not
a tree, we formulate an extension of that algorithm. But unlike the case of trees, there

332



x1

x1 x1 + x2 + x3

x2 x3

x3 + x4 + x5

x4 x5

x4 x5

∑
x2,x3

x1(x1 + x2 + x3)(2 + x3) = 10x2
1 + 11x1

x1 ↑
(x1 + x2 + x3)(2 + x3) ↑

∑
x4,x5

(x3 + x4 + x5)x4x5

= 2 + x3 ↑

(x3 + x4 + x5)x4x5 ↑

x5 ↑

x5 ↑

1 ↑

x4 ↑

x4 ↑

Figure 9.5: Messages.

is no proof that the algorithm will converge and even if it does, there is no guarantee
that the limit is the marginal probability. This has not prevented its usefulness in some
applications.

First, lets ask a more general question, just for trees. Suppose we want to compute
for each i the one-variable function of xi when we sum out all variables xj, j 6= i. Do we
have to repeat what we did for x1 once for each xi? Luckily, the answer is no. It will
suffice to do a second pass from the root to the leaves of essentially the same message
passing algorithm to get all the answers. Recall that in the first pass, each edge of the
tree has sent a message “up”, from the child to the parent. In the second pass, each edge
will send a message down from the parent to the child. We start with the root and work
downwards for this pass. Each node waits until its parent has sent it a message before
sending messages to each of its children. The rules for messages are:

Rule 1 The message from a factor node v to a child xi, which is the variable node xi,
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is the product of all messages received by v in both passes from all nodes other than xi
times the factor at v itself.

Rule 2 The message from a variable node xi to a factor node child, v, is the product
of all messages received by xi in both passes from all nodes except v, with all variables
except xi summed out. The message is a function of xi alone.

At termination, when the graph is a tree, if we take the product of all messages re-
ceived in both passes by a variable node xi and sum out all variables except xi in this
product, what we get is precisely the entire function marginalized to xi. We do not give
the proof here. But the idea is simple. We know from the first pass that the product of
the messages coming to a variable node xi from its children is the product of all factors in
the sub-tree rooted at xi. In the second pass, we claim that the message from the parent
v to xi is the product of all factors which are not in the sub-tree rooted at xi which one
can show either directly or by induction working from the root downwards.

We can apply the same rules 1 and 2 to any general graph. We do not have child and
parent relationships and it is not possible to have the two synchronous passes as before.
The messages keep flowing and one hopes that after some time, the messages will stabilize,
but nothing like that is proven. We state the algorithm for general graphs now:

Rule 1 At each unit of time, each factor node v sends a message to each adjacent
node xi. The message is the product of all messages received by v at the previous step
except for the one from xi multiplied by the factor at v itself.

Rule 2 At each time, each variable node xi sends a message to each adjacent node v.
The message is the product of all messages received by xi at the previous step except the
one from v, with all variables except xi summed out.

9.17 Graphs with a Single Cycle

The message passing algorithm gives the correct answers on trees and on certain other
graphs. One such situation is graphs with a single cycle which we treat here. We switch
from the marginalization problem to the MAP problem as the proof of correctness is
simpler for the MAP problem. Consider the network in Figure 9.6a with a single cycle.
The message passing scheme will count some evidence multiply. The local evidence at A
will get passed around the loop and will come back to A. Thus, A will count the local
evidence multiple times. If all evidence is multiply counted in equal amounts, then there
is a possibility that though the numerical values of the marginal probabilities (beliefs) are
wrong, the algorithm still converges to the correct maximum a posteriori assignment.

Consider the unwrapped version of the graph in Figure 9.6b. The messages that the
loopy version will eventually converge to, assuming convergence, are the same messages
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B C

(b) Segment of unrolled graph

(a) A graph with a single cycle

Figure 9.6: Unwrapping a graph with a single cycle

that occur in the unwrapped version provided that the nodes are sufficiently far in from
the ends. The beliefs in the unwrapped version are correct for the unwrapped graph since
it is a tree. The only question is, how similar are they to the true beliefs in the original
network.

Write p (A,B,C) = elog p(A,B,C) = eJ(A,B,C) where J (A,B,C) = log p (A,B,C). Then
the probability for the unwrapped network is of the form ekJ(A,B,C)+J ′ where the J ′ is
associated with vertices at the ends of the network where the beliefs have not yet stabi-
lized and the kJ (A,B,C) comes from k inner copies of the cycle where the beliefs have
stabilized. Note that the last copy of J in the unwrapped network shares an edge with J ′

and that edge has an associated Ψ. Thus, changing a variable in J has an impact on the
value of J ′ through that Ψ. Since the algorithm maximizes Jk = kJ (A,B,C) + J ′ in the
unwrapped network for all k, it must maximize J (A,B,C). To see this, set the variables
A, B, C, so that Jk is maximized. If J (A,B,C) is not maximized, then change A, B, and
C to maximize J (A,B,C). This increases Jk by some quantity that is proportional to
k. However, two of the variables that appear in copies of J (A,B,C) also appear in J ′

and thus J ′ might decrease in value. As long as J ′ decreases by some finite amount, we
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Figure 9.7: A Markov random field with a single loop.

can increase Jk by increasing k sufficiently. As long as all Ψ’s are nonzero, J ′ which is
proportional to log Ψ, can change by at most some finite amount. Hence, for a network
with a single loop, assuming that the message passing algorithm converges, it converges
to the maximum a posteriori assignment.

9.18 Belief Update in Networks with a Single Loop

In the previous section, we showed that when the message passing algorithm converges,
it correctly solves the MAP problem for graphs with a single loop. The message passing
algorithm can also be used to obtain the correct answer for the marginalization problem.
Consider a network consisting of a single loop with variables x1, x2, . . . , xn and evidence
y1, y2, . . . , yn as shown in Figure 9.7. The xi and yi can be represented by vectors having
a component for each value xi can take on. To simplify the discussion assume the xi take
on values 1, 2, . . . ,m.

Let mi be the message sent from vertex i to vertex i + 1 mod n. At vertex i + 1
each component of the message mi is multiplied by the evidence yi+1 and the constraint
function Ψ. This is done by forming a diagonal matrix Di+1 where the diagonal elements
are the evidence and then forming a matrix Mi whose jkth element is Ψ (xi+1 = j, xi = k).
The message mi+1 is MiDi+1mi. Multiplication by the diagonal matrix Di+1 multiplies
the components of the message mi by the associated evidence. Multiplication by the
matrix Mi multiplies each component of the vector by the appropriate value of Ψ and
sums over the values producing the vector which is the message mi+1. Once the message
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has travelled around the loop, the new message m′1 is given by

m′1 = MnD1Mn−1Dn · · ·M2D3M1D2m1

Let M = MnD1Mn−1Dn · · ·M2D3M1D2m1. Assuming that M ’s principal eigenvalue is
unique, the message passing will converge to the principal vector of M . The rate of con-
vergences depends on the ratio of the first and second eigenvalues.

An argument analogous to the above concerning the messages going clockwise around
the loop applies to messages moving counter-clockwise around the loop. To obtain the es-
timate of the marginal probability p (x1), one multiples component-wise the two messages
arriving at x1 along with the evidence y1. This estimate does not give the true marginal
probability but the true marginal probability can be computed from the estimate and the
rate of convergences by linear algebra.

9.19 Maximum Weight Matching

We have seen that the belief propagation algorithm converges to the correct solution
in trees and graphs with a single cycle. It also correctly converges for a number of prob-
lems. Here we give one example, the maximum weight matching problem where there is
a unique solution.

We apply the belief propagation algorithm to find the maximal weight matching
(MWM) in a complete bipartite graph. If the MWM in the bipartite graph is unique,
then the belief propagation algorithm will converge to it.

Let G = (V1, V2, E) be a complete bipartite graph where V1 = {a1, . . . , an} , V2 =
{b1, . . . , bn} , and (ai, bj) ∈ E, 1 ≤ i, j ≤ n. Let π = {π (1) , . . . , π (n)} be a per-
mutation of {1, . . . , n}. The collection of edges

{(
a1, bπ(1)

)
, . . . ,

(
an, bπ(n)

)}
is called a

matching which is denoted by π. Let wij be the weight associated with the edge (ai, bj).

The weight of the matching π is wπ =
n∑
i=1

wiπ(i). The maximum weight matching π∗ is

π∗ = arg max
π

wπ

The first step is to create a factor graph corresponding to the MWM problem. Each
edge of the bipartite graph is represented by a variable cij which takes on the value zero or
one. The value one means that the edge is present in the matching, the value zero means
that the edge is not present in the matching. A set of constraints is used to force the set
of edges to be a matching. The constraints are of the form

∑
j

cij = 1 and
∑
i

cij = 1. Any

0,1 assignment to the variables cij that satisfies all of the constraints defines a matching.
In addition, we have constraints for the weights of the edges.

We now construct a factor graph, a portion of which is shown in Figure 9.8. Associated
with the factor graph is a function f (c11, c12, . . .) consisting of a set of terms for each cij
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enforcing the constraints and summing the weights of the edges of the matching. The
terms for c12 are

−λ

∣∣∣∣∣
(∑

i

ci2

)
− 1

∣∣∣∣∣− λ
∣∣∣∣∣
(∑

j

c1j

)
− 1

∣∣∣∣∣+ w12c12

where λ is a large positive number used to enforce the constraints when we maximize the
function. Finding the values of c11, c12, . . . that maximize f finds the maximum weighted
matching for the bipartite graph.

If the factor graph was a tree, then the message from a variable node x to its parent
is a message g(x) that gives the maximum value for the subtree for each value of x. To
compute g(x), one sums all messages into the node x. For a constraint node, one sums
all messages from subtrees and maximizes the sum over all variables except the variable
of the parent node subject to the constraint. The message from a variable x consists of
two pieces of information, the value p (x = 0) and the value p (x = 1). This information
can be encoded into a linear function of x:

[p (x = 1)− p (x = 0)]x+ p (x = 0) .

Thus, the messages are of the form ax + b. To determine the MAP value of x once the
algorithm converges, sum all messages into x and take the maximum over x=1 and x=0
to determine the value for x. Since the arg maximum of a linear form ax+b depends
only on whether a is positive or negative and since maximizing the output of a constraint
depends only on the coefficient of the variable, we can send messages consisting of just
the variable coefficient.

To calculate the message to c12 from the constraint that node b2 has exactly one
neighbor, add all the messages that flow into the constraint node from the ci2, i 6= 1
nodes and maximize subject to the constraint that exactly one variable has value one. If
c12 = 0, then one of ci2, i 6= 1, will have value one and the message is max

i 6=1
α (i, 2). If

c12 = 1, then the message is zero. Thus, we get

−max
i 6=1

α (i, 2)x+ max
i 6=1

α (i, 2)

and send the coefficient −max
i 6=1

α (i, 2). This means that the message from c12 to the other

constraint node is β(1, 2) = w12 −max
i 6=1

α (i, 2).

The alpha message is calculated in a similar fashion. If c12 = 0, then one of c1j will
have value one and the message is max

j 6=1
β (1, j). If c12 = 1, then the message is zero. Thus,

the coefficient −max
j 6=1

α (1, j) is sent. This means that α(1, 2) = w12 −max
j 6=1

α (1, j).

To prove convergence, we unroll the constraint graph to form a tree with a constraint
node as the root. In the unrolled graph a variable node such as c12 will appear a number
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c12

c32

c42

cn2

w12c12

∑
j c1j = 1

∑
i ci2 = 1

←
β(1, 2)

→
α(1, 2)

Constraint forcing
b2 to have exactly
one neighbor

Constraint forcing
a1to have exactly
one neighbor

Figure 9.8: Portion of factor graph for the maximum weight matching problem.

of times which depends on how deep a tree is built. Each occurrence of a variable such
as c12 is deemed to be a distinct variable.

Lemma 9.15 If the tree obtained by unrolling the graph is of depth k, then the messages
to the root are the same as the messages in the constraint graph after k-iterations.

Proof: Straightforward.

Define a matching in the tree to be a set of vertices so that there is exactly one variable
node of the match adjacent to each constraint. Let Λ denote the vertices of the matching.
Heavy circles represent the nodes of the above tree that are in the matching Λ.

Let Π be the vertices corresponding to maximum weight matching edges in the bi-
partite graph. Recall that vertices in the above tree correspond to edges in the bipartite
graph. The vertices of Π are denoted by dotted circles in the above tree.

Consider a set of trees where each tree has a root that corresponds to one of the con-
straints. If the constraint at each root is satisfied by the edge of the MWM, then we have
found the MWM. Suppose that the matching at the root in one of the trees disagrees
with the MWM. Then there is an alternating path of vertices of length 2k consisting of
vertices corresponding to edges in Π and edges in Λ. Map this path onto the bipartite
graph. In the bipartite graph the path will consist of a number of cycles plus a simple
path. If k is large enough there will be a large number of cycles since no cycle can be of
length more than 2n. Let m be the number of cycles. Then m ≥ 2k

2n
= k

n
.

Let π∗ be the MWM in the bipartite graph. Take one of the cycles and use it as an
alternating path to convert the MWM to another matching. Assuming that the MWM
is unique and that the next closest matching is ε less, Wπ∗ −Wπ > ε where π is the new
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∑
j c1j = 1

c11 c13 c1n

∑
j ci2 = 1

∑
i ci2 = 1

c12 c22 c32 cn2

Figure 9.9: Tree for MWM problem.

matching.

Consider the tree matching. Modify the tree matching by using the alternating path
of all cycles and the left over simple path. The simple path is converted to a cycle by
adding two edges. The cost of the two edges is at most 2w* where w* is the weight of the
maximum weight edge. Each time we modify Λ by an alternating cycle, we increase the
cost of the matching by at least ε. When we modify Λ by the left over simple path, we
increase the cost of the tree matching by ε − 2w∗ since the two edges that were used to
create a cycle in the bipartite graph are not used. Thus

weight of Λ - weight of Λ′ ≥ k
n
ε− 2w∗

which must be negative since Λ′ is optimal for the tree. However, if k is large enough this
becomes positive, an impossibility since Λ′ is the best possible. Since we have a tree, there
can be no cycles, as messages are passed up the tree, each subtree is optimal and hence the
total tree is optimal. Thus the message passing algorithm must find the maximum weight
matching in the weighted complete bipartite graph assuming that the maximum weight
matching is unique. Note that applying one of the cycles that makes up the alternating
path decreased the bipartite graph match but increases the value of the tree. However,
it does not give a higher tree matching, which is not possible since we already have the
maximum tree matching. The reason for this is that the application of a single cycle does
not result in a valid tree matching. One must apply the entire alternating path to go from
one matching to another.
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a b c

i j

Figure 9.10: warning propagation

9.20 Warning Propagation

Significant progress has been made using methods similar to belief propagation in
finding satisfying assignments for 3-CNF formulas. Thus, we include a section on a
version of belief propagation, called warning propagation, that is quite effective in finding
assignments. Consider a factor graph for a SAT problem. Index the variables by i, j, and
k and the factors by a, b, and c. Factor a sends a message mai to each variable i that
appears in the factor a called a warning. The warning is 0 or 1 depending on whether
or not factor a believes that the value assigned to i is required for a to be satisfied. A
factor a determines the warning to send to variable i by examining all warnings received
by other variables in factor a from factors containing them.

For each variable j, sum the warnings from factors containing j that warn j to take
value T and subtract the warnings that warn j to take value F. If the difference says that
j should take value T or F and this value for variable j does not satisfy a, and this is
true for all j, then a sends a warning to i that the value of variable i is critical for factor a.

Start the warning propagation algorithm by assigning 1 to a warning with probability
1/2. Iteratively update the warnings. If the warning propagation algorithm converges,
then compute for each variable i the local field hi and the contradiction number ci. The
local field hi is the number of clauses containing the variable i that sent messages that
i should take value T minus the number that sent messages that i should take value F.
The contradiction number ci is 1 if variable i gets conflicting warnings and 0 otherwise.
If the factor graph is a tree, the warning propagation algorithm converges. If one of the
warning messages is one, the problem is unsatisfiable; otherwise it is satisfiable.

9.21 Correlation Between Variables

In many situations one is interested in how the correlation between variables drops off
with some measure of distance. Consider a factor graph for a 3-CNF formula. Measure
the distance between two variables by the shortest path in the factor graph. One might
ask if one variable is assigned the value true, what is the percentage of satisfying assign-
ments of the 3-CNF formula in which the second variable also is true. If the percentage
is the same as when the first variable is assigned false, then we say that the two variables
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are uncorrelated. How difficult it is to solve a problem is likely to be related to how fast
the correlation decreases with distance.

Another illustration of this concept is in counting the number of perfect matchings
in a graph. One might ask what is the percentage of matching in which some edge is
present and ask how correlated this percentage is with the presences or absence of edges
at some distance d. One is interested in whether the correlation drops off with distance.
To explore this concept we consider the Ising model studied in physics.

As mentioned earlier, the Ising or ferromagnetic model is a pairwise random Markov
field. The underlying graph, usually a lattice, assigns a value of ±1, called spin, to the
variable at each vertex. The probability (Gibbs measure) of a given configuration of spins
is proportional to exp(β

∑
(i,j)∈E

xixj) =
∏

(i,j)∈E
eβxixj where xi = ±1 is the value associated

with vertex i. Thus

p (x1, x2, . . . , xn) = 1
Z

∏
(i,j)∈E

exp(βxixj) = 1
Z
e
β
∑

(i,j)∈E
xixj

where Z is a normalization constant.

The value of the summation is simply the difference in the number of edges whose
vertices have the same spin minus the number of edges whose vertices have opposite spin.
The constant β is viewed as inverse temperature. High temperature corresponds to a low
value of β and low temperature corresponds to a high value of β. At high temperature,
low β, the spins of adjacent vertices are uncorrelated whereas at low temperature adjacent
vertices have identical spins. The reason for this is that the probability of a configuration

is proportional to e
β
∑
i∼j

xixj
. As β is increased, for configurations with a large number of

edges whose vertices have identical spins, e
β
∑
i∼j

xixj
increases more than for configurations

whose edges have vertices with non identical spins. When the normalization constant 1
Z

is adjusted for the new value of β, the highest probability configurations are those where
adjacent vertices have identical spins.

Given the above probability distribution, what is the correlation between two variables
xi and xj? To answer this question, consider the probability that xi = +1 as a function
of the probability that xj = +1. If the probability that xi = +1 is 1

2
independent of the

value of the probability that xj = +1, we say the values are uncorrelated.

Consider the special case where the graph G is a tree. In this case a phase transition
occurs at β0 = 1

2
ln d+1

d−1
where d is the degree of the tree. For a sufficiently tall tree and for

β > β0, the probability that the root has value +1 is bounded away from 1/2 and depends
on whether the majority of leaves have value +1 or -1. For β < β0 the probability that
the root has value +1 is 1/2 independent of the values at the leaves of the tree.
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Consider a height one tree of degree d. If i of the leaves have spin +1 and d− i have
spin -1, then the probability of the root having spin +1 is proportional to

eiβ−(d−i)β = e(2i−d)β.

If the probability of a leaf being +1 is p, then the probability of i leaves being +1 and
d− i being -1 is (

d

i

)
pi (1− p)d−i

Thus, the probability of the root being +1 is proportional to

A =
d∑
i=1

(
d

i

)
pi(1− p)d−ie(2i−d)β = e−dβ

d∑
i=1

(
d

i

)(
pe2β

)i
(1− p)d−i = e−dβ

[
pe2β + 1− p

]d
and the probability of the root being –1 is proportional to

B =
d∑
i=1

(
d

i

)
pi(1− p)d−ie−(2i−d)β

= e−dβ
d∑
i=1

(
d

i

)
pi
[
(1− p)e−2(i−d)β

]
= e−dβ

d∑
i=1

(
d

i

)
pi
[
(1− p)e2β

]d−i
= e−dβ

[
p+ (1− p)e2β

]d
.

The probability of the root being +1 is

q = A
A+B

=
[pe2β+1−p]

d

[pe2β+1−p]
d
+[p+(1−p)e2β]

d = C
D

where

C =
[
pe2β + 1− p

]d
and

D =
[
pe2β + 1− p

]d
+
[
p+ (1− p) e2β

]d
.

At high temperature, low β, the probability q of the root of the height one tree being
+1 in the limit as β goes to zero is

q =
p+ 1− p

[p+ 1− p] + [p+ 1− p]
=

1

2

independent of p. At low temperature, high β,

q ≈ pde2βd

pde2βd + (1− p)de2βd
=

pd

pd + (1− p)d
=

{
0 p = 0
1 p = 1

.
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q goes from a low probability of +1 for p below 1/2 to high probability of +1 for p above
1/2.

Now consider a very tall tree. If the p is the probability that a root has value +1,
we can iterate the formula for the height one tree and observe that at low temperature
the probability of the root being one converges to some value. At high temperature, the
probability of the root being one is 1/2 independent of p. See Figure 9.11. At the phase
transition, the slope of q at p=1/2 is one.

Now the slope of the probability of the root being 1 with respect to the probability of
a leaf being 1 in this height one tree is

∂q

∂p
=
D ∂C

∂p
− C ∂D

∂p

D2

Since the slope of the function q(p) at p=1/2 when the phase transition occurs is one, we
can solve ∂q

∂p
= 1 for the value of β where the phase transition occurs. First, we show that

∂D
∂p

∣∣∣
p=

1
2

= 0.

D =
[
pe2β + 1− p

]d
+
[
p+ (1− p) e2β

]d
∂D
∂p

= d
[
pe2β + 1− p

]d−1 (
e2β − 1

)
+ d

[
p+ (1− p) e2β

]d−1 (
1− e2β

)
∂D
∂p

∣∣∣
p=

1
2

= d
2d−1

[
e2β + 1

]d−1 (
e2β − 1

)
+ d

2d−1

[
1 + e2β

]d−1 (
1− e2β

)
= 0

Then

∂q

∂p

∣∣∣∣
p=

1
2

=
D ∂C

∂p
− C ∂D

∂p

D2

∣∣∣∣∣
p=

1
2

=

∂C
∂p

D

∣∣∣∣∣
p=

1
2

=
d
[
pe2β + 1− p

]d−1 (
e2β − 1

)
[pe2β + 1− p]d + [p+ (1− p) e2β]d

∣∣∣∣∣
p=

1
2

=
d
[

1
2
e2β + 1

2

]d−1 (
e2β − 1

)[
1
2
e2β + 1

2

]d
+
[

1
2

+ 1
2
e2β
]d =

d
(
e2β − 1

)
1 + e2β

Setting
d
(
e2β − 1

)
1 + e2β

= 1

And solving for β yields
d
(
e2β − 1

)
= 1 + e2β

e2β = d+1
d−1

β = 1
2

ln d+1
d−1

To complete the argument, we need to show that q is a monotonic function of p. To see
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as a function of p
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at phase transition
slope of q(p) equals 1
at p = 1/2

high
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Figure 9.11: Shape of q as a function of p for the height one tree and three values of β cor-
responding to low temperature, the phase transition temperature, and high temperature.
.

this, write q = 1

1+
B
A

. A is a monotonically increasing function of p and B is monotonically

decreasing. From this it follows that q is monotonically increasing.

In the iteration going from p to q, we do not get the true marginal probabilities at
each level since we ignored the effect of the portion of the tree above. However, when we
get to the root, we do get the true marginal for the root. To get the true marginal’s for
the interior nodes we need to send messages down from the root.

Note: The joint probability distribution for the tree is of the form e
β
∑

(ij)∈E)

xixj

=
∏

(i,j)∈E
eβxixj .

Suppose x1 has value 1 with probability p. Then define a function ϕ, called evidence, such
that

ϕ (x1) =

{
p for x1 = 1
1− p for x1 = −1

=
(
p− 1

2

)
x1 + 1

2

and multiply the joint probability function by ϕ. Note, however, that the marginal prob-
ability of x1 is not p. In fact, it may be further from p after multiplying the conditional
probability function by the function ϕ.
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9.22 Exercises

Exercise 9.1 Find a nonnegative factorization of the matrix

A =


4 6 5
1 2 3
7 10 7
6 8 4
6 10 11


Indicate the steps in your method and show the intermediate results.

Exercise 9.2 Find a nonnegative factorization of each of the following matrices.

(1)



10 9 15 14 13
2 1 3 3 1
8 7 13 11 11
7 5 11 10 7
5 5 11 6 11
1 1 3 1 3
2 2 2 2


(2)



5 5 10 14 17
2 2 4 4 6
1 1 2 4 4
1 1 2 2 3
3 3 6 8 10
5 5 10 16 18
2 2 4 6 7



(3)



4 4 3 3 1 3 4 3
13 16 13 10 5 13 14 10
15 24 21 12 9 21 18 12
7 16 15 6 7 15 10 6
1 4 4 1 2 4 2 1
5 8 7 4 3 7 6 4
3 12 12 3 6 12 6 3


(4)


1 1 3 4 4 4 1
9 9 9 12 9 9 3
6 6 12 16 15 15 4
3 3 3 4 3 3 1



Exercise 9.3 Consider the matrix A that is the product of nonnegative matrices B and
C. 

12 22 41 35
19 20 13 48
11 14 16 29
14 16 14 36

 =


10 1
1 9
3 4
2 6

(1 2 4 3
2 2 1 5

)

Which rows of A are approximate positive linear combinations of other rows of A?
Find an approxiamte nonnegative factorization of A

Exercise 9.4 Consider a set of vectors S in which no vector is a positive linear combi-
nation of the other vectors in the set. Given a set T containing S along with a number of
elements from the convex hull of S find the vectors in S. Develop an efficient method to
find S from T which does not require linear programming.
Hint: The points of S are vertices of the convex hull of T . The Euclidean length of a
vector is a convex function and so its maximum over a polytope is attained at one of the
vertices. Center the set and find the the maximum length vector in T . This will be one
element of S.
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Exercise 9.5 Define the non-negative column rank of a m × n matrix A to be the min-
imum number of vectors of in m space with the property that every column of A can be
expressed as a non-negative linear combination of these vectors.

1. Show that the non-negative column rank of A is at least the rank of A.

2. Construct a 3 × n matrix whose non-negative column rank is n. [Hint: Take the
plane x + y = z = 1 in 3− space; draw a circle in the plane and take n points on
the circle.]

3. Show that the non-negative column rank need not be the same as the non-negative
row rank.

4. Read/look up a paper of Vavasis showing that the computation of non-negative rank
is NP-hard.

Exercise 9.6 What happens to the Topic Modeling problem, when m the number of words
in a document goes to infinity? Argue that the Idealized Topic Modeling problem of Section
9.2 is easy to solve when m goes to infinity.

Exercise 9.7 Suppose y = (y1, y2, . . . , yr) is jointly distributed according to the Dirichlet
distribution with parameter ν = 1/r. Show that the expected value of maxrl=1yl is greater
than 0.1. [Hint: Lemma 9.6]

Exercise 9.8 Suppose there are s documents in a collection which are all nearly pure
for a particular topic. I.e., in each of these documents, that topic has weight at least
1 − δ. Suppose someone finds and hands to you these documents. Then their average is
an approximation to the topic vector. In terms of s,m and δ compute an upper bound on
the error of approximation.

We could suggest at the start of Section 9.7 that they do the following exercise before
reading the section, so they get the intuition.

Exercise 9.9 Two topics and Two words. Toy case of the “Dominant Admixture Model”.
Suppose in a topic model, there are just two words and two topics; word 1 is a “key word”
of topic 1 and word 2 is a key word of topic 2 in the sense:

b11 ≥ 2b12 ; b21 ≤
1

2
b22.

Suppose each document has one of the two topics as a dominant topic in the sense:

Max(c1j, c2j) ≥ 0.75.

Also suppose
|(A−BC)ij| ≤ 0.1 ∀i, j.

Show that there are two real numbers ν1 and ν2 such that each document j with dominant
topic 1 has a1j ≥ ν1 and a2j < ν2 and each document j′ with dominant topic 2 has
a2j′ ≥ ν2 and a1j′ < ν − 1.
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Exercise 9.10 What is the probability of heads occurring after a sufficiently long sequence
of transitions in Viterbi algorithm example of the most likely sequence of states?

Exercise 9.11 Find optimum parameters for a three state HMM and given output se-
quence. Note the HMM must have a strong signature in the output sequence or we prob-
ably will not be able to find it. The following example may not be good for that
reason.

1 2 3

1 1
2

1
4

1
4

2 1
4

1
4

1
2

3 1
3

1
3

1
3

A B

1 3
4

1
4

2 1
4

3
4

3 1
3

2
3

Exercise 9.12 In the Ising model for a tree of degree one, a chain of vertices, is there a
phase transition where the correlation between the value at the root and the value at the
leaves becomes independent? Work out mathematical what happens.

Exercise 9.13 For a Boolean function in CNF the marginal probability gives the number
of satisfiable assignments with x1.

How does one obtain the number of satisfying assignments for a 2-CNF formula? Not
completely related to first sentence.
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10 Other Topics

10.1 Ranking and Social Choice

Combining feedback from multiple users to rank a collection of items is an important
task. We rank movies, restaurants, web pages, and many other items. Ranking has be-
come a multi-billion dollar industry as organizations try to raise the position of their web
pages in the results returned by search engines to relevant queries. Developing a method
of ranking that cannot be easily gamed by those involved is an important task.

A ranking of a collection of items is defined as a complete ordering. For every pair of
items a and b, either a is preferred to b or b is preferred to a. Furthermore, a ranking is
transitive in that a > b and b > c implies a > c.

One problem of interest in ranking is that of combining many individual rankings into
one global ranking. However, merging ranked lists in a meaningful way is nontrivial as
the following example illustrates.

Example: Suppose there are three individuals who rank items a, b, and c as illustrated
in the following table.

individual first item second item third item
1 a b c
2 b c a
3 c a b

Suppose our algorithm tried to rank the items by first comparing a to b and then
comparing b to c. In comparing a to b, two of the three individuals prefer a to b and thus
we conclude a is preferable to b. In comparing b to c, again two of the three individuals
prefer b to c and we conclude that b is preferable to c. Now by transitivity one would
expect that the individuals would prefer a to c, but such is not the case, only one of the
individuals prefers a to c and thus c is preferable to a. We come to the illogical conclusion
that a is preferable to b, b is preferable to c, and c is preferable to a.

