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A taxonomy is a system of classification. Taxonomies are an 
essential mechanism for organizing subject matter. 

Hierarchical taxonomies in which concepts are organized 
into tree structures are ubiquitous. In a hierarchy, the most 
general concept is placed at the root of the tree, and 
subordinate concepts branch out from there. 

Each category is a set of individuals. A Venn diagram depicts 
categories as nested regions, and individuals as dots.



Taxonomic categories in programming are called classes, and the individuals 
of a class are its objects. The root category is Object.

We illustrate classes and objects by implementing Pair, Fraction, and 
Rational. Every rational is a fraction, and every fraction is a pair of 
integers, and every pair is an Object.

We then implement ArrayList<E>, a parameterized class for 
representing and manipulating collections of type E elements. We use the 
class ArrayList<Rational> to complete code for enumerating rationals.

Because ArrayList<E> is similar to the library class HashSet<E>, it is 
easy to replace one with the other, and compare their speed. We do so, and 
demonstrate the dramatic speedup of hash tables over lists. 

Finally, in a bit of a double cross, we observe that collections 
weren’tactually needed for enumerating rationals, and obtain a still-faster 
implementation without them.



A class is a collection of variable declarations and method definitions. 

An object is a dynamic instantiation of the variables (and methods) of 
a class whose declarations (and definitions) are not prefixed by the 
modifier static. 

Such variables are known as object fields or instance variables (and 
such methods are known as instance methods). Objects and 
references to them are depicted as shown.

Classes are types. If C is a class, a variable v of type C is obtained by 
executing the declaration:

C v;

Such a variable can hold a reference to an object of type C.

C

field1
field2
...

method1
method2
... 

C

field1
field2
...

method1
method2
... 

v



An object o of type C is created by executing the expression 

new C(…)

If object o has a field f, the field is accessed as o.f.

If object o has a method m, the method is invoked by o.m(…).

If a class is a shape of cookie (with its fields and methods), and objects are 
the cookies themselves, then new C(…) is a cookie-cutter that stamps out 
new cookies (with instances of C’s instance fields and methods.

In contrast, a static variable (or a static method) is unique, and is not 
instantiated for each object. All objects of a class share access to such 
variables (and methods).

C

field1
field2
...

method1
method2
... 



v

Class definition: 

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

2

3



v

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Class definition:

1. Create the variable v.

Execution of the variable declaration (with initialization) in four steps: 



v

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

0

0

Class definition:

1. Create the variable v.

2. Create an object of type Pair, with 
default values for its fields. 

Execution of the variable declaration (with initialization) in four steps: 



v

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

0

0

Class definition:

1. Create the variable v.

2. Create an object of type Pair, with 
default values for its fields. 

3. Assign a reference to that object in v. 

Execution of the variable declaration (with initialization) in four steps: 



v

Class definition:

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

Variable declaration (with initialization):

Pair v = new Pair(2,3);

Pair

key
value

Pair
getKey
getValue

2

3

1. Create the variable v.

2. Create an object of type Pair, with 
default values for its fields. 

3. Assign a reference to that object in v. 

4. Invoke the constructor Pair on the 
object, which can re-initialize fields.

Execution of the variable declaration (with initialization) in four steps: 



v

Visibility: Each field and method of a class has visibility public, private, or protected.

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

• public fields and methods are globally visible (the default).
• private fields and methods are only visible within the class.
• protected fields and methods are only visible within the 

class, or within a subclass of the class, e.g., Fraction.

Pair

key
value

Pair
getKey
getValue

2

3



v

Modifiability: A private or protected field with a public getter is read-only outside its scope.

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

• E.g., clients of Pair can obtain the components of a 
Pair using the getter, but cannot change those fields. 
Such an object is said to be immutable.

Pair

key
value

Pair
getKey
getValue

2

3



Default String representation:

• Every Pair is an Object, and every Object has a default toString method.
• However, the String representation provided by that method is not particularly helpful.

Output the String representation of an object:

System.out.println( v ); Pair@20293791



class Pair {
   ...
   /* String representation of this. */
      public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

Output the String representation of an object:

System.out.println( v ); <2,3>

Overriding definition of toString for pairs:



v

class Pair {
   ...
   /* String representation of this. */
      public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

Output the String representation of an object:

System.out.println( v );

Execution of output statement in three steps: 

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Overriding definition of toString for pairs:



class Pair {
   ...
   /* String representation of this. */
      public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

Output the String representation of an object:

System.out.println( v );

1. Obtain the value of variable v.

 

Execution of output statement in three steps: 

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Overriding definition of toString:



class Pair {
   ...
   /* String representation of this. */
      public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

Output the String representation of an object:

System.out.println( v );

1. Obtain the value of variable v.

2. Compute the String representation 
of that value by invoking its toString 
method.

Execution of output statement in three steps: 

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

Overriding definition of toString:



class Pair {
   ...
   /* String representation of this. */
      public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

Output the String representation of an object:

System.out.println( v );

1. Obtain the value of variable v.

2. Compute the String representation 
of that value by invoking its toString 
method.

3. Output that value.

Execution of output statement in three steps: 

<2,3>

Overriding definition of toString:



The definition of operator == for objects is identity.

