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We present a systematic top-down development of an entire program to Run a Maze. We 
start from the beginning, but reference previous discussions from Chapters 1 and 4.

The main themes presented are:

• Use of a class to encapsulate a data representation.
• Consideration of alternative data representations.
• Structuring a program as two modules in a client/server relationship.
• The practice of information hiding.
• Incremental testing.
• Self-testing code.
• Exhaustive bounded testing of code.



Background. Define a maze to be a square two-dimensional grid of 
cells separated (or not) from adjacent cells by walls. One can move 
between adjacent cells if and only if no wall divides them. A solid 
wall surrounds the entire grid of cells, so there is no escape from 
the maze.
Problem Statement. Write a program that inputs a maze, and 
outputs a direct path from the upper-left cell to the lower-right 
cell if such a path exists, or outputs “Unreachable” otherwise. A 
path is direct if it never visits any cell more than once.
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/* Rat running. See Chapter 15 of text. */
class RunMaze {
   } /* RunMaze */

Establish a framework: 

☞ Program top-down, outside-in.



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run maze. */
   public static void main() {
      } /* main */
   } /* RunMaze */

☞ Program top-down, outside-in.

Establish a framework: 



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run maze. */
   public static void main() {
      /* Input. */
      /* Compute. */
      /* Output. */
      } /* main */
   } /* RunMaze */

☞ Start by writing a top-level decomposition of the solution.

Establish a framework: 



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run a maze given as input, if possible. */
   public static void main() {
      /* Input a maze of arbitrary size, or output “malformed input”
         and stop if the input is improper. Input format: TBD.*/
      /* Compute a direct path through the maze, if one exists. */
      /* Output the direct path found, or “unreachable” if there is
         none. Output format: TBD. */
      } /* main */
   } /* RunMaze */

Establish a framework: 

☞ Repeatedly improve comments by relentless copy editing.



☞ Many short procedures are better than large blocks of code.

Establish a framework: 

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run a maze given as input, if possible. */
   public static void main() {
      /* Input a maze of arbitrary size, or output “malformed input”
         and stop if the input is improper. Input format: TBD.*/
         Input();
      /* Compute a direct path through the maze, if one exists. */
         Solve();
      /* Output the direct path found, or “unreachable” if there is
         none. Output format: TBD. */
         Display();
      } /* main */
   } /* RunMaze */



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Input a maze of arbitrary size, or output “malformed input”
      and stop if the input is improper. Input format: TBD. */
   private static void Input() { } /* Input */
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() { } /* Solve */
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */
   private static void Output() { } /* Output */
   ...
 } /* RunMaze */

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Establish a framework: 



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Input a maze of arbitrary size, or output “malformed input”
      and stop if the input is improper. Input format: TBD. */
   private static void Input() { } /* Input */
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() { } /* Solve */
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */
   private static void Output() { } /* Output */
   ...
 } /* RunMaze */

☞ Practice information hiding.

Private and internal to RunMaze. No other class needs to know about them.

Establish a framework: 



Algorithm (from Chapter 4):

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm 
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?



Sidestep

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm 
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?



☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm 
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
   Get closer to goal.

Sidestep



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
   Get closer to goal.

Sidestep



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.
   “Peripheral” is not just “outer”, but includes “attached”
    inner walls.

VARIANT: 
   Get closer to goal.

Turn convex corner



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
   Get closer to goal.

Pirouette to other side



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
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Turn convex corner



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
   Get closer to goal.

Actions:
• Sidestep
• Pirouette 
• Turn convex corner
• (Turn concave corner)



VARIANT: 
   Get closer to goal.

Actions:
• Sidestep
• Pirouette 
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?

INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall.

VARIANT: 
   Get closer to goal.

Actions:
• Sidestep
• Pirouette 
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?
Unit of progress:
• 1 wall-segment-surface



Physically, you don’t need to distinguish cases, e.g., “just keep your hand on the wall and 
move to the right”, but computationally, a case analysis must inspect the geometry, e.g.,

if ( __________ )   Sidestep
else if ( __________ )  Pirouette
else if (__________  )  Turn convex corner
else Turn concave corner



Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
   Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door
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Finer-grained actions.
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Actions:
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Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
   Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Local query.

Finer-grained actions.

Simpler to implement.



Alternative Formulation:  Pseudo-code, from Chapter 4.

