
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Sequential Search

Copyright©2023 by Tim Teitelbaum; Most recent revision, 01/04/2024

To search is to look for something systematically on behalf of a client.

The search-use pattern is a specialization of the compute-use pattern.

/* Search. */
/* Use the search result. */

/* Compute. */
/* Use. */

To search is to look for something systematically on behalf of a client.

The search-use pattern is a specialization of the compute-use pattern.

/* Search. */
/* Use the search result. */

We search for something in a collection of items.

The collection can be unbounded, e.g., natural numbers, or values in a file.
The collection can be bounded, e.g., characters in text, or elements of an array.

Search in an unbounded collection can succeed or run forever, and in a
bounded collection can succeed or fail.

Indeterminate-iteration, the mother of all searches, seeks the smallest k≥0
with some property, i.e., negation of the condition:

It is called a sequential search because it checks values one at time, in order.

int k = 0;
while (condition) k++;

Indeterminate-iteration, the mother of all searches, seeks the smallest k≥0
with some property, i.e., negation of the condition:

int k = 0;
while (condition) k++;
/* Use k. */

It is called a sequential search because it checks values one at time, in order.
When it stops, k is the value sought.

Indeterminate-iteration, the mother of all searches, seeks the smallest k≥0
with some property, i.e., negation of the condition:

int k = 0;
while (condition) k++;
/* Use k. */

It is called a sequential search because it checks values one at time, in order.
When it stops, k is the value sought.

Sequential search can be unbounded, or it can be bounded:

int k = 0;
while (k<=maximum && condition) k++;

Generalizing, sequential search in a collection sets p to what you are looking
for (or where it is), or an indication that it was not found:

p = the-first-place-look;
while (p is-not-beyond-the-last-place-to-look &&

p is-not-what-you-are-looking-for)
p = the-next-place-to-look;

if (p is-not-beyond-the-last-place-to-look) /* Found. */
else /* Not found. */

We consider four applications of sequential search in a collection:

• Primality Testing
• Search in an Unordered Array
• Array Equality
• Longest Descending Suffix

and Find Minimal in an Unordered Array, which isn’t really a sequential search,
and contrasts with it.

We consider three applications of sequential search in a collection:

• Primality Testing
• Search in an Unordered Array
• Array Equality
• Longest Descending Suffix

and Find Minimal in an Unordered Array, which isn’t really a sequential search,
and contrasts with it.

N.B. We have used the term collection loosly. We shall later use the term collection in a
more technical sense.

Definition: Natural number p is prime if its only divisors are 1 and p; it is
composite otherwise.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞ A statement-comment says exactly what code must accomplish, not how it does so.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞ There is no shame in reasoning with concrete examples.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 prime

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

2 3 4 5 6 7 8 9 10 11 12 13 14 15 composite

☞ There is no shame in reasoning with concrete examples.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 prime

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

☞
Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 composite

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 composite

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */

☞

Searching for the smallest divisor of p that is greater or equal to 2.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 composite

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. */
/* Use. */

☞

Searching for the smallest divisor of p that is greater or equal to 2.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 composite

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */
/* Use d. */

☞

Searching for the smallest divisor of p that is greater or equal to 2.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */
if (____) System.out.println("prime");
else System.out.println("composite");

☞ Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */
if (d__p) System.out.println("prime");
else System.out.println("composite");

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */
if (d==p) System.out.println("prime");
else System.out.println("composite");

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while (________) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

☞ Master stylized code patterns, and use them.

Application: Write a program segment to say whether p is prime or composite.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while ((p%d)__0) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

☞ Be alert to high-risk coding steps associated with binary choices.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while ((p%d)!=0) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

Application: Write a program segment to say whether p is prime or composite.

☞ Be alert to high-risk coding steps associated with binary choices.

New Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

☞ There is no shame in reasoning with concrete examples.