• “Identity” means “exactly the same object”.

Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

false
true



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1 Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2
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getKey
getValue

2

3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

z1

Pair

key
value

toString
equals
Pair
getKey
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z3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z1==z3);

false

z1

Pair
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toString
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Pair
getKey
getValue
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z2
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z3

• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1==z2);
System.out.println(z2==z3);

false
true
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• “Identity” means “exactly the same object”.

The definition of operator == for objects is identity.



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1.equals(z2));
System.out.println(z2.equals(z3));

false
true

z1

Pair
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Pair
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The default definition of equals for Object values is also identity.

• “Identity” means “exactly the same object”.
• Every Object has an equals method that can be applied to 

another Object to test “equality”, which is user-definable.
• The default definition of method equals in Object is identity, 

i.e., the same as ==.

with the default definition
 of equals, i.e., identity



Demonstrate the difference between identity and equality.

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z2;
System.out.println(z1.equals(z2));
System.out.println(z2.equals(z3));

true
true

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z2

Pair

key
value

toString
equals
Pair
getKey
getValue

2

3

z3

• “Identity” means “exactly the same object”.
• Every Object has an equals method that can be applied to 

another Object to test “equality”, which is user-definable.
• The default definition of method equals in Object is identity, 

i.e., the same as ==.
• Unlike the == operator, equals can be overridden, e.g., to 

treat non-identical pairs with equal components as equal.

The default definition of equals can be overridden.

with the overriding definition
of equals shown on the next slide



class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key   == qPair.key) && 
                (value == qPair.value);
         } /* equals */
   } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue
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3

z2

Pair
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toString
equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

Asks the compiler to warn if the next method definition is not overriding.  



class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key   == qPair.key) && 
                (value == qPair.value);
         } /* equals */
   } /* Pair */

z1
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toString
equals
Pair
getKey
getValue
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z2
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equals
Pair
getKey
getValue

2

3

z3

Overriding definition of equals for pairs.

An Object is never equal to no Object.



class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key   == qPair.key) && 
                (value == qPair.value);
         } /* equals */
   } /* Pair */
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toString
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getKey
getValue
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z2

Pair
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Pair
getKey
getValue

2
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z3

Overriding definition of equals for pairs.

An Object is always equal to itself, e.g. z2 and z3. 



class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key   == qPair.key) && 
                (value == qPair.value);
         } /* equals */
   } /* Pair */

z1

Pair

key
value

toString
equals
Pair
getKey
getValue

2
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z2
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2
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z3

Overriding definition of equals for pairs.

A Pair can only equal another Pair.



class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key   == qPair.key) && 
                (value == qPair.value);
         } /* equals */
   } /* Pair */
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2
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z3

Overriding definition of equals for pairs.

A Pair can only equal another Pair, and then only when their 
components are equal, e.g. z1 and z2.



Subclass definition: Fraction

class Fraction extends Pair {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Getters have direct access to the fields key and value because they 
are declared protected in Pair, a superclass of Fraction.



class Fraction extends Pair {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   /* String representation of this. */
      public String toString() { return key + "/" + value; }
   } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Overriding definition of toString for fractions:



Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3

Overriding definition of toString method for fractions:Overriding definition of equals for fractions:

• Not needed because two fractions are equal iff they have equal 
numerators and equal denominators.



class Rational extends Fraction {
   /* Constructor */
      public Rational(int numerator, int denominator) {
         super(numerator, denominator);    // Apply the Fraction constructor.
         int g = gcd(numerator, denominator);
         key = numerator/g;
         value = denominator/g;
         }
   ...
   } /* Rational */

Subclass definition: Rational

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Confirm that the denominator is not zero (checked by Function), 
and then update the representation to reduced form.

