Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Sequential Search

To search is to look for something systematically on behalf of a client.
The search-use pattern is a specialization of the compute-use pattern.

To search is to look for something systematically on behalf of a client.
The search-use pattern is a specialization of the compute-use pattern.
「/* Search. */
//* Use the search result. */
We search for something in a collection of items.
The collection can be unbounded, e.g., natural numbers, or values in a file. The collection can be bounded, e.g., characters in text, or elements of an array.

Search in an unbounded collection can succeed or run forever, and in a bounded collection can succeed or fail.

Indeterminate-iteration, the mother of all searches, seeks the smallest $\mathrm{k} \geq 0$ with some property, i.e., negation of the condition:

```
Fint k = 0
while ( condition ) k++;
```

It is called a sequential search because it checks values one at time, in order.

Indeterminate-iteration, the mother of all searches, seeks the smallest $\mathrm{k} \geq 0$ with some property, i.e., negation of the condition:

```
Fint k = 0;
;while ( condition ) k++;
I/* Use k.*/
```

It is called a sequential search because it checks values one at time, in order. When it stops, k is the value sought.

Indeterminate-iteration, the mother of all searches, seeks the smallest $\mathrm{k} \geq 0$ with some property, i.e., negation of the condition:

```
; int k = 0;
|while ( condition ) k++;
I/* Use k. */
```

It is called a sequential search because it checks values one at time, in order. When it stops, k is the value sought.

Sequential search can be unbounded, or it can be bounded:

```
|int k = 0;
!while ( k<=maximum && condition ) k++;
```

Generalizing, sequential search in a collection sets p to what you are looking for (or where it is), or an indication that it was not found:

```
p = the-first-place-look;
|}\mathrm{ while ( p is-not-beyond-the-last-place-to-look &&
        p is-not-what-you-are-looking-for )
    p = the-next-place-to-look;
|if ( p is-not-beyond-the-last-place-to-look ) /* Found. */
ielse /* Not found. */
```

We consider four applications of sequential search in a collection:

- Primality Testing
- Search in an Unordered Array
- Array Equality
- Longest Descending Suffix
and Find Minimal in an Unordered Array, which isn't really a sequential search, and contrasts with it.

We consider three applications of sequential search in a collection:

- Primality Testing
- Search in an Unordered Array
- Array Equality
- Longest Descending Suffix
and Find Minimal in an Unordered Array, which isn't really a sequential search, and contrasts with it.
N.B. We have used the term collection loosly. We shall later use the term collection in a more technical sense.

Definition: Natural number p is prime if its only divisors are 1 and p; it is composite otherwise.

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

A statement-comment says exactly what code must accomplish, not how it does so.
$2 \begin{array}{lllllllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 15 & & \text { prime }\end{array}$

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

There is no shame in reasoning with concrete examples.
$\begin{array}{llllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ composite

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

There is no shame in reasoning with concrete examples.

```
2
83
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

```
\(\begin{array}{llllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 1415\)
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

```
2
曻
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

```
\(\begin{array}{llllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 1415\)
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

```
2
曻
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

```
2
年
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

```
2
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

```
2
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Searching for the smallest divisor of p that is greater or equal to 2.

```
2
```

Application: Write a program segment to say whether p is prime or composite.
/* Given $\mathrm{p} \geq 2$, output whether p is prime or composite. */
/* Search. */
/* Use. */

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Searching for the smallest divisor of p that is greater or equal to 2.

```
2
```

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    /* Use d. */
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Searching for the smallest divisor of p that is greater or equal to 2.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    if ( ___ ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Trof Refine specifications and placeholders in an order that makes sense for development, without regard to execution order.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    if ( d__p ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Be alert to high-risk coding steps associated with binary choices.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    if ( d==p ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Be alert to high-risk coding steps associated with binary choices.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    int d = 2;
    while (
```

\qquad

```
        ) d++;
    if ( d==p ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Master stylized code patterns, and use them.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    int d = 2;
    while ( (p%d)__0 ) d++;
    if ( d==p ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Be alert to high-risk coding steps associated with binary choices.

