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Communication Architecture

 

This chapter articulates the role of communication architecture in the design of a parallel system. The
various parallel machine designs are all converging to the point where the nodes of a parallel system are
essentially complete sequential computers that are interconnected by a low-latency packet-switched
network. The difference between the approaches is how and at what level this network is integrated into
the node architecture.

The communication architecture describes extensions made to a sequential architecture to turn it into a
parallel computer architecture. In this sense, it focuses on the integration of communication into the
overall architecture. The brief review of existing systems in Section 1.3 indicated the current tendency
to fuse the architectural layers and address high-level problems low in the hardware and vice-versa. An
important aspect of the development of Active Messages is to reexamine the layering embodied in exist-
ing parallel systems and to redistribute the responsibilities to arrive at more versatile and efficient paral-
lel systems.

Placing the primary focus on the layering of the communication functions results in a a novel approach
to parallel computer architecture quite different from the traditional ones which concentrate on the ex-
amination of alternatives at each level. Section 2.1 contrasts this new “vertical” approach to the more
common “horizontal” classifying approach. It relates the notion of communication architecture to that
of conventional computer architecture and arrives at the layering model used in this dissertation.
Section 2.2 provides an overview of the Active Messages communication architecture and its layers.
Section 2.3 discusses the set of performance metrics used throughout the dissertation to evaluate com-
munication architectures.
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2.1 A Vertical Approach

 

The traditional approach to communication in parallel architectures focuses on classifying alternatives.
One of the oldest approaches is Flynn’s taxonomy [Fly66] which describes alternatives in the number of
instruction and data streams. To this Kuck [Kuc78] adds alternatives in the number of execution
streams. Treleaven [Tre85] focuses on the variety of control mechanisms (control driven, pattern driven,
demand driven, data driven) and of data mechanisms (private memory and shared memory). Almasi
and Gottlieb [AG89] focus on alternatives in interconnection networks, in message passing designs,
and in shared-memory communication models. Hwang [Hwa93] discusses the alternatives in intercon-
nects, cache coherence mechanisms, message passing mechanisms, latency-hiding techniques, and so
forth.

While such horizontal

 

1

 

 approaches illustrate the variety of design choices nicely, they lead to a mind-set
in which decisions taken at each level are independent from those at other levels. For example, after a
discussion of the various network routing algorithms it is tempting to ask which one is best. Yet, such a
question is meaningless without considering the design choices at many other levels: the network topol-
ogy, the message length, the channel width, and the reliability and ordering properties required by the
communication model all interact with the routing algorithm in significant ways.

This focus on individual layers does not help the architect decide how to coordinate the layers to bridge
the gap from the network topology to the development of compilers for high-level parallel program-
ming languages. For example, what should be exposed by the instruction set architecture and what
should be hidden in the implementation? What abstractions are appropriate to expose to the language
system? What is the role of the operating system in communication? Resolving these issues requires a
different, vertical, perspective to parallel computer architecture, in which one may examine how the
different layers of functionality fit together to form an efficient whole.

Defining a layering model which represents a hierarchy of interfaces and optimizing the assignment of
responsibilities to the various layers is key to the RISC design process. For example, the Stanford MIPS
system design revolves around four layers: the high-level language compiler, the assembly language, the
machine language, and the micro-architecture. An important aspect of the design process was to decide
at which level to address which issues. For example, register allocation requires high-level information
and occurs in the compiler while the avoidance of pipeline hazards is the responsibility of the assembly-
to-machine language translator.

The following subsections develop the layering model for communication that is used as a framework
throughout the dissertation. The first section reviews computer architecture terminology which is often
taken for granted. While, for example, the notion of an instruction set architecture is well established in
sequential computer architecture, its equivalent in parallel architecture is less well defined. To date, lit-
tle care has been taken to separate the issues pertaining to a family of parallel machines from those par-
ticular to a given implementation. In addition, the instruction set architecture is usually considered as
defining the boundary between hardware and software which is not necessarily accurate in the case of
parallel computing given the relative infant state of hardware.

 

2.1.1 Computer architecture in review

 

Patterson and Hennessy [PH90] define instruction set architecture (ISA) as referring to “the actual pro-
grammer-visible instruction set”. They further use the term of 

 

computer organization

 

 to refer to the
“high-level aspects of a computer’s design, such as the memory system, the bus structure and the inter-
nal CPU design” and the term 

 

computer hardware

 

 is used for the “specifics of a machine”. Shown sche-
matically in Figure 2-1, 

 

computer architecture

 

 is finally “intended to cover all three aspects of computer
design [e.g., ISA, organization, and hardware]”. The term computer architecture thus refers to the sys-

 

1. 