Method gcd not shown.



class Rational extends Fraction {
   /* Constructor */
      public Rational(int numerator, int denominator) {
         super(numerator, denominator);    // Apply the Fraction constructor.
         int g = gcd(numerator, denominator);
         key = numerator/g;
         value = denominator/g;
         }
   ...
   /* String representation of this. */
      public String toString() {
         if ( value==1 ) return key + "";   // this as int
         else return super.toString();      // this as Fraction
         } /* toString */
   } /* Rational */

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Overriding definition of toString for rationals:



Overriding definition of toString method for fractions:Overriding definition of equals for rationals not needed:

• Not needed because two rationals are equal iff they are equal 
as reduced fractions.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3



Subtype polymorphism: A variable of class C 
can be assigned a reference to any object of 
class C’, where C’ is either C itself, of C’ is a 
subclass of C, i.e., lower in the class hierarchy. 

o

Object o;



o Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Object o;
o = new Pair(4,6); 

Subtype polymorphism:



o Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

4

6

Pair

key
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toString
equals
Pair
getKey
getValue

4

6

Object o;
o = new Pair(4,6); 
o = new Fraction(4,6); 

Subtype polymorphism:



o Rational
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Rational
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toString
equals
Pair
getKey
getValue

4

6

Fraction

key
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toString
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Pair
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Fraction
getNumerator
getDenominator

4

6

Object o;
o = new Pair(4,6); 
o = new Fraction(4,6); 
o = new Rational(4,6); 

Subtype polymorphism:



o

Pair
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toString
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Pair
getKey
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Rational
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toString
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getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

1

Object o;
o = new Pair(4,6); 
o = new Fraction(4,6); 
o = new Rational(4,6); 
o = new Rational(6,3); 

Subtype polymorphism:



Dynamic method dispatch: The definition 
used for any given method invocation 
depends of the type of the value, not the type 
of the variable that contains that value. 

o

Object o;

?



o Pair

key
value

toString
equals
Pair
getKey
getValue

4

6

Dynamic method dispatch:

Object o;
o = new Pair(4,6);     System.out.println( o );

<4,6>



o Fraction

key
value

toString
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Fraction
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Dynamic method dispatch:

Object o;
o = new Pair(4,6);     System.out.println( o );
o = new Fraction(4,6); System.out.println( o );

<4,6>
4/6



o Rational

key
value

toString
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Pair
getKey
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getDenominator
Rational
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toString
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Pair
getKey
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Fraction
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toString
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Pair
getKey
getValue
Fraction
getNumerator
getDenominator

4

6Dynamic method dispatch:

Object o;
o = new Pair(4,6);     System.out.println( o );
o = new Fraction(4,6); System.out.println( o );
o = new Rational(4,6); System.out.println( o );

<4,6>
4/6
2/3



o

Pair
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Object o;
o = new Pair(4,6);     System.out.println( o );
o = new Fraction(4,6); System.out.println( o );
o = new Rational(4,6); System.out.println( o );
o = new Rational(6,3); System.out.println( o );

Dynamic method dispatch:

<4,6>
4/6
2/3
2



Subtype polymorphism caveat:

If variable v has type C, a field access 
v.f, or a method invocation v.m(…), 
requires that field f or method m 
necessarily exist in any object of type C.

o

Pair
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toString
equals
Pair
getKey
getValue

4

6

Fraction
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Object   o = new Pair(4,6);     System.out.println(o.getKey());       // Illegal.
Pair     p = new Pair(4,6);     System.out.println(p.getKey());       // Legal.
         p = new Pair(2,3);     System.out.println(p.getNumerator()); // Illegal.
Fraction r = new Fraction(4,6); System.out.println(r.getNumerator()); // Legal.
Rational q = new Rational(4,6); System.out.println(q.getNumerator()); // Legal.



Inheritance: The class hierarchy is 
also called the inheritance hierarchy. 

Objects of class C are said to inherit 
all fields f of superclasses of C above 
it in the hierarchy.

They also inherit the most specific 
(overriding) version of method m 
defined either in class C, or in one of 
C’s superclasses, i.e., the first 
definition of m found in a traversal 
from C up to Object in the 
hierarchy.
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class ArrayList {
   private int A[];   // ArrayList elements are in A[0..size-1].
   private int size;  // The default value is 0.

   ...

Class definition:



class ArrayList {
   private int A[];   // ArrayList elements are in A[0..size-1].
   private int size;  // The default value is 0.

   ...

Class definition:

Data representation is private, i.e., hidden to clients.

The type of an ArrayList element is int (for now). 



class ArrayList {
   private int A[];   // ArrayList elements are in A[0..size-1].
   private int size;  // The default value is 0.

   /* Constructors. */
      public ArrayList( int m ) {
         if ( m<0 ) throw new IllegalArgumentException();
         A = new int[m];
         }

      public ArrayList() { this( 20 /* DEFAULT_SIZE */ );

   ...