Suppose there are a number of individuals or voters and a set of candidates to be
ranked. Each voter produces a ranked list of the candidates. From the set of ranked lists
can one construct a reasonable single ranking of the candidates? Assume the method of
producing a global ranking is required to satisfy the following three axioms.

Nondictatorship – The algorithm cannot always simply select one individual’s ranking
to use as the global ranking.

Unanimity – If every individual prefers a to b, then the global ranking must prefer a to
b.

349



Independent of irrelevant alternatives – If individuals modify their rankings but
keep the order of a and b unchanged, then the global order of a and b should
not change.

Arrow showed that it is not possible to satisfy all three of the above axioms. We begin
with a technical lemma.

Lemma 10.1 For a set of rankings in which each individual ranks an item b either first
or last (some individuals may rank b first and others may rank b last), a global ranking
satisfying the above axioms must put b first or last.

Proof: Let a, b, and c be distinct items. Suppose to the contrary that b is not first or
last in the global ranking. Then there exist a and c where the global ranking puts a > b
and b > c. By transitivity, the global ranking puts a > c. Note that all individuals can
move c above a without affecting the order of b and a or the order of b and c since b
was first or last on each list. Thus, by independence of irrelevant alternatives, the global
ranking would continue to rank a > b and b > c even if all individuals moved c above a
since that would not change the individuals relative order of a and b or the individuals
relative order of b and c. But then by unanimity, the global ranking would need to put
c > a, a contradiction. We conclude that the global ranking puts b first or last.

Theorem 10.2 (Arrow) Any deterministic algorithm for creating a global ranking from
individual rankings of three or more elements in which the global ranking satisfies una-
nimity and independence of irrelevant alternatives is a dictatorship.

Proof: Let a, b, and c be distinct items. Consider a set of rankings in which every in-
dividual ranks b last. By unanimity, the global ranking must also rank b last. Let the
individuals, one by one, move b from bottom to top leaving the other rankings in place.
By unanimity, the global ranking must eventually move b from the bottom all the way to
the top. When b first moves, it must move all the way to the top by Lemma 10.1.

Let v be the first individual whose change causes the global ranking of b to change.
We argue that v is a dictator. First, we argue that v is a dictator for any pair ac not
involving b. We will refer to the three rankings of v in Figure 10.1. The first ranking
of v is the ranking prior to v moving b from the bottom to the top and the second is
the ranking just after v has moved b to the top. Choose any pair ac where a is above
c in v’s ranking. The third ranking of v is obtained by moving a above b in the second
ranking so that a > b > c in v’s ranking. By independence of irrelevant alternatives,
the global ranking after v has switched to the third ranking puts a > b since all indi-
vidual ab votes are the same as in the first ranking, where the global ranking placed
a > b. Similarly b > c in the global ranking since all individual bc votes are the same
as in the second ranking, in which b was at the top of the global ranking. By transitiv-
ity the global ranking must put a > c and thus the global ranking of a and c agrees with v.
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Figure 10.1: The three rankings that are used in the proof of Theorem 10.2.

Now all individuals except v can modify their rankings arbitrarily while leaving b in its
extreme position and by independence of irrelevant alternatives, this does not affect the
global ranking of a > b or of b > c. Thus, by transitivity this does not affect the global
ranking of a and c. Next, all individuals except v can move b to any position without
affecting the global ranking of a and c.

At this point we have argued that independent of other individuals’ rankings, the
global ranking of a and c will agree with v’s ranking. Now v can change its ranking
arbitrarily, provided it maintains the order of a and c, and by independence of irrelevant
alternatives the global ranking of a and c will not change and hence will agree with v.
Thus, we conclude that for all a and c, the global ranking agrees with v independent of
the other rankings except for the placement of b. But other rankings can move b without
changing the global order of other elements. Thus, v is a dictator for the ranking of any
pair of elements not involving b.

Note that v changed the relative order of a and b in the global ranking when it moved
b from the bottom to the top in the previous argument. We will use this in a moment.

The individual v is also a dictator over every pair ab. Repeat the construction showing
that v is a dictator for every pair ac not involving b only this time place c at the bottom.
There must be an individual vc who is a dictator for any pair such as ab not involving c.
Since both v and vc can affect the global ranking of a and b independent of each other, it
must be that vc is actually v. Thus, the global ranking agrees with v no matter how the
other voters modify their rankings.

10.1.1 Randomization

An interesting randomized algorithm that satisfies unanimity and independence of irrel-
evant alternatives is to pick a random individual and use that individual’s ranking as
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the output. This is called the “random dictator” rule because it is a randomization over
dictatorships. An analogous scheme in the context of voting would be to select a winner
with probability proportional to the number of votes for that candidate, because this is
the same as selecting a random voter and telling that voter to determine the winner. Note
that this method has the appealing property that as a voter, there is never any reason
to strategize, e.g., voting for candidate a rather than your preferred candidate b because
you think b is unlikely to win and you don’t want to throw away your vote. With this
method, you should always vote for your preferred candidate.

10.1.2 Examples

Borda Count: Suppose we view each individual’s ranking as giving each item a score:
putting an item in last place gives it one point, putting it in second-to-last place gives it
two points, third-to-last place is three points, and so on. In this case, one simple way to
combine rankings is to sum up the total number of points received by each item and then
sort by total points. This is called the extended Borda Count method.

Let’s examine which axioms are satisfied by this approach. It is easy to see that it
is a nondictatorship. It also satisfies unanimity: if every individual prefers a to b, then
every individual gives more points to a than to b, and so a will receive a higher total than
b. By Arrow’s theorem, the approach must fail independence of irrelevant alternatives,
and indeed this is the case. Here is a simple example with three voters and four items
{a, b, c, d} where the independence of irrelevant alternatives axiom fails:

individual ranking
1 abcd
2 abcd
3 bacd

In this example, a receives 11 points and is ranked first, b receives 10 points and is ranked
second, c receives 6 points and is ranked third, and d receives 3 points and is ranked
fourth. However, if individual 3 changes his ranking to bcda, then this reduces the total
number of points received by a to 9, and so b is now ranked first overall. Thus, even
though individual 3’s relative order of b and a did not change, and indeed no individual’s
relative order of b and a changed, the global order of b and a did change.

Hare voting: An interesting system for voting is to have everyone vote for their fa-
vorite candidate. If some candidate receives a majority of the votes, he or she is declared
the winner. If no candidate receives a majority of votes, the candidate with the fewest
votes is dropped from the slate and the process is repeated.

The Hare system implements this method by asking each voter to rank all the can-
didates. Then one counts how many voters ranked each candidate as number one. If no
candidate receives a majority, the candidate with the fewest number one votes is dropped
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from each voters ranking. If the dropped candidate was number one on some voters list,
then the number two candidate becomes that voter’s number one choice. The process of
counting the number one rankings is then repeated.

We can convert the Hare voting system into a ranking method in the following way.
Whichever candidate is dropped first is put in last place, whichever is dropped second is
put in second-to-last place, and so on, until the system selects a winner, which is put in
first place. The candidates remaining, if any, are placed between the first-place candidate
and the candidates who were dropped, in an order determined by running this procedure
recursively on just those remaining candidates.

As with Borda Count, the Hare system also fails to satisfy independence of irrelevant
alternatives. Consider the following situation in which there are 21 voters that fall into
four categories. Voters within a category rank individuals in the same order.

Category
Number of voters
in category

Preference order

1 7 abcd
2 6 bacd
3 5 cbad
4 3 dcba

The Hare system would first eliminate d since d gets only three rank one votes. Then
it would eliminate b since b gets only six rank one votes whereas a gets seven and c gets
eight. At this point a is declared the winner since a has thirteen votes to c’s eight votes.
So, the final ranking is acbd.

Now assume that Category 4 voters who prefer b to a move b up to first place. This
keeps their order of a and b unchanged, but it reverses the global order of a and b. In
particular, d is first eliminated since it gets no rank one votes. Then c with five votes is
eliminated. Finally, b is declared the winner with 14 votes, so the final ranking is bacd.

Interestingly, Category 4 voters who dislike a and have ranked a last could prevent a
from winning by moving a up to first. Ironically this results in eliminating d, then c, with
five votes and declaring b the winner with 11 votes. Note that by moving a up, category
4 voters were able to deny a the election and get b to win, whom they prefer over a.

10.2 Compressed Sensing and Sparse Vectors

Define a signal to be a vector x of length d, and define a measurement of x to be a dot-
product of x with some known vector ai. If we wish to uniquely reconstruct x without
any assumptions, then d linearly-independent measurements are necessary and sufficient.
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Figure 10.2: Ax = b has a vector space of solutions but possibly only one sparse solution.
If the columns of A are unit length vectors that are pairwise nearly orthogonal, then the
system has a unique sparse solution.

Given b = Ax where A is known and invertible, we can reconstruct x as x = A−1b. In
the case where there are fewer than d independent measurements and the rank of A is less
than d, there will be multiple solutions. However, if we knew that x is sparse with s� d
nonzero elements, then we might be able to reconstruct x with far fewer measurements
using a matrix A with n � d rows. See Figure 10.2. In particular, it turns out that
a matrix A whose columns are nearly orthogonal, such as a matrix of random Gaussian
entries, will be especially well-suited to this task. This is the idea of compressed sensing.
Note that we cannot make the columns of A be completely orthogonal since A has more
columns than rows.

Compressed sensing has found many applications, including reducing the number of
sensors needed in photography, using the fact that images tend to be sparse in the wavelet
domain, and in speeding up magnetic resonance imaging in medicine.

10.2.1 Unique Reconstruction of a Sparse Vector

A vector is said to be s-sparse if it has at most s nonzero elements. Let x be a d-
dimensional, s-sparse vector with s � d. Consider solving Ax = b for x where A is an
n × d matrix with n < d. The set of solutions to Ax = b is a subspace. However, if we
restrict ourselves to sparse solutions, under certain conditions on A there is a unique s-
sparse solution. Suppose that there were two s-sparse solutions, x1 and x2. Then x1−x2

would be a 2s-sparse solution to the homogeneous system Ax = 0. A 2s-sparse solution to
the homogeneous equation Ax = 0 requires that some 2s columns of A be linearly depen-
dent. Unless A has 2s linearly dependent columns there can be only one s-sparse solution.

The solution to the reconstruction problem is simple. If the matrix A has at least 2s
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1-norm solution
← 2-norm solution

Figure 10.3: Illustration of minimum 1-norm and 2-norm solutions.

rows and the entries of A were selected at random from a standard Gaussian, then with
probability one, no set of 2s columns will be linearly dependent. We can see this by not-
ing that if we first fix a subset of 2s columns and then choose the entries at random, the
probability that this specific subset is linearly dependent is the same as the probability
that 2s random Gaussian vectors in a 2s-dimensional space are linearly dependent, which
is zero.41 So, taking the union bound over all

(
d
2s

)
subsets, the probability that any one

of them is linearly dependent is zero.

The above argument shows that if we choose n = 2s and pick entries of A randomly
from a Gaussian, with probability one there will be a unique s-sparse solution. Thus,
to solve for x we could try all

(
d
s

)
possible locations for the nonzero elements in x and

aim to solve Ax = b over just those s columns of A: any one of these that gives a
solution will be the correct answer. However, this takes time Ω(ds) which is exponential
in s. We turn next to the topic of efficient algorithms, describing a polynomial-time
optimization procedure that will find the desired solution when n is sufficiently large and
A is constructed appropriately.

10.2.2 Efficiently Finding the Unique Sparse Solution

To find a sparse solution to Ax = b, one would like to minimize the zero norm ‖x‖0

over {x|Ax = b}, i.e., minimize the number of nonzero entries. This is a computationally
hard problem. There are techniques to minimize a convex function over a convex set, but
||x||0 is not a convex function, and with no further assumptions, it is NP-hard. With this
in mind, we use the one-norm as a proxy for the zero-norm and minimize the one-norm
‖x‖1 =

∑
i |xi| over {x|Ax = b}. Although this problem appears to be nonlinear, it can

be solved by linear programming by writing x = u−v, u ≥ 0, and v ≥ 0, and minimizing
the linear function

∑
i

ui +
∑
i

vi subject to Au-Av=b, u ≥ 0, and v ≥ 0.

41This can be seen by selecting the vectors one at a time. The probability that the ith new vector lies
fully in the lower dimensional subspace spanned by the previous i−1 vectors is zero, and so by the union
bound the overall probability is zero.
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Under what conditions will minimizing ‖x‖1 over {x|Ax = b} recover the unique s-
sparse solution to Ax=b? Think of the columns of A as vectors in an n-dimensional
space, where n is the number of rows. We show here that it suffices for the columns of
A to be unit-length, almost orthogonal vectors with pairwise dot-product in the range
(− 1

2s
, 1

2s
). The ijth element of the matrix ATA is the cosine of the angle between the ith

and jth columns of A. If the columns of A are unit length and almost orthogonal, ATA
will have ones on its diagonal and all off diagonal elements will be small. By Theorem
2.8 from Chapter 2, n = O(s2 log d) rows is sufficient so that if each column is a random
unit-length n-dimensional vector, with high probability all pairwise dot-products will have
magnitude less than 1

2s
as desired.42 Here, we use s2 log d, a larger value of n compared

to the existence argument in Section 10.2.1, but now the algorithm is computationally
efficient.

Let x0 denote the unique s-sparse solution to Ax = b and let x1 be a solution of
smallest possible one-norm. Let z = x1 − x0. We now prove that z = 0.

First, Az = Ax1 − Ax0 = b − b = 0. This implies that ATAz = 0. Consider the
matrix ATA. Since each column of A is unit length, the matrix ATA has ones on its di-
agonal. Since every pair of distinct columns of A has dot-product in the range (− 1

2s
, 1

2s
),

each off-diagonal entry in ATA is in the range (− 1
2s
, 1

2s
). These two facts imply that unless

z = 0, every entry in z must have absolute value less than 1
2s
||z||1. If the jth entry in z

had absolute value greater than or equal to 1
2s
||z||1, it would not be possible for the jth

entry of ATAz to equal 0 unless ||z||1 = 0.

Let S denote the support of x0, where |S| ≤ s. We now argue that z must have
at least half of its `1 norm inside of S, i.e.,

∑
j∈S |zj| ≥

1
2
||z||1. This will complete the

argument because it implies that the average value of |zj| for j ∈ S is at least 1
2s
||z||1,

which as shown above is only possible if ||z||1 = 0.

In particular, let tin denote the sum of the absolute values of the entries of x1 in the
set S, and let tout denote the sum of the absolute values of the entries of x1 outside of S.
So, tin + tout = ||x1||1. Let t0 be the one-norm of x0. By definition of x1 t0 ≥ tin + tout,
or equivalently t0 − tin ≥ tout. But

∑
j∈S |zj| ≥ t0 − tin and

∑
j 6∈S |zj| = tout. This implies

that
∑

j∈S |zj| ≥
∑

j 6∈S |zj|, or equivalently,
∑

j∈S |zj| ≥
1
2
||z||1, which as noted above

implies that ||z||1 = 0, as desired.

To summarize, we have shown the following theorem and corollary.

Theorem 10.3 If matrix A has unit-length columns a1, . . . , ad and the property that
|ai · aj| < 1

2s
for all i 6= j, then if the equation Ax = b has a solution with at most s

nonzero coordinates, this solution is the unique minimum 1-norm solution to Ax = b.

42Note that the roles of “n” and “d” are reversed here compared to Theorem 2.8.
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Corollary 10.4 For some absolute constant c, if A has n rows for n ≥ cs2 log d and each
column of A is chosen to be a random unit-length n-dimensional vector, then with high
probability A satisfies the conditions of Theorem 10.3 and therefore if the equation Ax = b
has a solution with at most s nonzero coordinates, this solution is the unique minimum
1-norm solution to Ax = b.

The condition of Theorem 10.3 is often called incoherence of the matrix A. Other more
involved arguments show that it is possible to recover the sparse solution using one-norm
minimization for a number of rows n as small as O(s log(ds)).

10.3 Applications

10.3.1 Biological

There are many areas where linear systems arise in which a sparse solution is unique.
One is in plant breeding. Consider a breeder who has a number of apple trees and for
each tree observes the strength of some desirable feature. He wishes to determine which
genes are responsible for the feature so he can crossbreed to obtain a tree that better
expresses the desirable feature. This gives rise to a set of equations Ax = b where each
row of the matrix A corresponds to a tree and each column to a position on the genone.
See Figure 10.4. The vector b corresponds to the strength of the desired feature in each
tree. The solution x tells us the position on the genone corresponding to the genes that
account for the feature. It would be surprising if there were two small independent sets
of genes that accounted for the desired feature. Thus, the matrix should have a property
that allows only one sparse solution.

10.3.2 Low Rank Matrices

Suppose L is a low rank matrix that has been corrupted by noise. That is, A = L+R.
If the R is Gaussian, then principal component analysis will recover L from A. However,
if L has been corrupted by several missing entries or several entries have a large noise
added to them and they become outliers, then principal component analysis may be far
off. However, if L is low rank and R is sparse, then L can be recovered effectively from
L+R. To do this, find the L and R that minimize ‖L‖∗+λ ‖R‖1.43 Here the nuclear norm
‖L‖∗ is the 1-norm of the vector of singular values of L and ||R||1 is the entrywise 1-norm∑

ij |rij|. A small value of ‖L‖∗ indicates a sparse vector of singular values and hence a
low rank matrix. Minimizing ‖L‖∗ + λ‖R‖1 subject to L + R = A is a complex problem

and there has been much work on it. The reader is referred to Add references
Notice that we do not need to know the rank of L or the elements that were corrupted.
All we need is that the low rank matrix L is not sparse and that the sparse matrix R is
not low rank. We leave the proof as an exercise.

43To minimize the absolute value of x write x = u − v and using linear programming minimize u + v
subject to u ≥ 0 and v ≥ 0.
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Figure 10.4: The system of linear equations used to find the internal code for some
observable phenomenon.

If A is a small matrix one method to find L and R by minimizing ||L||∗ + ||R||1 is to
find the singular value decomposition A = UΣV T and minimize ||Σ||1 + ||R||1 subject to
A = L + R and UΣV T being the singular value decomposition of A. This can be done
using Lagrange multipliers (??). Write R = R+ +R− where R+ ≥ 0 and R− ≥ 0. Let

f(σi, rij) =
n∑
i=1

σi +
∑
ij

r+
ij +

∑
ij

r−ij .

Write the Lagrange formula
l = f(σi, rij) + σiλigi

where the gi are the required constraints

1. r+
ij ≥ 0

2. r−ij ≥ 0

3. σi ≥ 0

4. aij = lij + rij

5. uTi uj =

{
1 i = j
0 i 6= j

6. vTi vj =

{
1 i = j
0 i 6= j
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7. li =
∑
uiσiv

T
j

Conditions (5) and (6) insure that UΣV T is the svd of some matrix. The solution is
obtained when ∇(l) = 0 which can be found by gradient descent using ∇2(l).

An example where low rank matrices that have been corrupted might occur is aerial
photographs of an intersection. Given a long sequence of such photographs, they will be
the same except for cars and people. If each photo is converted to a vector and the vector
used to make a column of a matrix, then the matrix will be low rank corrupted by the
traffic. Finding the original low rank matrix will separate the cars and people from the
back ground.

10.4 An Uncertainty Principle

Given a function x(t), one can represent the function by the composition of sinusoidal
functions. Basically one is representing the time function by its frequency components.
The transformation from the time representation of a function to it frequency represen-
tation is accomplished by a Fourier transform. The Fourier transform of a function x(t)
is given by

f(ω) =

∫
x(t)e−2πωtdt

Converting the frequency representation back to the time representation is done by the
inverse Fourier transformation

x(t) =

∫
f(ω)e2πωtdω

In the discrete case, x = [x0, x1, . . . , xn−1] and f = [f0, f1, . . . , fn−1]. The Fourier trans-
form is f = Ax with aij = 1√

n
ωij where ω is the principal nth root of unity. The inverse

transform is x = Bf where B = A−1 has the simple form bij = 1√
n
ω−ij.

There are many other transforms such as the Laplace, wavelets, chirplets, etc. In fact,
any nonsingular n× n matrix can be used as a transform.

10.4.1 Sparse Vector in Some Coordinate Basis

Consider Ax = b where A is a square n× n matrix. The vectors x and b can be con-
sidered as two representations of the same quantity. For example, x might be a discrete
time sequence, b the frequency spectrum of x, and the matrix A the Fourier transform.
The quantity x can be represented in the time domain by x and in the frequency domain
by its Fourier transform b.

Any orthonormal matrix can be thought of as a transformation and there are many
important transformations other than the Fourier transformation. Consider a transfor-
mation A and a signal x in some standard representation. Then y = Ax transforms
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the signal x to another representation y. If A spreads any sparse signal x out so that
the information contained in each coordinate in the standard basis is spread out to all
coordinates in the second basis, then the two representations are said to be incoherent.
A signal and its Fourier transform are one example of incoherent vectors. This suggests
that if x is sparse, only a few randomly selected coordinates of its Fourier transform are
needed to reconstruct x. Below, we show that a signal cannot be too sparse in both its
time domain and its frequency domain.

10.4.2 A Representation Cannot be Sparse in Both Time and Frequency
Domains

There is an uncertainty principle that states that a time signal cannot be sparse in
both the time domain and the frequency domain. If the signal is of length n, then the
product of the number of nonzero coordinates in the time domain and the number of
nonzero coordinates in the frequency domain must be at least n. This is the mathemati-
cal version of Heisenberg’s uncertainty principle. Before proving the uncertainty principle
we first prove a technical lemma.

In dealing with the Fourier transform it is convenient for indices to run from 0 to n−1
rather than from 1 to n. Let x0, x1, . . . , xn−1 be a sequence and let f0, f1, . . . , fn−1 be its

discrete Fourier transform. Let i =
√
−1. Then fj = 1√

n

n−1∑
k=0

xke
−2πi

n
jk, j = 0, . . . , n−1.

In matrix form f = Zx where zjk = e−
2πi
n
jk.


f0

f1
...

fn−1

 =
1√
n


1 1 1 · · · 1

1 e−
2πi
n e−

2πi
n

2 · · · e−
2πi
n

(n− 1)

...
...

...
...

1 e−
2πi
n

(n− 1) e−
2πi
n

2 (n− 1) · · · e−
2πi
n

(n− 1)2




x0

x1
...

xn−1


If some of the elements of x are zero, delete the zero elements of x and the corresponding
columns of the matrix. To maintain a square matrix, let nx be the number of nonzero
elements in x and select nx consecutive rows of the matrix. Normalize the columns of the
resulting submatrix by dividing each element in a column by the column element in the
first row. The resulting submatrix is a Vandermonde matrix that looks like

1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3


and is nonsingular.

Lemma 10.5 If x0, x1, . . . , xn−1 has nx nonzero elements, then f0, f1, . . . , fn−1 cannot
have nx consecutive zeros.
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1
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0
1
0
0
1
0
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Figure 10.5: The transform of the sequence 100100100.

Proof: Let i1, i2, . . . , inx be the indices of the nonzero elements of x. Then the elements
of the Fourier transform in the range k = m+ 1,m+ 2, . . . ,m+ nx are

fk = 1√
n

nx∑
j=1

xije
−2πi
n
kij

Note the use of i as
√
−1 and the multiplication of the exponent by ij to account for the

actual location of the element in the sequence. Normally, if every element in the sequence
was included, we would just multiply by the index of summation.

Convert the equation to matrix form by defining zkj = 1√
n

exp(−2πi
n
kij) and write

f = Zx where now x is the vector consisting of the nonzero elements of the original x. By
its definition, x 6= 0. To prove the lemma we need to show that f is nonzero. This will be
true provided Z is nonsingular since x = Z−1f . If we rescale Z by dividing each column
by its leading entry we get the Vandermonde determinant which is nonsingular.

Theorem 10.6 Let nx be the number of nonzero elements in x and let nf be the number
of nonzero elements in the Fourier transform of x. Let nx divide n. Then nxnf ≥ n.

Proof: If x has nx nonzero elements, f cannot have a consecutive block of nx zeros. Since
nx divides n there are n

nx
blocks each containing at least one nonzero element. Thus, the

product of nonzero elements in x and f is at least n.

The Fourier transform of spikes proves that above bound is tight

To show that the bound in Theorem 10.6 is tight we show that the Fourier transform
of the sequence of length n consisting of

√
n ones, each one separated by

√
n − 1 zeros,

is the sequence itself. For example, the Fourier transform of the sequence 100100100 is
100100100. Thus, for this class of sequences, nxnf = n.

Theorem 10.7 Let S (
√
n,
√
n) be the sequence of 1’s and 0’s with

√
n 1’s spaced

√
n

apart. The Fourier transform of S (
√
n,
√
n) is itself.
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Proof: Consider the columns 0,
√
n, 2
√
n, . . . , (

√
n− 1)

√
n. These are the columns for

which S (
√
n,
√
n) has value 1. The element of the matrix Z in the row j

√
n of column

k
√
n, 0 ≤ k <

√
n is znkj = 1. Thus, the product of these rows of Z times the vector

S (
√
n,
√
n) equals

√
n and the 1/

√
n normalization yields fj√n = 1.

For rows whose index is not of the form j
√
n, the row b, b 6= j

√
n, j ∈ {0,

√
n, . . . ,

√
n− 1},

the elements in row b in the columns 0,
√
n, 2
√
n, . . . , (

√
n− 1)

√
n are 1, zb, z2b, . . . , z(

√
n−1)b

and thus fb = 1√
n

(
1 + zb + z2b · · ·+ z(

√
n−1)b

)
= 1√

n
z
√
nb−1
zb−1

= 0 since zb
√
n = 1 and zb 6= 1.

ms better suited to perhaps a homework question

10.5 Gradient

The gradient of a function f(x) of d variables, x = (x1, x2, . . . , xd), at a point x0 is

denoted 5f(x0). It is a d-dimensional vector with components ∂f(x0)
∂x1

, ∂f(x0)
∂x2

, . . . , ∂f(x0)
∂xd

,

where ∂f
∂xi

are partial derivatives. Without explicitly stating, we assume that the deriva-
tives referred to exist. The rate of increase of the function f as we move from x0 in a
direction u is 5f(x0) · u. So the direction of steepest descent is −5f(x0); this is a nat-
ural direction to move to minimize f . But by how much should we move? A large move
may overshoot the minimum. See Figure 10.6. A simple fix is to minimize f on the line
from x0 in the direction of steepest descent by solving a one dimensional minimization
problem. This gives us the next iterate x1 and we repeat. We do not discuss the issue
of step-size any further. Instead, we focus on infinitesimal gradient descent, where, the
algorithm makes infinitesimal moves in the −5f(x0) direction. Whenever 5f is not the
zero vector, we strictly decrease the function in the direction −5f , so the current point
is not a minimum of the function f . Conversely, a point x where 5f = 0 is called a
first-order local optimum of f . A first-order local optimum may be a local minimum, local
maximum, or a saddle point. We ignore saddle points since numerical error is likely to
prevent gradient descent from stoping at a saddle point. In general, local minima do not
have to be global minima, see Figure 10.6, and gradient descent may converge to a local
minimum that is not a global minimum. When the function f is convex, this is not the
case.

A function f of a single variable x is said to be convex if for any two points a and b,
the line joining f(a) and f(b) is above the curve f(·). A function of many variables is
convex if on any line segment in its domain, it acts as a convex function of one variable
on the line segment.

Definition 10.1 A function f over a convex domain is a convex function if for any two
points x and y in the domain, and any λ in [0, 1] we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The function is concave if the inequality is satisfied with ≥ instead of ≤.
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Figure 10.6: Gradient descent overshooting minimum

Theorem 10.8 Suppose f is a convex, differentiable function defined on a closed bounded
convex domain. Then any first-order local minimum is also a global minimum. Infinites-
imal gradient descent always reaches the global minimum.

Proof: We will prove that if x is a local minimum, then it must be a global minimum.
If not, consider a global minimum point y 6= x. On the line joining x and y, the function
must not go above the line joining f(x) and f(y). This means for an infinitesimal ε > 0,
moving distance ε from x towards y, the function must decrease, so 5f(x) is not 0,
contradicting the assumption that x is a local minimum.

The second derivatives ∂2

∂xi∂xj
form a matrix, called the Hessian, denoted H(f(x)).

The Hessian of f at x is a symmetric d× d matrix with ijth entry ∂2f
∂xi∂xj

(x). The second

derivative of f at x in the direction u is the rate of change of the first derivative in the
direction u from x. It is easy to see that it equals

uT H(f(x))u.

To see this, note that the second derivative of f along the unit vector u is∑
j

uj
∂

∂xj
(5f(x) · u) =

∑
j

uj
∑
i

∂

∂xj

(
ui
∂f(x)

∂xi

)
=
∑
j,i

ujui
∂2f(x)

∂xj∂xi
.

Theorem 10.9 Suppose f is a function from a closed convex domain D in Rd to the
reals and the Hessian of f exists everywhere in D. Then f is convex (concave) on D if
and only if the Hessian of f is positive (negative) semi-definite everywhere on D.

Gradient descent requires the gradient to exist. But, even if the gradient is not always
defined, one can minimize a convex function over a convex domain efficiently, i.e., in
polynomial time. Technically, one can only find an approximate minimum and the time
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depends on the error parameter as well as the presentation of the convex set. We do not
go into these details. But, in principle we can minimize a convex function over a convex
domain. We can also maximize a concave function over a concave domain. However, in
general, we do not have efficient procedures to maximize a convex function over a convex
domain. It is easy to see that at a first-order local minimum of a possibly non-convex
function, the gradient vanishes. But second-order local decrease of the function may be
possible. The steepest second-order decrease is in the direction of ±v, where, v is the
eigenvector of the Hessian corresponding to the largest absolute valued eigenvalue.

10.6 Linear Programming

Linear programming is an optimization problem that has been carefully studied and is
immensely useful. We consider linear programming problem in the following form where
A is an m× n matrix, m ≤ n, of rank m, c is 1× n, b is m× 1, and x is n× 1 :

max c · x subject to Ax = b, x ≥ 0.