 

Think of the different levels of abstraction along the vertical axis and the alternatives at each level along the hori-
zontal axis.
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tem design including the interface between software and hardware (the original meaning of 

 

computer
architecture

 

 as defined by the IBM 360 designers) and the actual design of a computer.

Applied to parallel computing, Patterson and Hennessy’s concept of ISA would include the state and
the operations relevant to communication, given that these are visible to the programmer. What is less
clear, however, is what aspects of communication are “visible to the programmer”. For example, is the
network topology visible to the programmer? Or is it similar to a cache and considered to pertain to a
computer’s organization and not to its instruction set architecture? The definition, in addition, seems
overly focused on the notion of an instruction, given that the ISA includes other aspects as well.

The definition of computer architecture used by the IBM 360 designers, depicted in Figure 2-2, is
more precise in these respects. Translated into today’s terminology (they used the term computer archi-
tecture to refer to the instruction set architecture) it defines instruction set architecture as being

“[...] the structure of a computer that a machine language programmer must under-
stand to write a correct (timing independent) program for that machine”

which makes quite clear that issues beyond the instruction execution are included. This is particularly
important in a communication architecture where, for example, deadlock is not necessarily directly re-
lated to instruction execution yet must be understood by the machine language programmer.

 

2

 

The two points which become clear through the discussion of the various definitions of computer ar-
chitecture are that

• the interface to the machine language programmer, although typically called the 

 

instruction

 

 set
architecture, encompasses more than just the definition of the instruction set, and

• aspects of communication are found at all levels of computer architecture.

 

2. 

 

While network routing is designed to be deadlock-free, it assumes that processors accept incoming messages at all
times, even while attempting to inject a message into the network. If the programmer violates this assumption, the
network may deadlock.

computer
organization

computer
hardware

instruction set
architecture

computer 
architecture

Figure 2-1: Patterson and Hennessy’s definition of computer architecture.

Instruction set architecture refers to the actual programmer-visible instruction set, the term computer organization
to the high-level aspects of a computer’s design, such as the memory system, the bus structure and the internal CPU
design, and computer hardware is used for the specifics of a machine. A single instruction set architecture can be im-
plemented using a number of distinct computer organizations, each of which can in turn be implemented with dif-
fering hardware.
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While the distinction between the instruction set architecture and the set of instructions is minor in the
case of most modern micro-processors, the term “instruction” becomes confusing in the context of
communication. Due to the still infant state of parallel architectures, the vast majority of parallel in-
struction set architectures define at most a set of communication library functions or kernel traps and
only very few have communication 

 

instructions

 

 proper.

 

2.1.2 Communication layers

 

Figure 2-3 summarizes how communication enters into computer architecture: it encompasses all as-
pects of parallel computer architecture that are related to communication and is divided into three lev-
els, namely the communication architecture, the communication micro-architecture, and the
communication hardware.

The full layering used in this dissertation adds two levels on top of the communication architecture
which represent the software run-time layers of a parallel program. Figure 2-4 shows the following five
levels at which communication is defined or used:

• The 

 

communication hardware

 

 level is typically specific to a given machine model and deals
with logic design details of the implementation.

• The 

 

communication micro-architecture

 

 describes the organization and operation of the func-
tion units involved in communication.

• The 

 

communication architecture

 

 abstracts the implementation specific details into the opera-
tions that are visible to the machine language programmer or compiler. In principle, the archi-
tecture is implemented in hardware, although it may contain micro-code sequences or even
low-level system software in the style of the DEC Alpha PAL code [Sit92].

• The 

 

communication model

 

 defines the application programmer’s view of how processors com-
municate. It is generally embodied in the communication semantics of a parallel language or
defined as an extension to a sequential language. The communication model is implemented
in a run-time substrate (or through the code sequences generated by the compiler) using the
primitives provided by the communication architecture.

• At the 

 

application layer

 

 communication is high-level and machine independent.

implementation

realization

[machine-level
interfaces]

computer 
architecture

instruction set
architecture

Figure 2-2: IBM 360 designers’ definition of computer architecture.



 

A V

 

ERTICAL

 

 A

 

PPROACH

 

15

 

2.1.3 Aspects of a communication architecture

 

The communication architecture encapsulates the details of the micro-architecture and defines the pro-
grammer-visible communication operations (or even instructions). The communication architecture is
typically implementation independent and is carried forth from one model of a parallel computer fam-
ily to the next.