Class definition:

Two overloaded constructors: One for a specific initial capacity, the other for a default capacity.



class ArrayList {
   private int A[];   // ArrayList elements are in A[0..size-1].
   private int size;  // The default value is 0.

   /* Constructors. */
      public ArrayList( int m ) {
         if ( m<0 ) throw new IllegalArgumentException();
         A = new int[m];
         }

      public ArrayList() { this( 20 /* DEFAULT_SIZE */ );

   /* Size. /
      public int size() { return size; }
      public boolean isEmpty() { return size==0; }

   ...

Class definition:

A getter for the read-only field size, and a predicate to test for an empty list.



Get and set the k-th element of the list. Set returns the old k-th value of the list.

/* Access. */
      public int get(int k) {
         checkBoundExclusive(k);
         return A[k];
         }
      public int set(int k, int v) {
         checkBoundExclusive(k);
         int old = A[k];
         A[k] = v;
         return old;
         }

   ...



/* Access. */
      public int get(int k) {
         checkBoundExclusive(k);
         return A[k];
         }
      public int set(int k, int v) {
         checkBoundExclusive(k);
         int old = A[k];
         A[k] = v;
         return old;
         }

   /* Utility */
      private void checkBoundExclusive( int k ) {
         if (k>=size) throw new IndexOutOfBoundsException( "≥size" );
         }
      private void checkBoundInclusive( int k ) {
         if (k>size) throw new IndexOutOfBoundsException( ">size" );
         }

   ...

Detect an index that is too large. Negative indices are caught by normal subscript bounds check.



/* Insertion / Deletion. */
      public void add(int v) {
         if ( size==A.length ) ensureCapacity( size+1 );
         A[size] = v; size++;
         }
      public void add(int k, int v) {
         checkBoundInclusive(k);
         if ( size==A.length ) ensureCapacity( size+1 );
         for (int j=size; j>k; j--) A[j] = A[j-1];
         A[k] = v;
         size++;
         }

   ...

Insert an elements v in list, either at end or at position k. Increase capacity if necessary.



/* Insertion / Deletion. */
      public void add(int v) {
         if ( size==A.length ) ensureCapacity( size+1 );
         A[size] = v; size++;
         }
      public void add(int k, int v) {
         checkBoundInclusive(k);
         if ( size==A.length ) ensureCapacity( size+1 );
         for (int j=size; j>k; j--) A[j] = A[j-1];
         A[k] = v;
         size++;
         }
      public int remove(int k) {
         checkBoundExclusive(k);
         int old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         return old;
         }

   ...

Remove an element from list at end or at position k.



/* Capacity. */
      public void ensureCapacity( int minCapacity) {
         int currentLength = A.length;
         if ( minCapacity > currentLength ) {
            int B[] = new int[Math.max(2*currentLength, minCapacity)];
            for (int k=0; k<size; k++) B[k] = A[k];
            A = B;
            }
         }

   ...

Increase the list’s capacity by updating A to refer to a copy of A with double the length.



/* Capacity. */
      public void ensureCapacity( int minCapacity) {
         int currentLength = A.length;
         if ( minCapacity > currentLength ) {
            int B[] = new int[Math.max(2*currentLength, minCapacity)];
            for (int k=0; k<size; k++) B[k] = A[k];
            A = B;
            }
         }

   /* Membership. */
      public int indexOf(int v) {
         int k = 0; while ( (k<n) && (v!=A[k]) ) k++;
         if ( k==n ) return -1; else return k;
         }
      public boolean contains(int v) {
         return indexOf(v)!=-1;
         } 

   } /* ArrayList */

Find the location of a value v in the list.  Test for membership of a value v in the list.  



/* Output reduced positive fractions, i.e., positive rationals. */
   /* set reduced = { }; */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            int g = gcd(r+1, c+1);
            /* rational z = ⟨(r+1)/g, (c+1)/g⟩; */
         if ( /* z is not an element of reduced */ ) {
            System.out.println( /* z */ );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  Recall this incomplete code from Enumeration Patterns.



/* Output reduced positive fractions, i.e., positive rationals. */
   /* set reduced = { }; */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
 
         if ( /* z is not an element of reduced */ ) {
            System.out.println( z );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  We can adopt Rational as the type of rational z.



/* Output reduced positive fractions, i.e., positive rationals. */
   /* set reduced = { }; */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
 
         if ( /* z is not an element of reduced */ ) {
            System.out.println( z );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

Similarly, we would like to adopt ArrayList as the type of the set reduced, but cannot do so 
because as currently written it is a collection of int items, not Rational items.