Inequality constraints can be converted to this form by adding slack variables. Also, we
can do Gaussian elimination on A and if it does not have rank m, we either find that
the system of equations has no solution, whence we may stop or we can find and discard
redundant equations. After this preprocessing, we may assume that A ’s rows are inde-
pendent.

The simplex algorithm is a classical method to solve linear programming problems. It
is a vast subject and is well discussed in many texts. Here, we will discuss the ellipsoid
algorithm which is in a sense based more on continuous mathematics and is closer to the
spirit of this book.

10.6.1 The Ellipsoid Algorithm

The first polynomial time algorithm for linear programming44 was developed by Khachiyan
based on work of Iudin, Nemirovsky and Shor and is called the ellipsoid algorithm. The
algorithm is best stated for the seemingly simpler problem of determining whether there
is a solution to Ax ≤ b and if so finding one. The ellipsoid algorithm starts with a large
ball in d-space which is guaranteed to contain the polyhedron Ax ≤ b. Even though we
do not yet know if the polyhedron is empty or non-empty, such a ball can be found. It
checks if the center of the ball is in the polyhedron, if it is, we have achieved our objective.
If not, we know from the Separating Hyperplane Theorem of convex geometry that there
is a hyperplane called the separating hyperplane through the center of the ball such that

44Although there are examples where the simplex algorithm requires exponential time, it was shown
by Shanghua Teng and Dan Spielman that the expected running time of the simplex algorithm on an
instance produced by taking an arbitrary instance and then adding small Gaussian perturbations to it is
polynomial.
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Ellipsoid containing half-
sphere

Separating hyperplane

polytope

Figure 10.7: Ellipsoid Algorithm

the whole polytope lies in one of the half spaces.

We then find an ellipsoid which contains the ball intersected with this half-space. See
Figure 10.7. The ellipsoid is guaranteed to contain Ax ≤ b as was the ball earlier. If the
center of the ellipsoid does not satisfy the inequalities, then there is a separating hyper
plane again and we repeat the process. After a suitable number of steps, either we find a
solution to the original Ax ≤ b or we end up with a very small ellipsoid. If the original A
and b had integer entries, one can ensure that the set Ax ≤ b, after a slight perturbation
which preserves its emptiness/non-emptiness, has a volume of at least some ε > 0. If our
ellipsoid has shrunk to a volume of less than this ε, then there is no solution. Clearly
this must happen within logρ V0/ε = O(V0d/ε) steps, where V0 is an upper bound on the
initial volume and ρ is the factor by which the volume shrinks in each step. We do not
go into details of how to get a value for V0, but the important points are that (i) only the
logarithm of V0 appears in the bound on the number of steps, and (ii) the dependence on
d is linear. These features ensure a polynomial time algorithm.

The main difficulty in proving fast convergence is to show that the volume of the
ellipsoid shrinks by a certain factor in each step. Thus, the question can be phrased as
suppose E is an ellipsoid with center x0 and consider the half-ellipsoid E ′ defined by

E ′ = {x|x ∈ E, a · (x− x0) ≥ 0}

where a is some unit length vector. Let Ê be the smallest volume ellipsoid containing E ′.
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Show that
Vol(Ê)

Vol(E)
≤ 1− ρ

for some ρ > 0. A sequence of geometric reductions transforms this into a simple problem.
Translate and then rotate the coordinate system so that x0 = 0 and a = (1, 0, 0, . . . , 0).
Finally, apply a nonsingular linear transformation τ so that τE = B = {x| |x| = 1}, the
unit sphere. The important point is that a nonsingular linear transformation τ multiplies

the volumes of all sets by |det(τ)|, so that Vol(Ê)
Vol(E)

= Vol(τ(Ê))
Vol(τ(E))

. The following lemma answers
the question raised.

Lemma 10.10 Consider the half-sphere B′ = {x|x1 ≥ 0, |x| ≤ 1}. The following
ellipsoid Ê contains B′:

Ê =

{
x

∣∣∣∣∣
(
d+ 1

d

)2(
x1 −

1

d+ 1

)2

+

(
d2 − 1

d2

)(
x2

2 + x2
3 + . . .+ x2

d

)
≤ 1

}
.

Further,

Vol(Ê)

Vol(B)
=

(
d

d+ 1

)(
d2

d2 − 1

)(d−1)/2

≤ 1− 1

4d
.

The proof is left as an exercise (Exercise 10.26).

10.7 Integer Optimization

The problem of maximizing a linear function subject to linear inequality constraints,
but with the variables constrained to be integers is called integer programming.

Max c · x subject to Ax ≤ b with xi integers

This problem is NP-hard. One way to handle the hardness is to relax the integer con-
straints, solve the linear program in polynomial time, and round the fractional values to
integers. The simplest rounding, round each variable which is 1/2 or more to 1, the rest
to 0, yields sensible results in some cases. The vertex cover problem is one of them. The
problem is to choose a subset of vertices so that each edge is covered with at least one of
its end points in the subset. The integer program is:

Min
∑
i

xi subject to xi + xj ≥ 1 ∀ edges (i, j); xi integers .

Solve the linear program. At least one variable for each edge must be at least 1/2 and
the simple rounding converts it to one. The integer solution is still feasible. It clearly
at most doubles the objective function from the linear programming solution and since
the LP solution value is at most the optimal integer programming solution value, we are
within a factor of two of the optimal.
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10.8 Semi-Definite Programming

Semi-definite programs are special cases of convex programs. Recall that an n×n ma-
trix A is positive semi-definite if and only if A is symmetric and for all x ∈ Rn, xTAx ≥ 0.
There are many equivalent characterizations of positive semi-definite matrices. We men-
tion one. A symmetric matrix A is positive semi-definite if and only if it can be expressed
as A = BBT for a possibly rectangular matrix B.

A semi-definite program (SDP) is the problem of minimizing a linear function cTx
subject to a constraint that F = F0 + F1x1 + F2x2 + · · ·+ Fdxd is positive semi-definite.
Here F0, F1, . . . , Fd are given symmetric matrices.

This is a convex program since the set of x satisfying the constraint is a convex
set. To see this, note that if F (x) = F0 + F1x1 + F2x2 + · · · + Fdxd and F (y) =
F0 + F1y1 + F2y2 + · · · + Fdyd are positive semi-definite, then so is F

(
αx + (1 − α)y

)
for 0 ≤ α ≤ 1. In principle, SDP’s can be solved in polynomial time. It turns out
that there are more efficient algorithms for SDP’s than general convex programs and that
many interesting problems can be formulated as SDP’s. We discuss the latter aspect here.

Linear programs are special cases of SDP’s. For any vector v, let diag(v) denote a
diagonal matrix with the components of v on the diagonal. Then it is easy to see that
the constraints v ≥ 0 are equivalent to the constraint diag(v) is positive semi-definite.
Consider the linear program:

Minimize cTx subject to Ax = b; x ≥ 0.

Rewrite Ax = b as Ax−b ≥ 0 and b−Ax ≥ 0 and use the idea of diagonal matrices
above to formulate this as an SDP.

A second interesting example is that of quadratic programs of the form:

Minimize
(cTx)

2

dTx
subject to Ax + b ≥ 0.

This is equivalent to

Minimize t subject to Ax + b ≥ 0 and t ≥ (cTx)
2

dTx
.

This is in turn equivalent to the SDP

Minimize t subject to the following matrix being positive semi-definite: diag(Ax + b) 0 0
0 t cTx
0 cTx dTx

 .
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Application to approximation algorithms.

An exciting area of application of SDP is in finding near-optimal solutions to some
integer problems. The central idea is best illustrated by its early application in a break-
through due to Goemans and Williamson [GW95] for the maximum cut problem which
given a graph G(V,E) asks for the cut S, S̄ maximizing the number of edges going across
the cut from S to S̄. For each i ∈ V , let xi be an integer variable assuming values ±1
depending on whether i ∈ S or i ∈ S̄ respectively. Then the max-cut problem can be
posed as

Maximize
∑

(i,j)∈E
(1− xixj) subject to the constraints xi ∈ {−1,+1}.

The integrality constraint on the xi makes the problem NP-hard. Instead replace the
integer constraints by allowing the xi to be unit length vectors. This enlarges the set of
feasible solutions since ±1 are just 1-dimensional vectors of length 1. The relaxed problem
is an SDP and can be solved in polynomial time. To see that it is an SDP, consider xi as
the rows of a matrix X. The variables of our SDP are not X, but actually Y = XXT ,
which is a positive semi-definite matrix. The SDP is

Maximize
∑

(i,j)∈E
(1− yij) subject to Y positive semi-definite,

which can be solved in polynomial time. From the solution Y , findX satisfying Y = XXT .
Now, instead of a ±1 label on each vertex, we have vector labels, namely the rows of X.
We need to round the vectors to ±1 to get an S. One natural way to do this is to pick
a random vector v and if for vertex i, xi · v is positive, put i in S, otherwise put it in
S̄. Goemans and Wiiliamson showed that this method produces a cut guaranteed to be
at least 0.878 times the maximum. The .878 factor is a big improvement on the previous
best factor of 0.5 which is easy to get by putting each vertex into S with probability 1/2.

Application to machine learning.

As discussed in Chapter 5, kernel functions are a powerful tool in machine learning.
They allow one to apply algorithms that learn linear classifiers, such as Perceptron and
Support Vector Machines, to problems where the positive and negative examples might
have a more complicated separating curve.

More specifically, a kernel K is a function from pairs of examples to reals such that
for some implicit function φ from examples to <N , we have K(a, a′) = φ(a)Tφ(a′). (We
are using “a” and “a′” to refer to examples, rather than x and x′, in order to not conflict
with the notation used earlier in this chapter.) Notice that this means that for any set of
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examples {a1, a2, . . . , an}, the matrix A whose ij entry equals K(ai, aj) is positive semi-
definite. Specifically, A = BBT where the ith row of B equals φ(ai).

Given that a kernel corresponds to a positive semi-definite matrix, it is not surprising
that there is a related use of semi-definite programming in machine learning. In particular,
suppose that one does not want to specify up-front exactly which kernel an algorithm
should use. In that case, a natural idea is instead to specify a space of kernel functions and
allow the algorithm to select the best one from that space for the given data. Specifically,
given some labeled training data and some unlabeled test data, one could solve for the
matrix A over the combined data set that is positive semi-definite (so that it is a legal
kernel function) and optimizes some given objective. This objective might correspond
to separating the positive and negative examples in the labeled data while keeping the
kernel simple so that it does not over-fit. If this objective is linear in the coefficients of
A along with possibly additional linear constraints on A, then this is an SDP. This is the
high-level idea of kernel learning, first proposed in [LCB+04].

10.9 Bibliographic Notes

Arrow’s impossibility theorem, stating that any ranking of three or more items satisfying
unanimity and independence of irrelevant alternatives must be a dictatorship, is from
[Arr50]. For extensions to Arrow’s theorem on the manipulability of voting rules, see
Gibbard [Gib73] and Satterthwaite [Sat75]. A good discussion of issues in social choice
appears in [Lis13]. The results presented in Section 10.2.2 on compressed sensing are due
to Donoho and Elad [DE03] and Gribonval and Nielsen [GN03]. See [Don06] for more
details on issues in compressed sensing. The ellipsoid algorithm for linear programming is
due to Khachiyan [Kha79] based on work of Shor [Sho70] and Iudin and Nemirovski [IN77].
For more information on the ellipsoid algorithm and on semi-definite programming, see
the book of Grötschel, Lovász, and Schrijver [GLS12]. The use of SDPs for approximating
the max-cut problem is due to Goemans and Williamson[GW95], and their use for learning
a kernel function is due to [LCB+04].
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10.10 Exercises

Exercise 10.1 Select a method that you believe is good for combining individual rankings
into a global ranking. Consider a set of rankings where each individual ranks b last. One
by one move b from the bottom to the top leaving the other rankings in place. Does there
exist a v as in Theorem 10.2 where v is the ranking that causes b to move from the bottom
to the top in the global ranking. If not, does your method of combing individual rankings
satisfy the axioms of unanimity and independence of irrelevant alternatives.

Exercise 10.2 Show that for the three axioms: non dictator, unanimity, and indepen-
dence of irrelevant alternatives, it is possible to satisfy any two of the three.

Exercise 10.3 Does the axiom of independence of irrelevant alternatives make sense?
What if there were three rankings of five items. In the first two rankings, A is number one
and B is number two. In the third ranking, B is number one and A is number five. One
might compute an average score where a low score is good. A gets a score of 1+1+5=7
and B gets a score of 2+2+1=5 and B is ranked number one in the global ranking. Now if
the third ranker moves A up to the second position, A’s score becomes 1+1+2=4 and the
global ranking of A and B changes even though no individual ranking of A and B changed.
Is there some alternative axiom to replace independence of irrelevant alternatives? Write
a paragraph on your thoughts on this issue.

Exercise 10.4 Prove that in the proof of Theorem 10.2, the global ranking agrees with
column v even if item b is moved down through the column.

Exercise 10.5 Let A be an m by n matrix with elements from a zero mean, unit variance
Gaussian. How large must n be for there to be two or more sparse solutions to Ax = b
with high probability. You will need to define how small s should be for a solution with at
most s nonzero elements to be sparse.

Exercise 10.6 Section 10.2.1 showed that if A is an n × d matrix with entries selected
at random from a standard Gaussian, and n ≥ 2s, then with probability one there will be
a unique s-sparse solution to Ax = b. Show that if n ≤ s, then with probability one there
will not be a unique s-sparse solution. Assume d > s.

Exercise 10.7 Section 10.2.2 used the fact that n = O(s2 log d) rows is sufficient so
that if each column of A is a random unit-length n-dimensional vector, then with high
probability all pairwise dot-products of columns will have magnitude less than 1

2s
. Here,

we show that n = Ω(log d) rows is necessary as well. To make the notation less confusing
for this argument, we will use “m” instead of “d”.

Specifically, prove that for m > 3n, it is not possible to have m unit-length n-dimensional
vectors such that all pairwise dot-products of those vectors are less than 1

2
.

Some hints: (1) note that if two unit-length vectors u and v have dot-product greater
than or equal to 1

2
then |u− v| ≤ 1 (if their dot-product is equal to 1

2
then u, v, and the

origin form an equilateral triangle). So, it is enough to prove that m > 3n unit-length
vectors in <n cannot all have distance at least 1 from each other. (2) use the fact that the
volume of a ball of radius r in <n is proportional to rn.
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Exercise 10.8 Create a random 100 by 100 orthonormal matrix A and a sparse 100-
dimensional vector x. Compute Ax = b. Randomly select a few coordinates of b and
reconstruct x from the samples of b using the minimization of 1-norm technique of Section
10.2.2. Did you get x back?

Exercise 10.9 Let A be a low rank n ×m matrix. Let r be the rank of A. Let Ã be A
corrupted by Gaussian noise. Prove that the rank r SVD approximation to Ã minimizes∣∣∣A− Ã∣∣∣2

F
.

Exercise 10.10 Prove that minimizing ||x||0 subject to Ax = b is NP-complete.

Exercise 10.11 When one wants to minimize ||x||0 subject to some constraint the prob-
lem is often NP-hard and one uses the 1-norm as a proxy for the 0-norm. To get an
insite into this issue consider minimizing ||x||0 subject to the constraint that x lies in a
convex region. For simplicity assume the convex region is a sphere with center more than
the radius of the circle from the origin. Explore sparsity of solution when minimizing the
1-norm for values of x in the circular region with regards to location of the center.

Exercise 10.12 Express the matrix

2 17 2 2 2
2 2 2 2 2
2 2 2 9 2
2 2 2 2 2
13 2 2 2 2

as the sum of a low rank matrix plus a sparse matrix. To simplify the computation assume
you want the low rank matrix to be symmetric so that its singular valued decomposition
will be V ΣV T .

Exercise 10.13 Generate 100 × 100 matrices of rank 20, 40, 60 80, and 100. In each
matrix randomly delete 50, 100, 200, or 400 entries. In each case try to recover the
original matrix. How well do you do?

Exercise 10.14 Repeat the previous exercise but instead of deleting elements, corrupt the
elements by adding a reasonable size corruption to the randomly selected matrix entries.

End of sparse solutions, start of Uncertainty principle

Exercise 10.15 Compute the Fourier transform of the sequence 1000010000.

Exercise 10.16 What is the Fourier transform of a Gaussian?

Exercise 10.17 What is the Fourier transform of a cyclic shift of a sequence?
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Exercise 10.18 Let S(i, j) be the sequence of i blocks each of length j where each block
of symbols is a 1 followed by j − 1 0’s. The number n=6 is factorable but not a perfect
square. What is Fourier transform of S (2, 3)= 100100?

Exercise 10.19 Let Z be the n root of unity. Prove that
{
zbi|0 ≤ i < n

}
= {zi|0 ≤ i < n}

provide that b does not divide n.

Exercise 10.20 Show that if the elements in the second row of the n× n Vandermonde
matrix 

1 1 · · · 1
a b · · · c
a2 b2 · · · c2

...
...

...
an−1 bn−1 · · · cn−1


are distinct, then the Vandermonde matrix is nonsingular by expressing the determinant
of the matrix as an n− 1 degree polynomial in a.

Exercise 10.21 Show that the following two statements are equivalent.

1. If the elements in the second row of the n× n Vandermonde matrix
1 1 · · · 1
a b · · · c
a2 b2 · · · c2

...
...

...
an−1 bn−1 · · · cn−1


are distinct, then the Vandermonde matrix is nonsingular.

2. Specifying the value of an nth degree polynomial at n+ 1 points uniquely determines
the polynomial.

Exercise 10.22 Many problems can be formulated as finding x satisfying Ax = b where
A has more columns than rows and there is a subspace of solutions. If one knows that the
solution is sparse but some error in the measurement b may prevent finding the sparse
solution, they might add some residual error to b and reformulate the problem as solving
for x and r subject to Ax = b + r where r is the residual error. Discuss the advantages
and disadvantages of each of the following three versions of the problem.

1. Set r=0 and find x= argmin ‖x‖1 satisfying Ax = b

2. Lasso: find x= argmin
(
‖x‖1 + α ‖r‖2

2

)
satisfying Ax = b + r

3. find x
¯

=argmin ‖x‖1 such that ‖r‖2
2 < ε
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Exercise 10.23 Let M = L+R where L is a low rank matrix corrupted by a sparse noise
matrix R. Why can we not recover L from M if R is low rank or if L is sparse?

Exercise 10.24

1. Suppose for a univariate convex function f and a finite interval D, |f ′′(x)| ≤ δ|f ′(x)|
for every x. Then, what is a good step size to choose for gradient descent? Derive a
bound on the number of steps needed to get an approximate minimum of f in terms
of as few parameters as possible.

2. Generalize the statement and proof to convex functions of d variables.

Exercise 10.25 Prove that the maximum of a convex function over a polytope is attained
at one of its vertices.

Exercise 10.26 Prove Lemma 10.10.

Exercise 10.27 Consider the following symmetric matrix A:
1 0 1 1
0 1 1 −1
1 1 2 0
1 −1 0 2


Find four vectors v1,v2,v3,v4 such that aij = vi

Tvj for all 1 ≤ i, j ≤ 4. Also, find a
matrix B such that A = BBT .

Exercise 10.28 Prove that if A1 and A2 are positive semi-definite matrices, then so is
A1 + A2.

7. Smoothed Analysis of Algorithms: The Simplex Algorithm Usually Takes a Polyno-
mial Number of Steps, Journal of the Association for Computing Machinery (JACM), 51
(3) pp: 385463, May 2004. Conference Version: the Annual ACM Symposium on Theory
of Computing, pages 296-305, 2001 (with Dan Spielman).
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11 Wavelets

Given a vector space of functions, one would like an orthonormal set of basis functions
that span the space. The Fourier transform provides a set of basis functions based on
sines and cosines. Often we are dealing with functions that have local structure in which
case we would like the basis vectors to have finite support. Also we would like to have
an efficient algorithm for computing the coefficients of the expansion of a function in the
basis.

11.1 Dilation

We begin our development of wavelets by first introducing dilation. A dilation is a
mapping that scales all distances by the same factor.

⇒

A dilation equation is an equation where a function is defined in terms of a linear
combination of scaled, shifted versions of itself. For instance,

f(x) =
d−1∑
k=0

ckf(2x− k).

An example of this is f(x) = f(2x) + f(2x − 1) which has a solution f(x) equal to one
for 0 ≤ x < 1 and is zero elsewhere. The equation is illustrated in the figure below. The
solid rectangle is f(x) and the dotted rectangles are f(2x) and f(2x− 1).

0 1
2 1

f(2x) f(2x− 1)

f(x)

Another example is f(x) = 1
2
f(2x) + f(2x − 1) + 1

2
f(2x − 2). A solution is illustrated

in the figure below. The function f(x) is indicated by solid lines. The functions 1
2
f(2x),

f(2x+ 1), and 1
2
f(2x− 2) are indicated by dotted lines.

0 1 2

1

1
2
f(2x) 1

2
f(2x− 2)

f(2x− 1)f(x)
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Lemma 11.1 If a dilation equation in which all the dilations are a factor of two reduction
has a solution, then either the coefficients on the right hand side of the equation sum to
two or the integral

∫∞
−∞ f(x)dx of the solution is zero.

Proof: Integrate both sides of the dilation equation from −∞ to +∞.∫ ∞
−∞

f(x)dx =

∫ ∞
−∞

d−1∑
k=0

ckf(2x− k)dx =
d−1∑
k=0

ck

∫ ∞
−∞

f(2x− k)dx

=
d−1∑
k=0

ck

∫ ∞
−∞

f(2x)dx =
1

2

d−1∑
k=0

ck

∫ ∞
−∞

f(x)dx

If
∫∞
−∞ f(x)dx 6= 0, then dividing both sides by

∞∫
−∞

f(x)dx gives
d−1∑
k=0

ck = 2

The above proof interchanged the order of the summation and the integral. This is valid
provided the 1-norm of the function is finite. Also note that there are nonzero solutions to
dilation equations in which all dilations are a factor of two reduction where the coefficients
do not sum to two such as

f(x) = f(2x) + f(2x− 1) + f(2x− 2) + f(2x− 3)

or
f(x) = f(2x) + 2f(2x− 1) + 2f(2x− 2) + 2f(2x− 3) + f(2x− 4).

In these examples f(x) takes on both positive and negative values and
∫∞
−∞ f(x)dx = 0.

11.2 The Haar Wavelet

Let φ(x) be a solution to the dilation equation f(x) = f(2x)+f(2x−1). The function
φ is called a scale function or scale vector and is used to generate the two dimensional
family of functions, φjk(x) = φ(2jx− k), where j and k are non-negative integers. Other

authors scale φjk = φ(2jx− k) by 2
j
2 so that the 2-norm,

∫∞
−∞ φ

2
jk(t)dt, is 1. However, for

educational purposes, simplifying the notation for ease of understanding was preferred.

For a given value of j, the shifted versions, {φjk|k ≥ 0}, span a space Vj. The spaces
V0, V1, V2, . . . are larger and larger spaces and allow better and better approximations to
a function. The fact that φ(x) is the solution of a dilation equation implies that for any
fixed j, φjk is a linear combination of the {φj+1,k|k ≥ 0} and this ensures that Vj ⊆ Vj+1. [[In φjk is a

linear
combination
of the
{φj+1,k|k ≥
0} k is both
a fixed and a
free
variable.]]

It is for this reason that it is desirable in designing a wavelet system for the scale function
to satisfy a dilation equation. For a given value of j, the shifted φjk are orthogonal in the
sense that

∫
x
φjk(x)φjl(x)dx = 0 for k 6= l.

Note that for each j, the set of functions φjk, k = 0, 1, 2 . . . , form a basis for a vector
space Vj and are orthogonal. The set of basis vectors φjk, for all j and k, form an over-
complete basis and for different values of j are not orthogonal. Since φjk, φj+1,2k, and

375



1

1 2 3
φ00(x) = φ(x)

1

1 2 3
φ01(x) = φ(x− 1)

1

1 2 3
φ02(x) = φ(x− 2)

1

1 2 3 4
φ03(x) = φ(x− 3)

1

1 2 3
φ10(x) = φ(2x)

1

1 2 3
φ11(x) = φ(2x− 1)

1

1 2 3
φ12(x) = φ(2x− 2)

1

1 2 3
φ13(x) = φ(2x− 3)

1

1 2 3
φ20(x) = φ(4x)

1

1 2 3
φ21(x) = φ(4x− 1)

1

1 2 3
φ22(x) = φ(4x− 2)

1

1 2 3
φ23(x) = φ(4x− 3)

Figure 11.1: Set of scale functions associated with the Haar wavelet.

φj+1,2k+1 are linearly dependent, for each value of j delete φj+1,k for odd values of k to
get a linearly independent set of basis vectors. To get an orthogonal set of basis vectors,
define

ψjk(x) =


1 2k

2j
≤ x < 2k+1

2j

−1 2k+1
2j
≤ x < 2k+2

2j

0 otherwise

and replace φj,2k with ψj+1,2k. Basically, replace the three functions

1

1

φ(x)

1

11
2

φ(2x)

1

11
2

φ(2x− 1)

by the two functions

1

1
φ(x)

1

1

ψ(x)
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The Haar Wavelet

φ(x) =


1 0 ≤ x < 1

0 otherwise

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2
≤ x < 1

0 otherwise

x

φ(x)
1

1

x

ψ(x)

-1

1

1

The basis set becomes

φ00 ψ10

ψ20 ψ22

ψ30 ψ32 ψ34 ψ36

ψ40 ψ42 ψ44 ψ46 ψ48 ψ4,10 ψ4,12 ψ4,14

To approximate a function that has only finite support, select a scale vector φ(x)
whose scale is that of the support of the function to be represented. Next approximate
the function by the set of scale functions φ(2jx− k), k = 0, 1, . . . , for some fixed value of
j. The value of j is determined by the desired accuracy of the approximation. Basically
the x axis has been divided into intervals of size 2−j and in each interval the function is
approximated by a fixed value. It is this approximation of the function that is expressed
as a linear combination of the basis functions.

Once the value of j has been selected, the function is sampled at 2j points, one in each
interval of width 2−j. Let the sample values be s0, s1, . . . . The approximation to the func-

tion is
∑2j−1

k=0 skφ(2jx−k) and is represented by the vector (s0, s1 . . . , s2j−1). The problem
now is to represent the approximation to the function using the basis vectors rather than
the nonorthogonal set of scale functions φjk(x). This is illustrated in the following example.

To represent the function corresponding to a vector such as ( 3 1 4 8 3 5 7 9 ),
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one needs to find the ci such that

3
1
4
8
3
5
7
9


=



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1





c1

c2

c3

c4

c5

c6

c7

c8


.

The first column represents the scale function φ(x) and subsequent columns the ψ’s.
The tree in Figure 11.2 illustrates an efficient way to find the coefficients representing
the vector ( 3 1 4 8 3 5 7 9 ) in the basis. Each vertex in the tree contains the
average of the quantities of its two children. The root gives the average of the elements in
the vector, which is 5 in this example. This average is the coefficient of the basis vector
in the first column of the above matrix. The second basis vector converts the average
of the eight elements into the average of the first four elements, which is 4, and the last
four elements, which is 6, with a coefficient of -1. Working up the tree determines the
coefficients for each basis vector.

5

4 6

2 6 4 8

3 1 4 8 3 5 7 9

Figure 11.2: Tree of function averages



3
1
4
8
3
5
7
9


= 5



1
1
1
1
1
1
1
1


−1



1
1
1
1
−1
−1
−1
−1


−2



1
1
−1
−1

0
0
0
0


−2



0
0
0
0
1
1
−1
−1


+1



1
−1

0
0
0
0
0
0


−2



0
0
1
−1

0
0
0
0


−1



0
0
0
0
1
−1

0
0


−1



0
0
0
0
0
0
1
−1
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11.3 Wavelet Systems

So far we have explained wavelets using the simple-to-understand Haar wavelet. We
now consider general wavelet systems. A wavelet system is built from a basic scaling
function φ(x), which comes from a dilation equation. Scaling and shifting of the basic
scaling function gives a two dimensional set of scaling functions φjk where

φjk(x) = φ(2jx− k).

For a fixed value of j, the φjk span a space Vj. If φ(x) satisfies a dilation equation

φ(x) =
d−1∑
k=0

ckφ(2x− k),

then φjk is a linear combination of the φj+1,k’s and this implies that V0 ⊆ V1 ⊆ V2 ⊆ V3 · · · .

11.4 Solving the Dilation Equation

Consider solving a dilation equation

φ(x) =
d−1∑
k=0

ckφ(2x− k)

to obtain the scale function for a wavelet system. Perhaps the easiest way is to assume
a solution and then calculate the scale function by successive approximation as in the
following program for

φ(x) = 1+
√

3
4
φ(2x) + 3+

√
3

4
φ(2x− 1) + 3−

√
3

4
φ(2x− 2) + 1−

√
3

4
φ(2x− 3),

a Daubechies scale function. The solution will actually be samples of φ(x) at some desired
resolution.

Set the initial approximation to φ(x) by generating a vector whose components
approximate the samples of φ(x) at equally spaced values of x.

Begin with the coefficients of the dilation equation.

c1 = 1+
√

3
4

c2 = 3+
√

3
4

c3 = 3−
√

3
4

c4 = 1−
√

3
4

Execute the following loop until the values for φ(x) converge.

begin

Calculate φ(2x) by averaging successive values of φ(x) together. Fill
out the remaining half of the vector representing φ(2x) with zeros.
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Calculate φ(2x−1), φ(2x−2), and φ(2x−3) by shifting the contents
of φ(2x) the appropriate distance, discarding the zeros that move
off the right end and adding zeros at the left end.

Calculate the new approximation for φ(x) using the above values
for φ(2x− 1), φ(2x− 2), and φ(2x− 3) in the dilation equation for
φ(2x).

end

Figure 11.3: Daubechies scale function and associated wavelet

The convergence of the iterative procedure for computing is fast if the eigenvectors of
a certain matrix are unity.