Application: Write a program segment to say whether p is prime or composite.

```
/* Given p\geq2, output whether p is prime or composite. */
    /* Search. Let d\geq2 be the smallest divisor of p. */
    int d = 2;
    while ( (p%d)!=0 ) d++;
    if ( d==p ) System.out.println( "prime" );
    else System.out.println( "composite" );
```

Be alert to high-risk coding steps associated with binary choices.

New Application: Search for a value v in an unordered array $A[0 \ldots n-1]$.
/* Find v in A[0..n-1], or indicate it's not there. */

$\mathbf{v} 34 \quad$| 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 42 | 34 | 14 | 23 |

Application: Search for a value v in an unordered array $A[0 . . n-1]$.
/* Find v in A[0..n-1], or indicate it's not there. */

There is no shame in reasoning with concrete examples.

Application: Search for a value vin an unordered array A[0..n-1].

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

(week algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

(week algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

tar Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

(week algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Find v in A[0..n-1], or indicate it's not there.*/
```

Tro Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array $A[0 . . n-1]$.

```
/* Given array A[0..n-1], n\geq0, and value v, let k be the smallest non-negative
``` integer s.t. \(\mathrm{A}[\mathrm{k}]==\mathrm{v} . * /\)

A statement-comment says exactly what code must accomplish, not how it does so.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */
(tit Choose data representations that are uniform, if possible.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (k<=maximum \&\& condition) k++;

Master stylized code patterns, and use them.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (k<=maximum \&\& \(A[k]!=v\)) k++;

Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (\(k<=n-1\) \&\& \(A[k]!=v\)) \(k++;\)

Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (\(k<n\) \&\& \(A[k]!=v\)) k++;

Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (\(k<n\) \&\& \(A[k]!=v\)) k++;

Short-circuit mode and. If left operand is false, the right operand is not evaluated, which prevents a "subscript out-of-bounds error".

Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (\(A[k]!=v ~ \& \& k<n\)) k++;

Short-circuit mode and. The reverse order would be incorrect because the "subscript out-of-bounds error" would occur before discovering that \(\mathrm{k}<\mathrm{n}\) is false.

Be alert to high-risk coding steps associated with binary choices.

\section*{INVARIANT}

Application: Search for a value \(v\) in an unordered array \(A[0 . . n-1]\).
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
while (\(A[k]!=v ~ \& \& k<n\)) k++;

Alternate between using a concrete example to guide you in characterizing "program state", and an abstract version that refers to all possible examples.

New Application: Are arrays \(A[0 . . n-1]\) and \(B[0 \ldots n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,

``` else set e to false. */

A statement-comment says exactly what code must accomplish, not how it does so.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 \\
\hline A & 14 & 42 & 34 & 14 & 23 \\
\hline B & 14 & 42 & 34 & 14 & 23 \\
\hline
\end{tabular}

\section*{equal}

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B, else set e to false. */

```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

```

Tie Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Sequential Search for not equal.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0 & 1 & 㞓 & 3 & 4 \\
\hline A & 14 & 42 & 34 & 14 & 23 \\
\hline B & 14 & 42 & 70 & 14 & 23 \\
\hline
\end{tabular}

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while ( k<=maximum \&\& condition ) k++;
if ( k<=maximum ) /* Found. */
else /* Not found. */

```

Master stylized code patterns, and use them.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{0} & \multicolumn{2}{|r|}{軍} & 3 & 4 \\
\hline A & 14 & 42 & 34 & 14 & 23 \\
\hline B & 14 & 42 & 74 & 14 & 23 \\
\hline
\end{tabular}

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while ( k<=maximum \&\& A[k]==B[k] ) k++;
if ( k<n ) e = false;
else /* Not found. */

```

Be alert to high-risk coding steps associated with binary choices.

\section*{equal}

Application: Are arrays \(A[0 . . n-1]\) and \(B[0 . . n-1]\) equal?
```

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while ( k<n \&\& A[k]==B[k] ) k++;
if ( k<n ) e = false;
else e = true;

```

Be alert to high-risk coding steps associated with binary choices.

\section*{Technique: Sentinel search.}
```

/* Given p\geq2, output whether p is prime or composite. */
/* Search. Let d\geq2 be the smallest divisor of p. */
int d = 2;
while ( (p%d)!=0 ) d++;
if ( d==p ) System.out.println( "prime" );
else System.out.println( "composite" );

```

Recall the search for the smallest divisor of \(p\) in Primality Testing.
```

2

```

Technique: Sentinel search.
```

2

```

Technique: Sentinel search.
```

Q. Why was there no bound check?
A. Because every number is divisible by itself.