/* Start in upper-left cell, facing up. */
while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



INVARIANT: 
   Left hand is on the interior surface of a peripheral wall, or at a door.



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
   if ( /* facing-wall */ ) 
      /* Turn 90° clockwise. */
   else {
      /* Step forward. */
      /* Turn 90° counterclockwise. */
      }



Algorithm: Drop code into RunMaze.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Input a maze of arbitrary size, or output “malformed input”
      and stop if the input is improper. Input format: TBD. */
   private static void Input() {
      ⟨Obtain maze from input.⟩ 
      ⟨Start in upper-left cell, facing up.⟩  
      } /* Input */
   ...
   } /* RunMaze */

INVARIANT: 
   Left hand is on the interior surface of a peripheral wall, or at a door.
   Establish INVARIANT as part of initialization of state.



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !isAtCheese() && !isAboutToRepeat() )
         if ( isFacingWall() ) TurnClockwise();
         else {
            StepForward();
            TurnCounterClockwise();
            }
      } /* Solve */
   ...
   } /* RunMaze */

Algorithm: Drop code into RunMaze, with pseudo-operations turned into method calls.

INVARIANT: 
   Left hand is on the interior surface of a peripheral wall, or at a door.
   Maintain INVARIANT and make progress in Solve.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
    } /* MRP */

CLIENT
algorithm

SERVER
maze

rat

path

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Run a maze given as input, if possible. */
   public static void main() {
      ...
      } /* main *.
} /* RunMaze */

queries actions

Modular program structure: Separation of concerns.



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
         if ( MRP.isFacingWall() ) MRP.TurnClockwise();
         else {
            MRP.StepForward();
            MRP.TurnCounterClockwise();
            }
      } /* Solve */
   ...
   } /* RunMaze */

Algorithm (from Chapter 4): Qualify names of methods of another class. 

The algorithm is a client of services provided by class MRP.



Operations:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   public static void TurnClockwise() { }
   public static void TurnCounterClockwise() { }
   public static void StepForward() { }
   public static boolean isFacingWall() { return ____; }
   public static boolean isAtCheese() { return ____; }
   public static boolean isAboutToRepeat() { return ____; }
   } /* MRP */

☞ The touchstone of a data representation is its utility in performing the needed operations.

Procedure stubs for the services. 



Operations:

☞ The touchstone of a data representation is its utility in performing the needed operations.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   public static void TurnClockwise() { }
   public static void TurnCounterClockwise() { }
   public static void StepForward() { }
   public static boolean isFacingWall() { return ____; }
   public static boolean isAtCheese() { return ____; }
   public static boolean isAboutToRepeat() { return ____; }
   } /* MRP */

Stubs provide signatures, i.e., types for return types, types for parameters (none), and visibility.



Operations:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   public static void TurnClockwise() { }
   public static void TurnCounterClockwise() { }
   public static void StepForward() { }
   public static boolean isFacingWall() { return ____; }
   public static boolean isAtCheese() { return ____; }
   public static boolean isAboutToRepeat() { return ____; }
   } /* MRP */

☞ The touchstone of a data representation is its utility in performing the needed operations.

Public to client classes of MRP,  e.g., RunMaze.



State: The Maze, Rat, and Path data representations.

We (the implementers of MRP) design the data representation to record the state, and code the 
query and action operations to update it. 

☞ Practice information hiding.

Program

Class

/* Method Specifications. */

Method Implementations



State: The Maze, Rat, and Path data representations.

☞ Practice information hiding.

Program

/* Specification. */

Implementation

Program

Class
 ⟨private state variables⟩

/* Method Specifications. */

Method Implementations

We (the implementers of MRP) design the data representation to record the state, and code the 
operations to query and update it. 

Clients of MRP will have no direct access to the state in MRP. Rather, they will only be able to 
interact with MRP via its operations, i.e., its interface. This is called an abstract data type, and  
generalizes our prior use of specifications for information hiding.



Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.
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☞ The touchstone of a data representation is its utility in performing the needed operations.
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Maze Representation 1: N-by-N array W whose elements encode cell walls:



☞ The touchstone of a data representation is its utility in performing the needed operations.
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Maze Representation 1: N-by-N array W whose elements encode cell walls:



☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:



☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:



☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Anticipate 

• Direction d, ⟨0,1,2,3⟩ = ⟨up,right,down,left⟩ 

• Decoder isWall(r,c,d), true iff wall in direction d

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:



13 140 1 2 3 4 115 6 7 8 9 10 12 15

Positive 

• Direct correspondence between physical 
maze and 2-D array W.