Enumeration of rationals:  We can adopt Rational as the type of rational z.



Enumeration of rationals:  We need an ArrayList of Rational items.

This could be done by: 
• Cloning the ArrayList of int implementation, and adapting the clone to be a 

collection of Rational elements (ugh!), or 
• Parameterizing ArrayList to be ArrayList<E>, a collection of elements of arbitrary  

object type E, and then instantiating it as ArrayList<Rational>, a collection of 
Rational elements (far better!).

A parametrized class definition is called a generic class.



class ArrayList<E> {
   private E A[];     // ArrayList elements are in A[0..size-1].
   private int size;  // The default value is 0.

   /* Constructors. */
      public ArrayList( int m ) {
         if ( m<0 ) throw new IllegalArgumentException();
         A = (E[]) new Object[m];         }

      public ArrayList() { this( 20 /* DEFAULT_SIZE */ );

   /* Size. /
      public int size() { return size; }
      public boolean isEmpty() { return size==0; }

   ...

Generic class definition:
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The type of an ArrayList element is parameterized as E.

An array of arbitrary objects is created, and is cast to the type of A.



/* Access. */
      public E get(int k) {
         checkBoundExclusive(k);
         return A[k];
         }
      public E set(int k, E v) {
         checkBoundExclusive(k);
         E old = A[k];
         A[k] = v;
         return old;
         }

   /* Utility */
      private void checkBoundExclusive( int k ) {
         if (k>=size) throw new IndexOutOfBoundsException( "≥size" );
         }
      private void checkBoundInclusive( int k ) {
         if (k>size) throw new IndexOutOfBoundsException( ">size" );
         }

   ...
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/* Insertion / Deletion. */
      public void add(E v) {
         if ( size==A.length ) ensureCapacity( size+1 );
         A[size] = v; size++;
         }
      public void add(int k, E v) {
         checkBoundInclusive(k);
         if ( size==A.length ) ensureCapacity( size+1 );
         for (int j=size; j>k; j--) A[j] = A[j-1];
         A[k] = v;
         size++;
         }
      public E remove(int k) {
         checkBoundExclusive(k);
         E old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         A[size] = null; // Garbage-collection assist.
         return old;
         }
   ...
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To be explained in Garbage Collection discussion.



/* Capacity. */
      public void ensureCapacity( int minCapacity) {
         int currentLength = A.length;
         if ( minCapacity > currentLength ) {
            E B[] = (E[]) new Object[Math.max(2*currentLength, minCapacity)];
            for (int k=0; k<size; k++) B[k] = A[k];
            A = B;
            }
         }

   /* Membership. */
      public int indexOf(E v) {
         int k = 0; while ( (k<n) && !v.equals(A[k]) ) k++;
         if ( k==n ) return -1; else return k;
         }
      public boolean contains(E v) {
         return indexOf(v)!=-1;
         } 

   } /* ArrayList */
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Use the equals method of the element type rather than ==.

An array of arbitrary objects is created, and is cast to the type of B.



/* Output reduced positive fractions, i.e., positive rationals. */
   /* set reduced = { }; */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( /* z is not an element of reduced */ ) {
            System.out.println( z );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  Returning to the incomplete code for enumerating rationals.



/* Output reduced positive fractions, i.e., positive rationals. */
   ArrayList<Rational> reduced = new ArrayList();
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( !reduced.contains(z) ) {
            System.out.println( z );
            reduced.add(z);
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  We declare reduced to have type ArrayList<Rational>.



1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted

Enumeration of rationals:  and obtain the correct output.



Uniformity:

• In some languages, all values are uniformly objects of a class.
• In other languages, there is a distinction between primitive values and objects of a class.
• Primitive values, e.g., values of types int, long, float, double, boolean, and char, fit 

conveniently into variables of standard sizes.
• In contrast, objects are accessed via references. The object reference has a standard size, but the 

object itself doesn’t.
• In the interest of efficiency, but at the expense of complexity, Java offers two worlds, one in which 

values are primitive, and the other in which values are objects.
• Crossing back and forth between the two worlds is a bit complicated, and will be addressed next.



Class definition: Recall the definition of class Pair.
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class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */
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class Pair<K,V> {
   protected K key;
   protected V value;
   /* Constructor. */
      public Pair(K k, V v) { key = k; value = v; }
   /* Access. */
      public K getKey() { return key; }
      public V getValue() { return value; }
   ...
   } /* Pair<K, V> */

Generic class definition: It too can be made generic so we can have pairs of any object 
types.
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class Pair<K,V> {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return key.equals(qPair.key) &&
                value.equals(qPair.value);
         } /* equals */
   } /* Pair */

Generic class definition: It too can be made generic so we can have pairs of any object type.

