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Abstract. Security-typed languages enforce confidentiality or integrity
policies by type checking. This paper investigates continuation-passing
style (CPS) translation of such languages as a first step toward under-
standing their compilation. We present a low-level, secure calculus suf-
ficient for compiling a rich source language. This language makes novel
use of ordered linear continuations,which allows the first non-interference
proof for language with this expressive power.

1 Introduction

Language based mechanisms for enforcing secrecy or integrity policies are attrac-
tive because, unlike ordinary access control, static information flow can enforce
end-to-end policies. These policies require that data be protected despite being
manipulated by programs that have access to various covert channels. For exam-
ple, such a policy might prohibit a personal finance program from transmitting
private account information over the Internet even though the program has In-
ternet access to download stock market reports. To prevent the finance program
from illicitly sending the private information (perhaps cleverly encoded), the
compiler checks the policy allows the information flows in the program. There
has been much recent work on formulating Denning’s original lattice model of
information-flow control [9] in terms of type systems for static program verifica-
tion [24, 31, 21, 16, 29, 20, 1, 25, 26].

Previous work has considered source-language specifications of information
flow, usually accompanied by a non-interference [14] proof to demonstrate its se-
curity properties. A source-level specification of non-interference is not enough:
Compiler transformations (or bugs!) may introduce new security holes. One ap-
pealing option is to verify the output of the compiler, for instance via typed
assembly language [18] or proof-carrying code [22].

Programs written in continuation-passing style (CPS) are useful for repre-
senting low-level code [4, 18]. This paper takes a step toward understanding the
compilation of security-typed languages by examining the interaction between
CPS transformation [8, 12, 27] and information flow. We observe that a naive ap-
proach to providing security types for a continuation-passing, imperative target
language yields a system that is too conservative: secure programs (in the non-
interference sense) are rejected. To rectify this problem, we introduce ordered
linear continuations, which allow information flow control in the CPS target
language to be made as precise as in the source language.
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To justify the security of our CPS language, we prove a non-interference
result. To our knowledge, the proof presented here is the first for a higher-order,
imperative language. The ordering property of linear continuations is crucial to
the argument, which generalizes previous work by Smith and Volpano [29].

As with previous non-interference results for call-by-value languages [16, 20],
the theorem holds only for programs that halt regardless of high-security data.
Consequently, information about high-security values can affect termination, but
because observing termination behavior leaks at most one bit on average, we
consider this leakage acceptable. There are also other channels that are not
captured by this notion of non-interference: high-security data can alter the
amount of time it takes for the program to complete or alter the amount of
memory consumed. Non-interference holds despite these apparent security leaks
because the language itself provides no means for observing these resources (for
instance, access to the system clock, or the ability to detect available memory).
Recent work attempts to address such covert channels [3].

The next section shows why a naive type system for secure information flow
is excessively restrictive for CPS and motivates the introduction of ordered linear
continuations. Section 3 presents the target language, its operational semantics,
and the novel features of its type system. The non-interference theorem is proved
in Section 4, and Section 5 demonstrates the viability of this language as a low-
level calculus by showing how to translate a higher-order, imperative language
to CPS. We conclude with some discussion and related work in Section 6.

2 CPS and Security

Type systems for secrecy or integrity are concerned with tracking dependencies
in a program [1]. One difficulty is implicit flows, which arise from the control
flow of the program. Consider the code fragment A in Figure 1. There is an
implicit flow between the value stored in x and the value stored in y, because
examining the contents of y after the program has run gives information about
the value in x. There is no information flow between x and z, however. This code
is secure even when x and y are high-security variables and z is low-security. (In
this paper, high security means “high secrecy” or “low integrity.” Dually, low
security means “low secrecy” or “high integrity.”)

Fragment B illustrates the problem with CPS translation. It shows the code
from A after control transfer has been made explicit. The variable k is bound to
the continuation of the if, and the jump is indicated by the application k 〈〉.
Because the invocation of k has been lifted into the branches of the conditional, a
naive type system for information flow will conservatively require that the body
of k not write to low-security memory locations, because the value of x would
apparently be observable by low-security code. Program B is rejected because k
writes to a low-security variable, z.

However, this code is secure: There is no information flow between x and z in
B because the continuation k is invoked in both branches. As example C shows, if
k is not used in one of the branches, then information about x can be learned by
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(A) if x then { y := 1; } else { y := 2; }
z := 3; halt;

(B) let k = (λ〈〉. z := 3; halt) in

if x then { y := 1; k 〈〉; } else { y := 2; k 〈〉; }

(C) let k = (λ〈〉. z := 3; halt) in

if x then { y := 1; k 〈〉; } else { y:= 2; halt; }

(D) letlin k = (λ〈〉. z := 3; halt) in

if x then { y := 1; k 〈〉; } else { y:= 2; k 〈〉; }

(E) letlin k0 = (λ〈〉. halt) in

letlin k1 = (λk. z := 1; k 〈〉) in

letlin k2 = (λk. z := 2; k 〈〉) in

if x then { letlin k = (λ〈〉. k1 k0) in k2 k }
else { letlin k = (λ〈〉. k2 k0) in k1 k }

Fig. 1. Examples of Information Flow in CPS

observing z. Linear type systems [13, 32, 33, 2] can express exactly the constraint
that k is used in both branches. By making k’s linearity explicit, the type system
can use the additional information to recover the precision of the source program
analysis. Fragment D illustrates our simple approach: In addition to a normal let
construct, we include letlin for introducing linear continuations. The program
D certifies as secure even when z is a low-security variable, whereas C does not.