0 1 2 3 4 n

A 14 42 34 14 2334v

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

34

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

34

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v found

☞

34

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 2350v

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v

☞

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v not found

☞

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

/* Find v in A[0..n-1], or indicate it’s not there. */

0 1 2 3 4 n

A 14 42 34 14 23v not found

☞

Sequential Search.

50

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Search for a value v in an unordered array A[0..n-1].

0 1 2 3 4 n

A 14 42 34 14 2334v found

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v. */

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

2k

☞

Application: Search for a value v in an unordered array A[0..n-1].

0 1 2 3 4 n

A 14 42 34 14 2350v not found

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */

☞ Choose data representations that are uniform, if possible.

5k

☞

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<=maximum && condition) k++;

☞ Master stylized code patterns, and use them.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<=maximum && A[k]!=v) k++;

0 1 2 3 4 n

A 14 42 34 14 2334v found2k

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<=n-1 && A[k]!=v) k++;

0 1 2 3 4 n

A 14 42 34 14 2350v not found5k

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<n && A[k]!=v) k++;

0 1 2 3 4 n

A 14 42 34 14 2350v not found5k

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<n && A[k]!=v) k++;

50v not found5k

☞

0 1 2 3 4 n

A 14 42 34 14 23

☞ Be alert to high-risk coding steps associated with binary choices.

Short-circuit mode and. If left operand is false, the right operand is not evaluated,
which prevents a “subscript out-of-bounds error”.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (A[k]!=v && k<n) k++;

0 1 2 3 4 n

A 14 42 34 14 2350v not found5k

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Short-circuit mode and. The reverse order would be incorrect because the
“subscript out-of-bounds error” would occur before discovering that k<n is false.

Application: Search for a value v in an unordered array A[0..n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (A[k]!=v && k<n) k++;

☞ Alternate between using a concrete example to guide you in characterizing
“program state”, and an abstract version that refers to all possible examples.

0 k n

A v not in here ?v INVARIANT

New Application: Are arrays A[0..n-1] and B[0..n-1] equal?

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 34 14 23

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

equal

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

☞

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 70 14 23

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

not equal

☞

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 70 14 23

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */

not equal

☞

Sequential Search for not equal.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 70 14 23

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while (k<=maximum && condition) k++;
if (k<=maximum) /* Found. */
else /* Not found. */

not equal

☞

☞ Master stylized code patterns, and use them.

Sequential Search for not equal.

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 74 14 23

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while (k<=maximum && A[k]==B[k]) k++;
if (k<n) e = false;
else /* Not found. */

not equal

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Sequential Search for not equal.

Application: Are arrays A[0..n-1] and B[0..n-1] equal?

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
else set e to false. */
int k = 0;
while (k<n && A[k]==B[k]) k++;
if (k<n) e = false;
else e = true;

equal

0 1 2 3 4 n

A 14 42 34 14 23

B 14 42 34 14 23

☞

☞ Be alert to high-risk coding steps associated with binary choices.

Sequential Search for not equal.

Technique: Sentinel search.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while ((p%d)!=0) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

Recall the search for the smallest divisor of p in Primality Testing.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 prime

Technique: Sentinel search.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while ((p%d)!=0) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

Recall the search for the smallest divisor of p in Primality Testing.

Q. Why was there no bound check?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 prime

Technique: Sentinel search.

/* Given p≥2, output whether p is prime or composite. */
/* Search. Let d≥2 be the smallest divisor of p. */

int d = 2;
while ((p%d)!=0) d++;

if (d==p) System.out.println("prime");
else System.out.println("composite");

Divisibility of every number by itself “stands guard” to prevent going too far.

Q. Why was there no bound check?
A. Because every number is divisible by itself.

50v not found5k

☞

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int k = 0;
while (k<n && A[k]!=v) k++;

0 1 2 3 4 n

A 14 42 34 14 23

Technique: Sentinel search.

Q. How can we obviate this bound check?

0 1 2 3 4 n

A 14 42 34 14 2350v not found5k

☞

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
int k = 0;
while (k<n && A[k]!=v) k++;

Technique: Sentinel search.