☞ The touchstone of a data representation is its utility in performing the needed operations.

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:



☞ Choose representations that by design do not have nonsensical configurations.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negative

• Representation admits nonsensical data, e.g., 
9 claims “there is no wall to the right”, but 11 
claims “there is a wall to the left”. 

Maze Representation 1: N-by-N array W whose elements encode cell walls:



13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negatives 

• Representation admits nonsensical data, e.g., 
9 claims “there is no wall to the right”, but 11 
claims “there is a wall to the left”. 

• Decoder isWall(r,c,d) and corresponding 
encoder are somewhat fussy.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:



Path Representation 1: N-by-N array P whose elements are visit numbers or 0 (Unvisited).

☞ The touchstone of a data representation is its utility in performing the needed operations.

P 0 1 2 3 4

0 1 2 3 0 0

1 0 5 4 0 0

2 0 6 7 0 0

3 0 0 8 0 0

4 0 0 9 10 11

1 2 3

5 4

6 7

8

9 10 11

Positive 

• Direct correspondence between physical 
maze and 2-D array P.



Maze Representation 2: Separate boolean arrays, V and H,  for vertical and horizontal walls.

Eliminating Negatives of Representation 1

• Unique representation of each (possible) wall.

• Decoder and corresponding encoder are 
more straightforward.

☞ Choose representations that by design do not have nonsensical configurations.



Maze Representation 2: Separate boolean arrays, V and H,  for vertical and horizontal walls.

Negative of Representation 2

• Non-uniformity. Two arrays rather than one.

☞ Choose data representations that are uniform, if possible.



Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Positives 

• Single 2-D array M for both walls and path.

• Unique array cell (gray) to represent each 
(possible) wall.

• Unique array cell (letters) for visit numbers.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D



Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Negatives 

• About ¼ of storage is wasted (yellow).

• Direct correspondence between maze 
coordinate system and 2-D array. indices lost.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D



Maze Representation 3: Adopt it.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

☞ Don’t let the “perfect” be the enemy of the “good”. 
Be prepared to compromise because there may be no 
perfect representation. Don’t freeze.



Data Representation Invariant:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   /* Maze. Cells of an N-by-N maze are represented by elements of
      array M[2*N+1][2*N+1]. Maze cell ⟨r,c⟩ is represented by array
      element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
      left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
      Wall or NoWall in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
      The remaining elements of M are unused. lo is 1, and hi is
      2*N-1. */
      private static int N;      // Size of maze. */
      private static int M[][];  // Maze, walls, and path.
      private static final int Wall = -1;
      private static final int NoWall = 0;
      private static int lo, hi; // Left/top and right/bottom maze indices.
   ...
   } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   /* Maze. Cells of an N-by-N maze are represented by elements of
      array M[2*N+1][2*N+1]. Maze cell ⟨r,c⟩ is represented by array
      element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
      left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
      Wall or NoWall in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
      The remaining elements of M are unused. lo is 1, and hi is
      2*N-1. */
      private static int N;      // Size of maze. */
      private static int M[][];  // Maze, walls, and path.
      private static final int Wall = -1;
      private static final int NoWall = 0;
      private static int lo, hi; // Left/top and right/bottom maze indices.
   ...
   } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Rat. The rat is located in cell M[r][c] facing direction d, where
      d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
      respectively. */
      private static int r, c, d;
   ...
   } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Rat. The rat is located in cell M[r][c] facing direction d, where
      d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
      respectively. */
      private static int r, c, d;
   ...
   } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
      through cells of the maze, the elements of M that correspond to
      those cells will be 1, 2, 3, etc., and all other elements of M
      that correspond to cells of the maze will be Unvisited. The
      number of the last step in the path is move. */
      private static final int Unvisited = 0;
      private static int move;
   ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
      through cells of the maze, the elements of M that correspond to
      those cells will be 1, 2, 3, etc., and all other elements of M
      that correspond to cells of the maze will be Unvisited. The
      number of the last step in the path is move. */
      private static final int Unvisited = 0;
      private static int move;
   ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   // Unit vectors in direction d =          0,     1,    2,    3
   //                                       up, right, down, left
      private static final int deltaR[] = { -1,     0,    1,    0 };
      private static final int deltaC[] = {  0,     1,    0,   -1 };
   public static TurnClockwise()
      { d = (d+1)%4; }
   public static TurnCounterClockwise()
      { d = (d+3)%4; }
   public static StepForward()
      { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
   public staticboolean isFacingWall()
      { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }
   public staticboolean isAtCheese()
      { return (r==hi)&&(c==hi); }
   public static boolean isAboutToRepeat()
      { return (r==lo)&&(c==lo)&&(d==3); }
 } /* MRP */

