
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Running a Maze

Copyright©2023 by Tim Teitelbaum; Most recent revision, 8/17/2023

We present a systematic top-down development of an entire program to Run a Maze. We
start from the beginning, but reference previous discussions from Chapters 1 and 4.

The main themes presented are:

• Use of a class to encapsulate a data representation.
• Consideration of alternative data representations.
• Structuring a program as two modules in a client/server relationship.
• The practice of information hiding.
• Incremental testing.
• Self-testing code.
• Exhaustive bounded testing of code.

Background. Define a maze to be a square two-dimensional grid of
cells separated (or not) from adjacent cells by walls. One can move
between adjacent cells if and only if no wall divides them. A solid
wall surrounds the entire grid of cells, so there is no escape from
the maze.
Problem Statement. Write a program that inputs a maze, and
outputs a direct path from the upper-left cell to the lower-right
cell if such a path exists, or outputs “Unreachable” otherwise. A
path is direct if it never visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 } /* RunMaze */

Establish a framework:

☞ Program top-down, outside-in.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 /* Run maze. */
 public static void main() {
 } /* main */
 } /* RunMaze */

☞ Program top-down, outside-in.

Establish a framework:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 /* Run maze. */
 public static void main() {
 /* Input. */
 /* Compute. */
 /* Output. */
 } /* main */
 } /* RunMaze */

☞ Start by writing a top-level decomposition of the solution.

Establish a framework:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 /* Run a maze given as input, if possible. */
 public static void main() {
 /* Input a maze of arbitrary size, or output “malformed input”
 and stop if the input is improper. Input format: TBD.*/
 /* Compute a direct path through the maze, if one exists. */
 /* Output the direct path found, or “unreachable” if there is
 none. Output format: TBD. */
 } /* main */
 } /* RunMaze */

Establish a framework:

☞ Repeatedly improve comments by relentless copy editing.

☞ Many short procedures are better than large blocks of code.

Establish a framework:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 /* Run a maze given as input, if possible. */
 public static void main() {
 /* Input a maze of arbitrary size, or output “malformed input”
 and stop if the input is improper. Input format: TBD.*/
 Input();
 /* Compute a direct path through the maze, if one exists. */
 Solve();
 /* Output the direct path found, or “unreachable” if there is
 none. Output format: TBD. */
 Display();
 } /* main */
 } /* RunMaze */

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Input a maze of arbitrary size, or output “malformed input”
 and stop if the input is improper. Input format: TBD. */
 private static void Input() { } /* Input */
 /* Compute a direct path through the maze, if one exists. */
 private static void Solve() { } /* Solve */
 /* Output the direct path found, or “unreachable” if there is none.
 Output format: TBD. */
 private static void Output() { } /* Output */
 ...
 } /* RunMaze */

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Establish a framework:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Input a maze of arbitrary size, or output “malformed input”
 and stop if the input is improper. Input format: TBD. */
 private static void Input() { } /* Input */
 /* Compute a direct path through the maze, if one exists. */
 private static void Solve() { } /* Solve */
 /* Output the direct path found, or “unreachable” if there is none.
 Output format: TBD. */
 private static void Output() { } /* Output */
 ...
 } /* RunMaze */

☞ Practice information hiding.

Private and internal to RunMaze. No other class needs to know about them.

Establish a framework:

Algorithm (from Chapter 4):

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

Sidestep

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm
that is in your “wetware”. Be introspective. Ask yourself: What am I doing?

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Sidestep

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Sidestep

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.
 “Peripheral” is not just “outer”, but includes “attached”
 inner walls.

VARIANT:
 Get closer to goal.

Turn convex corner

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Pirouette to other side

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Turn convex corner

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall.

VARIANT:
 Get closer to goal.

Actions:
• Sidestep
• Pirouette
• Turn convex corner
• (Turn concave corner)
Query:
• What action to perform?
Unit of progress:
• 1 wall-segment-surface

Physically, you don’t need to distinguish cases, e.g., “just keep your hand on the wall and
move to the right”, but computationally, a case analysis must inspect the geometry, e.g.,

if (__________) Sidestep
else if (__________) Pirouette
else if (__________) Turn convex corner
else Turn concave corner

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Finer-grained actions.

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Local query.

Finer-grained actions.

Alternative Formulation: From Chapter 4.

(allow left-hand off wall if it is at a door)
INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
Actions:
• Turn clockwise 90°
• Turn counterclockwise 90°
• Step forward
Query:
• Facing a wall?
Unit of progress:
• 1 wall-segment-surface-or-door

Local query.