Q. How can we obviate this bound check?

0 1 2 3 4 n

A 14 42 34 14 23 5050v not found5k

☞

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
A[n] = v; // Stand guard to keep k≤n.
int k = 0;
while (k<n && A[k]!=v) k++;

Technique: Sentinel search.

Q. How can we obviate this bound check?
 A. Copy v into A[n].

0 1 2 3 4 n

A 14 42 34 14 23 5050v not found5k

☞

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
A[n] = v; // Stand guard to keep k≤n.
int k = 0;
while (A[k]!=v) k++;

Technique: Sentinel search.

Q. How can we obviate this bound check?
 A. Copy v into A[n]. Eliminate the check.

0 1 2 3 4 n

A 14 42 34 14 23 5050v not found5k

☞

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
A[n] = v; // Stand guard to keep k≤n.
int k = 0;
while (A[k]!=v) k++;

Technique: Sentinel search.

If you prefer to not assume that A[n] exists,

50v k

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[___] = v; // Stand guard to keep ___.
int k = 0;
while (A[k]!=v) k++;

Technique: Sentinel search.

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable.

23temp
0 1 2 3 4 n

A 14 42 34 14 23

50v k

Technique: Sentinel search.

23temp
0 1 2 3 4 n

A 14 42 34 14 50

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1].

50v k

Technique: Sentinel search.

23temp
0 1 2 3 4 n

A 14 42 34 14 23

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1]. After the search,
restore A[n-1].

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;
A[n-1] = temp; // Restore A[n-1].

50v 4k

Technique: Sentinel search.

23temp
0 1 2 3 4 n

A 14 42 34 14 23

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1]. After the search,
restore A[n-1], and update k, appropriately.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;
A[n-1] = temp; // Restore A[n-1].
if (k==n-1 && A[n-1]!=v) k=n; // Test A[n-1] when sentinel is found.

☞

0 1 2 3 4 n

A 14 42 34 14 2350v not found5k

☞

Technique: Sentinel search.

23temp

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1]. After the search,
restore A[n-1], and update k, appropriately.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;
A[n-1] = temp; // Restore A[n-1].
if (k==n-1 && A[n-1]!=v) k=n; // Test A[n-1] when sentinel is found.

23v 4k

Technique: Sentinel search.

23temp
0 1 2 3 4 n

A 14 42 34 14 23

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1]. After the search,
restore A[n-1], and update k, appropriately.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;
A[n-1] = temp; // Restore A[n-1].
if (k==n-1 && A[n-1]!=v) k=n; // Test A[n-1] when sentinel is found.

☞

23v 4k

Technique: Sentinel search.

23temp
0 1 2 3 4 n

A 14 42 34 14 23

If you prefer to not assume that A[n] exists, use A[n-1] for the sentinel, instead. First,
save A[n-1] in a temporary variable, then save the sentinel in A[n-1]. After the search,
restore A[n-1], and update k, appropriately.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */
int temp = A[n-1]; // Save A[n-1].
A[n-1] = v; // Stand guard to keep k<n.
int k = 0;
while (A[k]!=v) k++;
A[n-1] = temp; // Restore A[n-1].
if (k==n-1 && A[n-1]!=v) k=n; // Test A[n-1] when sentinel is found.

☞

found

Technique: Sentinel search.

Sentinels have widespread applicability for handling boundary conditions.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
A[n] = v; // Stand guard to keep k≤n.
int k = 0;
while (A[k]!=v) k++;

Technique: Sentinel search.

Sentinels have widespread applicability for handling boundary conditions, but

☞ Don’t optimize code prematurely.

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-negative
integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A.
Assume A[n] exists. */
A[n] = v; // Stand guard to keep k≤n.
int k = 0;
while (A[k]!=v) k++;

New Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

while (_______) _______

☞ If you “smell a loop”, write it down.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

while (_______) _______

☞ If you “smell a loop”, write it down.

