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Introduction

 

Uniprocessor computer architecture has reached a steady state in which new developments are evolu-
tionary, not revolutionary. In contrast, parallel computing has long been in a state of flux, marked by
projects proposing radical departures. Differences between the various approaches are so fundamental
in nature that they are difficult to quantify and compare objectively. However, the steady development
of sequential processor technology is having its influence on parallel computing, and is constraining the
design space, forcing the various architectures to converge to a point where a multiprocessor consists of
ordinary workstations-class computers interconnected by a high-speed network. The primary difference
remaining among the various designs is the way in which communication is integrated into the overall
architecture.

This dissertation focuses on the introduction of communication into the parallel computer design. It
introduces the concept of a 

 

communication architecture

 

 to describe the aspects of the architecture that
are related to communication, i.e., the extension of a sequential architecture into a parallel one. Active
Messages is proposed as an efficient communication architecture and is shown to subsume traditional
communication architectures.

Active Messages provides a small set of simple communication primitives which are 

 

efficient

 

, 

 

versatile

 

,
and 

 

incremental

 

. The primitives are 

 

efficient

 

 in that they map high-level parallel languages well onto
communication primitives and that these primitives map efficiently onto the processor and network
hardware structures. The Active Message primitives are 

 

versatile

 

 in that they can be composed to imple-
ment a variety of existing and emerging parallel programming languages. The Active Messages 

communication architecture is 

 

incremental

 

 to the processor architecture, in that it leverages the invest-
ment in sequential processor design. Implementations on two state-of-the art parallel machines demon-
strate these properties of Active Message and bring the cost of the communication primitives down by
an order of magnitude, enabling efficient mapping of message passing, shared memory, and message
driven programming models onto a single machine without requiring language-specific hardware sup-
port.
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1.1 The Architecture Design Process

 

The driving force behind the development of Active Messages is the desire to formulate a communica-
tion abstraction that is well suited as a compilation target for emerging high-level parallel languages and
can be implemented efficiently with conventional hardware structures. In this respect, the goals of Ac-
tive Messages are very similar to the ones motivating reduced instruction set computer architectures
(RISC) in the early 80s.

The development of RISC was a revolutionary phase of instruction set architecture (ISA) design in that
established boundaries were questioned and responsibilities redistributed. The insistence on two 

 

archi-
tecture design principles

 

 were among the most important aspects of the process: (i) to take the entire sys-
tem into consideration—from program characteristics down to VLSI implementations—and (ii) to
evaluate alternatives using strictly quantitative criteria. The instruction set architecture focused the rev-
olution process and the surrounding debate on the definition of this interface in which the contract be-
tween the designer and the user is explicit, the design goals can be stated clearly, and performance
measurements can be gathered and evaluated objectively.

The development of Active Messages in this dissertation follows that of RISC instruction set architec-
tures: the discussion is focused around the communication architecture which serves as interface be-
tween the designer and the user. Furthermore the boundaries established in existing multiprocessor
systems are questioned. Reviewing the arguments surrounding the RISC vs. CISC debate clarifies the
role of Active Messages in parallel computer architecture design.

 

1.1.1 The RISC argument

 

The instruction set design principles most commonly advocated in the 70s were regularity, orthogonal-
ity, and composability [Wul81]. By following these principles, the case analysis performed by the com-
piler during code generation was supposedly simplified. This concern in simplifying the compilation
process was pushed further in high-level language (HLL) architectures that provided complex instruc-
tions to allow a one-to-one mapping from language constructs to the instruction set
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. Even more gen-

eral architectures, such as the VAX, increased the complexity of the instruction set in an attempt to cap-
ture language constructs in as few instructions as possible. The underlying goal was to “close the seman-
tic gap” [Gag73] between the high-level languages and the instruction set with the benefit of
simplifying compilations and improving code density. Small programs were equated with fast pro-
grams.

All these efforts in raising the level of the instruction set were predicated on the existence of a level of
interpretation built into the hardware, typically a micro-code engine. The RISC proponents recognized
that the compiler represents a far more powerful level of translation than the micro-coded interpreter
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.
In addition, closing the semantic gap was shown to increase the danger of “semantic mismatches”
[Wul81]: the situation where the semantics of an instruction almost, but not quite, match that of a lan-
guage construct, preventing the use of that instruction. The full recognition of the compiler’s role in
mapping language constructs onto hardware structures changed the design criteria for instruction sets:
to “provide primitives, not solutions”, that can be composed efficiently by the compiler to implement
the constructs found in high-level languages.

