

171

7

Conclusions and Prospect

Active Messages achieves an order of magnitude performance improvement over message passing and
supports a variety of programming models, including shared memory and dataflow, efficiently on the
same hardware platform. A departure from previous attempts at developing efficient communication
architectures is key to this success: the entire system has to be taken into account, from the micro-archi-
tectural level up to the language system. The current state of languages and compilers makes it possible
to predicate the architectural design on the use of high-level parallel languages. Exposing the hardware
and its performance characteristics to the compiler in a rational manner allows the key communications
issues to be addressed in a specialized form in the run-time substrate of each language instead of requir-
ing the architecture to implement a general solution. However, determining the right level at which to
address each issue requires complex trade-offs and the various layers of abstraction must be designed
carefully to avoid unnecessary overheads.

This dissertation develops a conceptual framework in which communication can be integrated into the
compilation process and trade-offs can be made across all hardware and software layers of the system.
The notion of a communication architecture which extends the sequential instruction set architecture
forms the central focus of the framework. It allows the RISC design philosophy to be leveraged and the
criteria that are used for ISA design and evaluation to be extended to communication.

The most important attributes of a communication architecture are versatility, efficiency, and incre-
mentality: a communication architecture must be versatile to support a variety of parallel programming
models and emerging parallel languages, it must be efficient in the mapping from language constructs
to communication primitives and in the mapping of these primitives onto the processor and network
hardware structures. Because modern parallel machines are essentially a collection of workstation-class
computers, the communication architecture must also be incremental and complement the sequential
instruction set architecture without disturbing its versatility or efficiency.

Active Messages is proposed as an efficient, versatile, and incremental communication architecture. It
addresses the four key communications issues (data transfer, send failure, synchronization of computa-
tion and communication, and network virtualization) at carefully chosen levels of the system:

• On the sending side the computation transfers data directly into the network interface when
sending a message. On the receiving side, the Active Messages handler extracts the data from
the network and places it into the locations expected by the computation. The mechanisms
for transferring data from the application data structures into the network and vice-versa are
kept implementation dependent and are expected to vary from one machine to another, just
as the addressing modes and instruction encodings vary.

• Each message names its handler allowing the communication architecture to accept incoming
messages anytime without buffering or queueing by running the handler. To prevent uncon-
trolled nesting of handlers, communication patterns are restricted to requests and replies

172 C

ONCLUSIONS

AND

 P

ROSPECT

which allows the communication architecture to accept only incoming replies when a reply at-
tempt fails.

• The execution of Active Message handlers is atomic relative to other handlers (except when at-
tempting to reply) and cheap critical sections in the computation must be supported, al-
though the specific mechanism remains implementation dependent. This allows the compiler
to generate handlers which interact with the scheduling of computation by manipulating the
appropriate data structures atomically.

• Virtualizing the network when using Active Messages requires checking the destination node
and process of a message, as well as translating the handler address at the destination. Because
a user-level handler must be executed on message arrival it is best to coordinate the scheduling
of processes on all nodes running a parallel application, although this coordination can be re-
laxed with the appropriate hardware support in the network interface.

The effectiveness of the Active Messages approach is demonstrated via implementations on the
nCUBE/2 and CM-5 multiprocessors. On the CM-5, Active Messages reduces the communication
overhead by an order of magnitude over traditional message passing models and enables competitive
implementations of message passing, shared memory, and message driven programming languages on a
single hardware platform.

The improvement over message passing is achieved by eliminating expensive general purpose memory
allocation and synchronization from the communication architecture and placing the responsibilities
onto the run-time system where they can be handled more efficiently. The analysis of various send&re-
ceive message passing implementations shows that, among other problems, the lack of a global address
space prevents these models from achieving high performance because the sender cannot name pre-allo-
cated resources at the destination to handle the message.

The reduction in overhead brings the latency of short round-trip messages to remote nodes into the
same order of magnitude than found in shared memory multiprocessors which expend significant hard-
ware support for communication. As shown in the case of Split-C, Active Messages allows access to re-
mote memory locations with the same latency but with more flexible access methods than just read and
write. This flexibility is exploited in Split-C to implement split-phase memory accesses and one-way
stores. These offer high throughput and good overall system utilization because multiple remote refer-
ences and local computation can all be overlapped.