A false start.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

while (_______) _______

☞ If you “smell a loop”, write it down.

A false start.
Failure to fully understand the problem can
prevent starting with a more apt pattern.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ Analyze first.
☞ Make sure you understand the problem.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s a “suffix” in this context?

☞ Understand the terminology.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s a “suffix” in this context?

A suffix is a sequence of letters at the end of a word.

☞ Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s a “suffix” in this context?

A suffix is a sequence of letters at the end of a word.
A suffix is a sequence of _____ at the end of a _____.

Generalization

☞ Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s a “suffix” in this context?

A suffix is a sequence of letters at the end of a word.
A suffix is a sequence of _____ at the end of a _____.
A suffix is a sequence of array elements at the end of an array.

Generalization

Re-instantiation

☞ Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s “descending” in this context?

☞ Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

What’s “descending” in this context?

A descending escalator goes down.
A descending _______ goes down.
A descending sequence of numeric values goes down.

Generalization

Re-instantiation

☞ Understand the terminology. Reason by analogy.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

The “longest descending suffix of A[0..n-1]“ is a maximally
long sequence of elements at the end of the array whose
numerical values go down.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

1j

0 1 2 3 4 n

A 30 40 50 20 10

Choosing a general example:
The “goldilocks” principle:

Not too long,
not to short,
but just right.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

-1j

0 1 2 3 4 n

A 50 40 30 20 10

Choosing special-case examples:

“Too long”

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

☞ Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

3j

0 1 2 3 4 n

A 40 30 20 10 50

Choosing special-case examples:

“Too short”

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Don’t “gestalt” an answer.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

0 1 2 3 4 n

A 30 40 50 20 10

Don’t “gestalt” an answer.
Inspect array elements one (or 2) at a time.

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Don’t “gestalt” an answer.
Inspect array elements one (or 2) at a time.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Don’t “gestalt” an answer.
Inspect array elements one (or 2) at a time.

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Q. Why did you stop?

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Q. Why did you stop?
A. Because left of pair less than right of pair.

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

A. Seeking the rightmost pair for which the
left element is less than the right element.

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

By God, it’s a Sequential Search, backward!

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10
By God, it’s a Sequential Search, backward!

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = ______;
while (______) j--;

☞ Master stylized code patterns, and use them.

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = ______;
while (A[j]>=A[j+1]) j--;

☞ Master stylized code patterns, and use them.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 30 40 50 20 10

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = n-2;
while (A[j]>=A[j+1]) j--;

☞ Master stylized code patterns, and use them.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Application: Find the Longest Descending Suffix

0 1 2 3 4 n

A 50 40 30 20 10

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = n-2;
while (j>=0 && A[j]>=A[j+1]) j--;

-1j

☞ Master stylized code patterns, and use them.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

“Special case” of a suffix that is the entire
array.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = n-2;
while (j>=0 && A[j]>=A[j+1]) j--;

☞ Master stylized code patterns, and use them.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

3j

0 1 2 3 4 n

A 40 30 20 10 50

“Special case” of a suffix of length 1 takes
care of itself, as the loop iterates 0 times.

Application: Find the Longest Descending Suffix

/* Given A[0..n-1], set j so that A[j+1..n-1] is the longest descending
suffix of A[0..n-1]. */
int j = n-2;
while (j>=0 && A[j]>=A[j+1]) j--;

Q. Why might knowing the longest descending suffix be useful?
A. Think of the elements of A[0..n-1] as “letters”, and the

array A[0..n-1] as a “word”. Consider listing all words that
can be made from those letters in lexicographic order, as in a
dictionary.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50
10 20 30 40 50

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50
10 20 30 50 40

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

10 20 30 40 50
10 20 30 50 40

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40
10 20 30 50 40

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40
10 20 40 50 30

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

Application: Find the Longest Descending Suffix

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
10 20 40 50 30
10 20 50 30 40
10 20 50 40 30
10 30 20 40 50
10 30 20 50 40
10 30 40 20 50
etc.