The primitives embodied in RISC instruction sets are a rather thin abstraction over the micro-architec-
tures found at the heart of many traditional CISC architectures. This meant that RISC instructions
could be decoded with simple logic and directly executed in hardware using similar function units
[Pat85, Rad82]. The level of interpretation represented by the micro-code was eliminated.

 

1. 

 

Examples are Lisp, Prolog, and FORTRAN machines in which the instruction set directly supported dynamic typ-
ing, range checks and/or array indexing.

 

2. 

 

Attempts to eliminate the compiler, such as the SYMBOL project, failed dramatically. Thus a compiler would al-
ways have to compose instructions to implement language constructs.
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Pipelining the execution of RISC instructions proved to be as simple as pipelining micro-code execu-
tion, but more effective because the awkward boundary between micro-sequences disappeared. In addi-
tion, the pipeline could be exposed to the compiler and integrated into code generation to avoid
pipeline interlocks to a certain degree. Eliminating the micro-code engine not only removed the over-
head of the micro-code interpreter, but enabled compiler optimizations across more levels. In particular
it allowed the compiler to specialize the translation of a high-level construct to use only the primitives
necessary in each particular instance. The hardware designer is then free to optimize the frequent sim-
ple case and rely on the software to implement the general form when necessary.

Specialization significantly reduces the number of instructions required from what a straightforward ex-
pansion would suggest. By providing only simple primitives, the cost model for the compilation re-
mains simple and reliable which simplifies optimizations and improves their accuracy. Ultimately this
results in the execution of fewer operations at the micro-architecture level, translating into fewer clock
cycles.

RISC architectures create further opportunities for optimization by exposing all storages resources that
cannot be trivially managed in hardware [Hen84]. This principle applies not only to registers which the
compiler can allocate more efficiently, but also to structures in memory such as stacks, queues, and
heaps.

Note that RISC architectures did not really invent any new architectural mechanisms
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: the micro-ar-
chitectures of many machines had the traits of a RISC, in particular, Cray’s high-performance architec-
tures contained a RISC subset. The contribution of RISC was to identify the critical aspects, to remove
the extra features, and to establish the relationship to VLSI design and to high-level language compila-
tion.

In summary, two 

 

design criteria

 

 proved critical to the success of RISC architectures: efficiency and versa-
tility. RISC architectures strive to be:

•

 

efficient

 

 in that the mapping from high-level languages to instructions is efficient (measured in
instructions per program) and the implementation of the instruction set is efficient (measured
as cost/performance, and in clocks per instruction multiplied by the clock cycle time), and

•

 

versatile

 

 in that they support a wide variety of programming languages sufficiently well, i.e.,
well enough to offset the small performance advantages of more specialized architectures with
the steeper performance growth curve of mainstream parts
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3. 

 

Except for register windows, arguably.

 

4. 

 

While not necessarily a primary concern of the original RISC proponents, the versatility was arguably instrumental
in assuring wide acceptance. Projects such as SOAR [UBF

 

+

 

84] demonstrated that RISC architectures could be im-
proved for certain programming languages, but that such hardware support is not a prerequisite for running pro-
grams in these languages and that the versatility of RISC machines is more valuable than a slight performance
improvement in special cases.
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1.2 Communication Architecture Design

 

The communication architecture plays the same role for communication than the instruction set archi-
tecture plays for computation. It therefore seems natural to require its design to follow the same princi-
ples and to be measured using the same criteria. A communication architecture must be:

•

 

versatile

 

 in that it supports a variety of parallel programming models and emerging parallel
languages, and

•

 

efficient

 

 in that the mapping from language constructs to communication primitives is effi-
cient and that these primitives map efficiently onto the processor and network hardware struc-
tures.

In addition, because all modern parallel machines are collections of workstation-class computers the
communication architecture must seamlessly extend the existing sequential instruction set architecture,
i.e., it should also be

•

 

incremental

 

 in that it complements the existing architecture without disturbing its versatility
or efficiency.

This incrementality should allow parallel computing to leverage the investment in mainstream technol-
ogy and ride the same performance curve.
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1.3 Previous Approaches to Communication Architecture

 

The formulation of these explicit design criteria allows a clear comparison of the multitude of existing
parallel machines by reviewing the communication architectures embodied in their designs. The sub-
sections below briefly evaluate in what sense the major parallel architectures—message passing, shared
memory, and message driven—satisfy the three requirements for a successful communication architec-
ture. (Chapter 5 discusses each of the three models in detail.)