```
/* Given \(\mathrm{p} \geq 2\), output whether p is prime or composite. */
 /* Search. Let \(d \geq 2\) be the smallest divisor of p. */
 int d = 2;
 while ((p\%d)!=0) d++;
 if (d==p) System.out.println("prime");
 else System.out.println("composite");

Divisibility of every number by itself "stands guard" to prevent going too far.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int \(k=0\);
```

while ( k<n \&\& A[k]!=v ) k++;

```
Q. How can we obviate this bound check?

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume A[n] exists. */ int \(k=0\); while (\(k<n\) \&\& \(A[k]!=v\)) k++;
Q. How can we obviate this bound check?

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume \(A[n]\) exists. */
```

A[n] = v; // Stand guard to keep k\leqn.
int k = 0;
while ( k<n \&\& A[k]!=v ) k++;

```
Q. How can we obviate this bound check?
A. Copy v into A[n].

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume \(A[n]\) exists. */
\(A[n]=v ; \quad / /\) Stand guard to keep \(k \leq n\). int \(k=0\); while (\(A[k]!=v\)) k++;
Q. How can we obviate this bound check?
A. Copy v into A[n]. Eliminate the check.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume A[n] exists. */
\(A[n]=v ; \quad / /\) Stand guard to keep \(k \leq n\). int \(k=0\); while (\(A[k]!=v\)) k++;

If you prefer to not assume that \(A[n]\) exists,

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int temp \(=A[n-1]\); // Save A[n-1].
\(\mathrm{A}[\ldots]=\mathrm{v}\);
// Stand guard to keep \(\qquad\) .
int \(k=0\); while (\(A[k]!=v\)) k++;

If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A . * /\) int temp \(=A[n-1]\); \(\mathrm{A}[\mathrm{n}-1]=\mathrm{v}\); int \(k=0\); while (\(A[k]!=v\)) k++;

If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\).

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int temp \(=A[n-1] ; \quad / /\) Save \(A[n-1]\).
\(A[n-1]=v ; \quad / /\) Stand guard to keep \(k<n\).
int \(k=0\);
while (\(A[k]!=v\)) k++;
\(\mathrm{A}[\mathrm{n}-1]=\) temp; // Restore \(\mathrm{A}[\mathrm{n}-1]\).
If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\). After the search, restore \(A[n-1]\).

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A . * /\) int temp \(=A[n-1]\); // Save A[n-1].
\(\mathrm{A}[\mathrm{n}-1]=\mathrm{v}\);
// Stand guard to keep \(k<n\).
int \(k=0\);
while (\(A[k]!=v\)) k++;
\(\mathrm{A}[\mathrm{n}-1]=\) temp; \(/ /\) Restore \(\mathrm{A}[\mathrm{n}-1]\).
if (\(k==n-1 \& \& A[n-1]!=v) k=n\); // Test \(A[n-1]\) when sentinel is found.
If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\). After the search, restore \(A[n-1]\), and update \(k\), appropriately.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A . * /\) int temp \(=A[n-1]\); // Save A[n-1].
\(\mathrm{A}[\mathrm{n}-1]=\mathrm{v}\);
// Stand guard to keep \(k<n\).
int \(k=0\);
while (\(A[k]!=v\)) k++;
\(\mathrm{A}[\mathrm{n}-1]=\) temp; \(/ /\) Restore \(\mathrm{A}[\mathrm{n}-1]\).
if (\(k==n-1 \& \& A[n-1]!=v) k=n\); // Test \(A[n-1]\) when sentinel is found.
If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\). After the search, restore \(A[n-1]\), and update \(k\), appropriately.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int temp \(=A[n-1]\); // Save A[n-1].
\(\mathrm{A}[\mathrm{n}-1]=\mathrm{v}\);
// Stand guard to keep \(k<n\).
int \(k=0\);
while (\(A[k]!=v\)) k++;
\(\mathrm{A}[\mathrm{n}-1]=\) temp; \(\quad / /\) Restore \(\mathrm{A}[\mathrm{n}-1]\).
if (\(k==n-1 \& \& A[n-1]!=v) k=n\); // Test \(A[n-1]\) when sentinel is found.
If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\). After the search, restore \(A[n-1]\), and update \(k\), appropriately.