Finer-grained actions.

Simpler to implement.

Alternative Formulation: Pseudo-code, from Chapter 4.

/* Start in upper-left cell, facing up. */
while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

while (/* !in-lower-right && !in-upper-left-about-to-cycle */)
 if (/* facing-wall */)
 /* Turn 90° clockwise. */
 else {
 /* Step forward. */
 /* Turn 90° counterclockwise. */
 }

Algorithm: Drop code into RunMaze.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Input a maze of arbitrary size, or output “malformed input”
 and stop if the input is improper. Input format: TBD. */
 private static void Input() {
 ⟨Obtain maze from input.⟩
 ⟨Start in upper-left cell, facing up.⟩
 } /* Input */
 ...
 } /* RunMaze */

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
 Establish INVARIANT as part of initialization of state.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Compute a direct path through the maze, if one exists. */
 private static void Solve() {
 while (!isAtCheese() && !isAboutToRepeat())
 if (isFacingWall()) TurnClockwise();
 else {
 StepForward();
 TurnCounterClockwise();
 }
 } /* Solve */
 ...
 } /* RunMaze */

Algorithm: Drop code into RunMaze, with pseudo-operations turned into method calls.

INVARIANT:
 Left hand is on the interior surface of a peripheral wall, or at a door.
 Maintain INVARIANT and make progress in Solve.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 } /* MRP */

CLIENT
algorithm

SERVER
maze

rat

path

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Run a maze given as input, if possible. */
 public static void main() {
 ...
 } /* main *.
} /* RunMaze */

queries actions

Modular program structure: Separation of concerns.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Compute a direct path through the maze, if one exists. */
 private static void Solve() {
 while (!MRP.isAtCheese() && !MRP.isAboutToRepeat())
 if (MRP.isFacingWall()) MRP.TurnClockwise();
 else {
 MRP.StepForward();
 MRP.TurnCounterClockwise();
 }
 } /* Solve */
 ...
 } /* RunMaze */

Algorithm (from Chapter 4): Qualify names of methods of another class.

The algorithm is a client of services provided by class MRP.

Operations:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 public static void TurnClockwise() { }
 public static void TurnCounterClockwise() { }
 public static void StepForward() { }
 public static boolean isFacingWall() { return ____; }
 public static boolean isAtCheese() { return ____; }
 public static boolean isAboutToRepeat() { return ____; }
 } /* MRP */

☞ The touchstone of a data representation is its utility in performing the needed operations.

Procedure stubs for the services.

Operations:

☞ The touchstone of a data representation is its utility in performing the needed operations.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 public static void TurnClockwise() { }
 public static void TurnCounterClockwise() { }
 public static void StepForward() { }
 public static boolean isFacingWall() { return ____; }
 public static boolean isAtCheese() { return ____; }
 public static boolean isAboutToRepeat() { return ____; }
 } /* MRP */

Stubs provide signatures, i.e., types for return types, types for parameters (none), and visibility.

Operations:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 public static void TurnClockwise() { }
 public static void TurnCounterClockwise() { }
 public static void StepForward() { }
 public static boolean isFacingWall() { return ____; }
 public static boolean isAtCheese() { return ____; }
 public static boolean isAboutToRepeat() { return ____; }
 } /* MRP */

☞ The touchstone of a data representation is its utility in performing the needed operations.

Public to client classes of MRP, e.g., RunMaze.

State: The Maze, Rat, and Path data representations.

We (the implementers of MRP) design the data representation to record the state, and code the
query and action operations to update it.

☞ Practice information hiding.

Program

Class

/* Method Specifications. */

Method Implementations

State: The Maze, Rat, and Path data representations.

☞ Practice information hiding.

Program

/* Specification. */

Implementation

Program

Class
 ⟨private state variables⟩

/* Method Specifications. */

Method Implementations

We (the implementers of MRP) design the data representation to record the state, and code the
operations to query and update it.

Clients of MRP will have no direct access to the state in MRP. Rather, they will only be able to
interact with MRP via its operations, i.e., its interface. This is called an abstract data type, and
generalizes our prior use of specifications for information hiding.

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0

1

2

3

4

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12

1

2

3

4

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ The touchstone of a data representation is its utility in performing the needed operations.

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Anticipate

• Direction d, ⟨0,1,2,3⟩ = ⟨up,right,down,left⟩

• Decoder isWall(r,c,d), true iff wall in direction d

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Positive

• Direct correspondence between physical
maze and 2-D array W.