 

1.3.1 Message driven architectures
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Message driven architectures have been developed specifically to support languages with fine-grain dy-
namic parallelism such as CST [HCD89], Multilisp [Hal85] and Id90 [Nik91]. The basic argument
for such execution models is that long, unpredictable communication latencies are unavoidable in
large-scale multiprocessors [ACM88, AI87, Jor83, SBCvE90, WG89] and that multithreading at the
instruction level provides an attractive avenue towards tolerating them. To support the resulting fre-
quent asynchronous transfers of control (context switches) efficiently message driven architectures inte-
grate communication deeply into the architecture.

From the perspective of the RISC vs. CISC debate, these architectures are essentially HLL communica-
tion architectures in that they implement the communication model with a one-to-one mapping from
high-level language constructs to instructions in mind. For example, the programming models on these
machines include the concept that load balancing occurs by sending small tasks to remote processors
where they allocate storage and start executing. This concept translates directly into sending messages
(or tokens) to another processor where, on message arrival, the hardware allocates storage and enqueues
the task into the scheduling queue.

The message reception mechanism with its storage management and task scheduling is implicit in the
execution model and is implemented in hardware in its full generality. Message driven architectures in-
clude a powerful set of task synchronization and scheduling mechanisms in the architecture. These
high-level constructs prevent the compiler from optimizing each use and generating specialized expan-
sions. Experi-

ments with sophisticated compilation strategies show that in many cases composing simpler mecha-
nisms on these machines yield higher performance [Tra91, SGS

 

+

 

93].

While dataflow and message driven architectures suffer from the typical inefficiencies of HLL architec-
tures and are not incremental to efficient sequential processors, Dally has demonstrated [DW89] that
the communication mechanism embodied in the J-machine is very versatile. It supports a variety of
parallel programming models including message passing, dataflow, shared memory, and actors. Data-
flow architectures are more specialized and target specific high-level parallel languages.

 

1.3.2 Message passing architectures

 

Message passing architectures were developed to a large degree at Caltech [Sei88, FK91] and JPL fol-
lowing a pragmatic strictly incremental approach. Simple single-board computers (SBCs) were mount-
ed in racks and interconnected through back-to-back parallel ports. Today, most commercial parallel
computer vendors offer descendents of these early machines, using mostly commodity technology: all
current massively parallel processors (MPPs) are essentially workstations interconnected by a custom
network.

Communication is integrated into the architecture by exposing the communication micro-architecture
to the kernel which implements the send&receive primitives available to the user. The 

 

send

 

 primitive
takes a memory buffer and sends it to a destination node. 

 

Receive

 

, conversely, accepts a message from a

 

5. 

 

In this dissertation, dataflow is considered to be a variant of message driven architectures. Although the two archi-
tectures originated in different research communities, they integrate communication into the overall architecture in
a similar manner.
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source node and stores it in a specified memory buffer. Many variants of these primitives exist and dif-
fer principally in their synchronization characteristics, e.g., whether a 

 

send

 

 blocks until the correspond-
ing 

 

receive

 

 has been executed.

The problem with the send&receive primitives is that they are not suited for direct execution and re-
quire a level of interpretation, i.e., the kernel serves the same role as CISC micro-code interpreter. For
example, blocking send&receive requires multiple message round-trips to synchronize the sender and
receiver before the actual data is transferred. The semantics of non-blocking send&receive further re-
quire the interpreter to manage unbounded resources in the form of buffers necessary to hold messages
that have arrived, but not received by the user process as well as messages which temporarily cannot be
injected into the network.

The send&receive primitives are also not well suited as compilation target for HLLs. One problem is
that with send&receive the address spaces of the two communicating processors are distinct and the
sender cannot make use of any knowledge about the receiver’s memory allocation. This creates ineffi-
ciencies, for example, in regular array computations where the compiler can pre-allocate boundary
zones into which data from neighboring processors is copied at the beginning of every time step. Even
though all storage is preallocated and all addresses are known by the sender, the message layer has to
buffer and copy received messages because the sender cannot specify the target address at the destina-
tion. In an attempt to reduce the number of such semantic clashes most send&receive implementations
provide a multitude of variants differing in buffer management, data placement (scatter-gather), tag
matching, and synchronization (blocking). The addition of scatter-gather versions, in particular, paral-
lels the quest for ever more addressing modes in CISC instruction sets.