Although linearity allows for more precise reasoning about information flow,
linearity alone is unsafe in the presence of first-class linear continuations. In
example E, continuations k0, k1, and k2 are all linear, but there is an implicit
flow from x to z because z lets us observe the order in which k1 and k2 are
invoked. It is thus necessary to regulate the ordering of linear continuations.

It is simpler to make information flow analysis precise for the source language
because the structure of the language limits control flow. For example, it is
known that both branches of a conditional return to a common merge point.
This knowledge can be exploited to obtain less conservative analysis of implicit
flows. The standard CPS transformation loses this information by unifying all
forms of control to a single mechanism. In our approach, the target language still
has a single underlying control transfer mechanism (examples B and D execute
exactly the same code), but information flow can be analyzed with the same
precision as in the source.

3 The Target Calculus

The target is a call-by-value, imperative language similar to those found in the
work on Typed Assembly Language [18, 6], although its type system is inspired
by previous language-based security research [31, 16, 20]. This section describes
the secure CPS language, its operational behavior, and its static semantics.
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Types Contexts
�, pc ∈ L Γ ::= • | Γ, x :σ

τ ::= int | 1 | σ ref | [pc](σ, κ)→ 0 K ::= • | K, y :κ
σ ::= τ�

κ ::= 1 | 〈pc〉(σ, κ)→ 0 Expressions
e ::= let x = prim in e

Values and Primitive Operations | let x = refσ
� v in e

bv ::= n | 〈〉 | Lσ | λ[pc]f(x :σ, y :κ). e | set v := v in e
v ::= x | bv� | letlin y = lv in e
lv ::= 〈〉 | λ〈pc〉(x :σ, y :κ). e | let 〈〉 = lv in e

prim ::= v | v ⊕ v | deref(v) | if0 v then e else e
| goto v v lv
| lgoto lv v lv
| haltσ v

Fig. 2. Syntax for the Secure CPS Language

3.1 Syntax

The syntax for the secure CPS language is given in Figure 2. Elements of the
lattice of security labels, L, are ranged over by meta-variables � and pc. We
reserve the meta-variable pc to suggest that the security label corresponds to
information learned by observing the program counter. The � operator denotes
the lattice ordering, with the join operation given by �.

Types fall into two syntactic classes: security types, σ, and linear types,
κ. Security types are the types of ordinary values and consist of a base-type
component, τ , annotated with a security label, �. Base types consist of integers,
unit, references, and continuations (written [pc](σ, κ) → 0). Correspondingly,
base values, bv, include integers, n, a unit, 〈〉, type annotated memory locations,
Lσ, and continuations, λ[pc]f(x : σ, y : κ). e. All computation occurs over secure
values, v, which are base values annotated with a security label. Variables, x,
range over values. We adopt the notation label(τ�) = �, and extend the join
operation to security types: τ� � �′ = τ(���′).

An ordinary continuation λ[pc]f(x :σ, y :κ). e is a piece of code (the expression
e) which accepts a nonlinear argument of type σ and a linear argument of type
κ. Continuations may recursively invoke themselves using the variable f . The
notation [pc] indicates that this continuation may be called only from a context
in which the program counter carries information of security at most pc. To
avoid unsafe implicit flows, the body of the continuation may create effects only
observable by principals able to read data with label pc.

Linear values are either unit or linear continuations, which contain code ex-
pressions parameterized by nonlinear and linear arguments just like ordinary
continuations. Unlike ordinary continuations, linear continuations may not be
recursive1 , but they may be invoked from any calling context. The syntax 〈pc〉
1 A linear continuation k may be discarded by a recursive ordinary continuation which
loops infinitely, passing itself k. Precise terminology for our “linear” continuations
would be “affine” to indicate that they may, in fact, never be invoked.
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serves to distinguish linear continuations from non-linear ones. As for ordinary
continuations, the label pc restricts the continuation’s effects.

The primitive operations include binary arithmetic (⊕), dereference, and a
means of copying secure values. Program expressions consist of a sequence of
let bindings for primitive operations, reference creation, and imperative up-
dates (via set). The letlin construct introduces a linear continuation, and the
let 〈〉 = lv in e expression, necessary for type-checking but operationally a no-
op, eliminates a linear unit before executing e. Straight-line code sequences are
terminated by conditional statements, non-local transfers of control via goto
(for ordinary continuations) or lgoto (for linear continuations), or the halt
statement.

3.2 Operational Semantics

The operational semantics (Figure 3) are given by a transition relation between
machine configurations of the form 〈M, pc, e〉. Memories, M , are finite partial
maps from typed locations to closed values. The notation M [Lσ ← v] denotes
the memory obtained fromM by updating the location Lσ to contain the value v
of type σ. A memory is well-formed if it is closed under the dereference operation
and each value stored in the memory has the correct type. The notation e{v/x}
indicates capture-avoiding substitution of value v for variable x in expression e.