Interface Implementation:



Interface includes I/O: Only MRP knows the data representation, so it must do the I/O.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N-by-N maze. */
   public static void Input() {
      } /* Input */
   /* Output N-by-N maze, with walls and path. */
   public static void PrintMaze() {
      } /* PrintMaze */
   } /* MRP */



Input: Hard code an initial example.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N-by-N maze. */
   public static void Input() {
      /* Maze. As per representation invariant. */
         N = 1;                     // Size of maze.
         lo= 1; hi = 2*N-1;         // First and last edges of maze.
         M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
         M[0][1] = M[1][0] = M[1][2] = M[2][1] = Wall;
      /* Rat. Place rat in upper-left cell facing up. */
         r = lo; c = lo; d = 0;
      /* Path. Establish the rat in the upper-left cell. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */

Slight language extension: Multiple lefthand sides for assignment statement.



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Input a maze, or reject the input as malformed. */
   private static void Input() { MRP.Input(); } /* Input */
   ...
   } /* RunMaze */

Input: Invoke from the client.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Output N-by-N maze, with walls and path. */
   public static void PrintMaze() {
      for (int r = lo-1; r<=hi+1; r++) {
         for (int c = lo-1; c<=hi+1; c++) {
            String s;
            if (M[r][c]==Wall) s = "#";
            else if (M[r][c]==NoWall || M[r][c]==Unvisited) s = " ";
            else s = M[r][c]+"";
            System.out.print((s+" ").substring(0,3));
            }
         System.out.println();
         }
      } /* PrintMaze */
   } /* MRP */

Output: Straightforward, so knock it off, in general.



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Output the direct path found, or “unreachable” if there is none. */
   private static void Output() {
      if (!MRP.isAtCheese()) System.out.println("Unreachable");
      else MRP.PrintMaze();
      } /* Output */
   ...
   } /* RunMaze */

Output: Invoke from the client.



Commentary : Design rules for abstract data types.

• Prefer fine-grained micro-operations over coarse-grained macro-operations.

▪ E.g., TurnClockwise rather than Pirouette.

• It is better to support operations that are defined relative to the state than it is to reveal portions of 
the state itself. Avoid leaking details of any particular data representation.

▪ E.g., isAtCheese rather than getRow and getColumn.
▪ E.g., TurnClockwise rather than getDirection and SetDirection.

• Avoid macro-operations that embody algorithmic details that belong in the client.

• E.g., RunMaze.Solve rather than MRP.Solve .



Controlled Testing: At first, use an empty stub for Solve.

Test 1: Check for syntax errors, and check input/output framework.

#
# 1 #
  #

input output

☞ Test programs incrementally.

Correct output.



Controlled Testing: Still use an empty stub for Solve, but change Input to hard-code a 2-by-2.

Test 2: Check Output.

Unreachable

input output

Expected output since Solve is just a 
stub. Validation of code for message.

☞ Test programs incrementally.



#  #
# 1  2 #

#    3 #
  #  #

input output

Controlled Testing: Now use real code for Solve.

Test 3: Further check of Output, and check of Solve for an empty 2-by-2 `maze.

Correct solution.



#  #
# 1    #

# 2  3 #
  #  #

input output

Controlled Testing: Change Input to hard-code a 2-by2, with an obstacle.

Test 4: Further check of Solve.

Correct solution. Appears to be going counter-clockwise, 
but this is an illusion: It is making its way around the 
obstacle clockwise when it stumbles into the cheese.



#  #
# 3  2 #

# 4  5 #
  #  #

input output

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Anticipated incorrect solution. We are doing a complete 
exploration, and don’t bother to detect the cul-de-sac. 
As a result, we overwrite the path, and leave a mess.



#  #
# 1    #

#      #
  #  #

input output

↑

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.