Another approach to solving the dilation equation

Consider the dilation equation φ(x) = 1
2
f(2x) + f(2x− 1) + 1

2
f(2x− 2) and consider

continuous solutions with support in 0 ≤ x < 2.

φ(0) = 1
2
φ(0) + φ(−1) + φ(−2) = 1

2
φ(0) + 0 + 0 φ(0) = 0

φ(2) = 1
2
φ(4) + φ(3) + φ(2) = 1

2
φ(2) + 0 + 0 φ(2) = 0

φ(1) = 1
2
φ(2) + φ(1) + φ(0) = 0 + φ(1) + 0 φ(1) arbitrary

Set φ(1) = 1. Then
φ(1

2
) = 1

2
φ(1) + φ(0) + 1

2
φ(−1) = 1

2

φ(3
2
) = 1

2
φ(3) + φ(2) + 1

2
φ(1) = 1

2

φ(1
4
) = 1

2
φ(1

2
) + φ(−1

2
) + 1

2
φ(−3

2
) = 1

4

.

One can continue this process and compute φ( i
2j

) for larger values of j until φ(x) is
approximated to a desired accuracy. If φ(x) is a simple equation as in this example, one
could conjecture its form and verify that the form satisfies the dilation equation.
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11.5 Conditions on the Dilation Equation

We would like a basis for a vector space of functions where each basis vector has
finite support and the basis vectors are orthogonal. This is achieved by a wavelet system
consisting of a shifted version of a scale function that satisfies a dilation equation along
with a set of wavelets of various scales and shifts. For the scale function to have a nonzero
integral, Lemma 11.1 requires that the coefficients of the dilation equation sum to two.
Although the scale function φ(x) for the Haar system has the property that φ(x) and
φ(x − k), k > 0, are orthogonal, this is not true for the scale function for the dilation
equation φ(x) = 1

2
φ(2x)+φ(2x−1)+ 1

2
φ(2x−2). The conditions that integer shifts of the

scale function be orthogonal and that the scale function has finite support puts additional
conditions on the coefficients of the dilation equation. These conditions are developed in
the next two lemmas.

Lemma 11.2 Let

φ(x) =
d−1∑
k=0

ckφ(2x− k).

If φ(x) and φ(x − k) are orthogonal for k 6= 0 and φ(x) has been normalized so that∫∞
−∞ φ(x)φ(x− k)dx = δ(k), then

∑d−1
i=0 cici−2k = 2δ(k).

Proof: Assume φ(x) has been normalized so that
∫∞
−∞ φ(x)φ(x− k)dx = δ(k). Then

∫ ∞
x=−∞

φ(x)φ(x− k)dx =

∫ ∞
x=−∞

d−1∑
i=0

ciφ(2x− i)
d−1∑
j=0

cjφ(2x− 2k − j)dx

=
d−1∑
i=0

d−1∑
j=0

cicj

∫ ∞
x=−∞

φ(2x− i)φ(2x− 2k − j)dx

Since ∫ ∞
x=−∞

φ(2x− i)φ(2x− 2k − j)dx =
1

2

∫ ∞
x=−∞

φ(y − i)φ(y − 2k − j)dy

=
1

2

∫ ∞
x=−∞

φ(y)φ(y + i− 2k − j)dy

=
1

2
δ(2k + j − i),

∫ ∞
x=−∞

φ(x)φ(x − k)dx =
d−1∑
i=0

d−1∑
j=0

cicj
1

2
δ(2k + j − i) =

1

2

d−1∑
i=0

cici−2k. Since φ(x) was nor-

malized so that∫ ∞
−∞

φ(x)φ(x− k)dx = δ(k), it follows that
d−1∑
i=0

cici−2k = 2δ(k).
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Scale and wavelet coefficients equations

φ(x) =
∑d−1

k=0 ckφ(2x− k)

∞∫
−∞

φ(x)φ(x− k)dx = δ(k)

d−1∑
j=0

cj = 2

d−1∑
j=0

cjcj−2k = 2δ(k)

ck = 0 unless 0 ≤ k ≤ d− 1

d even

d−1∑
j=0

c2j =
d−1∑
j=0

c2j+1

ψ(x) =
d−1∑
k=0

bkφ(x− k)

∞∫
x=−∞

φ(x)ψ(x− k) = 0

∞∫
x=−∞

ψ(x)dx = 0

∞∫
x=−∞

ψ(x)ψ(x− k)dx = δ(k)

d−1∑
i=0

(−1)kbibi−2k = 2δ(k)

d−1∑
j=0

cjbj−2k = 0

d−1∑
j=0

bj = 0

bk = (−1)kcd−1−k

One designs wavelet systems so the above conditions are satisfied.

Lemma 11.2 provides a necessary but not sufficient condition on the coefficients of
the dilation equation for shifts of the scale function to be orthogonal. One should note
that the conditions of Lemma 11.2 are not true for the triangular or piecewise quadratic
solutions to

φ(x) =
1

2
φ(2x) + φ(2x− 1) +

1

2
φ(2x− 2)

and

φ(x) =
1

4
φ(2x) +

3

4
φ(2x− 1) +

3

4
φ(2x− 2) +

1

4
φ(2x− 3)

which overlap and are not orthogonal.

For φ(x) to have finite support the dilation equation can have only a finite number of
terms. This is proved in the following lemma.

Lemma 11.3 If 0 ≤ x < d is the support of φ(x), and the set of integer shifts, {φ(x −
k)|k ≥ 0}, are linearly independent, then ck = 0 unless 0 ≤ k ≤ d− 1.

Proof: If the support of φ(x) is 0 ≤ x < d, then the support of φ(2x) is 0 ≤ x < d
2
. If

φ(x) =
∞∑

k=−∞

ckφ(2x− k)
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the support of both sides of the equation must be the same. Since the φ(x−k) are linearly
independent the limits of the summation are actually k = 0 to d− 1 and

φ(x) =
d−1∑
k=0

ckφ(2x− k).

It follows that ck = 0 unless 0 ≤ k ≤ d− 1.

The condition that the integer shifts are linearly independent is essential to the proof
and the lemma is not true without this condition.

One should also note that
d−1∑
i=0

cici−2k = 0 for k 6= 0 implies that d is even since for d odd

and k = d−1
2

d−1∑
i=0

cici−2k =
d−1∑
i=0

cici−d+1 = cd−1c0.

For cd−1c0 to be zero either cd−1 or c0 must be zero. Since either c0 = 0 or cd−1 = 0, there
are only d−1 nonzero coefficients. From here on we assume that d is even. If the dilation
equation has d terms and the coefficients satisfy the linear equation

∑d−1
k=0 ck = 2 and the

d
2

quadratic equations
∑d−1

i=0 cici−2k = 2δ(k) for 1 ≤ k ≤ d−1
2
, then for d > 2 there are d

2
−1

coefficients that can be used to design the wavelet system to achieve desired properties.

11.6 Derivation of the Wavelets from the Scaling Function

In a wavelet system one develops a mother wavelet as a linear combination of integer
shifts of a scaled version of the scale function φ(x). Let the mother wavelet ψ(x) be given

by ψ(x) =
d−1∑
k=0

bkφ(2x − k). One wants integer shifts of the mother wavelet ψ(x − k) to

be orthogonal and also for integer shifts of the mother wavelet to be orthogonal to the
scaling function φ(x). These conditions place restrictions on the coefficients bk which are
the subject matter of the next two lemmas.

Lemma 11.4 (Orthogonality of ψ(x) and ψ(x− k)) Let ψ(x) =
d−1∑
k=0

bkφ(2x− k). If ψ(x)

and ψ(x−k) are orthogonal for k 6= 0 and ψ(x) has been normalized so that
∫∞
−∞ ψ(x)ψ(x−

k)dx = δ(k), then
d−1∑
i=0

(−1)kbibi−2k = 2δ(k).

Proof: Analogous to Lemma 11.2.
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Lemma 11.5 (Orthogonality of φ(x) and ψ(x − k)) Let φ(x) =
d−1∑
k=0

ckφ(2x − k) and

ψ(x) =
d−1∑
k=0

bkφ(2x− k). If
∞∫

x=−∞
φ(x)φ(x− k)dx = δ(k) and

∞∫
x=−∞

φ(x)ψ(x− k)dx = 0 for

all k, then
d−1∑
i=0

cibi−2k = 0 for all k.

Proof:∫ ∞
x=−∞

φ(x)ψ(x− k)dx =

∫ ∞
x=−∞

d−1∑
i=0

ciφ(2x− i)
d−1∑
j=1

bjφ(2x− 2k − j)dx = 0.

Interchanging the order of integration and summation

d−1∑
i=0

d−1∑
j=0

cibj

∫ ∞
x=−∞

φ(2x− i)φ(2x− 2k − j)dx = 0

Substituting y = 2x− i yields

1

2

d−1∑
i=0

d−1∑
j=0

cibj

∫ ∞
y=−∞

φ(y)φ(y − 2k − j + i)dy = 0

Thus,
d−1∑
i=0

d−1∑
j=0

cibjδ(2k + j − i) = 0

Summing over j gives
d−1∑
i=0

cibi−2k = 0

Lemma 11.5 gave a condition on the coefficients in the equations for φ(x) and ψ(x) if
integer shifts of the mother wavelet are to be orthogonal to the scale function. In addition,
for integer shifts of the mother wavelet to be orthogonal to the scale function requires
that bk = (−1)kcd−1−k.

Lemma 11.6 Let the scale function φ(x) equal
d−1∑
k=0

ckφ(2x−k) and let the wavelet function

ψ(x) equal
d−1∑
k=0

bkφ(2x− k). If the scale functions are orthogonal

∫ ∞
−∞

φ(x)φ(x− k)dx = δ(k)
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and the wavelet functions are orthogonal with the scale function

∞∫
x=−∞

φ(x)ψ(x− k)dx = 0

for all k, then bk = (−1)kcd−1−k.

Proof: By Lemma 11.5,
d−1∑
j=0

cjbj−2k = 0 for all k. Separating
d−1∑
j=0

cjbj−2k = 0 into odd and

even indices gives
d
2
−1∑
j=0

c2jb2j−2k +

d
2
−1∑
j=0

c2j+1b2j+1−2k = 0 (11.1)

for all k.

c0b0 + c2b2+c4b4 + · · ·+ c1b1 + c3b3 + c5b5 + · · · = 0 k = 0

c2b0+c4b2 + · · · + c3b1 + c5b3 + · · · = 0 k = 1

c4b0 + · · · + c5b1 + · · · = 0 k = 2

By Lemmas 11.2 and 11.4,
d−1∑
j=0

cjcj−2k = 2δ(k) and
d−1∑
j=0

bjbj−2k = 2δ(k) and for all k.

Separating odd and even terms,

d
2
−1∑
j=0

c2jc2j−2k +

d
2
−1∑
j=0

c2j+1c2j+1−2k = 2δ(k) (11.2)

and
d
2
−1∑
j=0

b2jb2j−2k +

d
2
−1∑
j=0

(−1)jb2j+1b2j+1−2k = 2δ(k) (11.3)

for all k.

c0c0 + c2c2+c4c4 + · · ·+ c1c1 + c3c3 + c5c5 + · · · = 2 k = 0

c2c0+c4c2 + · · · + c3c1 + c5c3 + · · · = 0 k = 1

c4c0 + · · · + c5c1 + · · · = 0 k = 2

b0b0 + b2b2+b4b4 + · · ·+ b1b1 − b3b3 + b5b5 − · · · = 2 k = 0

b2b0+b4b2 + · · · − b3b1 + b5b3 − · · · = 0 k = 1

b4b0 + · · · + b5b1 − · · · = 0 k = 2
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Let Ce = (c0, c2, . . . , cd−2), Co = (c1, c3, . . . , cd−1), Be = (b0, b2, . . . , bd−2), and Bo =
(b1, b3, . . . , bd−1). Equations 12.1, 12.2, and 11.3 can be expressed as convolutions45 of
these sequences. Equation 12.1 is Ce ∗BR

e +Co ∗BR
o = 0, 12.2 is Ce ∗CR

e +Co ∗CR
o = δ(k),

and 11.3 is Be ∗BR
e +Bo ∗BR

o = δ(k), where the superscript R stands for reversal of the
sequence. These equations can be written in matrix format as(

Ce Co
Be Bo

)
∗
(
CR
e BR

e

CR
o BR

o

)
=

(
2δ 0
0 2δ

)
Taking the Fourier or z-transform yields(

F (Ce) F (Co)
F (Be) F (Bo)

)(
F (CR

e ) F (BR
e )

F (CR
o ) F (BR

o )

)
=

(
2 0
0 2

)
.

where F denotes the transform. Taking the determinant yields(
F (Ce)F (Bo)− F (Be)F (Co)

)(
F (Ce)F (Bo)− F (Co)F (Be)

)
= 4

Thus F (Ce)F (Bo)− F (Co)F (Be) = 2 and the inverse transform yields

Ce ∗Bo − Co ∗Be = 2δ(k).

Convolution by CR
e yields

CR
e ∗ Ce ∗Bo − CR

e ∗Be ∗ Co = CR
e ∗ 2δ(k)

Now
d−1∑
j=0

cjbj−2k = 0 so −CR
e ∗Be = CR

o ∗Bo. Thus

CR
e ∗ Ce ∗Bo + CR

o ∗Bo ∗ Co = 2CR
e ∗ δ(k)

(CR
e ∗ Ce + CR

o ∗ Co) ∗Bo = 2CR
e ∗ δ(k)

2δ(k) ∗Bo = 2CR
e ∗ δ(k)

Ce = BR
o

Thus, ci = 2bd−1−i for even i. By a similar argument, convolution by CR
0 yields

CR
0 ∗ Ce ∗B0 − CR

0 ∗ C0 ∗Be = 2CR
0 δ(k)

Since CR
) ∗B0 = −CR

0 ∗Be

−CR
e ∗ CR

e ∗Be − CR
0 ∗ C0 ∗Be = 2CR

0 δ(k)

−(Ce ∗ CR
e + CR

0 ∗ C0) ∗Be = 2CR
0 δ(k)

−2δ(k)Be = 2CR
0 δ(k)

−Be = CR
0

Thus, ci = −2bd−1−i for all odd i and hence ci = (−1)i2bd−1−i for all i.

45The convolution of (a0, a1, . . . , ad−1) and (b0, b1, . . . , bd−1) denoted
(a0, a1, . . . , ad−1) ∗ (b0, b1, . . . , bd−1) is the sequence
(a0bd−1, a0bd−2 + a1bd−1, a0bd−3 + a1bd−2 + a3bd−1 . . . , ad−1b0).
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11.7 Sufficient Conditions for the Wavelets to be Orthogonal

Section 11.6 gave necessary conditions on the bk and ck in the definitions of the scale
function and wavelets for certain orthogonality properties. In this section we show that
these conditions are also sufficient for certain orthogonality conditions. One would like a
wavelet system to satisfy certain conditions.

1. Wavelets, ψj(2
jx− k), at all scales and shifts to be orthogonal to the scale function

φ(x).

2. All wavelets to be orthogonal. That is∫ ∞
−∞

ψj(2
jx− k)ψl(2

lx−m)dx = δ(j − l)δ(k −m)

3. φ(x) and ψjk, j ≤ l and all k, to span Vl, the space spanned by φ(2lx− k) for all k.

These items are proved in the following lemmas. The first lemma gives sufficient conditions
on the wavelet coefficients bk in the definition

ψ(x) =
∑
k

bkψ(2x− k)

for the mother wavelet so that the wavelets will be orthogonal to the scale function. The
lemma shows that if the wavelet coefficients equal the scale coefficients in reverse order
with alternating negative signs, then the wavelets will be orthogonal to the scale function.

Lemma 11.7 If bk = (−1)kcd−1−k, then
∫∞
−∞ φ(x)ψ(2jx− l)dx = 0 for all j and l.

Proof: Assume that bk = (−1)kcd−1−k. We first show that φ(x) and ψ(x− k) are orthog-
onal for all values of k. Then we modify the proof to show that φ(x) and ψ(2jx− k) are
orthogonal for all j and k.

Assume bk = (−1)kcd−1−k. Then∫ ∞
−∞

φ(x)ψ(x− k) =

∫ ∞
−∞

d−1∑
i=0

ciφ(2x− i)
d−1∑
j=0

bjφ(2x− 2k − j)dx

=
d−1∑
i=0

d−1∑
j=0

ci(−1)jcd−1−j

∫ ∞
−∞

φ(2x− i)φ(2x− 2k − j)dx

=
d−1∑
i=0

d−1∑
j=0

(−1)jcicd−1−jδ(i− 2k − j)

=
d−1∑
j=0

(−1)jc2k+jcd−1−j

= c2kcd−1 − c2k+1cd−2 + · · ·+ cd−2c2k−1 − cd−1c2k

= 0
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The last step requires that d be even which we have assumed for all scale functions.

For the case where the wavelet is ψ(2j − l), first express φ(x) as a linear combination
of φ(2j−1x− n). Now for each these terms∫ ∞

−∞
φ(2j−1x−m)ψ(2jx− k)dx = 0

To see this, substitute y = 2j−1x. Then∫ ∞
−∞

φ(2jx−m)ψ(2jx− k)dx =
1

2j−1

∫ ∞
−∞

φ(y −m)ψ(2y − k)dy

which by the previous argument is zero.

The next lemma gives conditions on the coefficients bk that are sufficient for the
wavelets to be orthogonal.

Lemma 11.8 If bk = (−1)kcd−1−k, then∫ ∞
−∞

1

2j
ψj(2

jx− k)
1

2k
ψl(2

lx−m)dx = δ(j − l)δ(k −m).

Proof: The first level wavelets are orthogonal.∫ ∞
−∞

ψ(x)ψ(x− k)dx =

∫ ∞
−∞

d−1∑
i=0

biφ(2x− i)
d−1∑
j=0

bjφ(2x− 2k − j)dx

=
d−1∑
i=0

bi

d−1∑
j=0

bj

∫ ∞
−∞

φ(2x− i)φ(2x− 2k − j)dx

=
d−1∑
i=0

d−1∑
j=0

bibjδ(i− 2k − j)

=
d−1∑
i=0

bibi−2k

=
d−1∑
i=0

(−1)icd−1−i(−1)i−2kcd−1−i+2k

=
d−1∑
i=0

(−1)2i−2kcd−1−icd−1−i+2k

Substituting j for d− 1− i yields

d−1∑
j=0

cjcj+2k = 2δ(k)
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Example of orthogonality when wavelets are of different scale.∫ ∞
−∞

ψ(2x)ψ(x− k)dx =

∫ ∞
−∞

d−1∑
i=0

biφ(4x− i)
d−1∑
j=0

bjφ(2x− 2k − j)dx

=
d−1∑
i=0

d−1∑
i=0

bibj

∫ ∞
−∞

φ(4x− i)φ(2x− 2k − j)dx

Since φ(2x− 2k − j) =
d−1∑
l=0

clφ(4x− 4k − 2j − l)

∫ ∞
−∞

ψ(2x)ψ(x− k)dx =
d−1∑
i=0

d−1∑
j=0

d−1∑
l=0

bibjcl

∫ ∞
−∞

ψ(4x− i)φ(4x− 4k − 2j − l)dx

=
d−1∑
i=0

d−1∑
j=0

d−1∑
l=0

bibjclδ(i− 4k − 2j − l)

=
d−1∑
i=0

d−1∑
j=0

bibjci−4k−2j

Since
d−1∑
j=0

cjbj−2k = 0,
d−1∑
i=0

bici−4k−2j = δ(j − 2k) Thus

∫ ∞
−∞

ψ(2x)ψ(x− k)dx =
d−1∑
j=0

bjδ(j − 2k) = 0.

Orthogonality of scale function with wavelet of different scale.∫ ∞
−∞

φ(x)ψ(2x− k)dx =

∫ ∞
−∞

d−1∑
j=0

cjφ(2x− j)ψ(2x− k)dx

=
d−1∑
j=0

cj

∫ ∞
−∞

φ(2x− j)ψ(2x− k)dx

=
1

2

d−1∑
j=0

cj

∫ ∞
−∞

φ(y − j)ψ(y − k)dy

= 0

If ψ was of scale 2j, φ would be expanded as a linear combination of φ of scale 2j all of
which would be orthogonal to ψ.
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11.8 Expressing a Function in Terms of Wavelets

Given a wavelet system with scale function φ and mother wavelet ψ we wish to express
a function f(x) in terms of an orthonormal basis of the wavelet system. First we will ex-
press f(x) in terms of scale functions φjk(x) = φ(2jx− k). To do this we will build a tree
similar to that in Figure 11.2 for the Haar system, except that computing the coefficients
will be much more complex. Recall that the coefficients at a level in the tree are the
coefficients to represent f(x) using scale functions with the precision of the level.

Let f(x) =
∑∞

k=0 ajkφj(x − k) where the ajk are the coefficients in the expansion of
f(x) using level j scale functions. Since the φj(x− k) are orthogonal

ajk =

∫ ∞
x=−∞

f(x)φj(x− k)dx.

Expanding φj in terms of φj+1 yields

ajk =

∫ ∞
x=−∞

f(x)
d−1∑
m=0

cmφj+1(2x− 2k −m)dx

=
d−1∑
m=0

cm

∫ ∞
x=−∞

f(x)φj+1(2x− 2k −m)dx

=
d−1∑
m=0

cmaj+1,2k+m

Let n = 2k +m. Now m = n− 2k. Then

ajk =
d−1∑
n=2k

cn−2kaj+1,n (11.4)

In construction the tree similar to that in Figure 11.2, the values at the leaves are
the values of the function sampled in the intervals of size 2−j. Equation 11.4 is used to
compute values as one moves up the tree. The coefficients in the tree could be used if we
wanted to represent f(x) using scale functions. However, we want to represent f(x) using
one scale function whose scale is the support of f(x) along with wavelets which gives us
an orthogonal set of basis functions. To do this we need to calculate the coefficients for
the wavelets. The value at the root of the tree is the coefficient for the scale function. We
then move down the tree calculating the coefficients for the wavelets.

Finish by calculating wavelet coefficients
maybe add material on jpeg

Example: Add example using D4.
Maybe example using sinc
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11.9 Designing a Wavelet System

In designing a wavelet system there are a number of parameters in the dilation equa-
tion. If one uses d terms in the dilation equation, one degree of freedom can be used to
satisfy

d−1∑
i=0

ci = 2

which insures the existence of a solution with a nonzero mean. Another d
2

degrees of
freedom are used to satisfy

d−1∑
i=0

cici−2k = δ(k)

which insures the orthogonal properties. The remaining d
2
− 1 degrees of freedom can be

used to obtain some desirable properties such as smoothness. Smoothness appears to be
related to vanishing moments of the scaling function. Material on the design of systems
is beyond the scope of this book and can be found in the literature.

11.10 Bibliography

In 1909 Alfred Haar presented an orthonormal basis for functions with finite support.
Ingrid Daubechies
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11.11 Exercises

Exercise 11.1 What is the solution to the dilation equation f(x) = f(2x) + f(2x − k)
for k an integer?

Exercise 11.2 Are there solutions to f(x) = f(2x) + f(2x − 1) other than a constant
multiple of

f(x) =

{
1 0 ≤ x < 1
0 otherwise

?

Exercise 11.3 Is there a solution to f(x) = 1
2
f(2x) + f(2x − 1) + 1

2
f(2x − 2) with

f(0) = f(1) = 1 and f(2) = 0?

Exercise 11.4 What is the solution to the dilation equation

f(x) = f(2x) + f(2x− 1) + f(2x− 2) + f(2x− 3).

Exercise 11.5 Consider the dilation equation

f(x) = f(2x) + 2f(2x− 1) + 2f(2x− 2) + 2f(2x− 3) + f(2x− 4)

1. What is the solution to the dilation equation?

2. What is the value of
∫∞
−∞ f(x)dx?

Exercise 11.6 What are the solutions to the following families of dilation equations.

1.

f(x) =f(2x) + f(2x− 1)

f(x) =
1

2
f(2x) +

1

2
f(2x− 1) +

1

2
f(2x− 2) +

1

2
f(2x− 3)

f(x) =
1

4
f(2x) +

1

4
f(2x− 1) +

1

4
f(2x− 2) +

1

4
f(2x− 3) +

1

4
f(2x− 4) +

1

4
f(2x− 5)

+
1

4
f(2x− 6) +

1

4
f(2x− 7)

f(x) =
1

k
f(2x) +

1

k
f(2x) + · · ·+ 1

k
f(2x)

2.

f(x) =
1

3
f(2x) +

2

3
f(2x− 1) +

2

3
f(2x− 2) +

1

3
f(2x− 3)

f(x) =
1

4
f(2x) +

3

4
f(2x− 1) +

3

4
f(2x− 2) +

1

4
f(2x− 3)

f(x) =
1

5
f(2x) +

4

5
f(2x− 1) +

4

5
f(2x− 2) +

1

5
f(2x− 3)

f(x) =
1

k
f(2x) +

k − 1

k
f(2x− 1) +

k − 1

k
f(2x− 2) +

1

k
f(2x− 3)
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3.

f(x) =
1

2
f(2x) +

1

2
f(2x− 1) +

1

2
f(2x− 2) +

1

2
f(2x− 3)

f(x) =
3

2
f(2x)− 1

2
f(2x− 1) +

3

2
f(2x− 2)− 1

2
f(2x− 3)

f(x) =
5

2
f(2x)− 3

2
f(2x− 1) +

5

2
f(2x− 2)− 3

2
f(2x− 3)

f(x) =
1 + 2k

2
f(2x)− 2k − 1

2
f(2x− 1) +

1 + 2k

2
f(2x− 2)− 2k − 1

2
f(2x− 3)

4.

f(x) =
1

3
f(2x) +

2

3
f(2x− 1) +

2

3
f(2x− 2) +

1

3
f(2x− 3)

f(x) =
4

3
f(2x)− 1

3
f(2x− 1) +

5

3
f(2x− 2)− 2

3
f(2x− 3)

f(x) =
7

3
f(2x)− 4

3
f(2x− 1) +

8

3
f(2x− 2)− 5

3
f(2x− 3)

f(x) =
1 + 3k

3
f(2x)− 2− 3k

3
f(2x− 1) +

2 + 3k

3
f(2x− 2)− 1− 3k

3
f(2x− 3)

Exercise 11.7

Exercise 11.8

1. What is the solution to the dilation equation f(x) = 1
2
f(2x) + 3

2
f(2x − 1)? Hint:

Write a program to see what the solution looks like.

2. How does the solution change when the equation is changed to f(x) = 1
3
f(2x) +

5
3
f(2x− 1)?

3. How does the solution change if the coefficients no longer sum to two as in f(x) =
f(2x) + 3f(2x− 1)?

Exercise 11.9 If f(x) is frequency limited by 2π, prove that

f(x) =
∞∑
k=0

f(k)
sin(π(x− k))

π(x− k)
.

Hint: Use the Nyquist sampling theorem which states that a function frequency limited by
2π is completely determined by samples spaced one unit apart. Note that this result means
that

f(k) =

∫ ∞
−∞

f(x)
sin(π(x− k))

π(x− k)
dx
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Exercise 11.10 Compute an approximation to the scaling function that comes from the
dilation equation

φ(x) =
1 +
√

3

4
φ(2x) +

3 +
√

3

4
φ(2x− 1) +

3−
√

3

4
φ(2x− 2) +

1
√

3

4
φ(2x− 3).

Exercise 11.11 Consider f(x) to consist of the semi circle (x− 1
2
)2 + y2 = 1

4
and y ≥ 0

for 0 ≤ x ≤ 1 and 0 otherwise.

1. Using precision j = 4 find the coefficients for the scale functions and the wavelets
for D4 defined by the dilation equation

φ(x) =
1 +
√

3

4
φ(2x) +

3 +
√

3

4
φ(2x− 1) +

3−
√

3

4
φ(2x− 2) +

1
√

3

4
φ(2x− 3)

2. Graph the approximation to the semi circle for precision j = 4.

Exercise 11.12 What is the set of all solutions to the dilation equation

φ(x) =
1 +
√

3

4
φ(2x) +

3 +
√

3

4
φ(2x− 1) +

3−
√

3

4
φ(2x− 2) +

1
√

3

4
φ(2x− 3)

Exercise 11.13 Prove that if scale functions defined by a dilation equation are orthogo-
nal, then the sum of the even coefficients must equal the sum of the odd coefficients in the
dilation equation. That is,

∑
k

c2k =
∑
k

c2k+1.

function = wavelets

acc=32; %accuracy of computation

phit=[1:acc zeros(1,3*acc)];

c1=(1+3^0.5)/4; c2=(3+3^0.5)/4; c3=(3-3^0.5)/4; c4=(1-3^0.5)/4;

for i=1:10

temp=(phit(1:2:4*acc)+phit(2:2:4*acc))/2;

phi2t=[temp zeros(1,3*acc)];

phi2tshift1=[ zeros(1,acc) temp zeros(1,2*acc)];

phi2tshift2=[ zeros(1,2*acc) temp zeros(1,acc)];

phi2tshift3=[ zeros(1,3*acc) temp ];

phit=c1*phi2t+c2*phi2tshift1+c3*phi2tshift2+c4*phi2tshift3;

plot(phit)

figure(gcf)

pause

end plot(phit) figure(gcf) end
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12 Appendix

Define induced subgraph

12.1 Asymptotic Notation

We introduce the big O notation here. The motivating example is the analysis of the
running time of an algorithm. The running time may be a complicated function of the
input length n such as 5n3 +25n2 lnn−6n+22. Asymptotic analysis is concerned with the
behavior as n → ∞ where the higher order term 5n3 dominates. Further, the coefficient
5 of 5n3 is not of interest since its value varies depending on the machine model. So we
say that the function is O(n3). The big O notation applies to functions on the positive
integers taking on positive real values.

Definition 12.1 For functions f and g from the natural numbers to the positive reals,
f(n) is O(g(n)) if there exists a constant c >0 such that for all n, f(n) ≤ cg(n).

Thus, f(n) = 5n3 + 25n2 lnn− 6n+ 22 is O(n3). The upper bound need not be tight.
Not only is f(n), O(n3), it is also O(n4). Note g(n) must be strictly greater than 0 for all n.