☞ The touchstone of a data representation is its utility in performing the needed operations.

W 0 1 2 3 4

0 9 10 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

☞ Choose representations that by design do not have nonsensical configurations.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negative

• Representation admits nonsensical data, e.g.,
9 claims “there is no wall to the right”, but 11
claims “there is a wall to the left”.

Maze Representation 1: N-by-N array W whose elements encode cell walls:

13 140 1 2 3 4 115 6 7 8 9 10 12 15

Negatives

• Representation admits nonsensical data, e.g.,
9 claims “there is no wall to the right”, but 11
claims “there is a wall to the left”.

• Decoder isWall(r,c,d) and corresponding
encoder are somewhat fussy.

W 0 1 2 3 4

0 9 11 12 9 12

1 5 9 2 4 7

2 5 1 12 3 12

3 5 7 5 11 6

4 3 14 3 10 14

Maze Representation 1: N-by-N array W whose elements encode cell walls:

Path Representation 1: N-by-N array P whose elements are visit numbers or 0 (Unvisited).

☞ The touchstone of a data representation is its utility in performing the needed operations.

P 0 1 2 3 4

0 1 2 3 0 0

1 0 5 4 0 0

2 0 6 7 0 0

3 0 0 8 0 0

4 0 0 9 10 11

1 2 3

5 4

6 7

8

9 10 11

Positive

• Direct correspondence between physical
maze and 2-D array P.

Maze Representation 2: Separate boolean arrays, V and H, for vertical and horizontal walls.

Eliminating Negatives of Representation 1

• Unique representation of each (possible) wall.

• Decoder and corresponding encoder are
more straightforward.

☞ Choose representations that by design do not have nonsensical configurations.

Maze Representation 2: Separate boolean arrays, V and H, for vertical and horizontal walls.

Negative of Representation 2

• Non-uniformity. Two arrays rather than one.

☞ Choose data representations that are uniform, if possible.

Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Positives

• Single 2-D array M for both walls and path.

• Unique array cell (gray) to represent each
(possible) wall.

• Unique array cell (letters) for visit numbers.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

Maze Representation 3: (2·N+1)-by-(2·N+1) array M of of walls and path visit numbers.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Negatives

• About ¼ of storage is wasted (yellow).

• Direct correspondence between maze
coordinate system and 2-D array. indices lost.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

Maze Representation 3: Adopt it.

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D

☞ Don’t let the “perfect” be the enemy of the “good”.
Be prepared to compromise because there may be no
perfect representation. Don’t freeze.

Data Representation Invariant:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 /* Maze. Cells of an N-by-N maze are represented by elements of
 array M[2*N+1][2*N+1]. Maze cell ⟨r,c⟩ is represented by array
 element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 Wall or NoWall in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 The remaining elements of M are unused. lo is 1, and hi is
 2*N-1. */
 private static int N; // Size of maze. */
 private static int M[][]; // Maze, walls, and path.
 private static final int Wall = -1;
 private static final int NoWall = 0;
 private static int lo, hi; // Left/top and right/bottom maze indices.
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 /* Maze. Cells of an N-by-N maze are represented by elements of
 array M[2*N+1][2*N+1]. Maze cell ⟨r,c⟩ is represented by array
 element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
 left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
 Wall or NoWall in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
 The remaining elements of M are unused. lo is 1, and hi is
 2*N-1. */
 private static int N; // Size of maze. */
 private static int M[][]; // Maze, walls, and path.
 private static final int Wall = -1;
 private static final int NoWall = 0;
 private static int lo, hi; // Left/top and right/bottom maze indices.
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Rat. The rat is located in cell M[r][c] facing direction d, where
 d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
 respectively. */
 private static int r, c, d;
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Rat. The rat is located in cell M[r][c] facing direction d, where
 d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
 respectively. */
 private static int r, c, d;
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
 through cells of the maze, the elements of M that correspond to
 those cells will be 1, 2, 3, etc., and all other elements of M
 that correspond to cells of the maze will be Unvisited. The
 number of the last step in the path is move. */
 private static final int Unvisited = 0;
 private static int move;
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Data Representation Invariant:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
 through cells of the maze, the elements of M that correspond to
 those cells will be 1, 2, 3, etc., and all other elements of M
 that correspond to cells of the maze will be Unvisited. The
 number of the last step in the path is move. */
 private static final int Unvisited = 0;
 private static int move;
 ...
 } /* MRP */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Private and internal to MRP. No other class needs to know about them.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 // Unit vectors in direction d = 0, 1, 2, 3
 // up, right, down, left
 private static final int deltaR[] = { -1, 0, 1, 0 };
 private static final int deltaC[] = { 0, 1, 0, -1 };
 public static TurnClockwise()
 { d = (d+1)%4; }
 public static TurnCounterClockwise()
 { d = (d+3)%4; }
 public static StepForward()
 { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
 public staticboolean isFacingWall()
 { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }
 public staticboolean isAtCheese()
 { return (r==hi)&&(c==hi); }
 public static boolean isAboutToRepeat()
 { return (r==lo)&&(c==lo)&&(d==3); }
 } /* MRP */