#  #
# 1    #

#      #
  #  #

input output

→

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.



#  #
# 1  2 #

#      #
  #  #

input output

↑

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.



#  #
# 1  2 #

#      #
  #  #

input output

→

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.



#  #
# 1  2 #

#      #
  #  #

input output

↓

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.



#  #
# 1  2 #

#      #
  #  #

input output

←

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay. This is the moment when we need to detect the 
imminent re-entry to a cell that is currently on the path.



#  #
# 3  2 #

#      #
  #  #

input output

↓

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

We ignored the issue, and overwrote the 1 with a 3.



#  #
# 1  2 #

#      #
  #  #

input output

←

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Backing up, we need to prevent this.



Algorithm: Proceed only if about to enter a cell that is not on the current path.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
         if ( MRP.isFacingWall() ) MRP.TurnClockwise();
         else if ( MRP.isFacingUnvisited() ) {
            MRP.StepForward();
            MRP.TurnCounterClockwise();
            }
         else Retract();
      } /* Solve */
   ...
   } /* RunMaze */

Add the check …

… and introduce Retract to handle the cul-de-sac case.



Extend MRP: Add isFacingUnvisited to interface.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   public static boolean isFacingUnvisited()
      { return M[r+2*deltaR[d]][c+2*deltaC[d]] == Unvisited; }
   ...
 } /* MRP */



Retract: 

#  #
# 1  2 #

#      #
  #  #

input output

←
The next step from here needed to detect the imminent 
re-entry to a cell that is currently on the path, but didn’t 
bother.



Retract: 

#  #
# 1  2 #

#      #
  #  #

input output

←
The next step from here needed to detect the imminent 
re-entry to a cell that is currently on the path, but didn’t 
bother.

Need to undo the StepForward that took us into the 
cul-de-sac.

public static StepForward()
   { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }



Retract: 

#  #
# 1   #

#      #
  #  #

input output

←
The next step from here needed to detect the imminent 
re-entry to a cell that is currently on the path, but didn’t 
bother.

Need to undo the StepForward that took us into the 
cul-de-sac.

public static StepForward()
   { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
 public static void StepBackward() 
   { M[r][c] = Unvisited; move--; r = r+2*deltaR[d]; c = c+2*deltaC[d]; }



Retract: 

#  #
# 1   #

#      #
  #  #

input output

↓
The next step from here needed to detect the imminent 
re-entry to a cell that is currently on the path, but didn’t 
bother.

Need to undo the StepForward that took us into the 
cul-de-sac, and turn as if it had been skipped.

public static StepForward()
   { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
 public static void StepBackward() 
   { M[r][c] = Unvisited; move--; r = r+2*deltaR[d]; c = c+2*deltaC[d]; }



Retract: Implemented as follows.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract () {
      MRP.StepBackward();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract () {
      MRP.StepBackward();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */

Retract: Implemented as follows.

Marker: You have just been deliberately 
led astray, but we will keep going.



Test 6: Redo Test 5.

#  #
# 1    #

# 2  3 #
  #  #

input output

Correct solution. We backed out of the cul-de-sac, and 
proceeded to the lower-right cell.



Test 6: Redo Test 5.

#  #
# 1    #

# 2  3 #
  #  #

input output Could we be done? Perhaps, but we will need to test on 
bigger mazes. It’s time to code the general-purpose 
Input method.

Correct solution. We backed out of the cul-de-sac, and 
proceeded to the lower-right cell.



Input: Start with hardcoded initial example.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N-by-N maze. */
   public static void Input() {
      /* Maze. As per representation invariant. */
         N = 1;                     // Size of maze.
         lo= 1; hi = 2*N-1;         // First and last indices of maze.
         M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
         M[0][1] = M[1][0] = M[1][2] = M[2][1] = Wall;
      /* Rat. Place rat in upper-left cell facing up. */
         r = lo; c = lo; d = 0;
      /* Path. Establish the rat in the upper-left cell. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
   public static void Input() {
      /* Maze. */
         Scanner in = new Scanner(System.in);
         N = ⟨value for N⟩; 
         M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
         ⟨Define each element of M⟩
      /* Rat. */
         r = lo; c = lo; d = 0;
      /* Path. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */

Input: Identify places to change, and code.