To say that the function f(n) grows at least as fast as g(n), one uses a notation called
omega of n. For positive real valued f and g, f(n) is Ω(g(n)) if there exists a constant
c > 0 such that for all n, f(n) ≥ cg(n). If f(n) is both O(g(n)) and Ω(g(n)), then f(n) is
Θ(g(n)). Theta of n is used when the two functions have the same asymptotic growth rate.

Many times one wishes to bound the low order terms. To do this, a notation called
little o of n is used. We say f(n) is o(g(n)) if lim

n→∞
f(n)
g(n)

= 0. Note that f(n) being

asymptotic upper bound
f(n) is O(g(n)) if for all n, f(n) ≤ cg(n) for some constant c > 0. ≤

asymptotic lower bound
f(n) is Ω(g(n)) if for all n, f(n) ≥ cg(n) for some constant c > 0. ≥

asymptotic equality
f(n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)). =

f(n) is o(g(n)) if lim
n→∞

f(n)
g(n)

= 0 . <

f(n) ∼ g(n) if lim
n→∞

f(n)
g(n)

= 1. =

f(n) is ω (g (n)) if lim
n→∞

f(n)
g(n)

=∞. >
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O(g(n)) means that asymptotically f(n) does not grow faster than g(n), whereas f(n)
being o(g(n)) means that asymptotically f(n)/g(n) goes to zero. If f(n) = 2n+

√
n, then

f(n) is O(n) but in bounding the lower order term, we write f(n) = 2n + o(n). Finally,

we write f(n) ∼ g(n) if lim
n→∞

f(n)
g(n)

= 1 and say f(n) is ω(g(n)) if lim
n→∞

f(n)
g(n)

= ∞. The

difference between f(n) being Θ(g(n)) and f(n) ∼ g(n) is that in the first case f(n) and
g(n) may differ by a multiplicative constant factor.

12.2 Useful Relations

Summations

n∑
i=0

ai = 1 + a+ a2 + · · · = 1− an+1

1− a
, a 6= 1

∞∑
i=0

ai = 1 + a+ a2 + · · · = 1

1− a
, |a| < 1

∞∑
i=0

iai = a+ 2a2 + 3a3 · · · = a

(1− a)2
, |a| < 1

∞∑
i=0

i2ai = a+ 4a2 + 9a3 · · · = a(1 + a)

(1− a)3
, |a| < 1

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

∞∑
i=1

1

i2
=
π2

6

We prove one equality.

∞∑
i=0

iai = a+ 2a2 + 3a3 · · · = a

(1− a)2
, provided |a| < 1.

Write S =
∞∑
i=0

iai.

aS =
∞∑
i=0

iai+1 =
∞∑
i=1

(i− 1)ai.

Thus,

S − aS =
∞∑
i=1

iai −
∞∑
i=1

(i− 1)ai =
∞∑
i=1

ai =
a

1− a
,
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from which the equality follows. The sum
∑
i

i2ai can also be done by an extension of this

method (left to the reader). Using generating functions, we will see another proof of both
these equalities by derivatives.

∞∑
i=1

1

i
= 1 + 1

2
+
(

1
3

+ 1
4

)
+
(

1
5

+ 1
6

+ 1
7

+ 1
8

)
+ · · · ≥ 1 + 1

2
+ 1

2
+ · · · and thus diverges.

The summation
n∑
i=1

1
i

grows as lnn since
n∑
i=1

1
i
≈
∫ n
x=1

1
x
dx. In fact, lim

i→∞

(
n∑
i=1

1
i
− ln(n)

)
=

γ where γ ∼= 0.5772 is Euler’s constant. Thus,
n∑
i=1

1
i
∼= ln(n) + γ for large n.

Truncated Taylor series

If all the derivatives of a function f(x) exist, then we can write

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
+ · · · .

The series can be truncated. In fact, there exists some y between 0 and x such that

f(x) = f(0) + f ′(y)x.

Also, there exists some z between 0 and x such that

f(x) = f(0) + f ′(0)x+ f ′′(z)
x2

2

and so on for higher derivatives. This can be used to derive inequalities. For example, if
f(x) = ln(1 + x), then its derivatives are

f ′(x) =
1

1 + x
; f ′′(x) = − 1

(1 + x)2
; f ′′′(x) =

2

(1 + x)3
.

For any z, f ′′(z) < 0 and thus for any x, f(x) ≤ f(0) +f ′(0)x hence, ln(1 +x) ≤ x, which
also follows from the inequality 1 + x ≤ ex. Also using

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
+ f ′′′(z)

x3

3!

for z > −1, f ′′′(z) > 0, and so for x > −1,

ln(1 + x) > x− x2

2
.

Exponentials and logs

alog b = blog a
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ex = 1 + x+
x2

2!
+
x3

3!
+ · · · e = 2.7182 1

e
= 0.3679

Setting x = 1 in the equation ex = 1 + x+ x2

2!
+ x3

3!
+ · · · yields e =

∞∑
i=0

1
i!
.

lim
n→∞

(
1 + a

n

)n
= ea

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 · · · |x| < 1

The above expression with −x substituted for x gives rise to the approximations

ln(1− x) < −x

which also follows from 1− x ≤ e−x, since ln(1− x) is a monotone function for x ∈ (0, 1).

For 0 < x < 0.69, ln(1− x) > −x− x2.

Trigonometric identities

eix = cos(x) + i sin(x)
cos(x) = 1

2
(eix + e−ix)

sin(x) = 1
2i

(eix − e−ix)
sin(x± y) = sin(x) cos(y)± cos(x) sin(y)
cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)
cos (2θ) = cos2 θ − sin2 θ = 1− 2 sin2 θ
sin (2θ) = 2 sin θ cos θ
sin2 θ

2
= 1

2
(1− cos θ)

cos2 θ
2

= 1
2

(1 + cos θ)
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Gaussian and related integrals

∫
xeax

2

dx =
1

2a
eax

2

∫
1

a2+x2
dx = 1

a
tan−1 x

a
thus

∞∫
−∞

1
a2+x2

dx = π
a

∞∫
−∞

e−
a2x2

2 dx =

√
2π

a
thus

a√
2π

∞∫
−∞

e−
a2x2

2 dx = 1

∞∫
0

x2e−ax
2

dx =
1

4a

√
π

a

∞∫
0

x2ne−
x2

a2 dx =
√
π

1 · 3 · 5 · · · (2n− 1)

2n+1
a2n−1 =

√
π

(2n)!

n!

(a
2

)2n+1

∫ ∞
0

x2n+1e−
x2

a2 dx =
n!

2
a2n+2

∞∫
−∞

e−x
2

dx =
√
π

To verify
∞∫
−∞

e−x
2
dx =

√
π, consider

( ∞∫
−∞

e−x
2
dx

)2

=
∞∫
−∞

∞∫
−∞

e−(x2+y2)dxdy. Let x =

r cos θ and y = r sin θ. The Jacobian of this transformation of variables is

J (r, θ) =

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ − r sin θ
sin θ r cos θ

∣∣∣∣ = r

Thus,

 ∞∫
−∞

e−x
2

dx

2

=

∞∫
−∞

∞∫
−∞

e−(x2+y2)dxdy =

∞∫
0

2π∫
0

e−r
2

J (r, θ) drdθ

=

∞∫
0

e−r
2

rdr

2π∫
0

dθ

= −2π
[
e−r

2

2

]∞
0

= π

Thus,
∞∫
−∞

e−x
2
dx =

√
π.

399



The integral
∫∞

1
xrdx converges if r ≤ −1− ε and diverges if r ≥ −1 + ε

∫
xrdx =

1

r + 1
xr+1

∣∣∣∣ =

{
−1
ε

1
xε

∣∣∞
1

= 1
ε

r = 1− ε

−1
ε
xε
∣∣∞
1

= −∞ r = 1 + ε

Thus
∑∞

i=1
1

i1+ε
converges since

∑∞
i=2

1
i
<
∫∞

1
xrdx and

∑∞
i=1

1
i1−ε

diverges since
∑∞

i=1
1
i
>∫∞

1
xrdx.

Miscellaneous integrals∫ 1

x=0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)

For definition of the gamma function see Section 12.3 Binomial coefficients

The binomial coefficient
(
n
k

)
= n!

(n−k)!k!
is the number of ways of choosing k items from n.

The number of ways of choosing d+ 1 items from n+ 1 items equals the number of ways
of choosing the d+ 1 items from the first n items plus the number of ways of choosing d
of the items from the first n items with the other item being the last of the n+ 1 items.(

n

d

)
+

(
n

d+ 1

)
=

(
n+ 1

d+ 1

)
.

The observation that the number of ways of choosing k items from 2n equals the
number of ways of choosing i items from the first n and choosing k − i items from the
second n summed over all i, 0 ≤ i ≤ k yields the identity

k∑
i=0

(
n

i

)(
n

k − i

)
=

(
2n

k

)
.

Setting k = n in the above formula and observing that
(
n
i

)
=
(
n
n−i

)
yields

n∑
i=0

(
n

i

)2

=

(
2n

n

)
.

More generally
k∑
i=0

(
n
i

)(
m
k−i

)
=
(
n+m
k

)
by a similar derivation.

400



12.3 Useful Inequalities

1 + x ≤ ex for all real x.

One often establishes an inequality such as 1 + x ≤ ex by showing that the dif-
ference of the two sides, namely ex − (1 + x), is always positive. This can be done
by taking derivatives. The first and second derivatives are ex − 1 and ex. Since ex

is always positive, ex − 1 is monotonic and ex − (1 + x) is convex. Since ex − 1 is
monotonic, it can be zero only once and is zero at x = 0. Thus, ex − (1 + x) takes
on its minimum at x = 0 where it is zero establishing the inequality.

(1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

Let g(x) = (1 − x)n − (1 − nx). We establish g(x) ≥ 0 for x in [0, 1] by taking
the derivative.

g′(x) = −n(1− x)n−1 + n = n
(
1− (1− x)n−1

)
≥ 0

for 0 ≤ x ≤ 1. Thus, g takes on its minimum for x in [0, 1] at x = 0 where g(0) = 0
proving the inequality.

(x+ y)2 ≤ 2x2 + 2y2

The inequality follows from (x+ y)2 + (x− y)2 = 2x2 + 2y2.

Lemma 12.1 For any nonnegative reals a1, a2, . . . , an and any ρ ∈ [0, 1],
(∑n

i=1 ai
)ρ ≤∑n

i=1 a
ρ
i .

Proof: We will see that we can reduce the proof of the lemma to the case when only one
of the ai is nonzero and the rest are zero. To this end, suppose a1 and a2 are both positive
and without loss of generality, assume a1 ≥ a2. Add an infinitesimal positive amount ε
to a1 and subtract the same amount from a2. This does not alter the left hand side. We
claim it does not increase the right hand side. To see this, note that

(a1 + ε)ρ + (a2 − ε)ρ − aρ1 − a
ρ
2 = ρ(aρ−1

1 − aρ−1
2 )ε+O(ε2),

and since ρ− 1 ≤ 0, we have aρ−1
1 − aρ−1

2 ≤ 0, proving the claim. Now by repeating this
process, we can make a2 = 0 (at that time a1 will equal the sum of the original a1 and
a2). Now repeating on all pairs of ai, we can make all but one of them zero and in the
process, we have left the left hand side the same, but have not increased the right hand
side. So it suffices to prove the inequality at the end which clearly holds. This method of
proof is called the variational method.
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1 + x ≤ ex for all real x

(1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

(x+ y)2 ≤ 2x2 + 2y2

Triangle Inequality |x + y| ≤ |x|+ |y|.

Cauchy-Schwartz Inequality |x||y| ≥ xTy

Young’s Inequality For positive real numbers p and q where 1
p

+ 1
q

= 1 and
positive reals x and y,

xy ≤ 1

p
xp +

1

q
yq.

Hölder’s inequalityHölder’s inequality For positive real numbers p and q with 1
p

+
1
q

= 1,

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

Jensen’s inequality For a convex function f ,

f

(
n∑
i=1

αixi

)
≤

n∑
i=1

αif (xi),

The Triangle Inequality

For any two vectors x and y, |x + y| ≤ |x|+ |y|. Since x · y ≤ |x||y|,

|x + y|2 = (x + y)T · (x + y) = |x|2 + |y|2 + 2xT · y ≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The inequality follows by taking square roots.
Stirling approximation

n! ∼=
(n
e

)n√
2πn

(
2n

n

)
∼=

1√
πn

22n

√
2πn

nn

en
< n! <

√
2πn

nn

en

(
1 +

1

12n− 1

)
We prove the inequalities, except for constant factors. Namely, we prove that

1.4
(n
e

)n√
n ≤ n! ≤ e

(n
e

)n√
n.
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Write ln(n!) = ln 1 + ln 2 + · · ·+ lnn. This sum is approximately
∫ n
x=1

lnx dx. The
indefinite integral

∫
lnx dx = (x lnx− x) gives an approximation, but without the√

n term. To get the
√
n, differentiate twice and note that lnx is a concave function.

This means that for any positive x0,

lnx0 + ln(x0 + 1)

2
≤
∫ x0+1

x=x0

lnx dx,

since for x ∈ [x0, x0 + 1], the curve lnx is always above the spline joining (x0, lnx0)
and (x0 + 1, ln(x0 + 1)). Thus,

ln(n!) =
ln 1

2
+

ln 1 + ln 2

2
+

ln 2 + ln 3

2
+ · · ·+ ln(n− 1) + lnn

2
+

lnn

2

≤
∫ n

x=1

lnx dx+
lnn

2
= [x lnx− x]n1 +

lnn

2

= n lnn− n+ 1 +
lnn

2
.

Thus, n! ≤ nne−n
√
ne. For the lower bound on n!, start with the fact that for any

x0 ≥ 1/2 and any real ρ

lnx0 ≥
1

2
(ln(x0 + ρ) + ln(x0 − ρ)) implies lnx0 ≥

∫ x0+.5

x=x0−0.5

lnx dx.

Thus,

ln(n!) = ln 2 + ln 3 + · · ·+ lnn ≥
∫ n+.5

x=1.5

lnx dx,

from which one can derive a lower bound with a calculation.

Stirling approximation for the binomial coefficient(
n

k

)
≤
(en
k

)k
Using the Stirling approximation for k!,(

n

k

)
=

n!

(n− k)!k!
≤ nk

k!
∼=
(en
k

)k
.

The gamma function

For a > 0

Γ (a) =

∞∫
0

xa−1e−xdx

Γ
(

1
2

)
=
√
π, Γ (1) = Γ (2) = 1, and for n ≥ 2, Γ (n) = (n− 1)Γ (n− 1) .
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The last statement is proved by induction on n. It is easy to see that Γ(1) = 1. For n ≥ 2,
we use integration by parts.∫

f (x) g′ (x) dx = f (x) g (x)−
∫
f ′ (x) g (x) dx

Write Γ(n) =
∫∞
x=0

f(x)g′(x) dx, where, f(x) = xn−1 and g′(x) = e−x. Thus,

Γ(n) = [f(x)g(x)]∞x=0 +

∫ ∞
x=0

(n− 1)xn−2e−x dx = (n− 1)Γ(n− 1),

as claimed.

Cauchy-Schwartz Inequality(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
≥

(
n∑
i=1

xiyi

)2

In vector form, |x||y| ≥ xTy, the inequality states that the dot product of two vectors
is at most the product of their lengths. The Cauchy-Schwartz inequality is a special case
of Hölder’s inequality with p = q = 2.

Young’s inequality

For positive real numbers p and q where 1
p

+ 1
q

= 1 and positive reals x and y,

1

p
xp +

1

q
yq ≥ xy.

The left hand side of Young’s inequality, 1
p
xp + 1

q
yq, is a convex combination of xp and yq

since 1
p

and 1
q

sum to 1. ln(x) is a concave function for x > 0 and so the ln of the convex
combination of the two elements is greater than or equal to the convex combination of
the ln of the two elements

ln(
1

p
xp +

1

q
yp) ≥ 1

p
ln(xp) +

1

q
ln(yq) = ln(xy).

Since for x ≥ 0, ln x is a monotone increasing function, 1
p
xp + 1

q
yq ≥ xy..

Hölder’s inequalityHölder’s inequality

For positive real numbers p and q with 1
p

+ 1
q

= 1,

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.
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Let x′i = xi / (
∑n

i=1 |xi|p)
1/p

and y′i = yi / (
∑n

i=1 |yi|q)
1/q

. Replacing xi by x′i and yi by
y′i does not change the inequality. Now

∑n
i=1 |x′i|p =

∑n
i=1 |y′i|q = 1, so it suffices to prove∑n

i=1 |x′iy′i| ≤ 1. Apply Young’s inequality to get |x′iy′i| ≤
|x′i|p
p

+
|y′i|q
q
. Summing over i, the

right hand side sums to 1
p

+ 1
q

= 1 finishing the proof.

For a1, a2, . . . , an real and k a positive integer,

(a1 + a2 + · · ·+ an)k ≤ nk−1(|a1|k + |a2|k + · · ·+ |an|k).

Using Hölder’s inequality with p = k and q = k/(k − 1),

|a1 + a2 + · · ·+ an| ≤ |a1 · 1|+ |a2 · 1|+ · · ·+ |an · 1|

≤

(
n∑
i=1

|ai|k
)1/k

(1 + 1 + · · ·+ 1)(k−1)/k ,

from which the current inequality follows.

Arithmetic and geometric means

The arithmetic mean of a set of nonnegative reals is at least their geometric mean.
For a1, a2, . . . , an > 0,

1

n

n∑
i=1

ai ≥ n
√
a1a2 · · · an.

Assume that a1 ≥ a2 ≥ . . . ≥ an. We reduce the proof to the case when all the ai
are equal using the variational method; in this case the inequality holds with equality.
Suppose a1 > a2. Let ε be a positive infinitesimal. Add ε to a2 and subtract ε from a1 to
get closer to the case when they are equal. The left hand side 1

n

∑n
i=1 ai does not change.

(a1 − ε)(a2 + ε)a3a4 · · · an = a1a2 · · · an + ε(a1 − a2)a3a4 · · · an +O(ε2)

> a1a2 · · · an

for small enough ε > 0. Thus, the change has increased n
√
a1a2 · · · an. So if the inequality

holds after the change, it must hold before. By continuing this process, one can make all
the ai equal.

Approximating sums by integrals

For monotonic decreasing f(x),

n+1∫
x=m

f (x)dx ≤
n∑

i=m

f (i) ≤
n∫

x=m−1

f (x)dx.

See Fig. 12.1. Thus,
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m− 1 m n n+ 1

n+1∫
x=m

f (x)dx ≤
n∑

i=m

f (i) ≤
n∫

x=m−1

f (x)dx

Figure 12.1: Approximating sums by integrals

n+1∫
x=2

1
x2
dx ≤

n∑
i=2

1
i2

= 1
4

+ 1
9

+ · · ·+ 1
n2 ≤

n∫
x=1

1
x2
dx

and hence 3
2
− 1

n+1
≤

n∑
i=1

1
i2
≤ 2− 1

n
.

Jensen’s Inequality

For a convex function f ,

f

(
1

2
(x1 + x2)

)
≤ 1

2
(f (x1) + f (x2)) .

More generally for any convex function f ,

f

(
n∑
i=1

αixi

)
≤

n∑
i=1

αif (xi),

where 0 ≤ αi ≤ 1 and
n∑
i=1

αi = 1. From this, it follows that for any convex function f and

random variable x,
E (f (x)) ≥ f (E (x)) .

We prove this for a discrete random variable x taking on values a1, a2, . . . with Prob(x =
ai) = αi:

E(f(x)) =
∑
i

αif(ai) ≥ f

(∑
i

αiai

)
= f(E(x)).

406



x1 x2

f(x1)

f(x2)

Figure 12.2: For a convex function f , f
(
x1+x2

2

)
≤ 1

2
(f (x1) + f (x2)) .

Example: Let f (x) = xk for k an even positive integer. Then, f ′′(x) = k(k − 1)xk−2

which since k − 2 is even is nonnegative for all x implying that f is convex. Thus,

E (x) ≤ k
√
E (xk),

since t
1
k is a monotone function of t, t > 0. It is easy to see that this inequality does not

necessarily hold when k is odd; indeed for odd k, xk is not a convex function.

Tails of Gaussian

For bounding the tails of Gaussian densities, the following inequality is useful. The
proof uses a technique useful in many contexts. For t > 0,∫ ∞

x=t

e−x
2

dx ≤ e−t
2

2t
.

In proof, first write:
∫∞
x=t

e−x
2
dx ≤

∫∞
x=t

x
t
e−x

2
dx, using the fact that x ≥ t in the range of

integration. The latter expression is integrable in closed form since d(e−x
2
) = (−2x)e−x

2

yielding the claimed bound.

A similar technique yields an upper bound on∫ 1

x=β

(1− x2)α dx,

for β ∈ [0, 1] and α > 0. Just use (1− x2)α ≤ x
β
(1− x2)α over the range and integrate in

closed form the last expression.∫ 1

x=β

(1− x2)αdx ≤
∫ 1

x=β

x

β
(1− x2)αdx =

−1

2β(α + 1)
(1− x2)α+1

∣∣∣∣1
x=β

=
(1− β2)α+1

2β(α + 1)
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12.4 Probability

Consider an experiment such as flipping a coin whose outcome is determined by chance.
To talk about the outcome of a particular experiment, we introduce the notion of a ran-
dom variable whose value is the outcome of the experiment. The set of possible outcomes
is called the sample space. If the sample space is finite, we can assign a probability of
occurrence to each outcome. In some situations where the sample space is infinite, we can
assign a probability of occurrence. The probability p (i) = 6

π2
1
i2

for i an integer greater
than or equal to one is such an example. The function assigning the probabilities is called
a probability distribution function.

In many situations, a probability distribution function does not exist. For example,
for the uniform probability on the interval [0,1], the probability of any specific value is
zero. What we can do is define a probability density function p(x) such that

Prob(a < x < b) =

b∫
a

p(x)dx

If x is a continuous random variable for which a density function exists, then the cumu-
lative distribution function f (a) is defined by

f(a) =

∫ a

−∞
p(x)dx

which gives the probability that x ≤ a.

12.4.1 Sample Space, Events, and Independence

There may be more than one relevant random variable in a situation. For example, if
one tosses n coins, there are n random variables, x1, x2, . . . , xn, taking on values 0 and 1,
a 1 for heads and a 0 for tails. The set of possible outcomes, the sample space, is {0, 1}n.
An event is a subset of the sample space. The event of an odd number of heads, consists
of all elements of {0, 1}n with an odd number of 1’s.

Let A and B be two events. The joint occurrence of the two events is denoted by
(A∧B). The conditional probability of event A given that event B has occurred is denoted
by Prob(A|B)and is given by

Prob(A|B) =
Prob(A ∧B)

Prob(B)
.

Events A and B are independent if the occurrence of one event has no influence on the
probability of the other. That is, Prob(A|B) = Prob(A) or equivalently, Prob(A ∧ B) =
Prob(A)Prob(B). Two random variables x and y are independent if for every possible set
A of values for x and every possible set B of values for y, the events x in A and y in B
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are independent.

A collection of n random variables x1, x2, . . . , xn is mutually independent if for all
possible sets A1, A2, . . . , An of values of x1, x2, . . . , xn,

Prob(x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An) = Prob(x1 ∈ A1)Prob(x2 ∈ A2) · · ·Prob(xn ∈ An).

If the random variables are discrete, it would suffice to say that for any real numbers
a1, a2, . . . , an

Prob(x1 = a1, x2 = a2, . . . , xn = an) = Prob(x1 = a1)Prob(x2 = a2) · · ·Prob(xn = an).

Random variables x1, x2, . . . , xn are pairwise independent if for any ai and aj, i 6= j,
Prob(xi = ai, xj = aj) = Prob(xi = ai)Prob(xj = aj). Mutual independence is much
stronger than requiring that the variables are pairwise independent. Consider the exam-
ple of 2-universal hash functions discussed in Chapter ??.

If (x, y) is a random vector and one normalizes it to a unit vector

(
x√
x2+y2

, y√
x2+y2

)
the coordinates are no longer independent since knowing the value of one coordinate
uniquely determines the value of the other.

12.4.2 Linearity of Expectation

An important concept is that of the expectation of a random variable. The expected
value, E(x), of a random variable x is E(x) =

∑
x

xp(x) in the discrete case and E(x) =

∞∫
−∞

xp(x)dx in the continuous case. The expectation of a sum of random variables is equal

to the sum of their expectations. The linearity of expectation follows directly from the
definition and does not require independence.

12.4.3 Union Bound

Let A1, A2, . . . , An be events. The actual probability of the union of events is given
by Boole’s formula.

Prob(A1∪A2∪ · · ·An) =
n∑
i=1

Prob(Ai)−
∑
ij

Prob(Ai∧Aj) +
∑
ijk

Prob(Ai∧Aj ∧Ak)−· · ·

Often we only need an upper bound on the probability of the union and use

Prob(A1 ∪ A2 ∪ · · ·An) ≤
n∑
i=1

Prob(Ai)

This upper bound is called the union bound.
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12.4.4 Indicator Variables

A useful tool is that of an indicator variable that takes on value 0 or 1 to indicate
whether some quantity is present or not. The indicator variable is useful in determining
the expected size of a subset. Given a random subset of the integers {1, 2, . . . , n}, the
expected size of the subset is the expected value of x1 + x2 + · · · + xn where xi is the
indicator variable that takes on value 1 if i is in the subset.

Example: Consider a random permutation of n integers. Define the indicator function
xi = 1 if the ith integer in the permutation is i. The expected number of fixed points is
given by

E

(
n∑
i=1

xi

)
=

n∑
i=1

E(xi) = n
1

n
= 1.

Note that the xi are not independent. But, linearity of expectation still applies.

Example: Consider the expected number of vertices of degree d in a random graph
G(n, p). The number of vertices of degree d is the sum of n indicator random variables, one
for each vertex, with value one if the vertex has degree d. The expectation is the sum of the
expectations of the n indicator random variables and this is just n times the expectation
of one of them. Thus, the expected number of degree d vertices is n

(
n
d

)
pd(1− p)n−d.

12.4.5 Variance

In addition to the expected value of a random variable, another important parameter
is the variance. The variance of a random variable x, denoted var(x) or often σ2(x) is
E (x− E (x))2 and measures how close to the expected value the random variable is likely
to be. The standard deviation σ is the square root of the variance. The units of σ are the
same as those of x.

By linearity of expectation

σ2 = E (x− E (x))2 = E(x2)− 2E(x)E(x) + E2(x) = E
(
x2
)
− E2 (x) .

12.4.6 Variance of the Sum of Independent Random Variables

In general, the variance of the sum is not equal to the sum of the variances. However,
if x and y are independent, then E (xy) = E (x)E (y) and

var(x+ y) = var (x) + var (y) .

To see this

var(x+ y) = E
(
(x+ y)2

)
− E2(x+ y)

= E(x2) + 2E(xy) + E(y2)− E2(x)− 2E(x)E(y)− E2(y).
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From independence, 2E(xy)− 2E(x)E(y) = 0 and

var(x+ y) = E(x2)− E2(x) + E(y2)− E2(y)

= var(x) + var(y).

More generally, if x1, x2, . . . , xn are pairwise independent random variables, then

var(x1 + x2 + · · ·+ xn) = var(x1) + var(x2) + · · ·+ var(xn).

For the variance of the sum to be the sum of the variances only requires pairwise inde-
pendence not full independence.

12.4.7 Median

One often calculates the average value of a random variable to get a feeling for the
magnitude of the variable. This is reasonable when the probability distribution of the
variable is Gaussian, or has a small variance. However, if there are outliers, then the
average may be distorted by outliers. An alternative to calculating the expected value is
to calculate the median, the value for which half of the probability is above and half is
below.

12.4.8 The Central Limit Theorem

Let s = x1 + x2 + · · ·+ xn be a sum of n independent random variables where each xi
has probability distribution

xi =

{
0 1

2

1 1
2

.

The expected value of each xi is 1/2 with variance

σ2
i =

(
1

2
− 0

)2
1

2
+

(
1

2
− 1

)2
1

2
=

1

4
.

The expected value of s is n/2 and since the variables are independent, the variance of
the sum is the sum of the variances and hence is n/4. How concentrated s is around its

mean depends on the standard deviation of s which is
√
n

2
. For n equal 100 the expected

value of s is 50 with a standard deviation of 5 which is 10% of the mean. For n = 10, 000
the expected value of s is 5,000 with a standard deviation of 50 which is 1% of the
mean. Note that as n increases, the standard deviation increases, but the ratio of the
standard deviation to the mean goes to zero. More generally, if xi are independent and
identically distributed, each with standard deviation σ, then the standard deviation of
x1 + x2 + · · · + xn is

√
nσ. So, x1+x2+···+xn√

n
has standard deviation σ. The central limit

theorem makes a stronger assertion that in fact x1+x2+···+xn√
n

has Gaussian distribution
with standard deviation σ.
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Theorem 12.2 Suppose x1, x2, . . . , xn is a sequence of identically distributed independent
random variables, each with mean µ and variance σ2. The distribution of the random
variable

1√
n

(x1 + x2 + · · ·+ xn − nµ)

converges to the distribution of the Gaussian with mean 0 and variance σ2.

12.4.9 Probability Distributions

The Gaussian or normal distribution

The normal distribution is
1√
2πσ

e−
1
2

(x−m)2

σ2

where m is the mean and σ2 is the variance. The coefficient 1√
2πσ

makes the integral of
the distribution be one. If we measure distance in units of the standard deviation σ from
the mean, then

φ(x) =
1√
2π
e−

1
2
x2

Standard tables give values of the integral

t∫
0

φ(x)dx

and from these values one can compute probability integrals for a normal distribution
with mean m and variance σ2.

General Gaussians

So far we have seen spherical Gaussian densities in Rd. The word spherical indicates
that the level curves of the density are spheres. If a random vector y in Rd has a spherical
Gaussian density with zero mean, then yi and yj, i 6= j, are independent. However, in
many situations the variables are correlated. To model these Gaussians, level curves that
are ellipsoids rather than spheres are used.