The level of interpretation in the kernel and the resulting semantic mismatches prevent efficient and
versatile use of message passing machines. Figure 1-1 shows that since the first generation of message

Figure 1-1: Evolution of communication vs. computation performance.
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passing machines the communication performance (expressed as the processor overhead to send and re-
ceive a message) has barely 

tracked the improvements in base technology (measured through the cycle time). In the same ma-
chines, the computational performance (measured in MFLOPS) has improved at a much faster pace
due to advances in the micro-architectures and in the compilation process.

The hardware used in message passing machines offers an interesting opportunity though: given that
the micro-architecture is exposed to the kernel, is should be possible to implement a better communica-
tion architecture without hardware changes.

 

1.3.3 Shared memory architectures

 

Shared memory multiprocessors were first developed as simple extensions to uniprocessors by adding a
few additional processors onto the memory bus and having all processors share the same memory. In
larger scale systems such a simple design is no longer possible and memory is divided into numerous
modules and all processor and memory nodes are interconnected by a network similar to that is used in
message passing machines. Today’s large scale machines continue to support the illusion that all memo-
ry is equally shared by all processors, which is formalized in the PRAM model in which access to any
memory location takes unit time.

Shared memory architectures hide communication within the memory system and only let communi-
cation affect the instruction set architecture through peculiar memory access semantics. While these ar-
chitectures are incremental in the sense that the processor is not directly affected, the changes to the
memory system are substantial and require a significant design effort and real-estate investment. Argu-
ably, the memory system in shared memory multiprocessors outreaches the processor in complexity
(DASH numbers, Alewife?, KSR?).

The perception that shared memory read and write are simple abstractions over the capabilities of the
micro-architecture, i.e., that these primitives can be mapped efficiently onto the hardware, is an illu-
sion. Remote memory accesses can take an arbitrary amount of time (typically over 100 cycles) during
which the processor is usually stalled. Not only does this lead to instructions with very long execution
times, it also requires the memory or cache controller to constitute an autonomous agent which can
service remote requests while the processor is stalled. Thus, in some sense, each node in a shared mem-
ory multiprocessor consists of two processors, only one of which can be used for computation.

Mapping HLLs to shared memory is difficult because of semantic clashes. Foremost, shared memory
communication architectures only support data movement and do not provide any support for trans-
mitting events. While this is sufficient as long as data is moved to the computation when necessary it
does not support programming models in which the computation can be moved to the remote data.
Shared memory also transfers data in fixed-size messages and only performs round-trip communication
(writes require acknowledgments). Data parallel compilers and message passing programmers can often
organize communication such that data is pushed to the consuming processor by the producer, elimi-
nating communication latencies and only requiring one-way communication. Expressing this type of
communication pattern is impossible with shared memory.

Shared memory is really a high-level programming model which is implemented directly in hardware in
shared memory multiprocessors. It is not a communication architecture which can be implemented ef-
ficiently and to which many different high-level parallel languages can be mapped.

 

1.3.4 Conclusions

 

Existing approaches to parallel computer design are reminiscent of HLL architectures and provide solu-
tions instead of primitives. Consequently, none of the approaches have the versatility to serve as basis
for implementing a wide variety of high-level programing languages efficiently and, in particular, se-
matic clashes prevent any of the approaches to subsume the others. In addition, in all approaches the
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hardware must implement general storage management and is forced to take high-level scheduling or
data movement decisions without the type of information available during the compilation process.

The reluctance to adopt RISC principles for communication architecture design results in a situation
where none of the existing architectures is able to provide an efficient versatile parallel computing plat-
form. Instead, the community remains fragmented, the choice of programming languages available on
each machine remains dictated by the hardware, and efficient portable parallel programs remains an
oxymoron.
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1.4 The Active Messages Approach

 

Active Messages applies the RISC approach to communication architecture and takes the entire system
into consideration, from parallel programming languages down to the communication micro-architec-
tures, and applies quantitative criteria to evaluate the alternatives. First the key issues that a communi-
cation architecture must address are defined and then a set of primitives that address these key issues
efficiently are developed.

A new approach to communication, such as Active Messages, is enabled by two factors: the success of
RISC processor architectures and the emerging consensus on network design which force a conver-
gence of multiprocessor architectures, and the gradual shift towards high-level parallel programming
languages which imply a translation step between the programming model and the underlying architec-
ture. In addition, the first Active Messages implementations leverage the fact that message passing mul-
tiprocessors expose the communication micro-architecture to the software allowing the new
communication architecture to be prototyped without hardware development.