Technique: Sentinel search.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). */ int temp \(=A[n-1]\); // Save A[n-1].
\(A[n-1]=v\);
// Stand guard to keep \(k<n\).
int \(k=0\);
while (\(A[k]!=v\)) k++;
\(\mathrm{A}[\mathrm{n}-1]=\) temp; \(/ /\) Restore \(\mathrm{A}[\mathrm{n}-1]\).
if (\(k==n-1 \& \& A[n-1]!=v) k=n\); // Test \(A[n-1]\) when sentinel is found.
If you prefer to not assume that \(A[n]\) exists, use \(A[n-1]\) for the sentinel, instead. First, save \(A[n-1]\) in a temporary variable, then save the sentinel in \(A[n-1]\). After the search, restore \(A[n-1]\), and update \(k\), appropriately.

Technique: Sentinel search.
Sentinels have widespread applicability for handling boundary conditions.
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume \(A[n]\) exists. */
\(A[n]=v ; \quad / /\) Stand guard to keep \(k \leq n\). int \(k=0\); while (\(A[k]!=v\)) k++;

Technique: Sentinel search.
Sentinels have widespread applicability for handling boundary conditions, but
/* Given array \(A[0 . . n-1], n \geq 0\), and value \(v\), let \(k\) be the smallest non-negative integer s.t. \(A[k]==v\), or let \(k==n\) if there are no occurrences of \(v\) in \(A\). Assume \(A[n]\) exists. */
\(A[n]=v ; \quad / /\) Stand guard to keep \(k \leq n\). int \(k=0\); while (\(A[k]!=v\)) k++;

\footnotetext{
Don't optimize code prematurely.
}

\section*{New Application: Find the Longest Descending Suffix}
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

A statement-comment says exactly what code must accomplish, not how it does SO.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending

```
 suffix of \(A[0 . . n-1]\). */
 \(\overline{\text { while (}}\)

If you "smell a loop", write it down.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending

```
 suffix of \(A[0 . . n-1]\). */
 \(\overline{\text { while (}}\)

A false start.

If you "smell a loop", write it down.

\section*{Application: Find the Longest Descending Suffix}

If you "smell a loop", write it down.

\section*{Application: Find the Longest Descending Suffix}
/* Given \(A[0 . . n-1]\), set \(j\) so that \(A[j+1 . . n-1]\) is the longest descending suffix of A[0..n-1]. */

Analyze first.
Make sure you understand the problem.

Application: Find the Longest Descending Suffix
/* Given \(A[0 . . n-1]\), set \(j\) so that \(A[j+1 . . n-1]\) is the longest descending suffix of \(A[0 . . n-1]\). */

What's a "suffix" in this context?

Understand the terminology.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending suffix of $A[0 . . n-1] .{ }^{*} /$

```

What's a "suffix" in this context?

A suffix is a sequence of letters at the end of a word.

Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

What's a "suffix" in this context?

A suffix is a sequence of letters at the end of a word. A suffix is a sequence of \(\qquad\) at the end of a \(\qquad\) .

Understand the terminology. Reason by analogy.

Application：Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

What＇s a＂suffix＂in this context？

A suffix is a sequence of letters at the end of a word． A suffix is a sequence of \(\qquad\) at the end of a \(\qquad\) ． A suffix is a sequence of array elements at the end of an array．

U⿴囗十丌 Understand the terminology．Reason by analogy．

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending suffix of $A[0 . . n-1] .{ }^{*} /$

```

What's "descending" in this context?

Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

What's "descending" in this context?

A descending escalator goes down. A descending \(\qquad\) goes down. A descending sequence of numeric values goes down.

Understand the terminology. Reason by analogy.