The label pc in a machine configuration represents the security level of infor-
mation that could be learned by observing the location of the program counter.
Instructions executed with a program-counter label of pc are restricted so that
they update only to memory locations with labels more secure than pc. For
example, [E3 ] shows that it is valid to store a value to a memory location of
type σ only if the security label of the data joined with the security labels of
the program counter and the reference itself is lower than label(σ), the secu-
rity clearance needed to read the data stored in the ref. Rules [E6 ] and [E7 ]
show how the program-counter label changes after branching on data of security
level �. Observing which branch is taken reveals information about the condition
variable, and so the program counter must have the higher security label pc� �.
The type system guarantees that all security checks in the operational semantics
succeed, so no run-time representation of pc or other labels is needed.

As shown in rules [P1 ]–[P3 ], computed values are stamped with the program-
counter label. Checks like the one on [E3 ] prevent illegal information flows. The
two forms of let (rules [E1 ] and [E4 ]) substitute the bound value in the rest of
the program.

Operationally, the rules for goto and lgoto are very similar—each causes
control to be transfered to the target continuation. They differ in their treat-
ment of the program-counter label, as seen in rules [E8 ] and [E9 ]. Ordinary con-
tinuations require that the program-counter label before the jump be bounded
above by the label associated with the body of the continuation, preventing im-
plicit flows. Linear continuations instead cause the program-counter label to be
restored (potentially lowered) to that of the context in which they are declared.
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[P1 ] 〈M, pc, bv�〉 ⇓ bv��pc

[P2 ] 〈M, pc, n� ⊕ n′
�′〉 ⇓ (n[[⊕]]n′)���′�pc

[P3 ]

M(Lσ) = bv�′

〈M, pc, deref(Lσ
� )〉 ⇓ bv���′�pc

[E1 ]

〈M, pc, prim〉 ⇓ v

〈M, pc, let x = prim in e〉 �−→ 〈M, pc, e{v/x}〉

[E2 ]

� � pc � label(σ) Lσ �∈ Dom(M)

〈M, pc, let x = refσ
�′ bv� in e〉 �−→ 〈M [Lσ ← bv��pc], pc, e{Lσ

�′�pc/x}〉

[E3 ]

� � �′ � pc � label(σ) Lσ ∈ Dom(M)

〈M, pc, set Lσ
� := bv�′ in e〉 �−→ 〈M [Lσ ← bv���′�pc], pc, e〉

[E4 ] 〈M, pc, letlin y = lv in e〉 �−→ 〈M, pc, e{lv/y}〉

[E5 ] 〈M, pc, let 〈〉 = 〈〉 in e〉 �−→ 〈M, pc, e〉

[E6 ] 〈M, pc, if0 0� then e1 else e2〉 �−→ 〈M, pc � �, e1〉

[E7 ] 〈M, pc, if0 n� then e1 else e2〉 �−→ 〈M, pc � �, e2〉 (n �= 0)

[E8 ]

pc � pc′ v = (λ[pc′]f(x :σ, y :κ). e)� e′ = e{v/f}{bv�′���pc/x}{lv/y}
〈M, pc, goto (λ[pc′]f(x :σ, y :κ). e)� bv�′ lv〉 �−→ 〈M, pc′, e′〉

[E9 ] 〈M, pc, lgoto (λ〈pc′〉(x :σ, y :κ). e) bv� lv〉 �−→ 〈M, pc′, e{bv��pc/x}{lv/y}〉

Fig. 3. Expression Evaluation

3.3 Static Semantics

The type system for the secure CPS language enforces the linearity and ordering
constraints on continuations and guarantees that security labels on values are re-
spected. Together, these restrictions rule out illegal information flows and impose
enough structure on the language for us to prove a non-interference property.

As in other mixed linear–non-linear type systems [30], two separate type
contexts are maintained. Γ is a finite partial map from nonlinear variables to
security types, whereas K is an ordered list mapping linear variables to their
types. The order in which continuations appear in K defines the order in which
they are invoked; Given K = •, (yn :κn), . . . , (y1 :κ1), the continuation y1 will be
executed before any of the y2 . . . yn. The context Γ admits the usual weakening
and exchange rules (which we omit), but K does not.

The rules for checking ordinary values, [TV1 ]–[TV6 ] shown in Figure 4, are,
for the most part, standard. A value cannot contain free linear variables because
discarding (or copying) it would break linearity. The lattice ordering on security
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[TV1 ] Γ � n� : int�

[TV2 ] Γ � 〈〉� : 1�

[TV3 ] Γ � Lσ
� : σ ref�

[TV4 ] Γ � x : σ
Γ(x) = σ

[TV5 ]

f,x �∈ Dom(Γ)
σ′ = ([pc](σ, κ)→ 0)�

Γ, f :σ′, x :σ ‖ y :κ [pc] � e

Γ � (λ[pc]f(x :σ, y :κ). e)� : σ′

[TV6 ]

Γ � v : σ � σ ≤ σ′

Γ � v : σ′

[TL1 ] Γ ‖ • � 〈〉 : 1

[TL2 ] Γ ‖ y :κ � y : κ

[TL3 ]

x �∈ Dom(Γ), y �∈ Dom(K)
κ′ = 〈pc〉(σ, κ)→ 0

Γ, x :σ ‖ y :κ,K [pc] � e

Γ ‖ K � λ〈pc〉(x :σ, y :κ). e : κ′

[TL4 ]

Γ ‖ K � lv : κ � κ ≤ κ′

Γ ‖ K � lv : κ′

[S1 ]

pc′ � pc � σ′ ≤ σ � κ′ ≤ κ

� [pc](σ, κ)→ 0 ≤ [pc′](σ′, κ′)→ 0 [S2 ]

� τ ≤ τ ′ � � �′

� τ� ≤ τ ′
�′

Fig. 4. Value and Linear Value Typing

labels lifts to a subtyping relationship on values (rule [S2 ]). Continuations exhibit
the expected contravariance (rule [S1 ]). We omit the obvious reflexivity and
transitivity rules. Reference types are invariant, as usual.