In the case of fine-grained dynamic parallel languages, Active Messages enables new compiler optimiza-
tions allowing stock hardware to compete with custom dataflow and message passing processors. The
compilation strategy employed for Id90 integrates communication in the form of Active Messages deep
into the optimization process and illustrates that the compiler can specialize communication, memory
allocation, and synchronization to the point that the expensive general mechanisms embodied in the
custom architectures are counter-productive.

The communication performance demonstrated on the CM-5 with Active Message indicates that it is
indeed possible to build general-purpose multiprocessors which support a large variety of parallel pro-
gramming models efficiently. The CM-5 itself comes close to that goal and supports each of existing
programming models as well as hardware tailored to a specific programming model (perhaps with the
exception of cache-coherent shared memory). With respect to cache coherent shared memory, Active
Messages supports the communication requirements well but intentionally separates the address trans-
lation issues from the communication and therefore requires additional hardware support to match the
efficiency of the automatic address renaming occurring in cache-coherent shared memory hardware

1

.

The research leading to this dissertation began with a strong hardware focus on the design of powerful
network interfaces for multiprocessors. The study of existing systems quickly revealed that, not hard-
ware per se, but the total system integration was the problem. If progress was to be made, it had to

1.

Incidentally, the Wisconsin Windtunnel project managed to use the virtual memory hardware and the memory
error correcting codes (ECC) to perform the renaming with considerable success.

173

build on a solid understanding of the entire hardware and software system and develop out of a concep-
tual framework for integrating communication into the compilation process

2

. With the foundation laid
in this dissertation, it is now possible to close the circle and design communication micro-architectures
which support a general-purpose communication architecture such as Active Message more efficiently
than today’s multiprocessors. In fact, this dissertation has in several occasions scratched the surface of
possible improvements by analyzing the timing of Active Messages in detail on the CM-5 and the
nCUBE/2 to uncover a number of simple hardware changes that would improve the performance dra-
matically. The fact that the implementations of Id90 on the CM-5 and the J-Machine use the same in-
termediate Threaded Abstract Machine (TAM) further allowed a direct evaluation of the on-chip
communication features built into the J-Machine MDP processor. Section 7.1 below summarizes these
findings and presents a number of network interface improvements proposed in related research
projects. The large number of options underlines that Active Messages is in fact contributing to the de-
velopment of higher-performance network interfaces than are available today.

2.

Dataflow systems do integrate communication into the compilation process, but at the expense of the computa-
tional performance.

174 C

ONCLUSIONS

AND

 P

ROSPECT

7.1 Impact on Communication Micro-Architectures

The simplicity and versatility of Active Messages provide an attractive optimization goal: Active Mes-
sages supports a wide variety of parallel programming models and thus new hardware features that im-
prove the performance of Active Messages benefit all programming models alike. This is in contrast to
existing approaches at improving performance, such as shared memory hardware, which improves a
particular programming model, often at the expense of others.

The simple implementation of Active Messages in itself helps identifying possibilities for improvement.
The two dozen instructions required to send or handle an Active Message allow a careful cycle-by-cycle
accounting of the costs and in many cases the first-order bottlenecks are simple to alleviate, the
nCUBE/2 being a particularly good example. This comes at no surprise: with the send&receive soft-
ware overheads for buffering and synchronization, the cost of the few instructions accessing the net-
work interface is insignificant and was never optimized.

Three subsections illustrate the possibilities for improvement offered by Active Messages: improving
the network interface to reduce the access cost, hardware support for accelerating handlers, in particu-
lar, improving the dispatch on message arrival, and support for building a global address space.

7.1.1 Improving Network Interfaces

The most obvious, and probably also most important, improvement concerns the placement of the net-
work interface in the node architecture. This is evidenced by the 50% of all cycles in CM-5 Active Mes-
sages that are spent in load and store instructions accessing the network interface across the MBUS. On
the nCUBE/2 the problem is similar: the DMA instructions are executed on-chip but by the instruc-
tion fetch unit instead of the execution (or a separate DMA) unit with the effect that instruction
prefetch stops for a dozen clock cycles.