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
   public static void Input() {
      /* Maze. */
         Scanner in = new Scanner(System.in);
         N = in.nextInt(); in.nextLine(); 
         lo = 1; hi = 2*N-1;        // Left and right edges of maze.
         M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
         for (int r=lo-1; r<=hi+1; r++) {
            String line = in.nextLine();
            for (int c=lo-1; c<=hi+1; c++)
               if ((r%2==1) && (c%2==1)) M[r][c] = Unvisited;
               else if (line.substring(c,c+1).equals(" "))
                  M[r][c] = NoWall;
               else M[r][c] = Wall;
            }
      /* Rat. */
         r = lo; c = lo; d = 0;
      /* Path. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */

Fussy detail that we 
shall skip over.



Controlled Testing: Try every sort of maze you can think of.

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Test programs thoroughly.



Controlled Testing: But how can you know when you are done?

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Beware of premature self-satisfaction.



Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

☞ Test programs thoroughly.



Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

1
. . .

☞ Test programs thoroughly.



Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

Aargh! We only considered corridor-shaped cul-de-sacs.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

. . . . . .

☞ Test programs thoroughly.



1 1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

. . . . . .

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract () {
      MRP.StepBackward();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */

Marker: You have just been deliberately 
led astray, but we will keep going.

Retract: Implemented as follows.

1 2 3

5 4

This didn’t unwind the traversal of the cul-de-sac; it only undid the first step into the cul-de-sac. This worked 
fine even for deep corridor-shaped cul-de-sacs (which could be backed out of one “first-step” at a time).



/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract () {
      while ( /* not unwound */ ) {
         MRP.FacePrevious();
         MRP.StepBackward();
         }
      TurnCounterClockwise();
      } /* Retract */ 
   } /* RunMaze */

Correction: Now we are going in the right 
direction, truly unwinding the path.

Retract: Implemented as follows.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

. . . . . .

1 1 2 3

5 4

1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

Picking 
up the
“bread 
crumbs”.



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]]
      int neighborDirection = d;  // Save direction.            
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

⟨r,c⟩

↑ d
Code as if in class MRP, where there is access to the data representation.



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]]
      int neighborDirection = d;  // Save direction.            
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

↑ d
Trace: There are actually two separate cul-de-sacs, 2-5 and 1-2.



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3
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2. . . . . .
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */

1 1 2 3
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1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.          ↑
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
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      int neighborDirection = d;  // Save direction.            ↑
      while ( M[r][c] != neighborNumber ) {
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         }
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      } /* Retract */
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   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.          ←
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]]
      int neighborDirection = d;  // Save direction.            
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ←
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ←
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ←
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ←
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.          ←
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      int neighborNumber    = M[r+2*deltaR[d]][c+2*deltaC[d]];
      int neighborDirection = d;  // Save direction.            ←
      while ( M[r][c] != neighborNumber ) {
         FacePrevious();
         StepBackward();
         }
      d = neighborDirection;     // Restore direction.          ↓
      TurnCounterClockwise();
      } /* Retract */
   ...
   } /* MRP */
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/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   public static void Retract() {
      MRP.RecordNeighborAndDirection();
            
      while ( !MRP.isAtNeighbor() ) {
         MRP.FacePrevious();
         MRP.StepBackward();
         }
      MRP.RestoreDirection();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */

1 1 2 3

4

1 2 3 1 2 1

2. . . . . .
1

2

3 4 5

1 2 3

5 4

But Retract is too algorithmic for MRP. It really 
belongs in RunMaze. 

MRP can provide three helpful primitives:
   RecordNeighborAndDirection
   isAtNeighbor
   RestoreDirection



/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
    ...
   private static int neighborNumber;     // Recorded visit #.
   private static int neighborDirection;  // Dir. at time of recording.

   public static void RecordNeighborAndDirection () 
     { neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]; neighborDirection = d; }

   public static boolean isAtNeighbor()  { return M[r][c]==neighborNumber; }

   public static void RestoreDirection() { d = neighborDirection; }
   ...
   } /* MRP */ 

MRP state variables: Support the notion of an “arrow in a cell”. 

MRP operations (colloquially):
• “Toss an arrow into a neighbor”, 
• “Detect being in that neighbor”, and
• “Align direction with the arrow”. 