For a random vector x, the covariance of xi and xj is E((xi − µi)(xj − µj)). We list
the covariances in a matrix called the covariance matrix, denoted Σ.46 Since x and µ are
column vectors, (x − µ)(x − µ)T is a d × d matrix. Expectation of a matrix or vector
means componentwise expectation.

Σ = E
(
(x− µ)(x− µ)T

)
.

46Σ is the standard notation for the covariance matrix. We will use it sparingly so as not to confuse
with the summation sign.
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The general Gaussian density with mean µ and positive definite covariance matrix Σ is

f(x) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

To compute the covariance matrix of the Gaussian, substitute y = Σ−1/2(x− µ). Noting
that a positive definite symmetric matrix has a square root:

E((x− µ)(x− µ)T = E(Σ1/2yyTΣ1/2)

= Σ1/2
(
E(yyT )

)
Σ1/2 = Σ.

The density of y is the unit variance, zero mean Gaussian, thus E(yyT ) = I.

Bernoulli trials and the binomial distribution

A Bernoulli trial has two possible outcomes, called success or failure, with probabilities
p and 1 − p, respectively. If there are n independent Bernoulli trials, the probability of
exactly k successes is given by the binomial distribution

B (n, p) =

(
n

k

)
pk(1− p)n−k

The mean and variance of the binomial distribution B(n, p) are np and np(1− p), respec-
tively. The mean of the binomial distribution is np, by linearity of expectations. The
variance is np(1− p) since the variance of a sum of independent random variables is the
sum of their variances.

Let x1 be the number of successes in n1 trials and let x2 be the number of successes
in n2 trials. The probability distribution of the sum of the successes, x1 + x2, is the same
as the distribution of x1 + x2 successes in n1 + n2 trials. Thus, B (n1, p) + B (n2, p) =
B (n1 + n2, p).
When p is a constant, the expected degree of vertices in G (n, p) increases with n. For
example, in G

(
n, 1

2

)
, the expected degree of a vertex is n/2. In many real applications,

we will be concerned with G (n, p) where p = d/n, for d a constant; i.e., graphs whose
expected degree is a constant d independent of n. Holding d = np constant as n goes to
infinity, the binomial distribution

Prob (k) =

(
n

k

)
pk (1− p)n−k

approaches the Poisson distribution

Prob(k) =
(np)k

k!
e−np =

dk

k!
e−d.
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To see this, assume k = o(n) and use the approximations n − k ∼= n,
(
n
k

) ∼= nk

k!
, and(

1− 1
n

)n−k ∼= e−1 to approximate the binomial distribution by

lim
n→∞

(
n

k

)
pk(1− p)n−k =

nk

k!

(
d

n

)k
(1− d

n
)n =

dk

k!
e−d.

Note that for p = d
n
, where d is a constant independent of n, the probability of the bi-

nomial distribution falls off rapidly for k > d, and is essentially zero for all but some
finite number of values of k. This justifies the k = o(n) assumption. Thus, the Poisson
distribution is a good approximation.

Poisson distribution

The Poisson distribution describes the probability of k events happening in a unit of
time when the average rate per unit of time is λ. Divide the unit of time into n segments.
When n is large enough, each segment is sufficiently small so that the probability of two
events happening in the same segment is negligible. The Poisson distribution gives the
probability of k events happening in a unit of time and can be derived from the binomial
distribution by taking the limit as n→∞.

Let p = λ
n
. Then

Prob(k successes in a unit of time) = lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
= lim

n→∞

n (n− 1) · · · (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n(
1− λ

n

)−k
= lim

n→∞

λk

k!
e−λ

In the limit as n goes to infinity the binomial distribution p (k) =
(
n
k

)
pk (1− p)n−k be-

comes the Poisson distribution p (k) = e−λ λ
k

k!
. The mean and the variance of the Poisson

distribution have value λ. If x and y are both Poisson random variables from distributions
with means λ1 and λ2 respectively, then x + y is Poisson with mean m1 + m2. For large
n and small p the binomial distribution can be approximated with the Poisson distribution.

The binomial distribution with mean np and variance np(1− p) can be approximated
by the normal distribution with mean np and variance np(1−p). The central limit theorem
tells us that there is such an approximation in the limit. The approximation is good if
both np and n(1− p) are greater than 10 provided k is not extreme. Thus,(

n

k

)(
1

2

)k (
1

2

)n−k
∼=

1√
πn/2

e
− (n/2−k)2

1
2n .
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This approximation is excellent provided k is Θ(n). The Poisson approximation(
n

k

)
pk (1− p)k ∼= e−np

(np)k

k!

is off for central values and tail values even for p = 1/2. The approximation(
n
k

)
pk (1− p)n−k ∼=

1
√
πpn

e−
(pn−k)2

pn

is good for p = 1/2 but is off for other values of p.

Generation of random numbers according to a given probability distribution

Suppose one wanted to generate a random variable with probability density p(x) where
p(x) is continuous. Let P (x) be the cumulative distribution function for x and let u be
a random variable with uniform probability density over the interval [0,1]. Then the ran-
dom variable x = P−1 (u) has probability density p(x).

Example: For a Cauchy density function the cumulative distribution function is

P (x) =

x∫
t=−∞

1

π

1

1 + t2
dt =

1

2
+

1

π
tan−1 (x) .

Setting u = P (x) and solving for x yields x = tan
(
π
(
u− 1

2

))
. Thus, to generate a

random number x ≥ 0 using the Cauchy distribution, generate u, 0 ≤ u ≤ 1, uniformly
and calculate x = tan

(
π
(
u− 1

2

))
. The value of x varies from −∞ to ∞ with x = 0 for

u = 1/2.

For the probability distribution Prob(x = i) = 6
π2

1
i2

E(x) = ∞. For the probability
distributions Prob(x = i) = c 1

i3
and Prob(xi = 2i) = 1

4i
have finite expectation but

infinite variance.

12.4.10 Bayes Rule and Estimators

Bayes rule

Bayes rule relates the conditional probability of A given B to the conditional proba-
bility of B given A.

Prob (A|B) =
Prob (B|A) Prob (A)

Prob (B)

Suppose one knows the probability of A and wants to know how this probability changes
if we know that B has occurred. Prob(A) is called the prior probability. The conditional
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probability Prob(A|B) is called the posterior probability because it is the probability of
A after we know that B has occurred.

The example below illustrates that if a situation is rare, a highly accurate test will
often give the wrong answer.

Example: Let A be the event that a product is defective and let B be the event that a
test says a product is defective. Let Prob(B|A) be the probability that the test says a
product is defective assuming the product is defective and let Prob

(
B|Ā

)
be the proba-

bility that the test says a product is defective if it is not actually defective.

What is the probability Prob(A|B) that the product is defective if the test say it is
defective? Suppose Prob(A) = 0.001, Prob(B|A) = 0.99, and Prob

(
B|Ā

)
= 0.02. Then

Prob (B) = Prob (B|A) Prob (A) + Prob
(
B|Ā

)
Prob

(
Ā
)

= 0.99× 0.001 + 0.02× 0.999

= 0.02087

and

Prob (A|B) =
Prob (B|A) Prob (A)

Prob (B)
≈ 0.99× 0.001

0.0210
= 0.0471

Even though the test fails to detect a defective product only 1% of the time when it
is defective and claims that it is defective when it is not only 2% of the time, the test
is correct only 4.7% of the time when it says a product is defective. This comes about
because of the low frequencies of defective products.

The words prior, a posteriori, and likelihood come from Bayes theorem.

a posteriori =
likelihood × prior

normalizing constant

Prob (A|B) =
Prob (B|A) Prob (A)

Prob (B)

The a posteriori probability is the conditional probability of A given B. The likelihood
is the conditional probability Prob(B|A).

Unbiased Estimators

Consider n samples x1, x2, . . . , xn from a Gaussian distribution of mean µ and variance
σ2. For this distribution, m = x1+x2+···+xn

n
is an unbiased estimator of µ, which means

that E(m) = µ and 1
n

n∑
i=1

(xi − µ)2 is an unbiased estimator of σ2. However, if µ is not

known and is approximated by m, then 1
n−1

n∑
i=1

(xi −m)2 is an unbiased estimator of σ2.
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Maximum Likelihood Estimation MLE

Suppose the probability distribution of a random variable x depends on a parameter
r. With slight abuse of notation, since r is a parameter rather than a random variable, we
denote the probability distribution of x as p (x|r) . This is the likelihood of observing x if
r was in fact the parameter value. The job of the maximum likelihood estimator, MLE,
is to find the best r after observing values of the random variable x. The likelihood of r
being the parameter value given that we have observed x is denoted L(r|x). This is again
not a probability since r is a parameter, not a random variable. However, if we were to
apply Bayes’ rule as if this was a conditional probability, we get

L(r|x) =
Prob(x|r)Prob(r)

Prob(x)
.

Now, assume Prob(r) is the same for all r. The denominator Prob(x) is the absolute
probability of observing x and is independent of r. So to maximize L(r|x), we just maxi-
mize Prob(x|r). In some situations, one has a prior guess as to the distribution Prob(r).
This is then called the “prior” and in that case, we call Prob(x|r) the posterior which we
try to maximize.

Example: Consider flipping a coin 100 times. Suppose 62 heads and 38 tails occur.
What is the most likely value of the probability of the coin to come down heads when the
coin is flipped? In this case, it is r = 0.62. The probability that we get 62 heads if the
unknown probability of heads in one trial is r is

Prob (62 heads|r) =

(
100

62

)
r62(1− r)38.

This quantity is maximized when r = 0.62. To see this take the logarithm, which as a
function of r is ln

(
100
62

)
+ 62 ln r+ 38 ln(1− r). The derivative with respect to r is zero at

r = 0.62 and the second derivative is negative indicating a maximum. Thus, r = 0.62 is
the maximum likelihood estimator of the probability of heads in a trial.

12.4.11 Tail Bounds and Chernoff Inequalities

Markov’s inequality bounds the probability that a nonnegative random variable exceeds
a value a.

p(x ≥ a) ≤ E(x)

a
.

or

p
(
x ≥ aE(x)

)
≤ 1

a

If one also knows the variance, σ2, then using Chebyshev’s inequality one can bound the
probability that a random variable differs from its expected value by more than a standard
deviations.

p(|x−m| ≥ aσ) ≤ 1

a2

417



If a random variable s is the sum of n independent random variables x1, x2, . . . , xn of
finite variance, then better bounds are possible. For any δ > 0,

Prob(s > (1 + δ)m) <

[
eδ

(1 + δ)(1+δ)

]m
and for 0 < γ ≤ 1,

Prob
(
s < (1− γ)m

)
<

[
e−γ

(1 + γ)(1+γ)

]m
< e−

γ2m
2

Chernoff inequalities

Chebyshev’s inequality bounds the probability that a random variable will deviate
from its mean by more than a given amount. Chebyshev’s inequality holds for any proba-
bility distribution. For some distributions we can get much tighter bounds. For example,
the probability that a Gaussian random variable deviates from its mean falls off exponen-
tially with the distance from the mean. Here we shall be concerned with the situation
where we have a random variable that is the sum of n independent random variables. This
is another situation in which we can derive a tighter bound than that given by the Cheby-
shev inequality. We consider the case where the n independent variables are binomial but
similar results can be shown for independent random variables from any distribution that
has a finite variance.

Let x1, x2, . . . , xn be independent random variables where

xi =

{
0 Prob 1− p
1 Prob p

.

Consider the sum s =
n∑
i=1

xi. Here the expected value of each xi is p and by linearity of

expectation, the expected value of the sum is m=np. Theorem 12.5 bounds the probability
that the sum s exceeds (1 + δ)m.

Theorem 12.3 For any δ > 0, Prob
(
s > (1 + δ)m

)
<
(

eδ

(1+δ)(1+δ)

)m
Proof: For any λ > 0, the function eλx is monotone. Thus,

Prob
(
s > (1 + δ)m

)
= Prob

(
eλs > eλ(1+δ)m

)
.

eλx is nonnegative for all x, so we can apply Markov’s inequality to get

Prob
(
eλs > eλ(1+δ)m

)
≤ e−λ(1+δ)mE

(
eλs
)
.
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Since the xi are independent,

E
(
eλs
)

= E

(
e
λ

n∑
i=1

xi

)
= E

(
n∏
i=1

eλxi

)
=

n∏
i=1

E
(
eλxi
)

=
n∏
i=1

(
eλp+ 1− p

)
=

n∏
i=1

(
p(eλ − 1) + 1

)
.

Using the inequality 1 + x < ex with x = p(eλ − 1) yields

E
(
eλs
)
<

n∏
i=1

ep(e
λ−1).

Thus, for all λ > 0

Prob
(
s > (1 + δ)m

)
≤ Prob

(
eλs > eλ(1+δ)m

)
≤ e−λ(1+δ)mE

(
eλs
)

≤ e−λ(1+δ)m

n∏
i=1

ep(e
λ−1).

Setting λ = ln(1 + δ)

Prob
(
s > (1 + δ)m

)
≤
(
e− ln(1+δ)

)(1+δ)m
n∏
i=1

ep(e
ln(1+δ)−1)

≤
(

1

1 + δ

)(1+δ)m n∏
i=1

epδ

≤
(

1

(1 + δ)

)(1+δ)m

enpδ

≤

(
eδ

(1 + δ)(1+δ)

)m

.

To simplify the bound of Theorem 12.3, observe that

(1 + δ) ln (1 + δ) = δ +
δ2

2
− δ3

6
+
δ4

12
− · · · .

Therefore

(1 + δ)(1+δ) = eδ+
δ2

2
− δ

3

6
+ δ4

12
−···

and hence
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eδ

(1+δ)(1+δ)
= e−

δ2

2
+ δ3

6
−···.

Thus, the bound simplifies to

Prob
(
s < (1 + δ)m

)
≤ e−

δ2

2
m+ δ3

6
m−···.

For small δ the probability drops exponentially with δ2.

When δ is large another simplification is possible. First

Prob
(
s > (1 + δ)m

)
≤

(
eδ

(1 + δ)(1+δ)

)m

≤
(

e

1 + δ

)(1+δ)m

If δ > 2e− 1, substituting 2e− 1 for δ in the denominator yields

Prob(s > (1 + δ)m) ≤ 2−(1+δ)m.

Theorem 12.3 gives a bound on the probability of the sum being greater than the
mean. We now bound the probability that the sum will be less than its mean.

Theorem 12.4 Let 0 < γ ≤ 1, then Pr ob
(
s < (1− γ)m

)
<
(

e−γ

(1+γ)(1+γ)

)m
< e−

γ2m
2 .

Proof: For any λ > 0

Prob
(
s < (1− γ)m

)
= Prob

(
− s > −(1− γ)m

)
= Prob

(
e−λs > e−λ(1−γ)m

)
.

Applying Markov’s inequality

Prob
(
s < (1− γ)m

)
<

E(e−λx)

e−λ(1−γ)m
<

n∏
i=1

E(e−λXi)

e−λ(1−γ)m
.

Now

E(e−λxi) = pe−λ + 1− p = 1 + p(e−λ − 1) + 1.

Thus,

Prob(s < (1− γ)m) <

n∏
i=1

[1 + p(e−λ − 1)]

e−λ(1−γ)m
.

Since 1 + x < ex

Prob
(
s < (1− γ)m

)
<
enp(e

−λ−1)

e−λ(1−γ)m
.
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Setting λ = ln 1
1−γ

Prob
(
s < (1− γ)m

)
<

enp(1−γ−1)

(1− γ)(1−γ)m

<

(
e−γ

(1− γ)(1−γ)

)m
.

But for 0 < γ ≤ 1, (1− γ)(1−γ) > e−γ+ γ2

2 . To see this note that

(1− γ) ln (1− γ) = (1− γ)

(
−γ − γ2

2
− γ3

3
− · · ·

)
= −γ − γ2

2
− γ3

3
− · · ·+ γ2 +

γ3

2
+
γ4

3
+ · · ·

= −γ +

(
γ2 − γ2

2

)
+

(
γ3

2
− γ3

3

)
+ · · ·

= −γ +
γ2

2
+
γ3

6
+ · · ·

≥ −γ +
γ2

2
.

It then follows that

Prob
(
s < (1− γ)m

)
<

(
e−γ

(1− γ)(1−γ)

)m
< e−

mγ2

2 .

12.5 Bounds on Tail Probability

After an introduction to tail inequalties, the main purpose of this section is to state
the Master Tail bounds theorem of Chapter 2 (with more detail), give a proof of it, and
derive the other tail inequalities mentioned in the table in that chapter.

Markov’s inequality bounds the tail probability of a nonnegative random variable x
based only on its expectation. For a > 0,

Pr(x > a) ≤ E(x)

a
.

As a grows, the bound drops off as 1/a. Given the second moment of x, Chebyshev’s
inequality, which does not assume x is a nonnegative random variable, gives a tail bound
falling off as 1/a2

Pr(|x− E(x)| ≥ a) ≤
E
((
x− E(x)

)2
)

a2
.

421



Higher moments yield bounds by applying either of these two theorems. For example,
if r is a nonnegative even integer, then xr is a nonnegative random variable even if x takes
on negative values. Applying Markov’s inequality to xr,

Pr(|x| ≥ a) = Pr(xr ≥ ar) ≤ E(xr)

ar
,

a bound that falls off as 1/ar. The larger the r, the greater the rate of fall, but a bound
on E(xr) is needed to apply this technique.

For a random variable x that is the sum of a large number of independent random
variables, x1, x2, . . . , xn, one can derive bounds on E(xr) for high even r. There are many
situations where the sum of a large number of independent random variables arises. For
example, xi may be the amount of a good that the ith consumer buys, the length of the ith

message sent over a network, or the indicator random variable of whether the ith record
in a large database has a certain property. Each xi is modeled by a simple probability
distribution. Gaussian, exponential probability density (at any t > 0 is e−t), or binomial
distributions are typically used, in fact, respectively in the three examples here. If the xi
have 0-1 distributions, there are a number of theorems called Chernoff bounds, bounding
the tails of x = x1 + x2 + · · · + xn, typically proved by the so-called moment-generating
function method (see Section 12.4.11 of the appendix). But exponential and Gaussian ran-
dom variables are not bounded and these methods do not apply. However, good bounds
on the moments of these two distributions are known. Indeed, for any integer s > 0, the
sth moment for the unit variance Gaussian and the exponential are both at most s!.

Given bounds on the moments of individual xi the following theorem proves moment
bounds on their sum. We use this theorem to derive tail bounds not only for sums of 0-1
random variables, but also Gaussians, exponentials, Poisson, etc.

The gold standard for tail bounds is the central limit theorem for independent, iden-
tically distributed random variables x1, x2, · · · , xn with zero mean and Var(xi) = σ2 that
states as n → ∞ the distribution of x = (x1 + x2 + · · · + xn)/

√
n tends to the Gaus-

sian density with zero mean and variance σ2. Loosely, this says that in the limit, the
tails of x = (x1 + x2 + · · · + xn)/

√
n are bounded by that of a Gaussian with variance

σ2. But this theorem is only in the limit, whereas, we prove a bound that applies for all n.

In the following theorem, x is the sum of n independent, not necessarily identically
distributed, random variables x1, x2, . . . , xn, each of zero mean and variance at most σ2.
By the central limit theorem, in the limit the probability density of x goes to that of
the Gaussian with variance at most nσ2. In a limit sense, this implies an upper bound
of ce−a

2/(2nσ2) for the tail probability Pr(|x| > a) for some constant c. The following
theorem assumes bounds on higher moments, and asserts a quantitative upper bound of
3e−a

2/(12nσ2) on the tail probability, not just in the limit, but for every n. We will apply
this theorem to get tail bounds on sums of Gaussian, binomial, and power law distributed
random variables.
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Theorem 12.5 Let x = x1 +x2 + · · ·+xn, where x1, x2, . . . , xn are mutually independent
random variables with zero mean and variance at most σ2. Suppose a ∈ [0,

√
2nσ2] and

s ≤ nσ2/2 is a positive even integer and |E(xri )| ≤ σ2r!, for r = 3, 4, . . . , s. Then,

Pr (|x1 + x2 + · · ·xn| ≥ a) ≤
(

2snσ2

a2

)s/2
.

If further, s ≥ a2/(4nσ2), then we also have:

Pr (|x1 + x2 + · · · xn| ≥ a) ≤ 3e−a
2/(12nσ2).

Proof: We first prove an upper bound on E(xr) for any even positive integer r and then
use Markov’s inequality as discussed earlier. Expand (x1 + x2 + · · ·+ xn)r.

(x1 + x2 + · · ·+ xn)r =
∑(

r

r1, r2, . . . , rn

)
xr11 x

r2
2 · · · xrnn

=
∑ r!

r1!r2! · · · rn!
xr11 x

r2
2 · · ·xrnn

where the ri range over all nonnegative integers summing to r. By independence

E(xr) =
∑ r!

r1!r2! · · · rn!
E(xr11 )E(xr22 ) · · ·E(xrnn ).

If in a term, any ri = 1, the term is zero since E(xi) = 0. Assume henceforth that
(r1, r2, . . . , rn) runs over sets of nonzero ri summing to r where each nonzero ri is at least
two. There are at most r/2 nonzero ri in each set. Since |E(xrii )| ≤ σ2ri!,

E(xr) ≤ r!
∑

(r1,r2,...,rn)

σ2( number of nonzero ri in set).

Collect terms of the summation with t nonzero ri for t = 1, 2, . . . , r/2. There are
(
n
t

)
subsets of {1, 2, . . . , n} of cardinality t. Once a subset is fixed as the set of t values of i
with nonzero ri, set each of the ri ≥ 2. That is, allocate two to each of the ri and then
allocate the remaining r−2t to the t ri arbitrarily. The number of such allocations is just(
r−2t+t−1

t−1

)
=
(
r−t−1
t−1

)
. So,

E(xr) ≤ r!

r/2∑
t=1

f(t), where f(t) =

(
n

t

)(
r − t− 1

t− 1

)
σ2t.

Thus f(t) ≤ h(t), where h(t) = (nσ2)t

t!
2r−t−1. Since t ≤ r/2 ≤ nσ2/4, we have

h(t)

h(t− 1)
=
nσ2

2t
≥ 2.
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So, we get

E(xr) = r!

r/2∑
t=1

f(t) ≤ r!h(r/2)(1 +
1

2
+

1

4
+ · · · ) ≤ r!

(r/2)!
2r/2(nσ2)r/2.

Applying Markov inequality,

Pr(|x| > a) = Pr(|x|r > ar) ≤ r!(nσ2)r/22r/2

(r/2)!ar
= g(r) ≤

(
2rnσ2

a2

)r/2
.

This holds for all r ≤ s, r even and applying it with r = s, we get the first inequality of
the theorem.

We now prove the second inequality. For even r, g(r)/g(r − 2) = 4(r−1)nσ2

a2
and so

g(r) decreases as long as r − 1 ≤ a2/(4nσ2). Taking r to be the largest even integer
less than or equal to a2/(6nσ2), the tail probability is at most e−r/2, which is at most
e · e−a2/(12nσ2) ≤ 3 · e−a2/(12nσ2), proving the theorem.

12.6 Applications of the Tail Bound

Chernoff Bounds

Chernoff bounds deal with sums of Bernoulli random variables. Here we apply Theo-
rem 12.5 to derive these.

Theorem 12.6 Suppose y1, y2, . . . , yn are independent 0-1 random variables with E(yi) =
p for all i. Let y = y1 + y2 + · · ·+ yn. Then for any c ∈ [0, 1],

Pr (|y − E(y)| ≥ cnp) ≤ 3e−npc
2/8.

Proof: Let xi = yi − p. Then, E(xi) = 0 and E(x2
i ) = E(y − p)2 = p. For s ≥ 3,

|E(xsi )| = |E(yi − p)s|
= |p(1− p)s + (1− p)(0− p)s|
=
∣∣p(1− p) ((1− p)s−1 + (−p)s−1

)∣∣
≤ p.

Apply Theorem 12.5 with a = cnp. Noting that a <
√

2 np, completes the proof.

Section (12.4.11) contains a different proof that uses a standard method based on
moment-generating functions and gives a better constant in the exponent.

Power Law Distributions
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The power law distribution of order k where k is a positive integer is

f(x) =
k − 1

xk
for x ≥ 1.

If a random variable x has this distribution for k ≥ 4, then

µ = E(x) =
k − 1

k − 2
and Var(x) =

k − 1

(k − 2)2(k − 3)
.

Theorem 12.7 Suppose x1, x2, . . . , xn are i.i.d, each distributed according to the Power
Law of order k ≥ 4 (with n > 10k2). Then, for x = x1 + x2 + · · · + xn, and any
ε ∈ (1/(2

√
nk), 1/k2), we have

Pr (|x− E(x)| ≥ εE(x)) ≤
(

4

ε2(k − 1)n

)(k−3)/2

.

Proof: For integer s, the sth moment of xi − E(xi), namely, E((xi − µ)s), exists if and
only if s ≤ k − 2. For s ≤ k − 2,

E((xi − µ)s) = (k − 1)

∫ ∞
1

(y − µ)s

yk
dy

Using the substitution of variable z = µ/y

(y − µ)s

yk
= ys−k(1− z)s =

zk−s

µk−s
(1− z)s

As y goes from 1 to ∞, z goes from µ to 0, and dz = − µ
y2
dy. Thus

E((xi − µ)s) =(k − 1)

∫ ∞
1

(y − µ)s

yk
dy

=
k − 1

µk−s−1

∫ 1

0

(1− z)szk−s−2dz +
k − 1

µk−s−1

∫ µ

1

(1− z)szk−s−2dz.

The first integral is just the standard integral of the beta function and its value is s!(k−2−s)!
(k−1)!

.

To bound the second integral, note that for z ∈ [1, µ], |z − 1| ≤ 1
k−2

and

zk−s−2 ≤
(
1 +

(
1/(k − 2)

))k−s−2 ≤ e(k−s−2)/(k−2) ≤ e.

So, |E((xi − µ)s)| ≤ (k − 1)s!(k − 2− s)!
(k − 1)!

+
e(k − 1)

(k − 2)s+1
≤ s!Var(y)

(
1

k − 4
+
e

3!

)
≤ s!Var(x).

Now, apply the first inequality of Theorem 12.5 with s of that theorem set to k − 2 or
k − 3 whichever is even. Note that a = εE(x) ≤

√
2nσ2 (since ε ≤ 1/k2). The present

theorem follows by a calculation.
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12.7 Eigenvalues and Eigenvectors

Let A be an n×n real matrix. The scalar λ is called an eigenvalue of A if there exists a
nonzero vector x satisfying the equation Ax = λx. The vector x is called the eigenvector
of A associated with λ. The set of all eigenvectors associated with a given eigenvalue form
a subspace as seen from the fact that if Ax = λx and Ay = λy, then for any scalers c
and d, A(cx + dy) = λ(cx + dy). The equation Ax = λx has a nontrivial solution only if
det(A− λI) = 0. The equation det(A− λI) = 0 is called the characteristic equation and
has n not necessarily distinct roots.

Matrices A and B are similar if there is an invertible matrix P such that A = P−1BP .

Theorem 12.8 If A and B are similar, then they have the same eigenvalues.

Proof: Let A and B be similar matrices. Then there exists an invertible matrix P
such that A = P−1BP . For an eigenvector x of A with eigenvalue λ, Ax = λx, which
implies P−1BPx = λx or B(Px) = λ(Px). So, Px is an eigenvector of B with the same
eigenvalue λ. Since the reverse also holds, the theorem follows.

Even though two similar matrices, A and B, have the same eigenvalues, their eigen-
vectors are in general different.

The matrix A is diagonalizable if A is similar to a diagonal matrix.

Theorem 12.9 A is diagonalizable if and only if A has n linearly independent eigenvec-
tors.

Proof:

(only if) Assume A is diagonalizable. Then there exists an invertible matrix P
and a diagonal matrix D such that D = P−1AP . Thus, PD = AP . Let the diago-
nal elements of D be λ1, λ2, . . . , λn and let p1,p2, . . . ,pn be the columns of P . Then
AP = [Ap1, Ap2, . . . , Apn] and PD = [λ1p1, λ2p2, . . . , λnpn] . Hence Api = λipi. That
is, the λi are the eigenvalues of A and the pi are the corresponding eigenvectors. Since P
is invertible, the pi are linearly independent.

(if) Assume that A has n linearly independent eigenvectors p1,p2, . . . ,pn with cor-
responding eigenvalues λ1, λ2, . . . , λn. Then Api = λipi and reversing the above steps

AP = [Ap1, Ap2, . . . , Apn] = [λ1p1, λ2p2, . . . λnpn] = PD.

Thus, AP = DP . Since the pi are linearly independent, P is invertible and hence A =
P−1DP . Thus, A is diagonalizable.
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It follows from the proof of the theorem that if A is diagonalizable and has eigenvalue
λ with multiplicity k, then there are k linearly independent eigenvectors associated with λ.

A matrix P is orthogonal if it is invertible and P−1 = P T . A matrix A is orthogonally
diagonalizable if there exists an orthogonal matrix P such that P−1AP = D is diagonal.
If A is orthogonally diagonalizable, then A = PDP T and AP = PD. Thus, the columns
of P are the eigenvectors of A and the diagonal elements of D are the corresponding
eigenvalues.

If P is an orthogonal matrix, then P TAP and A are both representations of the same
linear transformation with respect to different bases. To see this, note that if e1, e2, . . . , en

is the standard basis, then aij is the component of Aej along the direction ei, namely,
aij = ei

TAej. Thus, A defines a linear transformation by specifying the image under the
transformation of each basis vector. Denote by pj the jth column of P . It is easy to see that
(P TAP )ij is the component of Apj along the direction pi, namely, (P TAP )ij = pi

TApj.
Since P is orthogonal, the pj form a basis of the space and so P TAP represents the same
linear transformation as A, but in the basis p1, p2, . . . , pn.

Another remark is in order. Check that

A = PDP T =
n∑
i=1

diipipi
T .