Uses the equals methods of the component types (which need not be the same ) rather than ==.



Pairs of any object type. The generic class Pair<K,V> can be instantiated with any 
object types for K and V.

For example, each of the following is a valid declaration:

Pair<Fraction, Fraction> ff;
Pair<Fraction, Rational> fr;
Pair<Fraction, Object> fo;
Pair< Pair<Fraction, Fraction>, Pair<Rational, Rational> ffrr;

but the following is not a valid declaration:

Pair<int, int> ii;

because int is a primitive type, not an object type.

We deal with this next.
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Boxed values. 

There is an object type for each primitive type. Values of those types are called boxed 
primitive values:

Integer
Long
Float
Double
Boolean
Char

Java attempts to box and unbox values fully automatically, but you need to know that it is 
going  on. 

For example, if we were to change Pair to be the generic class Pair<K,V>, the definition 
of class Function would no longer be correct, as explained next.



Subclass definition: Recall the definition of Fraction.

class Fraction extends Pair {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2

3



Subclass definition: Since Pair is now a generic class, Fraction 
must instantiate it with component types.

class Fraction extends Pair<Integer,Integer> {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3



Subclass definition: Auto-boxing and auto-unboxing occurs 
between int values and Integer values.

class Fraction extends Pair<Integer,Integer> {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Auto-boxing of int parameters numerator and denominator occurs when they are passed to the Pair constructor 
since it expects Integer arguments.. 



class Fraction extends Pair<Integer,Integer> {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

Auto-unboxing of the Integer key and value fields occurs when they returned as the values of the getters . 

Fraction

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Subclass definition: Auto-boxing and unboxing occurs between 
int values and Integer values.



class Rational extends Fraction {
   /* Constructor */
      public Rational(int numerator, int denominator) {
         super(numerator, denominator);    // Apply the Fraction constructor.
         int g = gcd(numerator, denominator);
         key = numerator/g;
         value = denominator/g;
         }
   ...
   } /* Rational */

Subclass definition: Similarly, recall the definition of Rational.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

2

3



class Rational extends Fraction {
   /* Constructor */
      public Rational(int numerator, int denominator) {
         super(numerator, denominator);    // Apply the Fraction constructor.
         int g = gcd(numerator, denominator);
         key = numerator/g;
         value = denominator/g;
         }
   ...
   } /* Rational */

Subclass definition: Since Fraction inherits from 
Pair<Integer,Integer>, so too does Rational.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

Integer

value

Integer
...

2

Integer

value

Integer
...

3

No auto-boxing of int parameters numerator and denominator occurs when they are passed to the Function 
constructor because it expects two int arguments. They are auto-boxed when it invokes the Pair constructor.



class Rational extends Fraction {
   /* Constructor */
      public Rational(int numerator, int denominator) {
         super(numerator, denominator);    // Apply the Fraction constructor.
         int g = gcd(numerator, denominator);
         key = numerator/g;
         value = denominator/g;
         }
   ...
   } /* Rational */

Subclass definition: Since Fraction inherits from 
Pair<Integer,Integer>, so too does Rational.

Rational

key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

Integer

value

Integer
...

2

Integer

value

Integer
...

3

Auto-boxing of the computed int values numerator/g and denominator/g occurs when they are assigned to the 
Integer key and value fields.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., the object constructed by Rational(2,3) can be treated as a Rational, Fraction, Pair, or 
Object.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., a variable declared to have type Fraction can be assigned a Fraction or Rational, but it cannot 
be assigned a Pair or Object.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., the code executed for toString depends on the type of the object, e.g., Rational.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<E> or Pair<K,V>. 



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<Rational> or Pair<Integer,Integer>. 



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., the boxing of an int in the Fraction constructor, and the unboxing of an Integer in the 
Rational getters.



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., the cast (E[]) in the statement A = (E[]) new Object[m]; in the ArrayList<E> constructor. 



Polymorphism: Four kinds have been illustrated.

• Subtype polymorphism, where an object of one class is treated as an instance of any of its 
superclasses. Thus, a variable declared to have a given class as its type may contain a value 
of that class, or of any of its subclasses. Dynamic dispatch selects the appropriate code for 
a method invocation based on the specific type of the given value.

• Parametric polymorphism, where a class definition is abstracted with respect to one or 
more class parameters, resulting in a generic class, which can be viewed as a cookie cutter 
that stamps out classes (i.e., generic-class instances).