/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   public static void FacePrevious() {
      int d = 0;
      while ( isFacingWall() || M[r][c]-1 != M[r+2*deltaR[d]][c+2*deltaC[d]] )
         d++;
      } /* FacePrevious */
   ...
   } /* MRP */

Remaining Implementation: FacePrevious, just a Sequential Search.



Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find 
the solution in the first place. 
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Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find 
the solution in the first place. 

Running a Maze can be viewed as a search problem that either succeeds (by finding a path), 
or that announces “unreachable”.  

Checking the answer “unreachable” is no easier than the original problem because it involves 
discovering a path that contradicts the unreachability claim.

But if the program claims a path, it can be checked for correctness.



Self-checking: The checking code.

/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Return false iff rat reached cell ⟨r,c⟩ via an invalid path. */   
   public static boolean isValidPath(int r, int c) {
      if ( M[r][c]==Unvisited ) return true; // No claim if Unvisited.
      else 
         while ( !((r==lo)&&(c==lo)) ) {
            /* Go to any valid predecessor; return false if there is none. */
               int d = 0;
               while ( d<4 && (M[r+deltaR[d]][c+deltaC[d]] == Wall ||           
                       M[r+2*deltaR[d]][c+2*deltaC[d]] != M[r][c]-1 ) ) d++;
               if (d==4) return false;
               r = r+2*deltaR[d]; c = c+2*deltaC[d];
            }
      return true; // Reached upper-left cell.
      } /* isValidPath */
   ...
   } /* MRP */



Self-checking: The checking code.

/* Rat running. See Chapter 15 of text. */
class MRP {
   ...
   /* Return false iff rat reached lower-right cell via an invalid path. */   
   public static boolean isSolution () {
      return isValidePath(hi,hi);
      } /* isSolution */
   ...
   } /* MRP */



Self-checking:. Making the assertion as a last step in RunMaze.

assert MRP.isSolution(): "internal program error";

N.B. The code in MRP.isValidPath() is missing a check for 
the absence of noise off the path.



Exhaustive Bounded Testing:

There are an infinite number of mazes, so exhaustive testing is not 
possible.

For given N, there are a finite number of N-by-N mazes, so exhaustive 
testing of up to size N is feasible, in principle. How many are there?

Answer: 2w , where w is the number of places where a wall can either 
exist or not exist:

• Outer walls must exist. 
• Each of N rows of cells has N-1 interior vertical-wall positions.
• Each of N columns of cells has N-1 inerior horizontal-wall positions.

So w = 2*N*(N-1).

Feasible up through N=4.

N 22·N·(N-1)

1 20 = 1

2 24 = 16

3 212 = 4,096

4 224 = 16,777,216

5 290



Exhaustive Bounded Testing: Maze generation.

/* Create an N-by-N maze with walls given by the bits of w. */
public static void GenerateInput(int N, int w) {
   /* Maze. */
      M = new int[2*N+1][2*N+1];
      lo = 1; hi = 2*N-1;
   /* Set boundary walls. */
      for (int i=0; i<=hi+1; i++)
         M[lo-1][i] = M[hi+1][i] = M[i][lo-1] = M[i][hi+1] = Wall; 
   /* Set 2*n*(n-1) interior walls to the corresponding bits of w. */
      for (int r=lo; r<=hi; r++)
         for (int c=lo; c<=hi; c++)
            if ( (r%2==0 && c%2==1)||(r%2==1 && c%2==0) ) {
               if ( w%2==1 ) M[r][c] = Wall; else M[r][c] = NoWall;
               w = w/2;
               }
   /* Rat. */
      r = lo; c = lo; d = 0;
   /* Path. */
      move = 1; M[r][c] = move;
 } /* GenerateInput */



Exhaustive Bounded Testing: Iterating through mazes.

/* Generate/solve all mazes of sizes up through 4, and validate paths found. */
public static void test() {
   for (int N = 1; N<=4; N++) 
      for (int i=0; i<Math.pow(2,2*N*(N-1)); i++) {
         MRP.GenerateInput(N,i);
         Solve();
         assert MRP.isValidPath(): "internal program error";
         }
   System.out.println( "passed" );
   } /* test */



Random Testing: For larger mazes.

Can’t test them all, but can generate and test random mazes of a given size (for as long as 
you want), and validate solutions. This is called fuzz testing.

N.B.  Given the way wall configurations are expressed above, you will have to use 
Java’s long or BigInteger integers for big values of N.
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