Compare this with the singular value decomposition where

A =
n∑
i=1

σiuivi
T ,

the only difference being that ui and vi can be different and indeed if A is not square,
they will certainly be.

12.7.1 Symmetric Matrices

For an arbitrary matrix, some of the eigenvalues may be complex. However, for a
symmetric matrix with real entries, all eigenvalues are real. The number of eigenvalues
of a symmetric matrix, counting multiplicities, equals the dimension of the matrix. The
set of eigenvectors associated with a given eigenvalue form a vector space. For a non-
symmetric matrix, the dimension of this space may be less than the multiplicity of the
eigenvalue. Thus, a nonsymmetric matrix may not be diagonalizable. However, for a
symmetric matrix the eigenvectors associated with a given eigenvalue form a vector space
of dimension equal to the multiplicity of the eigenvalue. Thus, all symmetric matrices are
diagonalizable. The above facts for symmetric matrices are summarized in the following
theorem.

Theorem 12.10 (Real Spectral Theorem) Let A be a real symmetric matrix. Then
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1. The eigenvalues, λ1, λ2, . . . , λn, are real, as are the components of the corresponding
eigenvectors, v1,v2, . . . ,vn.

2. (Spectral Decomposition) A is orthogonally diagonalizable and indeed

A = V DV T =
n∑
i=1

λivivi
T ,

where V is the matrix with columns v1,v2, . . . ,vn, |vi| = 1 and D is a diagonal
matrix with entries λ1, λ2, . . . , λn.

Proof: Avi = λivi and vi
cAvi = λivi

cvi. Here the c superscript means conjugate trans-
pose. Then

λi = vi
cAvi = (vi

cAvi)
cc = (vi

cAcvi)
c = (vi

cAvi)
c = λci

and hence λi is real.

Since λi is real, a nontrivial solution to (A− λiI) x = 0 has real components.

Let P be a real symmetric matrix such that Pv1 = e1 where e1 = (1, 0, 0, . . . , 0)T and
P−1 = P T . We will construct such a P shortly. Since Av1 = λ1v1,

PAP Te1 = PAv1 = λPv1 = λ1e1.

The condition PAP Te1 = λ1e1 plus symmetry implies that PAP T =

(
λ1 0
0 A′

)
where

A′ is n− 1 by n− 1 and symmetric. By induction, A′ is orthogonally diagonalizable. Let
Q be the orthogonal matrix with QA′QT = D′, a diagonal matrix. Q is (n− 1)× (n− 1).
Augment Q to an n× n matrix by putting 1 in the (1, 1) position and 0 elsewhere in the
first row and column. Call the resulting matrix R. R is orthogonal too.

R

(
λ1 0
0 A′

)
RT =

(
λ1 0
0 D′

)
=⇒ RPAP TRT =

(
λ1 0
0 D′

)
.

Since the product of two orthogonal matrices is orthogonal, this finishes the proof of (2)
except it remains to construct P . For this, take an orthonormal basis of space containing
v1. Suppose the basis is {v1,w2,w3, . . .} and V is the matrix with these basis vectors as
its columns. Then P = V T will do.

Theorem 12.11 (The fundamental theorem of symmetric matrices) A real ma-
trix A is orthogonally diagonalizable if and only if A is symmetric.

Proof: (if) Assume A is orthogonally diagonalizable. Then there exists P such that
D = P−1AP . Since P−1 = P T , we get

A = PDP−1 = PDP T
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which implies
AT = (PDP T )T = PDP T = A

and hence A is symmetric.
(only if) Already roved.

Note that a nonsymmetric matrix may not be diagonalizable, it may have eigenvalues
that are not real, and the number of linearly independent eigenvectors corresponding to
an eigenvalue may be less than its multiplicity. For example, the matrix 1 1 0

0 1 1
1 0 1


has eigenvalues 2, 1

2
+ i
√

3
2

, and 1
2
− i
√

3
2

. The matrix

(
1 2
0 1

)
has characteristic equation

(1 − λ)2 = 0 and thus has eigenvalue 1 with multiplicity 2 but has only one linearly

independent eigenvector associated with the eigenvalue 1, namely x = c

(
1
0

)
c 6= 0.

Neither of these situations is possible for a symmetric matrix.

12.7.2 Relationship between SVD and Eigen Decomposition

The singular value decomposition exists for any n × d matrix whereas the eigenvalue
decomposition exists only for certain square matrices. For symmetric matrices the de-
compositions are essentially the same.

The singular values of a matrix are always positive since they are the sum of squares
of the projection of a row of a matrix onto a singular vector. Given a symmetric matrix,
the eigenvalues can be positive or negative. If A is a symmetric matrix with eigenvalue
decomposition A = VEDEV

T
E and singular value decomposition A = USDSV

T
S , what is

the relationship between DE and DS, and between VE and VS, and between US and VE?
Observe that if A can be expressed as QDQT where Q is orthonormal and D is diagonal,
then AQ = QD. That is, each column of Q is an eigenvector and the elements of D
are the eigenvalues. Thus, if the eigenvalues of A are distinct, then Q is unique up to
a permutation of columns. If an eigenvalue has multiplicity k, then the space spanned
the k columns is unique. In the following we will use the term essentially unique to
capture this situation. Now AAT = USD

2
SU

T
S and ATA = VSD

2
SV

T
S . By an argument

similar to the one above, US and VS are essentially unique and are the eigenvectors or
negatives of the eigenvectors of A and AT . The eigenvalues of AAT or ATA are the squares
of the eigenvalues of A. If A is not positive semi definite and has negative eigenvalues,
then in the singular value decomposition A = USDSVS, some of the left singular vectors
are the negatives of the eigenvectors. Let S be a diagonal matrix with ±1′s on the
diagonal depending on whether the corresponding eigenvalue is positive or negative. Then
A = (USS)(SDS)VS where USS = VE and SDS = DE.
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12.7.3 Extremal Properties of Eigenvalues

In this section we derive a min max characterization of eigenvalues that implies that
the largest eigenvalue of a symmetric matrix A has a value equal to the maximum of
xTAx over all vectors x of unit length. That is, the largest eigenvalue of A equals the
2-norm of A. If A is a real symmetric matrix there exists an orthogonal matrix P that
diagonalizes A. Thus

P TAP = D

where D is a diagonal matrix with the eigenvalues of A, λ1 ≥ λ2 ≥ · · · ≥ λn, on its
diagonal. Rather than working with A, it is easier to work with the diagonal matrix D.
This will be an important technique that will simplify many proofs.

Consider maximizing xTAx subject to the conditions

1.
n∑
i=1

x2
i = 1

2. rTi x = 0, 1 ≤ i ≤ s

where the ri are any set of nonzero vectors. We ask over all possible sets {ri|1 ≤ i ≤ s}
of s vectors, what is the minimum value assumed by this maximum.

Theorem 12.12 (Min max theorem) For a symmetric matrix A, min
r1,...,rs

max
x

ri⊥x
(xtAx) =

λs+1 where the minimum is over all sets {r1, r2, . . . , rs} of s nonzero vectors and the
maximum is over all unit vectors x orthogonal to the s nonzero vectors.

Proof: A is orthogonally diagonalizable. Let P satisfy P TP = I and P TAP = D, D
diagonal. Let y = P Tx. Then x = Py and

xTAx = yTP TAPy = yTDy =
n∑
i=1

λiy
2
i

Since there is a one-to-one correspondence between unit vectors x and y, maximizing

xTAx subject to
∑
x2
i = 1 is equivalent to maximizing

n∑
i=1

λiy
2
i subject to

∑
y2
i = 1. Since

λ1 ≥ λi, 2 ≤ i ≤ n, y = (1, 0, . . . , 0) maximizes
n∑
i=1

λiy
2
i at λ1. Then x = Py is the first

column of P and is the first eigenvector of A. Similarly λn is the minimum value of xTAx
subject to the same conditions.

Now consider maximizing xTAx subject to the conditions

1.
∑
x2
i = 1

2. rTi x = 0
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where the ri are any set of nonzero vectors. We ask over all possible choices of s vectors
what is the minimum value assumed by this maximum.

min
r1,...,rs

max
x

rTi x=0

xTAx

As above, we may work with y. The conditions are

1.
∑
y2
i = 1

2. qTi y = 0 where, qTi = rTi P

Consider any choice for the vectors r1, r2, . . . , rs. This gives a corresponding set of qi. The
yi therefore satisfy s linear homogeneous equations. If we add ys+2 = ys+3 = · · · yn = 0
we have n − 1 homogeneous equations in n unknowns y1, . . . , yn. There is at least one
solution that can be normalized so that

∑
y2
i = 1. With this choice of y

yTDy =
∑

λiy
2
i ≥λs+1

since coefficients greater than or equal to s+ 1 are zero. Thus, for any choice of ri there
will be a y such that

max
y

rTi y=0

(yTP TAPy) ≥ λs+1

and hence
min

r1,r2,...,rs
max

y
rTi y=0

(yTP TAPy) ≥ λs+1.

However, there is a set of s constraints for which the minimum is less than or equal to
λs+1. Fix the relations to be yi = 0, 1 ≤ i ≤ s. There are s equations in n unknowns
and for any y subject to these relations

yTDy =
n∑
s+1

λiy
2
i ≤ λs+1.

Combining the two inequalities, min max yTDy = λs+1.

The above theorem tells us that the maximum of xTAx subject to the constraint that
|x|2 = 1 is λ1. Consider the problem of maximizing xTAx subject to the additional re-
striction that x is orthogonal to the first eigenvector. This is equivalent to maximizing
ytP tAPy subject to y being orthogonal to (1,0,. . . ,0), i.e. the first component of y being
0. This maximum is clearly λ2 and occurs for y = (0, 1, 0, . . . , 0). The corresponding x is
the second column of P or the second eigenvector of A.

Similarly the maximum of xTAx for p1
Tx = p2

Tx = · · ·ps
Tx = 0 is λs+1 and is

obtained for x = ps+1.
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12.7.4 Eigenvalues of the Sum of Two Symmetric Matrices

The min max theorem is useful in proving many other results. The following theorem
shows how adding a matrix B to a matrix A changes the eigenvalues of A. The theorem
is useful for determining the effect of a small perturbation on the eigenvalues of A.

Theorem 12.13 Let A and B be n × n symmetric matrices. Let C=A+B. Let αi, βi,
and γi denote the eigenvalues of A, B, and C respectively, where α1 ≥ α2 ≥ . . . αn and
similarly for βi, γi. Then αs + β1 ≥ γs ≥ αs + βn.

Proof: By the min max theorem we have

αs = min
r1,...,rs−1

max
x

ri⊥x
(xTAx).

Suppose r1, r2, . . . , rs−1 attain the minimum in the expression. Then using the min max
theorem on C,

γs ≤ max
x⊥r1,r2,...rs−1

(
xT (A+B)x

)
≤ max

x⊥r1,r2,...rs−1

(xTAx) + max
x⊥r1,r2,...rs−1

(xTBx)

≤ αs + max
x

(xTBx) ≤ αs + β1.

Therefore, γs ≤ αs + β1.

An application of the result to A = C + (−B), gives αs ≤ γs − βn. The eigenvalues
of -B are minus the eigenvalues of B and thus −βn is the largest eigenvalue. Hence
γs ≥ αs + βn and combining inequalities yields αs + β1 ≥ γs ≥ αs + βn.

Lemma 12.14 Let A and B be n × n symmetric matrices. Let C=A+B. Let αi, βi,
and γi denote the eigenvalues of A, B, and C respectively, where α1 ≥ α2 ≥ . . . αn and
similarly for βi, γi. Then γr+s−1 ≤ αr + βs.

Proof: There is a set of r−1 relations such that over all x satisfying the r−1 relationships

max(xTAx) = αr.

And a set of s− 1 relations such that over all x satisfying the s− 1 relationships

max(xTBx) = βs.

Consider x satisfying all these r + s− 2 relations. For any such x

xTCx = xTAx + xTBxx ≤ αr + βs

and hence over all the x
max(xTCx) ≤ αs + βr

Taking the minimum over all sets of r + s− 2 relations

γr+s−1 = min max(xTCx) ≤ αr + βs
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12.7.5 Norms

A set of vectors {x1, . . . ,xn} is orthogonal if xi
Txj = 0 for i 6= j and is orthonormal if

in addition |xi| = 1 for all i. A matrix A is orthonormal if ATA = I. If A is a square
orthonormal matrix, then rows as well as columns are orthogonal. In other words, if A
is square orthonormal, then AT is also. In the case of matrices over the complexes, the
concept of an orthonormal matrix is replaced by that of a unitary matrix. A∗ is the con-
jugate transpose of A if a∗ij = āji where a∗ij is the ijth entry of A∗ and ā∗ij is the complex
conjugate of the ijth element of A. A matrix A over the field of complex numbers is
unitary if AA∗ = I.

Norms

A norm on Rn is a function f : Rn → R satisfying the following three axioms:

1. f(x) ≥ 0,

2. f(x + y) ≤ f(x) + f(y), and

3. f(αx) = |α|f(x).

A norm on a vector space provides a distance function where

distance(x,y) = norm(x− y).

An important class of norms for vectors is the p-norms defined for p > 0 by

|x|p = (|x1|p + · · ·+ |xn|p)
1
p .

Important special cases are

|x|0 the number of non zero entries

|x|1 = |x1|+ · · ·+ |xn|
|x|2 =

√
|x1|2 + · · ·+ |xn|2

|x|∞ = max |xi|.

Lemma 12.15 For any 1 ≤ p < q, |x|q ≤ |x|p.

Proof:

|x|qq =
∑
i

|xi|q.

Let ai = |xi|q and ρ = p/q. Using Jensen’s inequality (see Section 12.3) that for any
nonnegative reals a1, a2, . . . , an and any ρ ∈ (0, 1), we have (

∑n
i=1 ai)

ρ ≤
∑n

i=1 a
ρ
i , the

lemma is proved.
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There are two important matrix norms, the matrix p-norm

||A||p = max
|x|=1

‖Ax‖p

and the Frobenius norm

||A||F =

√∑
ij

a2
ij.

Let ai be the ith column of A. Then ‖A‖2
F =

∑
i

ai
Tai = tr

(
ATA

)
. A similar argument

on the rows yields ‖A‖2
F = tr

(
AAT

)
. Thus, ‖A‖2

F = tr
(
ATA

)
= tr

(
AAT

)
.

If A is symmetric and rank k

||A||22 ≤ ||A||
2
F ≤ k ||A||22 .

12.7.6 Important Norms and Their Properties

Lemma 12.16 ||AB||2 ≤ ||A||2 ||B||2

Proof: ||AB||2 = max
|x|=1
|ABx|. Let y be the value of x that achieves the maximum and

let z = By. Then

||AB||2 = |ABy| = |Az| =
∣∣∣∣A z

|z|

∣∣∣∣ |z|
But

∣∣∣A z
|z|

∣∣∣ ≤ max
|x|=1
|Ax| = ||A||2 and |z| ≤ max

|x|=1
|Bx| = ||B||2. Thus ||AB||2 ≤ ||A||2 ||B||2.

Let Q be an orthonormal matrix.

Lemma 12.17 For all x, |Qx| = |x|.

Proof: |Qx|22 = xTQTQx = xTx = |x|22.

Lemma 12.18 ||QA||2 = ||A||2

Proof: For all x, |Qx| = |x|. Replacing x by Ax, |QAx| = |Ax| and thus max
|x|=1

|QAx| =

max
|x|=1
|Ax|

Lemma 12.19 ||AB||2F ≤ ||A||
2
F ||B||

2
F

Proof: Let ai be the ith column of A and let bj be the jth column of B. By the

Cauchy-Schwartz inequality
∥∥ai

Tbj

∥∥ ≤ ‖ai‖ ‖bj‖. Thus ||AB||2F =
∑
i

∑
j

∣∣ai
Tbj

∣∣2 ≤∑
i

∑
j

‖ai‖2 ‖bj‖2 =
∑
i

‖ai‖2∑
j

‖bj‖2 = ||A||2F ||B||
2
F
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Lemma 12.20 ||QA||F = ||A||F
Proof: ||QA||2F = Tr(ATQTQA) = Tr(ATA) = ||A||2F .

Lemma 12.21 For real, symmetric matrix A with eigenvalues λ1 ≥ λ2 ≥ . . ., ‖A‖2
2 =

max(λ2
1, λ

2
n) and ‖A‖2

F = λ2
1 + λ2

2 + · · ·+ λ2
n

Proof: Suppose the spectral decomposition of A is PDP T , where P is an orthogo-
nal matrix and D is diagonal. We saw that ||P TA||2 = ||A||2. Applying this again,
||P TAP ||2 = ||A||2. But, P TAP = D and clearly for a diagonal matrix D, ||D||2 is the
largest absolute value diagonal entry from which the first equation follows. The proof of
the second is analogous.

If A is real and symmetric and of rank k then ||A||22 ≤ ||A||
2
F ≤ k ||A||22

Theorem 12.22 ||A||22 ≤ ||A||
2
F ≤ k ||A||22

Proof: It is obvious for diagonal matrices that ||D||22 ≤ ||D||
2
F ≤ k ||D||22. Let D =

QtAQ where Q is orthonormal. The result follows immediately since for Q orthonormal,
||QA||2 = ||A||2 and ||QA||F = ||A||F .

Real and symmetric are necessary for some of these theorems. This condition was
needed to express Σ = QTAQ. For example, in Theorem 12.22 suppose A is the n × n
matrix

A =


1 1
1 1
...

...
1 1

0

 .

||A||2 = 2 and ||A||F =
√

2n. But A is rank 2 and ||A||F > 2 ||A||2 for n > 8.

Lemma 12.23 Let A be a symmetric matrix. Then ‖A‖2 = max
|x|=1

∣∣xTAx
∣∣.

Proof: By definition, the 2-norm of A is ‖A‖2 = max
|x|=1
|Ax|. Thus,

‖A‖2 = max
|x|=1
|Ax| = max

|x|=1

√
xTATAx =

√
λ2

1 = λ1 = max
|x|=1

∣∣xTAx
∣∣

The two norm of a matrix A is greater than or equal to the 2-norm of any of its
columns. Let au be a column of A.

Lemma 12.24 |au| ≤ ‖A‖2

Proof: Let eu be the unit vector with a 1 in position u and all other entries zero. Note
λ = max

|x|=1
|Ax|. Let x = eu where au is row u. Then |au| = |Aeu| ≤ max

|x|=1
|Ax| = λ
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12.7.7 Linear Algebra

Lemma 12.25 Let A be an n× n symmetric matrix. Then det(A) = λ1λ2 · · ·λn.

Proof: The det (A− λI) is a polynomial in λ of degree n. The coefficient of λn will be ±1
depending on whether n is odd or even. Let the roots of this polynomial be λ1, λ2, . . . , λn.

Then det(A− λI) = (−1)n
n∏
i=1

(λ− λi). Thus

det(A) = det(A− λI)|λ=0 = (−1)n
n∏
i=1

(λ− λi)

∣∣∣∣∣
λ=0

= λ1λ2 · · ·λn

The trace of a matrix is defined to be the sum of its diagonal elements. That is,
tr (A) = a11 + a22 + · · ·+ ann.

Lemma 12.26 tr(A) = λ1 + λ2 + · · ·+ λn.

Proof: Consider the coefficient of λn−1 in det(A− λI) = (−1)n
n∏
i=1

(λ− λi). Write

A− λI =

 a11 − λ a12 · · ·
a21 a22 − λ · · ·
...

...
...

 .

Calculate det(A − λI) by expanding along the first row. Each term in the expansion
involves a determinant of size n − 1 which is a polynomial in λ of deg n − 2 except for
the principal minor which is of deg n− 1. Thus the term of deg n− 1 comes from

(a11 − λ) (a22 − λ) · · · (ann − λ)

and has coefficient (−1)n−1 (a11 + a22 + · · ·+ ann). Now

(−1)n
n∏
i=1

(λ− λi) = (−1)n (λ− λ1)(λ− λ2) · · · (λ− λn)

= (−1)n
(
λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·

)
Therefore equating coefficients λ1 + λ2 + · · ·+ λn = a11 + a22 + · · ·+ ann = tr(A)

Note that (tr(A))2 6= tr(A2). For example A =

(
1 0
0 2

)
has trace 3, A2 =

(
1 0
0 4

)
has trace 5 6=9. However tr(A2) = λ2

1 + λ2
2 + · · · + λ2

n. To see this, observe that A2 =
(V TDV )2 = V TD2V . Thus, the eigenvalues of A2 are the squares of the eigenvalues for
A.

436



Alternative proof that tr(A) = λ1+ λ2+ · · ·+ λn. Suppose the spectral decomposition
of A is A = PDP T . We have

tr (A) = tr
(
PDP T

)
= tr

(
DP TP

)
= tr (D) = λ1 + λ2 + · · ·+ λn.

Lemma 12.27 If A is n×m and B is a m× n matrix, then tr(AB)=tr(BA).

tr(AB) =
n∑
i=1

n∑
j=1

aijbji =
n∑
j=1

n∑
i=1

bjiaij = tr (BA)

Pseudo inverse

Let A be an n×m rank r matrix and let A = UΣV T be the singular value decompo-

sition of A. Let Σ′ = diag
(

1
σ1
, . . . , 1

σr
, 0, . . . , 0

)
where σ1, . . . , σr are the nonzero singular

values of A. Then A′ = V Σ′UT is the pseudo inverse of A. It is the unique X that
minimizes ‖AX − I‖F .

Second eigenvector

Suppose the eigenvalues of a matrix are λ1 ≥ λ2 ≥ · · · . The second eigenvalue,
λ2, plays an important role for matrices representing graphs. It may be the case that
|λn| > |λ2|.

Why is the second eigenvalue so important? Consider partitioning the vertices of a
regular degree d graph G = (V,E) into two blocks of equal size so as to minimize the
number of edges between the two blocks. Assign value +1 to the vertices in one block and
-1 to the vertices in the other block. Let x be the vector whose components are the ±1
values assigned to the vertices. If two vertices, i and j, are in the same block, then xi and
xj are both +1 or both –1 and (xi−xj)2 = 0. If vertices i and j are in different blocks then
(xi−xj)2 = 4. Thus, partitioning the vertices into two blocks so as to minimize the edges
between vertices in different blocks is equivalent to finding a vector x with coordinates
±1 of which half of its coordinates are +1 and half of which are –1 that minimizes

Ecut =
1

4

∑
(i,j)∈E

(xi − xj)2

Let A be the adjacency matrix of G. Then

xTAx =
∑
ij

aijxixj = 2
∑
edges

xixj

= 2×
(

number of edges
within components

)
− 2×

(
number of edges
between components

)
= 2×

(
total number
of edges

)
− 4×

(
number of edges
between components

)
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Maximizing xTAx over all x whose coordinates are ±1 and half of whose coordinates are
+1 is equivalent to minimizing the number of edges between components.

Since finding such an x is computational difficult, replace the integer condition on the
components of x and the condition that half of the components are positive and half of the

components are negative with the conditions
n∑
i=1

x2
i = 1 and

n∑
i=1

xi = 0. Then finding the

optimal x gives us the second eigenvalue since it is easy to see that the first eigenvector
Is along 1

λ2 = max
x⊥v1

xTAx∑
x2
i

Actually we should use
n∑
i=1

x2
i = n not

n∑
i=1

x2
i = 1. Thus nλ2 must be greater than

2×
(

total number
of edges

)
− 4×

(
number of edges
between components

)
since the maximum is taken over

a larger set of x. The fact that λ2 gives us a bound on the minimum number of cross
edges is what makes it so important.

12.7.8 Distance between subspaces

Suppose S1 and S2 are two subspaces. Choose a basis of S1 and arrange the basis
vectors as the columns of a matrix X1; similarly choose a basis of S2 and arrange the
basis vectors as the columns of a matrix X2. Note that S1 and S2 can have different
dimensions. Define the square of the distance between two subspaces by

dist2(S1, S2) = dist2(X1, X2) = ||X1 −X2X
T
2 X1||2F

Since X1 −X2X
T
2 X1 and X2X

T
2 X1 are orthogonal

‖X1‖2
F =

∥∥X1 −X2X
T
2 X1

∥∥2

F
+
∥∥X2X

T
2 X1

∥∥2

F

and hence
dist2 (X1, X2) = ‖X1‖2

F −
∥∥X2X

T
2 X1

∥∥2

F
.

Intuitively, the distance between X1 and X2 is the Frobenius norm of the component of
X1 not in the space spanned by the columns of X2.

If X1 and X2 are 1-dimensional unit length vectors, dist2 (X1, X2) is the sin squared
of the angle between the spaces.

Example: Consider two subspaces in four dimensions

X1 =


1√
2

0

0 1√
3

1√
2

1√
3

0 1√
3

 X2 =


1 0
0 1
0 0
0 0


438



Here

dist2 (X1, X2) =

∥∥∥∥∥∥∥∥∥


1√
2

0

0 1√
3

1√
2

1√
3

0 1√
3

−


1 0
0 1
0 0
0 0

( 1 0 0 0
0 1 0 0

)
1√
2

0

0 1√
3

1√
2

1√
3

0 1√
3


∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥


0 0
0 0

1√
2

1√
3

0 1√
3


∥∥∥∥∥∥∥∥

2

F

=
7

6

In essence, we projected each column vector of X1 onto X2 and computed the Frobenius
norm of X1 minus the projection. The Frobenius norm of each column is the sin squared
of the angle between the original column of X1 and the space spanned by the columns of
X2.

12.7.9 Positive semidefinite matrix

A square symmetric matrix is positive semidefinite if for all x, xTAx ≥ 0. There are
actually three equivalent definitions of positive semidefinite.

1. for all x, xTAx ≥ 0

2. all eigenvalues are nonnegative

3. A = BTB

We will prove (1) implies (2), (2) implies (3), and (3) implies (1).

1. (1) implies (2) If λi were negative, select x = vi. Let ei be the vector of all zeros
except for a one in position i. Then xTAx = vi

TV DV Tvi = ei
TDei = λi < 0.

2. (2) implies (3) A = V DV T = V D
1
2D

1
2V T = BTB

3. (3) implies (1) xTAx = (xB)TBx ≥ 0

12.8 Generating Functions

A sequence a0, a1, . . ., can be represented by a generating function g(x) =
∞∑
i=0

aix
i. The

advantage of the generating function is that it captures the entire sequence in a closed
form that can be manipulated as an entity. For example, if g(x) is the generating func-
tion for the sequence a0, a1, . . ., then x d

dx
g(x) is the generating function for the sequence

0, a1, 2a2, 3a3, . . . and x2g′′(x) + xg′(x) is the generating function for the sequence for
0, a1, 4a2, 9a3, . . .
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Example: The generating function for the sequence 1, 1, . . . is
∞∑
i=0

xi = 1
1−x . The gener-

ating function for the sequence 0, 1, 2, 3, . . . is

∞∑
i=0

ixi =
∞∑
i=0

x d
dx
xi = x d

dx

∞∑
i=0

xi = x d
dx

1
1−x = x

(1−x)2
.

Example: If A can be selected 0 or 1 times and B can be selected 0, 1, or 2 times and C
can be selected 0, 1, 2, or 3 times, in how many ways can five objects be selected. Consider
the generating function for the number of ways to select objects. The generating function
for the number of ways of selecting objects, selecting only A’s is 1+x, only B’s is 1+x+x2,
and only C’s is 1 + x+ x2 + x3. The generating function when selecting A’s, B’s, and C’s
is the product.

(1 + x)(1 + x+ x2)(1 + x+ x2 + x3) = 1 + 3x+ 5x2 + 6x3 + 5x4 + 3x5 + x6

The coefficient of x5 is 3 and hence we can select five objects in three ways: ABBCC,
ABCCC, or BBCCC.

The generating functions for the sum of random variables

Let f(x) =
∞∑
i=0

pix
i be the generating function for an integer valued random variable

where pi is the probability that the random variable takes on value i. Let g(x) =
∞∑
i=0

qix
i

be the generating function of an independent integer valued random variable where qi
is the probability that the random variable takes on the value i. The sum of these two
random variables has the generating function f(x)g(x). This is because the coefficient of
xi in the product f(x)g(x) is

∑i
k=0 pkqk−i and this is also the probability that the sum of

the random variables is i. Repeating this, the generating function of a sum of independent
nonnegative integer valued random variables is the product of their generating functions.

12.8.1 Generating Functions for Sequences Defined by Recurrence Relation-
ships

Consider the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

defined by the recurrence relationship

f0 = 0 f1 = 1 fi = fi−1 + fi−2 i ≥ 2

440



Multiply each side of the recurrence by xi and sum from i equals two to infinity.

∞∑
i=2

fix
i =

∞∑
i=2

fi−1x
i +

∞∑
i=2

fi−2x
i

f2x
2 + f3x

3 + · · · = f1x
2 + f2x

3 + · · ·+ f0x
2 + f1x

3 + · · ·
= x

(
f1x+ f2x

2 + · · ·
)

+ x2 (f0 + f1x+ · · ·) (12.1)

Let

f(x) =
∞∑
i=0

fix
i. (12.2)

Substituting (12.2) into (12.1) yields

f(x)− f0 − f1x = x (f(x)− f0) + x2f(x)

f(x)− x = xf(x) + x2f(x)

f(x)(1− x− x2) = x

Thus, f(x) = x
1−x−x2 is the generating function for the Fibonacci sequence.

Note that generating functions are formal manipulations and do not necessarily con-
verge outside some region of convergence. Consider the generating function f (x) =
∞∑
i=0

fix
i = x

1−x−x2 for the Fibonacci sequence. Using
∞∑
i=0

fix
i,

f(1) = f0 + f1 + f2 + · · · =∞

and using f(x) = x
1−x−x2

f(1) =
1

1− 1− 1
= −1.

Asymptotic behavior

To determine the asymptotic behavior of the Fibonacci sequence write

f (x) =
x

1− x− x2
=

√
5

5

1− φ1x
+
−
√

5
5

1− φ2x

where φ1 = 1+
√

5
2

and φ1 = 1−
√

5
2

are the reciprocals of the two roots of the quadratic
1− x− x2 = 0.