Linear values are checked using rules [TL1 ]–[TL4 ]. It is safe for them to
mention free linear variables, but these variables must not be discarded or re-
ordered. Thus, a linear variable type-checks only when it is alone in the context
(rule [TL2 ]), and unit checks only in the empty linear context (rule [TL1 ]). In a
linear continuation (rule [TL3 ]), the linear argument, y, is the tail of the stack
of continuations yet to be invoked. Intuitively, this judgment says that the con-
tinuation must invoke the ones in K before jumping to y. Subtyping for linear
continuations is the same as for ordinary continuations.

The rules for primitive operations ([TP1 ]–[TP3 ] in Figure 5) require that
the calculated value have security label at least as restrictive as the current pc,
reflecting the “label stamping” behavior of the operational semantics. Values
read through deref (rule [TP3 ]) pick up the label of the reference as well, which
prevents illegal information flows due to aliasing.

The judgment Γ ‖ K [pc] 
 e (rules [TE1 ]–[TE9 ] of Figure 5) means that e
is type-safe and contains no illegal information flows in the type context Γ ‖ K,
when the program-counter label is at most pc. Thus, pc is a conservative approx-
imation to the information affecting the program counter. Rule [TE4 ] illustrates
how conditionals propagate this dependence: The program-counter label used to
check the branches is the label before the test, pc, joined with the label on the

7



[TP1 ]

Γ � v : σ pc � label(σ)

Γ [pc] � v : σ [TP2 ]

Γ � v : int� Γ � v′ : int� pc � �

Γ [pc] � v ⊕ v′ : int�

[TP3 ]

Γ � v : σ ref� pc � label(σ � �)

Γ [pc] � deref(v) : σ � �

[TE1 ]

Γ [pc] � prim : σ Γ, x :σ ‖ K [pc] � e

Γ ‖ K [pc] � let x = prim in e

[TE2 ]

Γ � v : σ pc � � � label(σ) Γ, x :σ ref� ‖ K [pc] � e

Γ ‖ K [pc] � let x = refσ
� v in e

[TE3 ]

Γ � v : σ ref� Γ � v′ : σ pc � � � label(σ) Γ ‖ K [pc] � e

Γ ‖ K [pc] � set v := v′ in e

[TE4 ]

Γ � v : int� Γ ‖ K [pc � �] � ei

Γ ‖ K [pc] � if0 v then e1 else e2

[TE5 ]

Γ ‖ K2 � lv : κ′ κ′ = 〈pc〉(σ, κ)→ 0 Γ ‖ K1, y :κ
′ [pc] � e

Γ ‖ K1,K2 [pc] � letlin y = lv in e

[TE6 ]

Γ ‖ K1 � lv : 1 Γ ‖ K2 [pc] � e

Γ ‖ K1,K2 [pc] � let 〈〉 = lv in e

[TE7 ]

Γ � v : ([pc′](σ, κ)→ 0)�
Γ � v′ : σ pc � � � label(σ)

Γ ‖ K � lv : κ
pc � � � pc′

Γ ‖ K [pc] � goto v v′ lv [TE8 ]

Γ ‖ K2 � lv : 〈pc′〉(σ, κ)→ 0
Γ � v : σ

Γ ‖ K1 � lv′ : κ
pc � label(σ)

Γ ‖ K1,K2 [pc] � lgoto lv v lv′

[TE9 ]

Γ � v : σ pc � label(σ)

Γ ‖ • [pc] � haltσ v

Fig. 5. Primitive Operation and Expression Typing

data being tested, �. The rule for goto, [TE7 ], also exhibits such a restriction
because a continuation itself is labeled with a security level. The values passed
to a continuation (linear or not) must also be labeled with pc because they carry
information about the context in which the continuation was invoked.

The rules for letlin, [TE5 ], and lgoto, [TE8 ], manipulate the linear context
to enforce the ordering property on continuations. For letlin, the linear context
is split into K1 and K2. The body e is checked under the assumption that the
new continuation, y, is invoked before any continuation in K1. Because y invokes
the continuations in K2 before its linear argument (as described above for rule
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[TL3 ]), the ordering K1,K2 in subsequent computation will be respected. The
rule for lgoto works similarly.

Linear continuations capture the pc (or a more restrictive label) of the context
in which they are introduced, as shown in rule [TE5 ]. Unlike the rule for goto,
the rule for lgoto does not constrain the program-counter label of the linear
continuation, reflecting that the linear continuation restores the program-counter
label to the one it captured upon being introduced.

Because linear continuations capture the program counter of their introduc-
tion context, we make the mild assumption that initial programs introduce all
linear continuations values (not variables) via letlin. During execution this
constraint is not required, and, as we shall see, all programs in the image of our
CPS translation satisfy this property.