10 20 30 40 50
10 20 30 50 40
10 20 40 30 50
etc.

Each transition from one word to the
next involves the longest descending
suffix. In particular, all words with the
corresponding prefix will have been
listed, and the next word can be
obtained by swapping the last letter of
the prefix with the next larger element
from the suffix, and reversing the order
of the suffix.

New Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */

☞ A statement-comment says exactly what code must accomplish, not how it does
so.

Application: Find minimal value in array A[0..n-1].

0 k n

A A[k] is smallest in here

☞ Invent (or learn) diagrammatic ways to express concepts.

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */

POST

Application: Find minimal value in array A[0..n-1].

0 k j n

A A[k] is smallest in here ?

☞ To get to POST iteratively, choose a weakened POST as INVARIANT.

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */

INVARIANT

Application: Find minimal value in array A[0..n-1].

0 k j n

A A[k] is smallest in here ?

☞ Introduce program variables whose values describe “state”.

The index k of the minimal element of A[0..j-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].

0 k j n

A A[k] is smallest in here ?

☞ If you “smell a loop”, write it down.

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; ____; j++)

0 k j n

A A[k] is smallest in here ?

☞ If you “smell a loop”, write it down.
☞ Decide first whether an iteration is indeterminate (use while) or determinate

(use for).

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; ____; j++)

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Maintain invariant.

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; ____; j++)

if (A[j] __ A[k]) ___ = ___;

0 k j n

A A[k] is smallest in here ?

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Maintain invariant.

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; ____; j++)

if (A[j] __ A[k]) k = j;

0 k j n

A A[k] is smallest in here ?

☞ Be alert to high-risk coding steps associated with binary choices.

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Maintain invariant.

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; ____; j++)

if (A[j] < A[k]) k = j;

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Maintain invariant.

INVARIANT

☞ Be alert to high-risk coding steps associated with binary choices.

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = _____; // Index of the minimal element of A[0..j-1].
for (int j=____; j<n; j++)

if (A[j] < A[k]) k = j;

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

INVARIANT

☞ Be alert to high-risk coding steps associated with binary choices.

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)

if (A[j] < A[k]) k = j;

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

Establish invariant.

INVARIANT

Application: Find minimal value in array A[0..n-1].

☞ Be alert to high-risk coding steps associated with binary choices.

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
int k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)

if (A[j] < A[k]) k = j;

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

The proper behavior is not defined for n=0.

INVARIANT

Application: Find minimal value in array A[0..n-1].

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1], -1 if n is 0. */
int k = -1;
if (n!=0) {

k = 0; // Index of the minimal element of A[0..j-1].
for (int j=1; j<n; j++)

if (A[j] < A[k]) k = j;
}

0 k j n

A A[k] is smallest in here ?

Coding order

(1) body

(2) termination

(3) initialization

(4) finalization

(5) boundary conditions

The proper behavior is not defined for n=0.

INVARIANT

Application: Find minimal value in array A[0..n-1].

☞ Write the representation invariant of an individual variable as an end-of-line comment.
☞ Termination. Do 2nd. Beware of confusion between condition for continuing and its

negation, the condition for terminating. Beware off-by-one errors: stopping one
iteration too soon, or one iteration too late. Prevent illegal references using “short-
circuit mode” Boolean expressions.

☞ Initialization. Do 3rd. Initialize variables so that the loop invariant is established prior to
the first iteration. Substitute those initial values into the invariant, and bench check the
first iteration with respect to that initial instantiation of the invariant.

☞ Boundary conditions. Dead last, but don’t forget them.
☞ Find boundary conditions at extrema, and at singularities, e.g., biggest, smallest, 0,

edges, etc.

Precepts used without mention.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	Primality Testing
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	Search in an Unordered Array
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

	Array Equality
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

	Sentinel Search
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

	LongestDescendingSuffix
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

	Find Minimal
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