\section*{Application: Find the Longest Descending Suffix}
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

The "longest descending suffix of A[0..n-1]" is a maximally long sequence of elements at the end of the array whose numerical values go down.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending suffix of A[0..n-1]. */

```

Confirm your understanding of a programming problem with concrete examples. Elaborate the expected input/output mapping explicitly.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Confirm your understanding of a programming problem with concrete examples. Elaborate the expected input/output mapping explicitly.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1].*/

```
(1) Confirm your understanding of a programming problem with concrete examples. Elaborate the expected input/output mapping explicitly.

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```
(1) Confirm your understanding of a programming problem with concrete examples. Elaborate the expected input/output mapping explicitly.
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & \multicolumn{1}{c}{1} & \multicolumn{1}{c}{2} & 3 & 4 \\
\hline 30 & 40 & 50 & 20 & 10 \\
\hline
\end{tabular}

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```
tio Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & n & Don't "gestalt" an answer. \\
\hline A 30 & 40 & 50 & 20 & 10 & & Inspect array elements one (or 2) at a time. \\
\hline
\end{tabular}

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Troek Selgorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```
tro Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```
(1) Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Tro Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

```

Tro Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in your "wetware". Be introspective. Ask yourself: What am I doing?

\section*{Application: Find the Longest Descending Suffix}
```

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j =

```
\(\qquad\)
``` ; while ( __ ) j--;
```

Master stylized code patterns, and use them.

	1	2	3	4
30	40	50	20	10

Application: Find the Longest Descending Suffix

```
/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
    suffix of A[0..n-1]. */
    int j =
```

\qquad

``` ; while ( \(A[j]>=A[j+1])\) j--;
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) bedy \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}
```

Master stylized code patterns, and use them.

	1	2	3	4
30	40	50	20	10

Application: Find the Longest Descending Suffix

```
/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
    suffix of A[0..n-1]. */
    int j = n-2;
    while ( A[j]>=A[j+1] ) j--;
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) bedy \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}
```

Master stylized code patterns, and use them.

0	1	2	3	4
50	40	30	20	10

Application: Find the Longest Descending Suffix

```
/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
    suffix of A[0..n-1]. */
    int j = n-2;
    while ( j>=0 && A[j]>=A[j+1] ) j--;
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) body \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}
```

Master stylized code patterns, and use them.

	1	2	3	4
40	30	20	10	50

Application: Find the Longest Descending Suffix

```
/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
    suffix of A[0..n-1]. */
    int j = n-2;
    while ( j>=0 && A[j]>=A[j+1] ) j--;
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) body \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}
```

Master stylized code patterns, and use them.

Application: Find the Longest Descending Suffix

```
/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
    suffix of A[0..n-1]. */
    int j = n-2;
    while ( j>=0 && A[j]>=A[j+1] ) j--;
```

Q. Why might knowing the longest descending suffix be useful? A. Think of the elements of $A[0 . . n-1]$ as "letters", and the array A[0. . $\mathrm{n}-1$] as a "word". Consider listing all words that can be made from those letters in lexicographic order, as in a dictionary.

Application: Find the Longest Descending Suffix

1020304050
1020305040
1020403050
1020405030
1020503040
1020504030
1030204050
1030205040
1030402050
etc.

Application: Find the Longest Descending Suffix

```
Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.
```


Application: Find the Longest Descending Suffix