The rule for halt, [TE9 ], requires an empty linear context, indicating that
the program consumes all linear continuations before stopping. The σ annotating
halt is the type of the final output of the program; its label should be constrained
by the security clearance of the user of the program.

This type system is sound with respect to the operational semantics [35].
The proof is, for the most part, standard, following in the style of Wright and
Felleisen [34]. We simply state the lemmas necessary for the discussion of the
non-interference result of the next section.

Lemma 1 (Subject Reduction).
If • ‖ K [pc] 
 e andM is a well-formed memory such that Loc(e) ⊆ Dom(M)

and 〈M, pc, e〉 �−→ 〈M ′, pc′, e′〉, then • ‖ K [pc′] 
 e′ and M ′ is a well-formed
memory such that Loc(e′) ⊆ Dom(M ′).

Lemma 2 (Progress).
If • ‖ • [pc] 
 e and M is well-formed and Loc(e) ⊆ Dom(M), then either

e is of the form haltσ v or there exist M ′, pc′, and e′ such that 〈M, pc, e〉 �−→
〈M ′, pc′, e′〉

Note that Subject Reduction holds for terms containing free occurrences of
linear variables. This fact is important for proving that the ordering on linear
continuations is respected. The Progress lemma (and hence Soundness) applies
only to closed programs, as usual.

4 Non-Interference

This section proves a non-interference result for the secure CPS language, gen-
eralizing Smith and Volpano’s preservation-style argument [29]. A technical re-
port [35] gives a more detailed account of our approach.

Informally, the non-interference result shows that low-security computations
are not able to observe high-security data. Here, “low-security” refers to the set
of security labels � ζ, where ζ is an arbitrary point in L, and “high-security”
refers to labels �� ζ. The proof shows that high-security data and computation
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can be arbitrarily changed without affecting the value of any computed low-
security result. Furthermore, memory locations visible to low-security observers
(locations storing data labeled � ζ) are also unaffected by high-security values.

Non-interference reduces to showing that two programs are equivalent from
the low-security perspective. Given a program e1 that operates on high- and
low-security data, it suffices to show that e1 is low-equivalent to the program e2
that differs from e1 in its high-security computations.

How do we show that e1 and e2 behave the same from the low-security point
of view? If pc � ζ, meaning that e1 and e2 may perform actions visible to low
observers, they necessarily must perform the same computation on low-security
values. Yet e1 and e2 may differ in their behavior on high-security data and still
be equivalent from the low perspective. To show their equivalence, we should
find substitutions γ1 and γ2 containing the relevant high-security data such that
e = γ1(e) and e2 = γ2(e)—both e1 and e2 look the same after factoring out the
high-security data.

On the other hand, when pc �� ζ, no matter what e1 and e2 do their ac-
tions should not be visible from the low point of view; their computations are
irrelevant. The operational semantics guarantee that the program-counter label
is monotonically increasing except when a linear continuation is invoked. If e1
invokes a linear continuation causing pc to fall below ζ, e2 must follow suit;
otherwise the low-security observer can distinguish them. The ordering on linear
continuations forces e2 to invoke the same low-security continuation as e1.

The crucial invariant maintained by well-typed programs is that it is possible
to factor out (via substitutions) the relevant high-security values and those linear
continuations that reset the program-counter label to be � ζ.

Definition 1 (Substitutions). For any context, Γ, we write γ |= Γ to indi-
cate that γ is a finite map from variables to closed values such that Dom(γ) =
Dom(Γ) and for every x ∈ Dom(γ) it is the case that • 
 γ(x) : Γ(x).

For K a linear context, we write Γ 
 k |= K to indicate that k is a finite map
of variables to linear values (with free variables from Γ) with the same domain
as K and such that for every y ∈ Dom(k) we have Γ ‖ • 
 k(y) : K(y).

Substitution application, written γ(e), indicates the capture-avoiding substi-
tution of the value γ(x) for free occurrences of x in e, for each x in the domain of
γ. We use similar notation for linear contexts, and also for substitution through
primitive operations and values.

Linear continuations that set the program-counter label �� ζ may appear in
low-equivalent programs, because, from the low-security point of view, they are
not relevant.

Definition 2 (letlin Invariant). A term satisfies the letlin invariant if
every linear continuation expression λ〈pc〉(x :σ, y :κ). e appearing in the term is
either in the binding position of a letlin or satisfies pc �� ζ.

If substitution k contains only low-security linear continuations and k(e) is a
closed term such that e satisfies the letlin invariant, then all the low-security

10



continuations not letlin-bound in e must be obtained from k. This invariant
ensures that k factors out all of the relevant continuations from k(e).

Extending these ideas to values, memories, and machine configurations we
obtain the definitions below:

Definition 3 (ζ-Equivalence).

Γ 
 γ1 ≈ζ γ2 If γ1, γ2 |= Γ and for every x ∈ Dom(Γ) it is the case that
label(γi(x)) �� ζ and γi(x) satisfies the letlin invariant.

Γ ‖ K 
 k1 ≈ζ k2 If Γ 
 k1, k2 |= K and for every y ∈ Dom(K) it is the case
that k1(y) ≡α k2(y) = λ〈pc〉(x :σ, y′ :κ). e such that pc � ζ
and e satisfies the letlin invariant.

v1 ≈ζ v2 : σ If there exist Γ, γ1, and γ2 plus terms v′1 ≡α v′2 such that
Γ 
 γ1 ≈ζ γ2, and Γ 
 v′i : σ and vi = γi(v′i) and each v′i
satisfies the letlin invariant.

