
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Graphs and Depth-First Search

Copyright©2023 by Tim Teitelbaum; Most recent revision, 11/12/2023

Graphs are an abstract mathematical structure of great utility. When your problem
can be cast as question about a graph, you have the opportunity to abstract away
from details, and apply one of the known general-purpose graph algorithms that
answer such questions.

Depth-First Search is a way to systematically enumerate elements of a graph. You can
terminate the enumeration prematurely if you find an example of what you are
looking for.

Think of graphs and depth-first search as an higher-level pattern that you should
master and use. The problem of Running a Maze has served us well as a pedagogical
example, but it’s now time to reveal the “double cross”: A maze is easily represented
as a graph, and finding a path from one maze cell to another is easily done by depth-
first search. Seize the opportunity when analysis reveals that such a problem
reduction is available.

Sets, Pairs, and Relations:

Let S and T be two sets.

A relation between S and T is a set of ordered pairs, ⟨s,t⟩, where
s is an element of S and t is an element of T.

Set T need not be distinct from set S, i.e., we can have relations
between a set and itself.

Example: has-child

{ ⟨Adam,Cain⟩, ⟨Adam,Abel⟩, ⟨Eve,Cain⟩, ⟨Eve, Abel⟩

Example: has-parent

{ ⟨Cain,Adam⟩, ⟨Abel,Adam⟩, ⟨Cain,Eve⟩, ⟨Abel,Eve⟩ }

Directed Graphs:

It is convenient to visualize a relation between a set S and itself
as a collection of nodes and edges.

The elements of S are nodes, and an edge from node m to node
n represents the existence of the pair ⟨m,n⟩ in the relation.

Such a visualization is known as a directed graph.

Example: has-child

{ ⟨Adam,Cain⟩, ⟨Adam,Abel⟩, ⟨Eve,Cain⟩, ⟨Eve, Abel⟩ }

Directed Graphs:

It is convenient to visualize a relation between a set S and itself
as a collection of nodes and edges.

The elements of S are nodes, and an edge from node m to node
n represents the existence of the pair ⟨m,n⟩ in the relation.

Such a visualization is known as a directed graph.

Example: has-child

{ ⟨Adam,Cain⟩, ⟨Adam,Abel⟩, ⟨Eve,Cain⟩, ⟨Eve, Abel⟩ }

Example: has-parent

{ ⟨Cain,Adam⟩, ⟨Abel,Adam⟩, ⟨Cain,Eve⟩, ⟨Abel,Eve⟩ }

Undirected Graphs:

Some relations are symmetric, i.e., if ⟨n,m⟩ is in the relation, then ⟨m,n⟩ is also in the relation.

Example: has-blood-relative

{ ⟨Adam,Cain⟩, ⟨Adam,Abel⟩, ⟨Eve,Cain⟩, ⟨Eve, Abel⟩,
 ⟨Cain,Adam⟩, ⟨Abel,Adam⟩, ⟨Cain,Eve⟩, ⟨Abel,Eve⟩,
 ⟨Cain, Abel⟩, ⟨Abel, Cain⟩ }

In the visualization of a symmetric relation as a directed graph,
edges would come in pairs that point in opposite directions.
We render the pair as one edge with neither arrowhead, and
call such a thing an undirected graph.

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Although the definition is simple, its import is not necessarily readily apparent.
The following trace of its execution makes it clear.

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

true

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam

Means “marked as visited”

Adam
enumeration

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

⟨Adam,Cain⟩
⟨Adam,Abel⟩

☞
Adam

enumeration

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

Means “first vist”

Adam
enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Cain

true

Adam
enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Cain

Adam
Cain

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Cain

⟨Cain,Eve⟩
⟨Cain,Abel⟩
⟨Cain,Adam⟩

☞
Adam
Cain

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Eve

Adam
Cain

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Eve

true

Adam
Cain

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Eve

Adam
Cain
Eve

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Eve

⟨Eve,Abel⟩
⟨Eve,Cain⟩

☞
Adam
Cain
Eve

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Able

Adam
Cain
Eve

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Able

true

Adam
Cain
Eve

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Able

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Able

⟨Abel,Adam⟩
⟨Abel,Cain⟩
⟨Abel,Eve⟩

☞
Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam

false

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Able

Adam
Cain
Eve
Able

enumeration

☞
⟨Abel,Adam⟩
⟨Abel,Cain⟩
⟨Abel,Eve⟩

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Cain

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Cain

false

Adam
Cain
Eve
Able

enumeration

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Abel,Adam⟩
⟨Abel,Cain⟩
⟨Abel,Eve⟩☞