The biggest obstacle to bringing the network interface closer to the processor is not necessarily of tech-
nical nature. Market forces dictate that the processor and closely linked support functions be off the
shelf components which are designed and produced for the uniprocessor market. This limits the entry
point at which a multiprocessor designer can insert the network interface in the overall architecture.
For example, on the CM-5 it would be easy to place the network interface onto the cache bus instead of
the memory bus, thereby cutting the access time to the NI in less than half. It would as well be feasible
to implement the network interface as a coprocessor. Both options, however have only a short lifetime:
the next generation processor (superSPARC) does not allow either option with the result that the net-
work interface would have to be redesigned and that its performance would not scale with the compu-
tational improvement.

A number of research projects have explored closer coupling of the processor and network interface.
The J-Machine (described in § 5.2.2.1) provides instructions to send directly from the register set and
to receive into on-chip memory. The results in Section 6.2 suggest that adding a similar network inter-
face to a CM-5 could reduce the execution time of Id90 programs by roughly 15%.

The iWarp processor [Bor88, Bor90] integrates the network interface (called communication agent)
onto the processor chip as well. Careful attention is paid to enable the streaming of data, both, into the
computation and into memory. A special set of registers (called gates) serve to access to outgoing and
incoming FIFOs and can be used as operands in arithmetic instructions. Thus, in a single cycle, iWarp
can access the message data and perform an arithmetic operation. iWarp provides multiple DMA en-
gines (called spooling gates) to transfer messages directly between the memory and the network. Unlike
on the nCUBE/2, the receiving DMA can be set-up after the head of the message has been inspected
such that the data can be transferred directly into application data structures.

Another study [HJ92] adds a network interface to a Motorola MC88110 processor in three different
places: off-chip on the second level cache bus, on-chip on the first-level cache bus, and on-chip as part
of the register set. The results reported for two Id90 programs similar to the ones used in Section 6.2
show little benefit (under 5%) in bringing the network interface on-chip unless it is integrated into the

I

MPACT

ON

 C

OMMUNICATION

 M

ICRO

-A

RCHITECTURES

175

instruction and register sets at which point overall improvements on the order of 20% are seen. Unfor-
tunately the study does not compare the three variants to a machine with a network interface attached
to the memory bus, such as the CM-5. The cycle counts for sending and receiving a message indicates a
significant improvement over the CM-5 in all cases: the three variants take from 3 to 6 cycles to send a
message and 5 to 8 cycles to receive! The dual issue capability of the MC88110 is found to improve
sending and receiving of messages, however, computation benefits even more and the base machine
with a network interface on the second-level cache bus spends over 50% of its time in the communica-
tion.

The MC88110/MP project [PBGB93] uses an MC88110 and adds an on-chip network interface as an
additional function unit next to the integer, floating-point, and load/store units. The network interface
consists of a number of register sets in which messages are composed and received. Special instructions
move data between the general-purpose registers and the network registers and, using the dual-issue ca-
pability, allow 16 bytes to be added to a message in a single clock cycle. Receiving messages is limited to
8 bytes per cycle due to the smaller number of write ports into the general-purpose register files.

Beyond just bringing the network interface on-chip, the above projects also optimize the mechanics of
message composition and reception. The use of registers to hold messages instead of a FIFO has several
benefits. Foremost, in the case of send failure, the message is still available in the registers and can be re-
sent without requiring the data to be pushed into the FIFO anew. This means that in an environment
which integrates message send into the code generation (i.e., moves data directly from variables allocat-
ed to general-purpose registers into the network interface) a generic retry code sequence can be used.
Several optimizations proposed in [HJ92] use registers to accelerate message composition: the return
address contained in a request message can be moved to the head of the reply message within the net-
work interface itself, and in consecutive messages with identical data or identical address only the new
fields need be set.

Additional support in the network interface for the most frequent message types may be beneficial as
well. For example in *T [NPA92], issuing a global memory fetch takes a single store double instruction
(the network interface is memory mapped in this case). The 64-bit data value is interpreted as a global
address and expanded in the network interface into a node/local-address pair. For the return address a
pointer to the current thread descriptor (the current frame pointer in the case of TAM) is cached in the
network interface and the return handler address is calculated from the low-order bits of the store ad-
dress.