M1 ≈ζ M2 If for all Lσ ∈ Dom(M1) ∪Dom(M2) if label(σ) � ζ, then
Lσ ∈ Dom(M1) ∩Dom(M2) and M1(Lσ) ≈ζ M2(Lσ) : σ.

Definition 4 (Non-Interference Invariant). The non-interference invariant
is a predicate on machine configurations, written Γ ‖ K 
 〈M1, pc1, e1〉 ≈ζ

〈M1, pc2, e2〉 that holds if the following conditions are all met:
(i) There exist substitutions γ1, γ2, k1, k2 and terms e′1 and e′2 such

that e1 = γ1(k1(e′1)) and e2 = γ2(k2(e′2)).
(ii) Either (a) pc1 = pc2 � ζ and e′1 ≡α e′2 or (b) Γ ‖ K [pc1] 
 e′1

and Γ ‖ K [pc2] 
 e′2 and pci �� ζ.
(iii) Γ 
 γ1 ≈ζ γ2

(iv) Γ ‖ K 
 k1 ≈ζ k2

(v) Loc(e1) ⊆ Dom(M1) and Loc(e2) ⊆ Dom(M2) and M1 ≈ζ M2.
(vi) Both e′1 and e′2 satisfy the letlin invariant.

Our proof is a preservation argument showing that the Non-Interference In-
variant holds at each step of the computation. When the program counter is low,
equivalent configurations execute in lock step (modulo the values of high-security
data). After the program branches on high-security information (or jumped to a
high-security continuation), the two programs may temporarily get out of sync,
but during that time, they may affect only high-security data. Eventually, if the
program counter drops low again (via a linear continuation), both computations
return to lock-step execution.

We first show that ζ-equivalent configuration evaluate in lock-step as long as
the program counter has low security.

Lemma 3 (Low-pc Step).
Suppose Γ ‖ K 
 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉, pc1 � ζ and pc2 � ζ. If

〈M1, pc1, e1〉 �−→ 〈M ′
1, pc′1, e′1〉, then 〈M2, pc2, e2〉 �−→ 〈M ′

2, pc′2, e′2〉 and there
exist Γ′ and K′ such that Γ′ ‖ K′ 
 〈M ′

1, pc′1, e
′
1〉 ≈ζ 〈M ′

2, pc′2, e
′
2〉.

Proof. (Sketch) Let e1 = γ1(k1(e′′1 )) and e2 = γ2(k2(e′′2 )) where the substitutions
are as described by the conditions of the Non-Interference Invariant. Because
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pci � ζ, clause (ii) implies that e′′1 and e′′2 must be α-equivalent expressions and
pc1 = pc2 = pc. Hence the only difference in their behavior arises due to the
substitutions or the different memories. We proceed by cases on the transition
step taken by the first program. The main technique is to reason by cases on the
security level of the value used in the step—if it’s low-security, by α-equivalence,
both programs compute the same values, otherwise, we extend the substitutions
γ1 and γ2 to contain the high-security data. We show the case for [E8 ] in detail
to give the flavor of the argument:

In this case, each e′′i = goto v v′ lv. It must be the case that γ1(v) =
(λ[pc′]f(x : σ, y : κ). e)�. If � � ζ, then v = (λ[pc′]f(x : σ, y : κ). e′)� where e′ =
γ1(e) because, by invariant (iii), the continuation could not be found in γ1. Note
that γ1(v′) ≈ζ γ2(v′) : σ. There are two cases, depending on whether γ1(v′) has
label � ζ. If so, it suffices to take Γ′ = Γ, K′ = K, and leave the substitutions un-
changed, for we have e′i = γi(ki(e{v/f}{γi(v′) � pc � �/x}{lv/y})). Otherwise,
if the label of γ1(v′) �� ζ, we take Γ′ = Γ, x :σ and γ′i = γi{x �→ γi(v′) � pc � �}.
The necessary constraints are then met by e′i = γ′i(ki(e{v/f}{lv/y})).

The other case is that � �� ζ, and hence the label of γ2(v) is also �� ζ. Thus,
pc′1 = pc � � �� ζ and pc′2 �� ζ. The resulting configurations satisfy part (b) of
clause (ii). The bodies of the continuations are irrelevant, as long as the other
invariants are satisfied, but this follows if we build the new value substitutions
as in the previous paragraph ��

Next, we prove that linear continuations do indeed get called in the order
described by the linear context.

Lemma 4 (Linear Continuation Ordering).
Assume K = yn : kn, . . . , y1 : k1, each ki is a linear continuation type, and

• ‖ K [pc] 
 e. If • 
 k |= K, then in the evaluation starting from any well-
formed configuration 〈M, pc, k(e)〉, the continuation k(y1) will be invoked before
any other k(yi).

Proof. The operational semantics and Subject Reduction are valid for open
terms. Progress, however, does not hold for open terms. Evaluate the open term
e in the configuration 〈M, pc, e〉. If the computation diverges, none of the yi’s
ever reach an active position, and hence are not invoked. Otherwise, the com-
putation must get stuck (it can’t halt because Subject Reduction implies that
all configurations are well-typed;the halt expression requires an empty linear
context). The stuck term must be of the form lgoto yi v lv, and, because it is
well-typed, rule [TE8 ] implies that yi = y1. ��

We use the ordering lemma to prove that equivalent high-security configura-
tions eventually return to equivalent low-security configurations.