The primary role of the architecture is to interface between the computer designer and the user. In the
traditional sense it represents the boundary between the hardware and the software, but from a RISC
design point of view it separates the concerns of the designer and the user without compromising versa-
tility or efficiency. A good architecture will enable high-level optimizations while hiding enough of the

 

µ

 

-architecture to allow for different implementations (with varying price-performance trade-offs) to
present the same architecture.

While the communication architecture is conceptually part of the hardware, it is not necessarily imple-
mented fully in hardware. In particular, most older micro-architectures provide little or no support for
extending the user protection boundaries across the network. This means that, as undesirable as it is,
these architectures offer no alternative but to pass all communication through a privileged software lay-
er in the kernel enforcing the protection.

In order to define a specific communication architecture the following three major aspects of commu-
nication need to be specified: (i) the data representation of messages, (ii) the operations to send and re-
ceive messages, and (iii) the events signalled by the network to the processor. Table 2-1 presents a
detailed template for the definition of a communication architecture.

As an example, the Intel NX send&receive communication architecture defines a number of message
sending and receiving operations, a simple message format (destination node, tag, and word-aligned

instruction set 
architecture

computer architecture

micro-architecture
[computer organization]

computer
hardware

communication communication
µ-architecture

communication
hardware

communication
architecture

Figure 2-3: Communication architecture as facet of computer architecture.
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run-time 
substrate

user-level
(+kernel-level)

language
implementer

message 
layer

user/kernel
level

systems
programmer

(micro-code) hardware systems
architect

— hardware hardware
designer

communication
model

application layer

communication
architecture

communication
micro-architecture

communication
hardware

layer of abstraction software layer implementation developer

application
program

user-level application
programmer

Figure 2-4: Communication architecture layers.

Table 2-1. Aspects of a communication architecture.

m
es

sa
ge

re
pr

es
en

ta
ti

on format The format of messages including destination address and other 
header information, maximum length, data format and alignment.

placement The placement of messages in the storage hierarchy as expected by 
send operations and as delivered on reception.

co
m

m
un

ic
at

io
n

op
er

at
io

ns

send The operations used to inject messages into the network.

receive The operations used to extract messages from the network.

co
m

m
un

ic
at

io
n

ev
en

ts

reception Events signalling the arrival of a message.

send completion Events signalling success or failure of message injection.

synchronization Synchronizing events with the ongoing computation, in particular 
to create critical sections.
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memory buffer) and hides all network operation and state. It is available on all recent Intel IPSC multi-
processors whose respective communication micro-architectures differ dramatically.

 

2.1.4 Aspects of a communication micro-architecture

 

The communication micro-architecture describes the low-level organization of the components per-
forming communication in a parallel machine. It is generally specific to a particular implementation
and many of its aspects are not visible to the software, possibly with exception of the kernel.

The major aspects defined as part of the micro-architecture are the structure of the interconnect, the
network operation, and the protection mechanisms. Table 2-2 contains a list of the details of the com-
munication micro-architecture that are relevant to the design of the communication architecture.

 

2.1.5 Glossary

 

It is quite difficult to refer to the various hardware and software components at each level unambigu-
ously and many appropriate common terms such as “user-level” do not have a universally accepted
meaning. For this reason, Table 2-3 defines the terminology used in this dissertation.

TERM DEFINITION

 

Protection levels

 

Privilege-level,
kernel-level

Synonyms, the privileged protection level of software execution, typically called su-
pervisor level or system level.

User-level Non-privileged protection level of software execution, e.g., level subordinate to the 
kernel-level.

Table 2-3. Glossary of terms.  

Table 2-2. Aspects of a communication micro-architecture.

st
ru

ct
ur

e

Network topology The topology of the network interconnecting processing 
nodes.

Network channels The characteristics of the links connecting processing nodes 
into the network (and interconnecting routing nodes, if ap-
plicable) including: the channel speed and width, flow-con-
trol on each link and flit size.

Message format The format of messages recognized by the hardware.

Network volume The amount of buffer space built into the network which de-
termines the number of messages each processor can pipeline 
through the network.

op
er

at
io

n

Transmission mechanism Mechanism by which data is moved into the network or ex-
tracted from the network. For example, DMA engines or ex-
plicit load/store accesses to FIFO queues.

Network status and events Status provided by the network interface and, if applicable, 
processor interrupt or event dispatch mechanisms.