Interface Implementation:

Interface includes I/O: Only MRP knows the data representation, so it must do the I/O.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Input N-by-N maze. */
 public static void Input() {
 } /* Input */
 /* Output N-by-N maze, with walls and path. */
 public static void PrintMaze() {
 } /* PrintMaze */
 } /* MRP */

Input: Hard code an initial example.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Input N-by-N maze. */
 public static void Input() {
 /* Maze. As per representation invariant. */
 N = 1; // Size of maze.
 lo= 1; hi = 2*N-1; // First and last edges of maze.
 M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
 M[0][1] = M[1][0] = M[1][2] = M[2][1] = Wall;
 /* Rat. Place rat in upper-left cell facing up. */
 r = lo; c = lo; d = 0;
 /* Path. Establish the rat in the upper-left cell. */
 move = 1; M[r][c] = move;
 } /* Input */
 } /* MRP */

Slight language extension: Multiple lefthand sides for assignment statement.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Input a maze, or reject the input as malformed. */
 private static void Input() { MRP.Input(); } /* Input */
 ...
 } /* RunMaze */

Input: Invoke from the client.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Output N-by-N maze, with walls and path. */
 public static void PrintMaze() {
 for (int r = lo-1; r<=hi+1; r++) {
 for (int c = lo-1; c<=hi+1; c++) {
 String s;
 if (M[r][c]==Wall) s = "#";
 else if (M[r][c]==NoWall || M[r][c]==Unvisited) s = " ";
 else s = M[r][c]+"";
 System.out.print((s+" ").substring(0,3));
 }
 System.out.println();
 }
 } /* PrintMaze */
 } /* MRP */

Output: Straightforward, so knock it off, in general.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Output the direct path found, or “unreachable” if there is none. */
 private static void Output() {
 if (!MRP.isAtCheese()) System.out.println("Unreachable");
 else MRP.PrintMaze();
 } /* Output */
 ...
 } /* RunMaze */

Output: Invoke from the client.

Commentary : Design rules for abstract data types.

• Prefer fine-grained micro-operations over coarse-grained macro-operations.

▪ E.g., TurnClockwise rather than Pirouette.

• It is better to support operations that are defined relative to the state than it is to reveal portions of
the state itself. Avoid leaking details of any particular data representation.

▪ E.g., isAtCheese rather than getRow and getColumn.
▪ E.g., TurnClockwise rather than getDirection and SetDirection.

• Avoid macro-operations that embody algorithmic details that belong in the client.

• E.g., RunMaze.Solve rather than MRP.Solve .

Controlled Testing: At first, use an empty stub for Solve.

Test 1: Check for syntax errors, and check input/output framework.

#
1
 #

input output

☞ Test programs incrementally.

Correct output.

Controlled Testing: Still use an empty stub for Solve, but change Input to hard-code a 2-by-2.

Test 2: Check Output.

Unreachable

input output

Expected output since Solve is just a
stub. Validation of code for message.

☞ Test programs incrementally.

#
1 2

3
 # #

input output

Controlled Testing: Now use real code for Solve.

Test 3: Further check of Output, and check of Solve for an empty 2-by-2 `maze.

Correct solution.

#
1

2 3
 # #

input output

Controlled Testing: Change Input to hard-code a 2-by2, with an obstacle.

Test 4: Further check of Solve.

Correct solution. Appears to be going counter-clockwise,
but this is an illusion: It is making its way around the
obstacle clockwise when it stumbles into the cheese.

#
3 2

4 5
 # #

input output

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Anticipated incorrect solution. We are doing a complete
exploration, and don’t bother to detect the cul-de-sac.
As a result, we overwrite the path, and leave a mess.

#
1

#
 # #

input output

↑

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.

#
1

#
 # #

input output

→

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.