• Conversion, where an expression of one type occurs in a context that expects a value of a 
different type, and it is implicitly converted to the required type. Other conversions are 
explicit, e.g., casts. Another term for conversion is coercion.

• Overloading, where different methods have the same name, and the appropriate 
definition is chosen based on the number and types of arguments in the invocation.

e.g., ArrayList<E> has two constructors, one with no parameter, and the other with one parameter. It 
also has two add methods, one with one parameter, and the other with two parameters. 



Garbage Collection.  An object dies when it can no longer be accessed in the program. 

• Objects consume space in computer memory.
• Space consumed by objects that can no longer be accessed can be reclaimed automatically by a 

mechanism (that runs behind the scene) called garbage collection.
• Normally, you don’t have to think about such matters. However, you should be aware that retaining a 

gratuitous reference to an object can cause it to be needlessly retained.
• By itself, one such object is no big concern. But if it is at the beginning of a chain of references from 

one object to another, then that one gratuitous reference can be the cause of an unbounded number 
of needlessly-retained other objects, which is of concern.

• This is why we make sure that an ArrayList<E> retains no gratuitous references to objects in the 
unused suffix of the array.

• We explain how this works next. It is a bit subtle, but is instructive.



Garbage Collection.  Recall the definition of remove in ArrayList<E>.

public E remove(int k) {
         checkBoundExclusive(k);
         E old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         A[size] = null; // Garbage-collection assist.
         return old;
         }
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The left shift of (blue) values overwrites the (green) value in A[k] that is to be removed from the collection. It was a 
reference to some object, and if this was the only reference to that object, it can be garbage collected. The value at 
A[k] being removed is not the issue.



Garbage Collection.  Recall the definition of remove in ArrayList<E>.

public E remove(int k) {
         checkBoundExclusive(k);
         E old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         A[size] = null; // Garbage-collection assist.
         return old;
         }

0 k n

A unused

s
iz

e

0 k n

A unused

s
iz

e

(before)

(after)

The last (blue) value in the collection, which was originally in A[size-1], shifts left but because the shift is effected by 
copying, the original instance of that value (violet) would also remain as A[size], the first element of the unused array 
suffix. It is this violet instance of the value that we nullify. Note that the object referred to by the violet reference can 
not yet be collected because a reference to it remains in A[size-1]. However, if and when that reference is removed 
or is overwritten with a new value by set, the object in question will be collectable.



Libraries: Classes that you can learn and use.

Libraries are extensions of the core language. The standard library includes:

• Object, the root of the class inheritance hierarchy. All other classes are subclasses of Object, and 
inherit methods from it.

• Math, a class that contains built-in mathematical functions as static methods.
• String, the class for sequences of Unicode characters. String constants, e.g., "a String", are 

references to String objects that contain the given sequence of characters.
• Integer, Boolean, etc., classes for the boxed primitive values.



Libraries: The library java.util contains many useful classes, including these for collections:

Class ArrayList<E>, which we (partially) implemented ourselves, appears in the inheritance 
hierarchy as a second cousin of HashSet<E>, a familial relationship that we would have obtained by 
writing:  

import java.util.*;
public class ArrayList<E> extends AbstractList<E> { ... }

An abstract class provides names and parameter types of methods that its non-abstract subclasses 
must implement, but not the method bodies themselves. This allows its subclasses to have completely 
different implementations, but be interchangeable.  



/* Output reduced positive fractions, i.e., positive rationals. */
   ArrayList<Rational> reduced = new ArrayList();
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( !reduced.contains(z) ) {
            System.out.println( z );
            reduced.add(z);
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  Recall our code for enumerating rationals using ArrayList<E>.



/* Output reduced positive fractions, i.e., positive rationals. */
   HashSet<Rational> reduced = new HashSet();
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( !reduced.contains(z) ) {
            System.out.println( z );
            reduced.add(z);
            }
         r--;
         }
      d++;
      }

Enumeration of rationals:  To use HashSet<E> instead, we only need to change one line.

The text of the contains and add invocations is unchanged, 
but the methods that are actually invoked change radically, i.e., 
from the ArrrayList<E> implementations to the 
HashSet<E> implementations.



class Pair<K,V> {
   ...
   /* HashFunction. */
      @Override
      public int hashCode() {
         return key.hashCode() + value.hashCode();
         } /* hashCode */
   } /* Pair */

Enumeration of rationals: and provide a hash function for Pair<K,V>.

We define a simple hash function for a pair that just sums the 
hash values of its constituent fields.