```
Each transition from one word to the
``` next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline \(10203040 \underline{50}\) \\
\hline 1020305040 \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline \(10205030 \underline{40}\) \\
\hline \(1020 \underline{504030}\) \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 1020304050 \\
\\
\\
\\
\\
\\
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.

\(10203040 \underline{\underline{50}}\)

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.

\(10203040 \underline{\underline{50}}\)

\section*{Application: Find the Longest Descending Suffix}
\begin{tabular}{|c|c|c|}
\hline Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix. & \[
\begin{aligned}
& 10203040 \underline{50} \\
& 102030 \underline{5040} \\
& 10204030 \underline{50} \\
& 102040 \underline{50 ~ 30} \\
& 10205030 \underline{40} \\
& 1020 \underline{5040 ~} \\
& 10302040 \underline{50} \\
& 103020 \underline{5040} \\
& 103040 ~ 20 \underline{50} \\
& \text { etc. }
\end{aligned}
\] & \[
\begin{aligned}
& 10203040 \underline{50} \\
& 10203040 \underline{50}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline \(10203040 \underline{50}\) \\
\hline 1020305040 \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline \(10205030 \underline{40}\) \\
\hline \(1020 \underline{504030}\) \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|}
1020304050 \\
1020305040 \\
\\
\\
\\
\\
\\
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline 1020304050 \\
\hline 1020305040 \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline 1020503040 \\
\hline 1020504030 \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\(10203040 \underline{50}\) \\
\(10203050 \underline{40}\) \\
\\
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline \(102030405 \underline{50}\) \\
\hline \(102030 \underline{5040}\) \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline 1020503040 \\
\hline \(1020 \underline{504030}\) \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\(10203040 \underline{50}\) \\
\(102030 \underline{50}\) \\
\\
\\
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|c|}
\hline 1020304050 & \(10203040 \underline{50}\) \\
\hline \(102030 \underline{5040}\) & \(102030 \underline{5040}\) \\
\hline 1020403050 & \\
\hline 1020405030 & \\
\hline 1020503040 & \\
\hline \(1020 \underline{504030}\) & \\
\hline \(10302040 \underline{50}\) & \\
\hline \(103020 \underline{5040}\) & \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|l|}
\hline \(10203040 \underline{50}\) \\
\(102030 \underline{50} \underline{40}\) \\
\(102040 \underline{30} \underline{\underline{0}}\) \\
\(102040 \underline{50}\) \\
\(102050 \underline{30} \underline{40}\) \\
\(1020 \underline{50 ~ 40 ~ 30}\) \\
\(10302040 \underline{50}\) \\
\(103020 \underline{50} 40\) \\
\(10304020 \underline{50}\) \\
etc. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\(10203040 \underline{50}\) \\
\(102030 \underline{5040}\) \\
\(102040 \underline{50(30}\) \\
\\
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline 1020304050 \\
\hline 1020305040 \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline \(10205030 \underline{40}\) \\
\hline 1020504030 \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\(10203040 \underline{50}\) \\
\(102030 \underline{5040}\) \\
\(102040 \underline{3050}\) \\
\\
\hline
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline 10203040 50 \\
\hline 1020305040 \\
\hline \(10204030 \underline{50}\) \\
\hline 1020405030 \\
\hline \(10205030 \underline{40}\) \\
\hline \(1020 \underline{504030}\) \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\(10203040 \underline{50}\) \\
\(102030 \underline{50} \mathbf{4 0}\) \\
\(10204030 \underline{50}\) \\
\\
\hline
\end{tabular}

\section*{Application: Find the Longest Descending Suffix}

Each transition from one word to the next involves the longest descending suffix. In particular, all words with the corresponding prefix will have been listed, and the next word can be obtained by swapping the last letter of the prefix with the next larger element from the suffix, and reversing the order of the suffix.
\begin{tabular}{|c|}
\hline \(10203040 \underline{50}\) \\
\hline 1020305040 \\
\hline 1020403050 \\
\hline 1020405030 \\
\hline \(10205030 \underline{40}\) \\
\hline 1020504030 \\
\hline \(10302040 \underline{50}\) \\
\hline \(103020 \underline{5040}\) \\
\hline \[
\begin{aligned}
& 10304020 \underline{50} \\
& \text { etc. }
\end{aligned}
\] \\
\hline
\end{tabular}
\(10203040 \underline{50}\)
\(102030 \underline{5040}\)
\(10204030 \underline{50}\)
etc.

New Application: Find minimal value in array \(A[0 . . n-1]\).
/* Given \(A[0 . . n-1]\), find \(k\) s.t. \(A[k]\) is minimal in \(A[0 . . n-1]\). */

A statement-comment says exactly what code must accomplish, not how it does so.

Application: Find minimal value in array \(A[0 . . n-1]\).
/* Given \(A[0 . . n-1]\), find \(k\) s.t. \(A[k]\) is minimal in \(A[0 . . n-1]\). */

Invent (or learn) diagrammatic ways to express concepts.

Application: Find minimal value in array \(A[0 . . n-1]\).
/* Given \(A[0 . . n-1]\), find \(k\) s.t. \(A[k]\) is minimal in \(A[0 . . n-1]\). */

To get to POST iteratively, choose a weakened POST as INVARIANT.

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = ___; // Index of the minimal element of A[0..j-1].