 

1.4.1 Active Messages

 

The basic idea in Active Messages is to provide primitives which allow the compiler to apply informa-
tion gathered in the compilation process to the effective control of communication. The most natural
way for the compiler to convey such information is to generate appropriate code, hence, Active Messag-
es strives to allow the compiler to generate code for the critical aspects of communication. This is re-
flected in the central Active Messages mechanism which associates a small amount of user-level code in
the form of a handler with the reception of every message. The handler is named by the message, typi-
cally by a pointer in the first word of the message, and is executed in the user process context immedi-
ately on message arrival. The role of the handler is to get the message out of the network and into the
ongoing computation on the node. The Active Message handlers, in essence, allow messages to be exe-
cuted instead of requiring interpretation. The key to efficient implementation of Active Messages is to
limit the resources available to handlers which must execute quickly and to completion.

The Active Messages primitives correspond closely to the hardware capabilities in message passing ma-
chines where a privileged interrupt handler is executed on message arrival, they are an extension of the
state machines handling read and write requests in 

shared memory cache controllers, and they represent a useful restriction on message driven processors.

 

1.4.2 Contributions

 

The primary contributions of this dissertation are:

• the discussion of computer architecture’s role in multiprocessor communication from which
the notion of 

 

communication architecture

 

 is derived and which leads to the definition of the
four key issues that a communication architecture must address,

• a critique of traditional communication architectures which shows that existing approaches to
communication in multiprocessors are not well suited as efficient general-purpose communi-
cation architectures, 

• the development of Active Messages, a new class of communication architectures which ad-
dress the key issues and provide a set of versatile, efficient, and incremental communication
primitives, and

• the demonstration that Active Messages subsumes existing communication architectures (e.g.,
that the programming models supported by traditional communication architectures can be
implemented efficiently using Active Messages) and enables new high-level parallel program-
ming languages.
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1.4.3 Dissertation overview

 

The dissertation begins in Chapter 2 with a discussion of the role of computer architecture in multipro-
cessor communication. The introduction of the notion of a communication architecture focuses the
discussion on the central element of multiprocessor architecture and allows the definition of the aspects
of communication that a communication architecture must define.

In preparation for the detailed discussion of communication architectures, Chapter 3 provides the nec-
essary background in the form of descriptions of communication micro-architectures. In particular the
nCUBE/2 and CM-5 micro-architectures are used heavily in this dissertation and are presented in de-
tail as the information available in the literature is incomplete. Beyond providing this background, the
discussion of the micro-architectures crystallizes the key issues that any communication architecture
must address if it is to allow efficient implementations.

Chapter 4 is devoted to the definition and implementation of Active Messages. After a discussion of the
concepts underlying Active Messages, the development of the nCUBE/2 and CM-5 implementations
demonstrate the incrementality of Active Messages. The efficiency of the mapping onto hardware struc-
tures is analyzed using micro and macro-benchmarks which show performance close to the hardware
limits while maintaining a simple cost model. A careful examination of the implementation details re-
veals significant inefficiencies in both micro-architectures and suggests avenues for hardware improve-
ments.

Active Messages is contrasted to the traditional communication architectures in Chapter 5. The discus-
sion of message passing, message driven, and shared memory architectures shows that the communica-
tion primitives embodied in these architectures are tailored for a specific programming model and not
suited as target for the compilation of other parallel programming languages. Chapter 5 further devel-
ops mappings of the message passing and shared memory communication primitives to Active Messag-
es. Active Messages is well suited to support the communication needs of both, although hardware
support for a local/remote check is desirable if shared memory is to be emulated directly.

The real efficiency and versatility of Active Messages comes into play in Chapter 6 which presents im-
plementations of two novel parallel languages. Split-C supports message passing, data parallel and
shared memory programming styles and contains several features made possible by the flexibility of Ac-
tive Messages. The implementation of Id90 shows that dynamic parallel languages benefit from exten-
sive specializations of the expansion of high-level constructs and from resource management in the
compiler. The performance achieved with Id90 on the CM-5 is competitive with message driven archi-
tectures which were specially designed to support this type of programming language.

Chapter 7 concludes the dissertation and uses the experience gained with Active Messages to suggest
improvements to existing communication micro-architectures, and to show that Active Messages offers
an incremental path to higher communication performance.