Then

f (x) =

√
5

5

(
1 + φ1x+ (φ1x)2 + · · · −

(
1 + φ2x+ (φ2x)2 + · · ·

))
.

Thus,

fn =

√
5

5
(φn1 − φn2 ) .
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Since φ2 < 1 and φ1 > 1, for large n, fn ∼=
√

5
5
φn1 . In fact, since fn =

√
5

5
(φn1 − φn2 ) is an

integer and φ2 < 1, it must be the case that fn =
⌊
fn +

√
5

2
φn2

⌋
. Hence fn =

⌊√
5

5
φn1

⌋
for

all n.
Means and standard deviations of sequences

Generating functions are useful for calculating the mean and standard deviation of a
sequence. Let z be an integral valued random variable where pi is the probability that

z equals i. The expected value of z is given by m =
∞∑
i=0

ipi. Let p(x) =
∞∑
i=0

pix
i be the

generating function for the sequence p1, p2, . . .. The generating function for the sequence
p1, 2p2, 3p3, . . . is

x
d

dx
p(x) =

∞∑
i=0

ipix
i.

Thus, the expected value of the random variable z is m = xp′(x)|x=1 = p′(1). If p was not

a probability function, its average value would be p′(1)
p(1)

since we would need to normalize
the area under p to one.

The second moment of z, is E(z2)− E2(z) and can be obtained as follows.

x2 d

dx
p(x)

∣∣∣∣
x=1

=
∞∑
i=0

i(i− 1)xip(x)

∣∣∣∣∣
x=1

=
∞∑
i=0

i2xip(x)

∣∣∣∣∣
x=1

−
∞∑
i=0

ixip(x)

∣∣∣∣∣
x=1

= E(z2)− E(z).

Thus, σ2 = E(z2)− E2(z) = E(z2)− E(z) + E(z)− E2(z) = p”(1) + p′(1)−
(
p′(1)

)2
.

12.8.2 The Exponential Generating Function and the Moment Generating
Function

Besides the ordinary generating function there are a number of other types of gener-
ating functions. One of these is the exponential generating function. Given a sequence

a0, a1, . . . , the associated exponential generating function is g(x) =
∞∑
i=0

ai
xi

i!
.

Moment generating functions

The kth moment of a random variable x around the point b is given by E((x − b)k).
Usually the word moment is used to denote the moment around the value 0 or around
the mean. In the following, we use moment to mean the moment about the origin.
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The moment generating function of a random variable x is defined by

Ψ(t) = E(etx) =

∞∫
−∞

etxp(x)dx

Replacing etx by its power series expansion 1 + tx+ (tx)2

2!
· · · gives

Ψ(t) =

∞∫
−∞

(
1 + tx+

(tx)2

2!
+ · · ·

)
p(x)dx

Thus, the kth moment of x about the origin is k! times the coefficient of tk in the power
series expansion of the moment generating function. Hence, the moment generating func-
tion is the exponential generating function for the sequence of moments about the origin.

The moment generating function transforms the probability distribution p(x) into a
function Ψ (t) of t. Note Ψ(0) = 1 and is the area or integral of p(x). The moment
generating function is closely related to the characteristic function which is obtained by
replacing etx by eitx in the above integral where i =

√
−1 and is related to the Fourier

transform which is obtained by replacing etx by e−itx.

Ψ(t) is closely related to the Fourier transform and its properties are essentially the
same. In particular, p(x) can be uniquely recovered by an inverse transform from Ψ(t).

More specifically, if all the moments mi are finite and the sum
∞∑
i=0

mi
i!
ti converges abso-

lutely in a region around the origin, then p(x) is uniquely determined.

The Gaussian probability distribution with zero mean and unit variance is given by

p (x) = 1√
2π
e−

x2

2 . Its moments are given by

un =
1√
2π

∞∫
−∞

xne−
x2

2 dx

=

{
n!

2
n
2 (n2 )!

n even

0 n odd

To derive the above, use integration by parts to get un = (n− 1)un−2 and combine

this with u0 = 1 and u1 = 0. The steps are as follows. Let u = e−
x2

2 and v = xn−1. Then

u′ = −xe−x
2

2 and v′ = (n− 1)xn−2. Now uv =
∫
u′v+

∫
uv′ or

e−
x2

2 xn−1 =

∫
xne−

x2

2 dx+

∫
(n− 1)xn−2e−

x2

2 dx.
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From which ∫
xne−

x2

2 dx = (n− 1)
∫
xn−2e−

x2

2 dx− e−x
2

2 xn−1

∞∫
−∞

xne−
x2

2 dx = (n− 1)
∞∫
−∞

xn−2e−
x2

2 dx

Thus, un = (n− 1)un−2.

The moment generating function is given by

g (s) =
∞∑
n=0

uns
n

n!
=

∞∑
n=0
n even

n!

2
n
2
n
2
!

sn

n!
=
∞∑
i=0

s2i

2ii!
=
∞∑
i=0

1

i!

(
s2

2

)i
= e

s2

2 .

For the general Gaussian, the moment generating function is

g (s) = e
su+

(
σ2

2

)
s2

Thus, given two independent Gaussians with mean u1 and u2 and variances σ2
1 and σ2

2,
the product of their moment generating functions is

es(u1+u2)+(σ2
1+σ2

2)s2 ,

the moment generating function for a Gaussian with mean u1 + u2 and variance σ2
1 + σ2

2.
Thus, the convolution of two Gaussians is a Gaussian and the sum of two random vari-
ables that are both Gaussian is a Gaussian random variable.

12.9 Miscellaneous

12.9.1 Lagrange multipliers

Lagrange multipliers are used to convert a constrained optimization problem into an un-
constrained optimization. Suppose we wished to maximize a function f(x) subject to a
constraint g(x) = c. The value of f(x) along the constraint g(x) = c might increase for
a while and then start to decrease. At the point where f(x) stops increasing and starts
to decrease, the contour line for f(x) is tangent to the curve of the constraint g(x) = c.
Stated another way the gradient of f(x) and the gradient of g(x) are parallel.

By introducing a new variable λ we can express the condition by ∇xf = λ∇xg and
g = c. These two conditions hold if and only if

∇xλ

(
f (x) + λ (g (x)− c)

)
= 0

The partial with respect to λ establishes that g(x) = c. We have converted the constrained
optimization problem in x to an unconstrained problem with variables x and λ.
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f(x, y)

g(x, y) = c

Figure 12.3: In finding the minimum of f(x, y) within the ellipse, the path head towards
the minimum of f(x, y) until it hits the boundary of the ellipse and then follows the
boundary of the ellipse until the tangent of the boundary is in the same direction as the
contour line of f(x, y).

12.9.2 Finite Fields

For a prime p and integer n there is a unique finite field with pn elements. In Section
8.6 we used the field GF(2n), which consists of polynomials of degree less than n with
coefficients over the field GF(2). In GF(28)

(x7 + x5 + x) + (x6 + x5 + x4) = x7 + x6 = x4 = x

Multiplication is modulo an irreducible polynomial. Thus

(x7 + x5 + x)(x6 + x5 + x4) = x13 + x12 + x11 + x11 + x10 + x9 + x7 + x6 + x5

= x13 + x12 + x10 + x9 + x7 + x6 + x5

= x6 + x4 + x3 + x2 mod x8 + x4 + x3 + x+ 1

Division of x13 + x12 + x10 + x9 + x7 + x6 + x5 by x6 + x4 + x3 + x2 is illustrated below.

x13 +x12 +x10 +x9 +x7 +x6 +x5

−x5(x8 + x4 + x3 + x2 + 1) = x13 +x9 +x8 +x6 +x5

x12 +x10 +x8 +x7

−x4(x8 + x4 + x3 + x2 + 1) = x12 +x8 +x7 +x5 +x4

x10 +x5 x4

−x2(x8 + x4 + x3 + x2 + 1) = x10 x6 +x5 x3 x2

x6 +x4 +x3 +x2

12.9.3 Hash Functions

Universal Hash Families
ADD PARAGRAPH ON MOTIVATION integrate material with Chapter
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Let M = {1, 2, . . . ,m} and N = {1, 2, . . . , n} where m ≥ n. A family of hash functions
H = {h|h : M → N} is said to be 2-universal if for all x and y, x 6= y, and for h chosen
uniformly at random from H,

Prob [h (x) = h (y)] ≤ 1

n

Note that if H is the set of all possible mappings from M to N , then H is 2-universal. In
fact Prob [h (x) = h (y)] = 1

n
. The difficulty in letting H consist of all possible functions

is that a random h from H has no short representation. What we want is a small set H
where each h ∈ H has a short representation and is easy to compute.

Note that for a 2-universal H, for any two elements x and y, h(x) and h(y) behave as
independent random variables. For a random f and any set X the set {f (x) |x ∈ X} is
a set of independent random variables.

12.9.4 Application of Mean Value Theorem

The mean value theorem states that if f(x) is continuous and differentiable on the

interval [a, b], then there exists c, a ≤ c ≤ b such that f ′(c) = f(b)−f(a)
b−a . That is, at some

point between a and b the derivative of f equals the slope of the line from f(a) to f(b).
See Figure 12.9.4.

a bc

f(x)

Figure 12.4: Illustration of the mean value theorem.

One application of the mean value theorem is with the Taylor expansion of a function.
The Taylor expansion about the origin of f(x) is

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 +

1

3!
f ′′′(0)x3 + · · · (12.3)
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By the mean value theorem there exists c, 0 ≤ c ≤ x, such that f ′(c) = f(x)−f(0)
x

or
f(x)− f(0) = xf ′(c). Thus

xf ′(c) = f ′(0)x+
1

2!
f ′′(0)x2 +

1

3!
f ′′′(0)x3 + · · ·

and
f(x) = f(0) + xf ′(c).

One could apply the mean value theorem to f ′(x) in

f ′(x) = f ′(0) + f ′′(0)x+
1

2!
f ′′′(0)x2 + · · ·

Then there exists d, 0 ≤ d ≤ x such that

xf ′′(d) = f ′′(0)x+
1

2!
f ′′′(0)x2 + · · ·

Integrating
1

2
x2f ′′(d) =

1

2!
f ′′(0)x+

1

3!
f ′′′(0)x3 + · · ·

Substituting into Eq(12.3)

f(x) = f(0) + f ′(0)x+
1

2
x2f ′′(d).

12.9.5 Sperner’s Lemma

Consider a triangulation of a 2-dimensional simplex. Let the vertices of the simplex
be colored R, B, and G. If the vertices on each edge of the simplex are colored only with
the two colors at the endpoints then the triangulation must have a triangle whose ver-
tices are three different colors. In fact, it must have an odd number of such vertices. A
generalization of the lemma to higher dimensions also holds.

Create a graph whose vertices correspond to the triangles of the triangulation plus an
additional vertex corresponding to the outside region. Connect two vertices of the graph
by an edge if the triangles corresponding to the two vertices share a common edge that
is color R and B. The edge of the original simplex must have an odd number of such
triangular edges. Thus, the outside vertex of the graph must be of odd degree. The graph
must have an even number of odd degree vertices. Each odd vertex is of degree 0, 1, or 2.
The vertices of odd degree, i.e. degree one, correspond to triangles which have all three
colors.
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12.9.6 Prüfer

Here we prove that the number of labeled trees with n vertices is nn−2. By a labeled
tree we mean a tree with n vertices and n distinct labels, each label assigned to one vertex.

Theorem 12.28 The number of labeled trees with n vertices is nn−2.

Proof: (Prüfer sequence) There is a one-to-one correspondence between labeled trees
and sequences of length n− 2 of integers between 1 and n. An integer may repeat in the
sequence. The number of such sequences is clearly nn−2. Although each vertex of the tree
has a unique integer label the corresponding sequence has repeating labels. The reason for
this is that the labels in the sequence refer to interior vertices of the tree and the number
of times the integer corresponding to an interior vertex occurs in the sequence is related
to the degree of the vertex. Integers corresponding to leaves do not appear in the sequence.

To see the one-to-one correspondence, first convert a tree to a sequence by deleting
the lowest numbered leaf. If the lowest numbered leaf is i and its parent is j, append j to
the tail of the sequence. Repeating the process until only two vertices remain yields the
sequence. Clearly a labeled tree gives rise to only one sequence.

It remains to show how to construct a unique tree from a sequence. The proof is
by induction on n. For n = 1 or 2 the induction hypothesis is trivially true. Assume
the induction hypothesis true for n − 1. Certain numbers from 1 to n do not appear
in the sequence and these numbers correspond to vertices that are leaves. Let i be
the lowest number not appearing in the sequence and let j be the first integer in the
sequence. Then i corresponds to a leaf connected to vertex j. Delete the integer j from
the sequence. By the induction hypothesis there is a unique labeled tree with integer
labels 1, . . . , i − 1, i + 1, . . . , n. Add the leaf i by connecting the leaf to vertex j. We
need to argue that no other sequence can give rise to the same tree. Suppose some other
sequence did. Then the ith integer in the sequence must be j. By the induction hypothesis
the sequence with j removed is unique.

Algorithm
Create leaf list - the list of labels not appearing in the Prüfer sequence. n is the

length of the Prüfer list plus two.
while Prüfer sequence is non empty do
begin

p =first integer in Prüfer sequence
e =smallest label in leaf list
Add edge (p, e)
Delete e from leaf list
Delete p from Prüfer sequence
If p no longer appears in Prüfer sequence add p to leaf list

end
There are two vertices e and f on leaf list, add edge (e, f)
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12.10 Exercises

Exercise 12.1 What is the difference between saying f(n) is O (n3) and f(n) is o (n3)?

Exercise 12.2 If f (n) ∼ g (n) what can we say about f(n) + g(n) and f(n)− g(n)?

Exercise 12.3 What is the difference between ∼ and Θ?

Exercise 12.4 If f (n) is O (g (n)) does this imply that g (n) is Ω (f (n))?

Exercise 12.5 What is lim
k→∞

(
k−1
k−2

)k−2
.

Exercise 12.6 Select a, b, and c uniformly at random from [0, 1]. The probability that
b < a is 1/2. The probability that c<a is 1/2. However, the probability that both b and c are
less than a is 1

3
not 1/4. Why is this? Note that the six possible permutations abc, acb,

bac, cab, bca, and cba, are all equally likely. Assume that a, b, and c are drawn from the
interval (0,1]. Given that b < a, what is the probability that c < a?

Exercise 12.7 Let A1, A2, . . . , An be events. Prove that Prob(A1∪A2∪· · ·An) ≤
n∑
i=1

Prob(Ai)

Exercise 12.8 Give an example of three random variables that are pairwise independent
but not fully independent.

Exercise 12.9 Give examples of nonnegative valued random variables with median >>
mean. Can we have median << mean?

Exercise 12.10 Consider n samples x1, x2, . . . , xn from a Gaussian distribution of mean
µ and variance σ. For this distribution m = x1+x2+···+xn

n
is an unbiased estimator of

µ. If µ is known then 1
n

n∑
i=1

(xi − µ)2 is an unbiased estimator of σ2. Prove that if we

approximate µ by m, then 1
n−1

n∑
i=1

(xi −m)2 is an unbiased estimator of σ2.

Exercise 12.11 Given the distribution 1√
2π3
e−

1
2(x3 )

2

what is the probability that x >1?

Exercise 12.12 e−
x2

2 has value 1 at x = 0 and drops off very fast as x increases. Suppose

we wished to approximate e−
x2

2 by a function f(x) where

f (x) =

{
1 |x| ≤ a
0 |x| > a

.

What value of a should we use? What is the integral of the error between f(x) and e−
x2

2 ?
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Exercise 12.13 Given two sets of red and black balls with the number of red and black
balls in each set shown in the table below.

red black
Set 1 40 60
Set 2 50 50

Randomly draw a ball from one of the sets. Suppose that it turns out to be red. What is
the probability that it was drawn from Set 1?

Exercise 12.14 Why cannot one prove an analogous type of theorem that states p (x ≤ a) ≤
E(x)
a

?

Exercise 12.15 Compare the Markov and Chebyshev bounds for the following probability
distributions

1. p(x) =

{
1 x = 1
0 otherwise

2. p(x) =

{
1/2 0 ≤ x ≤ 2
0 otherwise

Exercise 12.16 Let s be the sum of n independent random variables x1, x2, . . . , xn where
for each i

xi =

{
0 Prob p
1 Prob 1− p

1. How large must δ be if we wish to have Prob
(
s < (1− δ)m

)
< ε?

2. If we wish to have Prob
(
s > (1 + δ)m

)
< ε?

Exercise 12.17 What is the expected number of flips of a coin until a head is reached?
Assume p is probability of a head on an individual flip. What is value if p=1/2?

Exercise 12.18 Given the joint probability

P(A,B) A=0 A=1
B=0 1/16 1/8
B=1 1/4 9/16

1. What is the marginal probability of A? of B?

2. What is the conditional probability of B given A?
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Exercise 12.19 Consider independent random variables x1, x2, and x3, each equal to
zero with probability 1

2
. Let S = x1 + x2 + x3 and let F be event that S ∈ {1, 2}. Condi-

tioning on F , the variables x1, x2, and x3 are still each zero with probability 1
2.

Are they
still independent?

Exercise 12.20 Consider rolling two dice A and B. What is the probability that the sum
S will add to nine? What is the probability that the sum will be 9 if the roll of A is 3?

Exercise 12.21 Write the generating function for the number of ways of producing chains
using only pennies, nickels, and dines. In how many ways can you produce 23 cents?

Exercise 12.22 A dice has six faces, each face of the dice having one of the numbers 1
though 6. The result of a role of the dice is the integer on the top face. Consider two roles
of the dice. In how many ways can an integer be the sum of two roles of the dice.

Exercise 12.23 If a(x) is the generating function for the sequence a0, a1, a2, . . ., for what
sequence is a(x)(1-x) the generating function.

Exercise 12.24 How many ways can one draw n a′s and b′s with an even number of a′s.

Exercise 12.25 Find the generating function for the recurrence ai = 2ai−1 + i where
a0 = 1.

Exercise 12.26 Find a closed form for the generating function for the infinite sequence
of prefect squares 1, 4, 9, 16, 25, . . .

Exercise 12.27 Given that 1
1−x is the generating function for the sequence 1, 1, . . ., for

what sequence is 1
1−2x

the generating function?

Exercise 12.28 Find a closed form for the exponential generating function for the infinite
sequence of prefect squares 1, 4, 9, 16, 25, . . .

Exercise 12.29 Prove that the L2 norm of (a1, a2, . . . , an) is less than or equal to the L1

norm of (a1, a2, . . . , an).

Exercise 12.30 Prove that there exists a y, 0 ≤ y ≤ x, such that f(x) = f(0) + f ′(y)x.

Exercise 12.31 Show that the eigenvectors of a matrix A are not a continuous function
of changes to the matrix.

Exercise 12.32 What are the eigenvalues of the two graphs shown below? What does
this say about using eigenvalues to determine if two graphs are isomorphic.
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Exercise 12.33 Let A be the adjacency matrix of an undirected graph G. Prove that
eigenvalue λ1 of A is at least the average degree of G.

Exercise 12.34 Show that if A is a symmetric matrix and λ1 and λ2 are distinct eigen-
values then their corresponding eigenvectors x1 and x2 are orthogonal.
Hint:

Exercise 12.35 Show that a matrix is rank k if and only if it has k nonzero eigenvalues
and eigenvalue 0 of rank n-k.

Exercise 12.36 Prove that maximizing xTAx
xT x

is equivalent to maximizing xTAx subject
to the condition that x be of unit length.

Exercise 12.37 Let A be a symmetric matrix with smallest eigenvalue λmin. Give a
bound on the largest element of A−1.

Exercise 12.38 Let A be the adjacency matrix of an n vertex clique with no self loops.
Thus, each row of A is all ones except for the diagonal entry which is zero. What is the
spectrum of A.

Exercise 12.39 Let A be the adjacency matrix of an undirect graph G. Prove that the
eigenvalue λ1 of A is at least the average degree of G.

Exercise 12.40 We are given the probability distribution for two random vectors x and
y and we wish to stretch space to maximize the expected distance between them. Thus,

we will multiply each coordinate by some quantity ai. We restrict
d∑
i=1

a2
i = d. Thus, if we

increase some coordinate by ai > 1, some other coordinate must shrink. Given random
vectors x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) how should we select ai to maximize
E
(
|x− y|2

)
? The ai stretch different coordinates. Assume

yi =

{
0 1

2

1 1
2

and that xi has some arbitrary distribution.

E
(
|x− y|2

)
= E

d∑
i=1

[
a2
i (xi − yi)2] =

d∑
i=1

a2
iE (x2

i − 2xiyi + y2
i )

=
d∑
i=1

a2
iE
(
x2
i − xi + 1

2

)
Since E (x2

i ) = E (xi) we get . Thus, weighting the coordinates has no effect assuming
d∑
i=1

a2
i = 1. Why is this? Since E (yi) = 1

2
.

E
(
|x− y|2

)
is independent of the value of xi hence its distribution.
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What if yi =

{
0 3

4

1 1
4

and E (yi) = 1
4
. Then

E
(
|x− y|2

)
=

d∑
i=1

a2
iE (x2

i − 2xiyi + y2
i ) =

d∑
i=1

a2
iE
(
xi − 1

2
xi + 1

4

)
=

d∑
i=1

a2
i

(
1
2
E (xi) + 1

4

) .

To maximize put all weight on the coordinate of x with highest probability of one. What
if we used 1-norm instead of the two norm?

E (|x− y|) = E

d∑
i=1

ai |xi − yi| =
d∑
i=1

aiE |xi − yi| =
d∑
i=1

aibi

where bi = E (xi − yi). If
d∑
i=1

a2
i = 1, then to maximize let ai = bi

b
. Taking the dot product

of a and b is maximized when both are in the same direction.

Exercise 12.41 Maximize x+y subject to the constraint that x2 + y2 = 1.

Exercise 12.42 Draw a tree with 10 vertices and label each vertex with a unique integer
from 1 to 10. Construct the Prfer sequence for the tree. Given the Prfer sequence recreate
the tree.

Exercise 12.43 Construct the tree corresponding to the following Prfer sequences

1. 113663

2. 552833226
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2-universal, 178
4-way independence, 184

Affinity matrix, 220
Algorithm

greedy k-clustering, 208
k-means, 204
singular value decomposition, 50

Almost surely, 242
Anchor Term, 306
Aperiodic, 75
Arithmetic mean, 405

Bad pair, 246
Bayes rule, 415
Bayesian, 328
Bayesian network, 328
Belief Network, 328
belief propagation, 327
Bernoulli trials, 413
Best fit, 39
Bigoh, 395
Binomial distribution, 237

approximated by Poisson, 413
boosting, 152
Branching process, 261

Cartesian coordinates, 17
Cauchy-Schwartz inequality, 402, 404
Central Limit Theorem, 411
Characteristic equation, 426
Characteristic function, 443
Chebyshev’s inequality, 13
Chernoff inequalities, 417
Clustering, 201

k-center criterion, 208
k-means, 204
Sparse Cuts, 220

CNF
CNF-sat, 268

Cohesion, 223

Combining expert advice, 156
Commute time, 102
Conditional probability, 408
Conductance, 95
Coordinates

Cartesian, 17
polar, 17

Coupon collector problem, 105
Cumulative distribution function, 408
Current

probabilistic interpretation, 98
Cycles, 255

emergence, 254
number of, 254

Data streams
counting frequent elements, 181
frequency moments, 176
frequent element, 182
majority element, 181
number of distinct elements, 177
number of occurrences of an element,

180
second moment, 182

Degree distribution, 237
power law, 237

Depth first search, 250
Diagonalizable, 426
Diameter of a graph, 245, 257
Diameter two, 255
dilation, 374
Disappearance of isolated vertices, 255
Discovery time, 100
Distance

total variation, 80
Distribution

vertex degree, 235
Document ranking, 60

Effective resistance, 102
Eigenvalue, 426
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Eigenvector, 53, 426
Electrical network, 95
Erdös Rényi, 234
Error correcting codes, 184
Escape probability, 99
Euler’s constant, 106
Event, 408
Expected degree

vertex, 234
Expected value, 409
Exponential generating function, 442
Extinct families

size, 265
Extinction probability, 261, 263

Finite fields, 445
First moment method, 243
Fourier transform, 359, 443
Frequency domain, 360

G(n,p), 234
Gamma function, 18
Gamma function , 403
Gaussian, 23, 412, 444

fitting to data, 29
tail, 407

Gaussians
sparating, 26

Generating function, 261
component size, 277
for sum of two variables, 261

Generating functions, 439
Generating points in the unit ball, 22
Geometric mean, 405
Giant component, 235, 242, 248, 250, 255
Gibbs sampling, 82
Graph

connecntivity, 254
resistance, 106

Graphical model, 327
Greedy

k-clustering, 208
Growth models, 275

with preferential attachment, 282

without preferential attachment, 276

Haar wavelet, 375
Harmonic function, 96
Hash function, 445

universal, 178
Heavy tail, 237
Hidden Markov model, 323
Hitting time, 100, 112

Immortality probability, 263
Incoherent, 357, 360
Increasing property, 242, 259

unsatisfiability, 268
Independence

limited way, 184
Independent, 408
Indicator random variable, 246

of triangle, 240
Indicator variable, 410
Ising model, 342
Isolated vertices, 248, 255

number of, 248

Jensen’s inequality, 406
Johnson-Lindenstrauss lemma, 24, 26

k-clustering, 208
k-means clustering algorithm, 204
Kernel methods, 219
Kirchhoff’s law, 97
Kleinberg, 284

Lagrange, 444
Laplacian, 68
Law of large numbers, 12, 14
Learning, 126
Linearity of expectation, 240, 409
Lloyd’s algorithm, 204
Local algorithm, 284
Long-term probabilities, 78

m-fold, 259
Markov chain, 75

state, 80
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Markov Chain Monte Carlo, 76
Markov random field, 330
Markov’s inequality, 13
Matrix

multiplication
by sampling, 187

diagonalizable, 426
similar, 426

Maximum cut problem, 62
Maximum likelihood estimation, 417
Maximum likelihood estimator, 29
Maximum principle, 96
MCMC, 76
Mean value theorem, 446
Median, 411
Metropolis-Hastings algorithm, 81
Mixing time, 78
Model

random graph, 234
Molloy Reed, 274
Moment generating function, 443
Mutually independent, 409

Nearest neighbor problem, 26
Nonuniform Random Graphs, 273
Normalized conductance, 78, 87
Number of triangles in G(n, p), 240

Ohm’s law, 97
Orthonormal, 433

Page rank, 110
personalized , 113

Persistent, 75
Phase transition, 242

CNF-sat, 268
nonfinite components, 280

Poisson distribution, 414
Polar coordinates, 17
Polynomial interpolation, 184
Positive semidefinite, 439
Power iteration, 60
Power law distribution, 237
Power method, 50

Power-law distribution, 273
Prüfer, 448
Principle component analysis, 55
Probability density function, 408
Probability distribution function, 408
Psuedo random, 184
Pure-literal heuristic, 269

Queue, 270
arrival rate, 270

Radon, 146
Random graph, 234
Random projection, 24

theorem, 25
Random variable, 408
Random walk

Eucleadean space, 107
in three dimensions, 108
in two dimensions, 107
on lattice, 107
undirected graph, 100
web, 110

Rapid Mixing, 80
Real spectral theorem, 427
Replication, 259
Resistance, 95, 106

efffective, 99
Restart, 111

value, 111
Return time, 111

Sample space, 408
Sampling

length squared, 188
Satisfying assignments

expected number of, 269
Scale function, 375
Scale vector, 375
Second moment method, 240, 243
Sharp threshold, 242
Similar matrices, 426
Singular value decomposition, 39
Singular vector, 41
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first, 42
left, 44
right, 44
second, 42

Six-degrees separation, 284
Sketch

matrix, 191
Sketches

documents, 195
Small world, 283
Smallest-clause heuristic, 269
Spam, 113
Spectral clustering, 209
Sperner’s lemma, 447
Stanley Milgram, 283
State, 80
Stirling approximation, 402
Streaming model, 175
Symmetric matrices, 427

Tail bounds, 417
Tail of Gaussian, 407
Taylor series, 397
Threshold, 241

CNF-sat, 266
diameter O(lnn), 258
disappearance of isolated vertices, 248
emergence of cycles, 254
emergence of diameter two, 245
giant component plus isolated vertices,

256
Time domain, 360
Total variation distance, 80
Trace, 436
Triangle inequality, 402
Triangles, 239

Union bound, 409
Unit-clause heuristic, 269
Unitary matrix, 433
Unsatisfiability, 268

Variance, 410
variational method, 401

VC-dimension, 142
convex polygons, 145
finite sets, 147
half spaces, 146
intervals, 145
pairs of intervals, 145
rectangles, 145
spheres, 147

Viterbi algorithm, 325
Voltage

probabilistic interpretation, 97

Wavelet, 374
World Wide Web, 110

Young’s inequality, 402, 404
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[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press, 2001.
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[GN03] Rémi Gribonval and Morten Nielsen. Sparse decompositions in ”incoherent”
dictionaries. In Proceedings of the 2003 International Conference on Image
Processing, ICIP 2003, Barcelona, Catalonia, Spain, September 14-18, 2003,
pages 33–36, 2003.

461



[Gon85] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster dis-
tance. Theoretical Computer Science, 38:293–306, 1985.

[GvL96] Gene H. Golub and Charles F. van Loan. Matrix computations (3. ed.).
Johns Hopkins University Press, 1996.

[GW95] Michel X Goemans and David P Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[HMMR15] Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci. Hand-
book of cluster analysis, 2015.

[IN77] DB Iudin and Arkadi S Nemirovskii. Informational complexity and efficient
methods for solving complex extremal problems. Matekon, 13(3):25–45, 1977.

[Jai10] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666, 2010.

[Jer98] Mark Jerrum. Mathematical foundations of the markov chain monte carlo
method. In Dorit Hochbaum, editor, Approximation Algorithms for NP-hard
Problems, 1998.

[JKLP93] Svante Janson, Donald E. Knuth, Tomasz Luczak, and Boris Pittel. The
birth of the giant component. Random Struct. Algorithms, 4(3):233–359,
1993.
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