```
Introduce program variables whose values describe "state".

The index k of the minimal element of \(\mathrm{A}[0 . . \mathrm{j}-1]\).

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
/* Given \(A[0 . . n-1]\), find \(k\) s.t. \(A[k]\) is minimal in \(A[0 . . n-1] . * /\) int \(k=\ldots ; / /\) Index of the minimal element of \(A[0 . j-1]\).

If you "smell a loop", write it down.

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = ___; // Index of the minimal element of A[0..j-1].
for (int j=

```
\(\qquad\)
``` ; ___ ; j++)
```

tor If you "smell a loop", write it down.
Decide first whether an iteration is indeterminate (use while) or determinate (use for).

INVARIANT

Application: Find minimal value in array $A[0 . . n-1]$.

```
/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
    int k = __; // Index of the minimal element of A[0..j-1].
    for (int j=___; ___; j++)
```

\qquad

```
Maintain invariant.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) body \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}
```


INVARIANT

Application: Find minimal value in array $\mathrm{A}[0 . . \mathrm{n}-1]$.

```
/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
    int k = ___; // Index of the minimal element of A[0..j-1].
    for (int j=
```

\qquad

``` ; \(\quad\); j++) if ( \(A[j] \ldots A[k])\)
``` \(\qquad\)
```

Coding order
(1) body
(2) termination
(3) initialization
(4) finalization
(5) boundary conditions

```

1*) A Case Analysis in the loop body is often needed for characterizing different ways in which to decrease the loop variant while maintaining the loop invariant.

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = ___; // Index of the minimal element of A[0..j-1].
for (int j=___ ___; j++)
if ( A[j] __ A[k] ) k = j;
Maintain invariant.

Coding order
(1) body
(2) termination
(3) initialization
(4) finalization
(5) boundary conditions

```

Be alert to high-risk coding steps associated with binary choices.

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = ___; // Index of the minimal element of A[0..j-1].
for (int j=__;__; j++)
if ( A[j] < A[k] ) k = j;
Maintain invariant.

Coding order
(1) body
(2) termination
(3) initialization
(4) finalization
(5) boundary conditions

```

Be alert to high-risk coding steps associated with binary choices.

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = __; // Index of the minimal element of A[0..j-1].
for (int j=___; j<n; j++)
if ( A[j] < A[k] ) k = j;

```
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) body \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}

Be alert to high-risk coding steps associated with binary choices.

\section*{INVARIANT}

Application: Find minimal value in array \(\mathrm{A}[0 . . \mathrm{n}-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)
if ( A[j] < A[k] ) k = j;
Establish invariant.

Coding order
(1) body
(2) termination
(3) initialization
(4) finalization
(5) boundary conditions

```

Be alert to high-risk coding steps associated with binary choices.

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)
if ( A[j] < A[k] ) k = j;

```
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Coding order } \\
\hline (1) body \\
\hline (2) termination \\
\hline (3) initialization \\
\hline (4) finalization \\
\hline (5) boundary conditions \\
\hline
\end{tabular}

The proper behavior is not defined for \(\mathrm{n}=0\).

\section*{INVARIANT}

Application: Find minimal value in array \(A[0 . . n-1]\).
```

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1], -1 if n is 0. */
int k = -1;
if ( n!=0 ) {
k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)
if ( A[j] < A[k] ) k = j;
}

Coding order
(1) body
(2) termination
(3) initialization
(4) finalization
(5) boundary conditions

```

The proper behavior is not defined for \(\mathrm{n}=0\).

\section*{Precepts used without mention.}

Write the representation invariant of an individual variable as an end-of-line comment.
Trermination. Do 2nd. Beware of confusion between condition for continuing and its negation, the condition for terminating. Beware off-by-one errors: stopping one iteration too soon, or one iteration too late. Prevent illegal references using "shortcircuit mode" Boolean expressions.
(1) Initialization. Do 3rd. Initialize variables so that the loop invariant is established prior to the first iteration. Substitute those initial values into the invariant, and bench check the first iteration with respect to that initial instantiation of the invariant.
trox Boundary conditions. Dead last, but don't forget them.
Find boundary conditions at extrema, and at singularities, e.g., biggest, smallest, 0, edges, etc.```