Lemma 5 (High-pc Step). If Γ ‖ K 
 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉 and
pci �� ζ, then 〈M1, pc1, e1〉 �−→ 〈M ′

1, pc′1, e′1〉 implies that either e2 diverges or
〈M2, pc2, e2〉 �−→∗ 〈M ′

2, pc′2, e
′
2〉 and there exist Γ′ and K′ such that Γ′ ‖ K′ 


〈M ′
1, pc′1, e

′
1〉 ≈ζ 〈M ′

2 , pc′2, e2〉.
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Proof. (Sketch) The proof is by cases on the transition step of the first config-
uration. Because pc1 �� ζ and all the transition rules except [E9 ] increase the
program-counter label, we may choose zero steps for the second configuration
and still show that ≈ζ is preserved. Condition (ii) of the invariant holds via
part(b). The other invariants follow because all values computed and memory
locations written to must have labels higher than pc1 (and hence �� ζ). Thus, the
only memory locations affected are high-security: M ′

1 ≈ζ M2 = M ′
2. Similarly,

[TE5 ] forces linear continuations introduced by e1 to have pc �� ζ. Substituting
them in e1 maintains clause (vi) of the invariant.

Now consider the case for [E9 ]. Let e1 = γ1(k1(e′′1 )), then e′′1 = lgoto lv v1 lv1

for some lv. If lv is not a variable, clause (vi) ensures that the program counter in
lv’s body is �� ζ. Pick 0 steps for the second configuration as above. Otherwise,
if lv is a variable, y, then [TE8 ] guarantees that K = K′, y : κ. By assumption,
k1(y) = λ〈pc〉(x :σ, y′ :κ′). e, where pc � ζ. Assume e2 does not diverge. By the
ordering lemma, 〈M2, pc2, e2〉 �−→∗ 〈M ′

2, pc′2, lgoto k2(y) v2 lv2〉. Simple in-
duction on the length of this transition sequence shows that M2 ≈ζ M

′
2, because

the program counter may not become � ζ. Thus, M ′
1 = M1 ≈ζ M2 ≈ζ M ′

2. By
invariant (iv), k2(y) ≡α k1(y). Furthermore, [TE8 ] requires that label(σ) �� ζ.
Let Γ′ = Γ, x : σ, γ′1 = γ1{x �→ γ1(v1) � pc1}, γ′2 = γ2{x �→ γ2(v2) � pc2}; take
k′1 and k′2 to be the restrictions of k1 and k2 to the domain of K′, and choose
e′1 = γ′1(k′1(e)) and e′2 = γ′2(k′2(e)). All of the necessary conditions are satisfied
as is easily verified via the operational semantics. ��

Finally, we use the above lemmas to prove non-interference. Assume a pro-
gram that eventually computes a low-security value has access to high-security
data. We show that arbitrarily changing the high-security data does not affect
the program’s result.

First, some convenient notation for the initial continuation: Let stop(τ�) :
κstop = λ〈⊥〉(x : τ�, y :1). let 〈〉 = y in haltτ� x where κstop = [⊥](τ�, 1)→ 0.

Theorem 1 (Non-Interference). Suppose x : σ ‖ y : κstop [⊥] 
 e for some
initial program e. Further suppose that label(σ) �� ζ and • 
 v1, v2 : σ. Then

〈∅, ⊥, e{v1/x}{stop(intζ)/y}〉 �−→∗ 〈M1, ζ, haltintζ n�1〉
and

〈∅, ⊥, e{v2/x}{stop(intζ)/y}〉 �−→∗ 〈M2, ζ, haltintζ m�2 〉

implies that M1 ≈ζ M2 and n =m.

Proof. It is easy to verify that

x :σ ‖ y :κstop 
 〈∅, ⊥, e{v1/x}{stop(intζ)/y}〉 ≈ζ 〈∅, ⊥, e{v2/x}{stop(intζ)/y}〉

by letting γ1 = {x �→ v1}, γ2 = {x �→ v2}, and k1 = k2 = {y �→ stop(intζ)}.
Induction on the length of the first expression’s evaluation sequence, using the
Low- and High-pc Step lemmas plus the fact that the second evaluation sequence
terminates implies that Γ ‖K 
 〈M1, ζ, haltintζ n�1〉 ≈ζ 〈M2, ζ, haltintζ m�2 〉.
Clause (v) of the Non-interference Invariant implies that M1 ≈ζ M2. Soundness
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implies that �1 � ζ and �2 � ζ. This means, because of clause (iii), that neither
n�1 nor m�2 are in the range of γ′i. Thus, the integers present in the halt ex-
pressions do not arise from substitution. Because ζ � ζ, clause (ii) implies that
haltintζ n�1 ≡α haltintζ m�2 , from which we obtain n = m as desired. ��

5 Translation

This section presents a CPS translation for a secure, imperative, higher-order
language that includes only the features essential to demonstrating the transla-
tion. Its type system is adapted from the SLam calculus [16] to follow our “label
stamping” operational semantics. The judgment Γ 
pc e : s shows that expres-
sion e has source type s under type context Γ, assuming the program-counter
label is bounded above by pc.