7.1.2 Hardware support for message handlers

The analysis of the hypothetical CM-5/J-Machine hybrid in Section 6.2 highlights the difficulty in in-
tegrating the asynchronous message arrival into the computation. Even though the J-Machine network
interface allows much faster message composition and consumption, a large part of the benefits are
compromised by the cost of forming critical sections that execute atomically with respect to message ar-
rival.

On current message passing machines the way to signal an asynchronous event is to take an interrupt.
This flushes the pipeline and enters the kernel. Executing the Active Message handler requires a crawl-
out to user-level and a trap back into the kernel in addition. Forming critical sections is similarly expen-
sive given that disabling and re-enabling interrupts both require kernel traps. The MC88110/MP im-
proves the latter aspect by providing a user-level interrupt enable bit. The kernel retains it own
interrupt mask which overrides the user-level bit. Critical sections cost a single cycle (e.g., two instruc-
tions) on the MC88110/MP.

The alternative to interrupts is polling. The MC88110/MP proposes several efficient polling primi-
tives. The simplest form checks for message arrival and, if successful, loads the message into the net-
work registers a single instruction. More powerful variants incorporate message handler dispatch into
polling. The key idea is to combine the traditional status register of the network interface with the han-
dler dispatch on the first word of the message. Instead of returning a boolean result, a poll can check
the network interface and return a pointer to the appropriate code sequence handling the situation: if

176 C

ONCLUSIONS

AND

 P

ROSPECT

the previous send failed a pointer to the retry code sequence is returned, if a message has arrived the
first word of the message is returned, otherwise the source operand to the poll (which may point to the
thread scheduler or to the next instruction) is returned. The poll can then be followed by an indirect
jump with the result that the poll and the handler dispatch occurs in two instructions. The result of the
optimizations proposed in the MC88110/MP is that sending an Active Message with 20 bytes of pay-
load takes two clock cycles (assuming the payload comes from the general-purpose registers) and han-
dling the same message costs three cycles of overhead.

An interesting observation made in the course of implementing TAM on the J-Machine is that there is
a continuum of intermediate design points between polling and interrupts. The basic interrupt mind-
set is that an interrupt can occur between any two instructions. With the introduction of critical sec-
tions, interrupts cannot occur during certain, typically short, code sections. If the size of these code sec-
tions is increased, then at some point interrupts are disabled most of the time and only enabled during
brief “windows”. This is the technique used to implement polling on the J-Machine: a poll consists of
an interrupt enable immediately followed by a disable. (Similar interrupt windows are used in real-time
operating systems to allow high-priority interrupts during lengthy paths through the kernel.) The
trade-off between polling and interrupts is then a matter of cost and of convenience. Experience with
Split-C and TAM indicates that polling is simpler and cheaper if code generation takes communication
into account, i.e., can insert the polls automatically. The main problem with polling lies in code se-
quences compiled by a standard uniprocessor compiler

3

 which do not include any polls and, as a conse-
quence, do not service the network. A simple solution to this problem is to add a timer to the network
interface which starts when a message is received and signals an interrupt if it is not handled after a con-
figurable amount of time.

The processor can be off-loaded from the burden of handling asynchronous events by using a coproces-
sor to handle messages. The Intel Paragon, the Meiko CS-2, and, in essence, all cache coherent shared
memory multiprocessors follow this approach. The coprocessor can be fully dedicated to communica-
tion and can poll the network continuously. The advantage of using a general-purpose processor as
message coprocessor is flexibility. In general the coprocessor can be simpler than the main processor (for
example, message handling can be restricted not to involve floating-point operations) and allow a tight-
er integration of the network interface and the processor itself. The Meiko CS-2, for example, inte-
grates a simple Sparc-compatible processor directly onto the network interface (the main processor on
each node is a superSPARC). Simple requests, such as a remote write or remote read are handled by
hardware state machines and more complicated ones can involve the coprocessor. The Paragon forgoes
the opportunity to integrate the network interface and uses two (or more) identical processors. The dis-
tinction between the “main” processor and the message coprocessor is a pure software convention.