Routing Properties of the network routing visible to the message layer. 
Includes deadlock and livelock avoidance issues.

pr
ot

ec
ti

on Protection mechanisms Mechanisms to prevent unauthorized access to the network 
from user-level.

Network context Network state to be saved and restored on a context switch. 
Mechanisms to save and restore the state.
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Software layers

 

Kernel,
operating system

Software provided by the vendor executing at privilege-level. Kernel usually refers to 
the software on each node and operating system refers collectively to the kernels on 
all nodes (and host node, if applicable).

Message layer Software implementing the communication architecture.

Run-time substrate Library providing machine independent abstractions used in the implementation of a 
programming language.

 

Communication operations

 

Comm. operation Term used at the communication model level to refer to the operations used to per-
form inter-processor communication, for example, to fetch a copy of a remote data 
structure.

Comm. primitive Basic operations used to perform inter-processor communication and provided at the 
communication architecture level, for example, the Active Messages send primitive.

Comm. mechanism General term for inter-processor communication techniques used. Refers to the 
mechanisms implemented by a collection of primitives.

 

Parallel programs

 

Process Independent user-level thread of control running on one node, e.g., the traditional 
sequential computing meaning of the word.

Parallel process Collection of processes, each running on one node of a multiprocessor, and part of 
the same parallel program execution.

Parallel program Text of a program for a multiprocessor, sometimes also used as synonym for parallel 
process.

Parallel processor,
multiprocessor,
multicomputer

Synonyms for parallel computer. Some classifications [Fox88] distinguish multipro-
cessors from multicomputer and use the former to refer to machines with processor 
nodes connected to memory nodes via a network and the latter for machines with 
processor-memory nodes interconnected by a network. Given that the vast majority 
of parallel computers today are multicomputers under that classification but that the 
standard term used for parallel machines is multiprocessor this distinction is not used 
in this document.

TERM DEFINITION

Table 2-3. Glossary of terms. (Continued)
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2.2 Active Messages Communication Architecture

 

The Active Messages communication architecture is based on four observations:

• all micro-architectures communicate using simple messages and cause a small amount of pro-
cessing to occur at the remote end to handle the message arrival,

• the dispatch on the first word of a message used in message driven architectures is very versa-
tile (as long as it occurs at user-level),

• buffering and scheduling must be kept to a minimum to achieve a lean, fast communication
architecture, and

• the majority of systems include a run-time substrate which adapts the communication archi-
tecture functionality to the needs of the application or language.

The central mechanism in Active Messages virtualizes the notion of a message interrupt handler found
in most communication micro-architectures to user-level:

Each message contains at its head the address of a user-level handler which is executed
on message arrival with the message body as argument. The role of the handler is to
get the message out of the network and into the computation on the processing node.
The handler is executed “at interrupt time” and must execute quickly to completion.

This communication mechanism:

• allows construction of higher-level communication protocols by providing appropriate remote
services through handlers,

• integrates arriving messages into the computation allowing transfer of data directly between
application data structures and interaction with the scheduling of computation,

• tolerates communication latencies by continuing computation while communication takes
place, and

• provides general processor-to-processor communication using messages with minimal inter-
pretation imposed by the hardware.

Active Message handlers do not perform computation proper, they “only” incorporate arriving messages
into the ongoing computation on the node or provide a simple remote service and send back a reply
message. This restriction on handlers, as well as further restrictions described in Chapter 4, are neces-
sary to keep the cost of handler execution low.

The contribution of Active Messages relative to message driven models is to determine the right set of
restrictions imposed on handlers such that on the one hand handlers can be executed cheaply and on
the other hand they have enough “power” to serve as building blocks for higher communication opera-
tions.
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2.3 Metrics for Communication Performance

 

A major milestone in the development of RISC instruction set architectures was the definition of quan-
titative metrics for evaluating design options. The difficulties in defining metrics for communication
come from the fact that a communication operation involves multiple units that operate concurrently
(e.g., processors, network interfaces, network routers). In order to be able to attribute costs accurately it
is important to have a precise model of communication in which the contribution of each unit can be
identified.

This dissertation uses the LogP model of parallel computation for this purpose. The following subsec-
tion describes the LogP model from the point of view of an architect interested in using the model to
understand and characterize machine performance. The LogP model was originally presented in
[CKP

 

+

 

93] in a more general algorithm designer’s view. Subsection 2.3.2 defines a few additional sim-
pler metrics which are commonly found in the literature.