Source types are similar to those of the target, except that instead of contin-
uations there are functions. Function types are labeled with their latent effect,
a lower bound on the security level of memory locations that will be written to
by that function. The type translation, following previous work on typed CPS
conversion [15], is given in terms of three mutually recursive functions: (−)∗, for
base types, (−)+ for security types, and (−)− to linear continuation types:

int∗ = int (s ref)∗ = s+ ref (s1
�−→ s2)∗ = [�](s+1 , s

−
2 )→ 0

t+� = (t∗)� s− = 〈⊥〉(s+ , 1)→ 0

Figure 6 shows the term translation as a type-directed map from source typ-
ing derivations to target terms. For simplicity, we present an un-optimizing CPS
translation, although we expect that first-class linear continuations will support
more sophisticated translations, such as tail-call optimization [8]. To obtain the
full translation of a closed term e of type s, we use the initial continuation from
Section 4: letlin stop = stop(s+) in [[∅ 
� e : s]]stop

The basic lemma for establishing correctness of the translation is proved by
induction on the typing derivation of the source term:

Lemma 6 (Type Translation). Γ 
� e : s ⇒ Γ+ ‖ y :s− [�] 
 [[Γ 
� e : s]]y.

This result also shows that the CPS language is at least as precise as the source.

6 Discussion and Related Work

The constraints imposed by linearity can be seen as a form of resource manage-
ment [13], in this case limiting the set of possible future computations. Linearity
has been more widely used in the context of memory consumption [32, 33, 2].
Linear continuations have been studied in terms of their category theoretic se-
mantics [11] and also as a computational interpretation of classical logic [5]

Linearity also plays a role in security types for process calculi such as the π-
calculus [17]. Because the usual translation of the λ-calculus into the π-calculus

14



[[Γ, x :s′ �pc x : s′ � pc]]y ⇒ lgoto y x 〈〉
[[

Γ, f :s, x :s1 �pc′ e : s2

Γ �pc (µf(x :s1). e)� : s � pc

]]
y ⇒

{
lgoto y (λ[pc′]f(x :s+

1 , y′ :s−2 ).
[[Γ, f :s, x :s1 �pc′ e : s2]]y

′)� 〈〉





Γ �pc e : s
Γ �pc e′ : s1

� � pc′ � label(s1)

Γ �pc (e e′) : s2




y ⇒




letlin k1 = λ〈pc〉(f :s+, y1 :1).
let 〈〉 = y1 in

letlin k2=λ〈pc〉(x :s+
1 , y2 :1).

let 〈〉= y2 in

goto f x y
in [[Γ �pc e′ : s1]]k2

in [[Γ �pc e : s]]k1







Γ �pc e : int�
Γ �pc′ ei : s′

� � pc′

Γ �pc if0 e then

e1 else e2 : s′





y ⇒




letlin k1 = λ〈pc〉(x : int+� , y1 :1).
let 〈〉 = y1 in

if0 x then [[Γ �pc′ e1 : s′]]y
else [[Γ �pc′ e2 : s′]]y

in [[Γ �pc e : int�]]k1






Γ �pc e : s′ ref�

Γ �pc e′ : s′

� � label(s′)

Γ �pc e := e′ : s′




y ⇒




letlin k1 = λ〈pc〉(x1 :s
′ ref+� , y1 :1).

let 〈〉 = y1 in

letlin k2=λ〈pc〉(x2 :s
′+, y2 :1).

let 〈〉 = y2 in

set x1 := x2 in

lgoto y x2 〈〉
in [[Γ �pc e′ : s′]]k2

in [[Γ �pc e : s′ ref�]]k1

Fig. 6. CPS Translation (Here s = (s1
pc′−→ s2)�, and the ki’s and yi’s are fresh.)

can be seen as a form of CPS translation, it might be enlightening to investigate
the connections between security in process calculi and low-level code.

The CPS translation has been studied in the context of program analysis [23,
10]. Sabry and Felleisen observed that increased precision in some CPS data flow
analyses is due to duplication of analysis along different execution paths [28].
They also note that some analyses “confuse continuations” when applied to
CPS programs. Our type system distinguishes linear from non-linear continu-
ations to avoid confusing “calls” from “returns.” More recently, Damian and
Danvy showed that CPS translation can improve binding-time analysis in the
λ-calculus [7], suggesting that the connection between binding-time analysis and
security [1] warrants more investigation.

Linear continuations appear to be a higher-order analog to post-dominators
in a control-flow graph. Algorithms for determining post-dominators (see Much-
nick’s text [19]) might yield inference techniques for linear continuation types.
Conversely, linear continuations might yield a type-theoretic basis for correctness
proofs of optimizations based on post-dominators.
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Beyond CPS conversion, compilers also use closure conversion, hoisting, and
various optimizations such as inlining or constant propagation. These transfor-
mations may affect information flows. How to build type systems rich enough to
express security properties at this level is still an open question.

Understanding secure information flow in low-level programs is essential to
providing secrecy of private data. We have shown that explicit ordering of con-
tinuations can improve the precision of security types. The extra constraints
ordered linear continuations provide limit implicit flows, and make possible our
non-interference proof, the first of its kind for a higher-order, imperative lan-
guage.
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