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Able

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Eve

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

false

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Eve

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Abel,Adam⟩
⟨Abel,Cain⟩
⟨Abel,Eve⟩

☞ Return to caller
(Eve)

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Able

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Eve,Abel⟩
⟨Eve,Cain⟩☞

Means “first visitor finished”

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Eve

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

false

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Eve,Abel⟩
⟨Eve,Cain⟩

☞ Return to caller
(Cain)

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Eve

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Cain,Eve⟩
⟨Cain,Abel⟩
⟨Cain,Adam⟩

☞

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Abel

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

false

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Abel

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Cain,Eve⟩
⟨Cain,Abel⟩
⟨Cain,Adam⟩☞

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

false

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Cain,Eve⟩
⟨Cain,Abel⟩
⟨Cain,Adam⟩

☞ Return to caller
(Adam)

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Cain

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Adam,Cain⟩
⟨Adam,Abel⟩☞

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

Reachability: Enumerate every node that can be reached from node n by following an edge.

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Abel

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Abel

false

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

⟨Adam,Cain⟩
⟨Adam,Abel⟩

☞ Return to caller
(toplevel)

Adam
Cain
Eve
Able

enumeration

Reachability: Enumerate every node that can be reached from node n by following an edge.

Adam

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
 if (/* n has never been visited */) {
 /* Enumerate n. */
 for (/* each edge ⟨n,m⟩ */)
 DepthFirstSearch(m);
 }
 } /* DepthFirstSearch */

Reachability: Enumerate every node that can be reached from node n by following an edge.

DONE
Q. What is Depth-First Search searching for?
A. It is just a way to visit all reachable nodes from n.

You can do anything you want when you get there.

Maze as Undirected Graph: cells are nodes, and open doorways are edges.

To solve the maze, perform DepthFirstSearch(upper-left-cell).
Stop if you encounter the lower-right-cell.

Reachability between two cells of a maze is reachability between two nodes of a graph.

Domain-Specific Subtleties: Gone.

Recall the distinction been corridor-like cul-de-sacs and room-like cul-de-sacs. Gone.

Recall the question of how to back out of a cul-de-sac, and when to stop. Gone

1 2 5 6

3 4 7

10 9 8

Finding Centrally-Located Cheese : No problem.

Regardless of the cheese’s location, the problem is just graph reachability,
and can be solved by Depth-First Search.

1 2 3 4

12 5

11 6

10 9 8 7

Representation: Recall that a 2-D array is really a 1-D array of 1-D arrays.

For example, the N-by-N square array A, for N=4, would be as shown.

0 1 2 3

0 1 2 3

A

0 1 2 3

0 1 2 3

N

3

2

1

0

Representation: Recall, also, that each row can have a different number of columns.

For example, the closed triangular array inscribed in a 4-by-4 square would be as shown.

0 1 2

0 1

A

0 1 2 3

0

N

3

2

1

0

0 1 2

G

0 1 2

Number the nodes 0 through N-1.

Let G[0..N-1] be edge lists, i.e., G[n] is a 1-D int array that contain the target nodes of
edges emanating from node n.

0 1

0 1

Representation: A 2-D array can be used to represent a graph G with N nodes.

N

3

2

1

0

Representation: A 2-D array can be used to represent a graph with N nodes. For example:

0 1 2

Eve Abel Adam

Abel 3

Cain 2

Eve 1

Adam 0

0 1

Abel Cain

G

0 1 2

Adam Cain Eve

0 1

Cain Abel

Number the nodes 0 through N-1.

Let G[0..N-1] be edge lists, i.e., G[n] is a 1-D int array that contain the target nodes of
edges emanating from node n. The order of nodes in an edge list is irrelevant.