The difficulty with message coprocessors is the communication between the processor and the copro-
cessor. If a message arrives and mostly needs to interact with memory, e.g., a remote read or write re-
quest, then the coprocessor solution works great. If a small message, for example the reply to a remote
fetch, arrives and needs to be integrated into the computation then the coordination between the co-
processor and the processor poses problems. Typically, careful engineering attempts to use cache line
transfers between the two units to bring the data close to the processor efficiently.

Cache coherent shared memory multiprocessor, in essence, turn the memory controller into a coproces-
sor with a fixed set of handlers hard-coded in state machines. The coordination between the processor
and the memory controller is kept simple by limiting the types of requests (e.g., reads and writes) and,
more significantly, by having the processor block whenever a remote request involves a reply that needs
to be passed back to the processor. None of the processors used in current shared memory multiproces-
sors supports multiple outstanding replies

4

.

3.

As suggested in Chapter 1, most multiprocessors use a standard uniprocessor on each node; being able to use the
highly tuned libraries (such as matrix multiply) developed for the uniprocessor is very attractive.

4.

While weak stores support multiple outstanding requests, at no time is more than a single reply to the processor
outstanding. Most cache controllers support multiple outstanding prefetches, but they are independent of the pro-
cessor itself (this is why on all machines values are prefetched into the cache and not into registers).

I

MPACT

ON

 C

OMMUNICATION

 M

ICRO

-A

RCHITECTURES

177

7.1.3 Support for a global address space

The experience with Split-C has demonstrated that a global address space not only simplifies program-
ming but is also beneficial from a performance point of view. Global addresses allow the message sender
to name resources needed at the remote end to handle the message. Building a global address space in
software without hardware support is clearly feasible but incurs a substantial cost. Split-C places the
burden of controlling this cost on the programmer by exposing the difference between the local point-
ers understood by the hardware and global pointers which require translation in software. An example
of a more automated approach is the Wisconsin Windtunnel which uses memory ECC (error correct-
ing code) bits to detect pointers to remote memory and trap to the translation software only when re-
quired.

The general strategy promoted by Active Messages is to separate the notion of a global address space
from the communication proper. This is exemplified in Split-C where address arithmetic is used to
build a two-dimensional address space while the accessors to objects in this global address space are im-
plemented using Active Messages. This set of accessors can be extended to new data types, new forms of
remote operations, as well as new synchronization between the communication and communication
without any interference with the global address space itself.

The most costly operation related to Split-C’s global address space is the local/remote check that occurs
for every global pointer dereference. Performing this check in hardware is exceedingly simple and only
requires comparing a bit field in the address with the local node number. The difficulty is in keeping
the memory access cheap in case of local accesses. Even if the check occurs in a single cycle, a check-
branch-load/store sequence remains significantly more expensive than a simple load/store, as a shared
memory architecture would support.

For large data structures that are mapped across multiple nodes, the cost of the address arithmetic re-
quired for the layout is higher than that of the local/remote check. For example, indexing into a Split-C
spread array involves the code sequence shown in Figure 7-1 which includes a division and modulo by
the number of nodes in the system. On the CM-5, a power-of-two number of nodes is assumed such
that a shift and a mask can be used instead of the divide and modulo. Nevertheless, while the local re-
mote check costs only two cycles, the indexing costs five.

If global memory access randomization using hashing and low-order interleaving techniques is desired,
the address arithmetic is further complicated. Memory controllers such as the one designed for the RP3
[Pfi85] apply a pseudo-random hashing function to the low-order address bits and rotate the result
right in order to prevent memory references with a constant stride to cause contention on a small num-
ber of memory modules.

The final form of support desirable for building a global address space concerns data movement and
replication. The essential support required to move the location of data transparently is renaming of ad-
dresses. In essence, the associative cache look-up in cache-coherent shared memory multiprocessors al-
lows any global address to be transparently renamed into a local address (that of a cache line). The J-

Figure 7-1: Typical code sequence for Split-C spread array indexing

1: struct gaddr { int node; int *addr; };
2: struct gaddr sPtr;
3: int index, tmp;
...

4: tmp = sPtr.node + index;
5: sPtr.node = tmp % PROCS;
6: sPtr.addr += (tmp/PROCS)*sizeof(int);
...

1: int *global sPtr;
2: int index;
...
3: sPtr += index;
...