/* Output reduced fractions, i.e., positive rationals; no repeats. */
public static void timing() {
   HashSet<Rational> reduced = new HashSet();
   long startTime = System.currentTimeMillis();
   int rCount = 0;  // # of rationals so far.
   int d = 0;
   while ( rCount<100000 ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( !reduced.contains(z) ) {
            /* System.out.println( z ); */
            reduced.add(z);
            rCount++;
            if ( rCount%10000==0 )
               System.out.println( System.currentTimeMillis()-startTime );
            }
            r--;
         }
         d++;
      }
   } /* timing */

Enumeration of rationals: Contrast performance of ArrayList and HashSet.

Comment out the output statement so that it is not timed. 
Then, time every 10,000 collection insertions.



Enumeration of rationals: performance of ArrayList vs. HashSet.

Performance of ArrayList is quadratic; performance of HashSet is linear.
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Enumeration of rationals: On reflection, why are we bothering to maintain the 
collection of already-output rationals in the first place? Why not just output 
(r+1)/(c+1) when it is a reduced fraction?

The test for n/d being reduced is just gcd(n,d)==1?

☞ Analyze first.



/* Output reduced fractions, i.e., positive rationals; no repeats. */
public static void timing() {
   
   long startTime = System.currentTimeMillis();
   int rCount = 0;  // # of rationals so far.
   int d = 0;
   while ( rCount<100000 ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         if ( Rational.gcd(r+1,c+1)==1 ) {
            /* Let z be the reduced form of the fraction (r+1)/(c+1). */
               Rational z = new Rational(r+1, c+1);
            /* System.out.println( z ); */
            rCount++;
            if ( rCount%10000==0 )
               System.out.println( System.currentTimeMillis()-startTime );
            }
            r--;
         }
         d++;
      }
   } /* timing */

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd==1.

Only create the Rational when the fraction is in reduced form.
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#insertions ArrayList HashSet gcd
10,000 72 23 2
20,000 257 50 5
30,000 574 135 8
40,000 1035 220 11
50,000 1601 308 14
60,000 3206 372 16
70,000 5602 463 18
80,000 9236 550 20
90,000 14290 644 23

100,000 19711 750 27

Enumeration of rationals: Contrast performance of ArrayList, HashSet, and gcd==1.

Performance of ArrayList is quadratic, while performance of HashSet is linear. But in 
contrast, checking whether the fraction is in reduced form is practically instantaneous. 



Enumerating a Collection: A small lose end. 

Recall that one of the operations of a collection is to enumerate its elements. This is easy when we have 
direct access to the collection’s implementation, e.g.,

/* Enumerate items of a collection implemented as a list ⟨A,size,n⟩. */
   for (int k=0; k<size; k++) /* Do whatever for A[k]. */

/* Enumerate items of a collection implemented as a histogram H[0..maxValue]. */
   for (int k=0; k<=maxValue; k++)
      for (int j=1; j<=H[k]; j++)
         /* Do whatever for k. */

But how can you enumerate the items of a collection when its implementation is hidden within a class? 
Specifically, how can your code be independent of the collection’s implementation?



Enumerating a Collection: A small lose end. 

Let C<E> be a generic subclass of AbstractCollection<E>. Let c be an object of an 
instantiation of C<E> for some specific element type EL. Then c is a collection of EL items, where 
the collection implementation is defined by C<E>. 

An iterator for c is an object i that provides two methods:

•  i.hasNext(), which returns a boolean that says whether the i can be pumped for yet 
another element of c. 

• i.next(), which returns a value of type EL. Provided i.hasNext() has just returned true, 
invoking i.next() returns the “next” element of collection c, where the order of enumeration 
is beyond your control.

N.B. Although not technically accurate, you can think of there being a generic class Iterator<E> that has 
an instantiation Iterator<EL>, and i is an object of that class.



Enumerating a Collection: A small lose end. 

The following code pattern can be used to pump collection c for elements until there are no more:

Iterator<EL> i = c.iterator();
while ( i.hasNext() ) {
    EL e = i.next();
    /* process element e. */
    }



Enumerating a Collection: A small lose end. 

Suppose after having enumerated 100,000 rationals and storing them in reduced, you wanted to 
read them out from reduced and process them. Then you could do so with this instance of the 
code pattern above:

Iterator<Rational> i = reduced.iterator();
while ( i.hasNext() ) {
    Rational e = i.next();
    /* process element e. */
    }

This code would work regardless of whether reduced is implemented as an ArrayList<Rational> 
or a HashSet<Rational>. The details of how items are extracted from reduced are hidden in the 
implementation of the particular iterator i that is returned by reduced.iterator().
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