Representation: and here is the representation of the 2-by-2 maze shown:

0 1

A D

D 3

C 2

B 1

A 0

0

D

G

0 1

C B

0

C

Representation: invariant.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 /* Maze. Maze cells are represented by N*N nodes
 of graph G, where G[n] is an edge list for node
 n, i.e., for 0≤e<G[n].length, G[n][e] is an
 adjacent node m, i.e., a cell m adjacent to n
 with intervening Wall. The upper-left cell is
 node 0. Cheese is at cheeseNode. */
 private static int G[][]; // Edge lists.
 private static int cheeseNode; // Cheese.
...
 } /* MRP */

A B

C D

0 1

A D

D 3

C 2

B 1

A 0

0

D

G

0 1

C B

0

C

cheeseNode D

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 /* Maze. Maze cells are represented by N*N nodes
 of graph G, where G[n] is an edge list for node
 n, i.e., for 0≤e<G[n].length, G[n][e] is an
 adjacent node m, i.e., a cell m adjacent to n
 with intervening Wall. The upper-left cell is
 node 0. Cheese is at cheeseNode. */
 private static int G[][]; // Edge lists.
 private static int cheeseNode; // Cheese.
 /* Path. Array path[0..pathLength-1] is a list of
 adjacent nodes in G reaching from node 0 to some
 node path[pathlength-1]. */
 private static int path[];
 private static int pathLength;
 public static boolean isAtCheese() {
 return path[pathLength-1]==cheeseNode;
 }
 ...
 } /* MRP */

Representation: invariant.

A B

C D

0 2 2

path A C D

p
a

th
L

e
n

g
th

0 1

A D

D 3

C 2

B 1

A 0

0

D

G

0 1

C B

0

C

cheeseNode D

/* Maze, Rat, and Path (MRP) Representations. */
 class MRP {
 private static boolean mark[]; // mark[n] iff DFS reached node n.
 /* Depth First Search (DFS) of node n for cheeseNode at depth p. */
 private static void DFS(int n) {
 if (!mark[n]) { // Node n has not been visited before.
 mark[n] = true; // Mark that n has been visited.
 for (int e=0; e<G[n].length; e++) DFS(G[n][e]);
 }
 } /* DFS */
 ...
 } /* MRP */

Representation: Depth-First Search.

/* Maze, Rat, and Path (MRP) Representations. */
 class MRP {
 private static boolean mark[]; // mark[n] iff DFS reached node n.
 /* Depth First Search (DFS) of node n for cheeseNode at depth p. */
 private static void DFS(int n, int p) {
 if (!mark[n]) { // Node n has not been visited before.
 mark[n] = true; // Mark that n has been visited.
 path[p] = n; // Extend the path to include n.
 for (int e=0; e<G[n].length; e++) DFS(G[n][e], p+1);
 }
 } /* DFS */
 ...
 } /* MRP */

Representation: Depth-First Search, with path.

/* Maze, Rat, and Path (MRP) Representations. */
 class MRP {
 private static boolean mark[]; // mark[n] iff DFS reached node n.
 /* Depth First Search (DFS) of node n for cheeseNode at depth p. */
 private static void DFS(int n, int p) {
 if (!mark[n]) { // Node n has not been visited before.
 mark[n] = true; // Mark that n has been visited.
 path[p] = n; // Extend the path to include n.
 if (n==cheeseNode) { // Terminate search if cheese found.
 pathLength = p+1; // Length of path is one longer than p.
 throw new RuntimeException("found cheese");
 }
 for (int e=0; e<G[n].length; e++) DFS(G[n][e], p+1);
 }
 } /* DFS */
 ...
 } /* MRP */

Representation: Depth-First Search, with path, and early termination if cheese is found.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Convert representation M[N][N] to graph G, then perform DFS from upper-left,
 then convert computed path to representation M[N][N]. */
 public static void Search() {
 MakeGraphFromInput();
 try { DFS(0,0); } catch (RuntimeException e) { }
 MakeOutputFromPath();
 } /* Search */
 ...
 } /* MRP */

Representation: The top-level call to DFS.

MakeGraphFromInput and MakeOutputFromPath must mediate between the geometric
layout of an N-by-N Maze and the arbitrary ordering of graph nodes numbered 0..N*N-1.
It can do so by using a row-major ordering of the maze cells. (See text.)

If cheese is found, the throw in DFS is executed, which terminates all DFS invocations and
is then caught by this catch. If cheese is not found, DFS will return normally to the try.

Reflection:

The simplicity of Depth-First Search compared with the
subtleties of the domain-specific analyses in which we
engaged is dramatic, and should inspire your study of graph
algorithms.

	Title
	Slide 1

	Introduction
	Slide 2

	Relations
	Slide 3

	Graphs
	Slide 4
	Slide 5
	Slide 6

	Depth-First Search
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

	Running a Maze, Revisited
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