178 C

ONCLUSIONS

AND

 P

ROSPECT

Machine attempts to provide a similar mechanism explicitly in the form of two instructions which ac-
cess an on-chip associative translation cache. The

enter

 instruction enters a value with the corre-
sponding tag into the cache and the

xlate

 instruction queries the cache for the value corresponding to
a tag. However, this mechanism does not appear to be useful in practice [NWD93], primarily due to
the fact that these instructions are not very fast on the J-Machine and because the cache the trap taken
when

xlate

 misses is too expensive. In a similar attempt, the Wisconsin Windtunnel uses the Sparc
virtual memory system to control renaming of remote addresses to local memory and implements a va-
riety of cache coherency protocols in software. The enabling factors for the Windtunnel are the explicit
software control over the renaming of addresses and the separation of the address renaming from the
communication itself. A major problem experienced in the Windtunnel project is the page-size granu-
larity of the virtual to physical address mapping.

I

MPACT

ON

 O

PERATING

 S

YSTEMS

179

7.2 Impact on Operating Systems

The discussion of Active Messages in this dissertation expressly assumes a parallel computing setting in
which the scheduling of all processors participating in the execution of a parallel program is coordinat-
ed. This assumption is realistic because the tight coupling of all parts of a parallel program require this
type of coordination for performance considerations and, as a consequence, numerous studies have ex-
plored coordinated scheduling policies for multiprocessors [GMB88, Cro93, GTU91, ZM90].

With Active Messages the execution of the message handler at user-level in some sense requires the des-
tination process of a message to be running at message arrival time. On the CM-5, the operating uses
strict gang scheduling to ensure that all processors of a partition run the same parallel process at the
same time. In addition, to cope with messages that are in flight at the time of a context switch, the net-
work state is fully saved and restored at a quantum boundary. More sophisticated network interfaces,
such as the one proposed for the MC88110/MP add a process ID automatically to every message sent.
At the receiving node the network interface compares the message process ID with the currently run-
ning process and traps to the kernel if the two do not match. This allows the kernel to either buffer the
message or to initiate a context switch. While such a mechanism principally allows user-level message
reception without coordinated scheduling, its main purpose is to simplify context switches by allowing
the context switch to occur even if a number of messages are still in transit.

The requirement for coordinated scheduling is, in some sense, analogous to the coordinated memory
management (also known as maintaining TLB consistency) that is mandatory in shared memory multi-
processors [Tel90]. In a shared memory architecture, the node sending a remote memory reference
translates the virtual address issued by the processor into a physical address. The request message itself
contains the physical address only and is not specific to any user process. This means that whenever the
virtual to physical address translation is changed on a processor the operating system must propagate
the change to all other nodes as well.

180 C

ONCLUSIONS

AND

 P

ROSPECT

7.3 Summary

The initial motivation for Active Messages was to simply give parallel programming language imple-
mentations access to the network hardware on message passing machines without the traditional layers
of software overheads. In the process of achieving this goal, Active Messages emerged as a new method-
ology to view communication in a multiprocessor. This dissertation develops this methodology to ratio-
nalize the integration of communication into the node architecture of a multiprocessor. The focus is on
understanding how the hardware and software layers of abstraction interact such that the key commu-
nications issues can be addressed at the right level. The analysis of traditional systems (e.g., message
passing, shared memory, message driven, and dataflow) concludes that these are akin to the high-level
language instruction set architectures of the 70’s and that an approach, analogous to RISC, predicated
on the use of high-level languages with sophisticated compiler technology is called for.

Active Messages implementations on existing hardware provide simple communication primitives ap-
propriate for code generation and decouple storage allocation and sophisticated scheduling from com-
munication proper. This enables powerful compiler optimizations and results in a more efficient system
overall. On a single platform, the CM-5, Active Messages supports message passing, message driven,
dataflow, and NUMA shared memory programming models today as efficiently as more specialized
hardware. Active Messages also provides a communication substrate which can be coupled with hard-
ware support for a global address space to implement cache-coherent shared memory. A number of on-
going hardware developments use Active Messages as the basis and promise a dramatic improvement in
communication performance. To date, the Active Messages communication architecture offers the most
versatile and efficient avenue towards multiprocessors which support a full spectrum of parallel pro-
gramming languages.