 

2.3.1 The LogP model of parallel computation

 

The LogP model of parallel computation [CKP

 

+

 

93] is intended to characterize machine behavior real-
istically to serve as a basis for developing fast, portable parallel algorithms. At the same time is captures
the machine model against which the algorithm developer optimizes and thereby offers guidelines to
machine designers.

The model decomposes a parallel machine into three types of components: processors, network inter-
faces, and a network, as shown in Figure 2-5. Each component operates autonomously and interacts
with other components. The cost of these interactions is captured by the model parameters

 

3

 

 as follows:

 

L

 

: an upper bound on the 

 

latency

 

4

 

, or delay, incurred in communicating a message containing a word
(or a small number of words) from its source module to its target module.

 

3. 

 

The parameters L, o, and g are measured as multiples of the processor cycle.

 

4. 

 

The latency experienced by any message is unpredictable, but is bounded above by L in the absence of stalls. Be-
cause of variations in latency, the messages directed to a given target module may not arrive in the same order as they
are sent.

Figure 2-5: LogP components of a parallel machine.
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o

 

: the 

 

overhea

 

d, defined as the length of time that a processor is engaged in the transmission or recep-
tion of each message; during this time, the processor cannot perform other operations.

 

g

 

: the 

 

gap

 

, defined as the minimum time interval between consecutive message transmissions or consec-
utive message receptions at a processor. The reciprocal of 

 

g

 

 corresponds to the available per-
processor communication bandwidth.

 

P

 

: the number of 

 

processor

 

/

 

memory

 

 modules. Local operations are assumed to take assume unit time,
namely one cycle.

: the network 

 

capacity

 

 of the network which limits the number of messages can be in transit
from any processor or to any processor at any time to . If a processor attempts to
transmit a message that would exceed this limit, it stalls until the message can be sent without
exceeding the capacity limit.

Abstractly, these parameters specify the communication delay, and the efficiency of coupling communi-
cation and computation. Note that the model does not describe the structure of the network—only its
performance characteristics.

 

2.3.2 Simple metrics

 

The following few simple metrics complement the LogP model and are used in particular to handle
long messages.

Clocks Per Message [CPM]: processor clock cycles taken to send and receive one message.

Pipeline throughput [

 

R

 

∞

 

] and half-performance point [

 

N

 

1/2

 

]: 

 

R

 

∞

 

 is the communication bandwidth
achieved with infinite-length messages and 

 

N

 

1/2

 

 is the message length needed to reach one-
half of 

 

R

 

∞

 

. This definition parallels the use of 

 

R

 

∞

 

 and 

 

N

 

1/2

 

 in measuring the performance of
vector computers.

Communication overhead [ ] and bandwidth [ ]: (also “start-up cost” and “per word cost”) the
communication overhead is the time taken by the processor to send and receive a zero-length
message and the communication bandwidth measures the number of bytes that cross the net-
work interface per second. The time spent transmitting a message is often modeled as

 where  is the message length in bytes. Note that this ignores the time of
flight through the network, which is negligible on many machines given that  is compara-
tively very large.

L g⁄
L g⁄

α β

T α lβ+= l
α
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2.4 Summary

 

Applying the RISC design strategy to communication architecture requires a fresh perspective on the
various components involved. The predominant view focuses horizontally on the numerous alternatives
at each level which results in a tendency to seek the “best” solution at each level, often at the expense of
optimizations across multiple layers of abstraction.

The vertical approach proposed in this dissertation focuses on the communication layering model and
promulgates the view that optimizing the role of each layer with respect to the other layers is an impor-
tant part of the design process of a parallel system.

The layering model used in this dissertation establishes the communication architecture as the interface
between the computer designer and the user. Its role is to separate the respective concerns without com-
promising versatility or efficiency. The communication architecture builds on the communication mi-
cro-architecture which extends the processor micro-architecture to encompass the structure of the
network at the functional unit level. While the micro-architecture is machine dependent, the commu-
nication architecture is typically expected to remain compatible from one model of a computer family
to the next.

One of the layering model’s most important characteristics is the reliance on a run-time substrate to im-
plement the communication model used in parallel languages or by application programmers. This
means that the communication operations seen by the programmer need not be reflected directly in the
communication architecture. Instead, the communication architecture must provide the right primi-
tives such that a compiler (or a library writer) can translate the communication primitives found in
high-level parallel languages efficiently into the available primitives. This adoption of a high-level paral-
lel language perspective focuses the evaluation of communication architectures on purely quantitative
metrics.