#
1 2

#
 # #

input output

↑

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.

#
1 2

#
 # #

input output

→

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.

#
1 2

#
 # #

input output

↓

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay.

#
1 2

#
 # #

input output

←

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Replay. This is the moment when we need to detect the
imminent re-entry to a cell that is currently on the path.

#
3 2

#
 # #

input output

↓

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

We ignored the issue, and overwrote the 1 with a 3.

#
1 2

#
 # #

input output

←

Controlled Testing: Change Input to hard-code a 2-by2, with a cul-de-sac.

Test 5: Further check of Solve.

Backing up, we need to prevent this.

Algorithm: Proceed only if about to enter a cell that is not on the current path.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Compute a direct path through the maze, if one exists. */
 private static void Solve() {
 while (!MRP.isAtCheese() && !MRP.isAboutToRepeat())
 if (MRP.isFacingWall()) MRP.TurnClockwise();
 else if (MRP.isFacingUnvisited()) {
 MRP.StepForward();
 MRP.TurnCounterClockwise();
 }
 else Retract();
 } /* Solve */
 ...
 } /* RunMaze */

Add the check …

… and introduce Retract to handle the cul-de-sac case.

Extend MRP: Add isFacingUnvisited to interface.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 public static boolean isFacingUnvisited()
 { return M[r+2*deltaR[d]][c+2*deltaC[d]] == Unvisited; }
 ...
 } /* MRP */

Retract:

#
1 2

#
 # #

input output

←
The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Retract:

#
1 2

#
 # #

input output

←
The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the StepForward that took us into the
cul-de-sac.

public static StepForward()
 { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }

Retract:

#
1

#
 # #

input output

←
The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the StepForward that took us into the
cul-de-sac.

public static StepForward()
 { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
 public static void StepBackward()
 { M[r][c] = Unvisited; move--; r = r+2*deltaR[d]; c = c+2*deltaC[d]; }

Retract:

#
1

#
 # #

input output

↓
The next step from here needed to detect the imminent
re-entry to a cell that is currently on the path, but didn’t
bother.

Need to undo the StepForward that took us into the
cul-de-sac, and turn as if it had been skipped.

public static StepForward()
 { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
 public static void StepBackward()
 { M[r][c] = Unvisited; move--; r = r+2*deltaR[d]; c = c+2*deltaC[d]; }

Retract: Implemented as follows.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Unwind abortive exploration. */
 private static void Retract () {
 MRP.StepBackward();
 MRP.TurnCounterClockwise();
 } /* Retract */
 ...
 } /* RunMaze */

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Unwind abortive exploration. */
 private static void Retract () {
 MRP.StepBackward();
 MRP.TurnCounterClockwise();
 } /* Retract */
 ...
 } /* RunMaze */

Retract: Implemented as follows.

Marker: You have just been deliberately
led astray, but we will keep going.

Test 6: Redo Test 5.

#
1

2 3
 # #

input output

Correct solution. We backed out of the cul-de-sac, and
proceeded to the lower-right cell.

Test 6: Redo Test 5.

#
1

2 3
 # #

input output Could we be done? Perhaps, but we will need to test on
bigger mazes. It’s time to code the general-purpose
Input method.

Correct solution. We backed out of the cul-de-sac, and
proceeded to the lower-right cell.

Input: Start with hardcoded initial example.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Input N-by-N maze. */
 public static void Input() {
 /* Maze. As per representation invariant. */
 N = 1; // Size of maze.
 lo= 1; hi = 2*N-1; // First and last indices of maze.
 M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
 M[0][1] = M[1][0] = M[1][2] = M[2][1] = Wall;
 /* Rat. Place rat in upper-left cell facing up. */
 r = lo; c = lo; d = 0;
 /* Path. Establish the rat in the upper-left cell. */
 move = 1; M[r][c] = move;
 } /* Input */
 } /* MRP */

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
 public static void Input() {
 /* Maze. */
 Scanner in = new Scanner(System.in);
 N = ⟨value for N⟩;
 M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
 ⟨Define each element of M⟩
 /* Rat. */
 r = lo; c = lo; d = 0;
 /* Path. */
 move = 1; M[r][c] = move;
 } /* Input */
 } /* MRP */

Input: Identify places to change, and code.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
 public static void Input() {
 /* Maze. */
 Scanner in = new Scanner(System.in);
 N = in.nextInt(); in.nextLine();
 lo = 1; hi = 2*N-1; // Left and right edges of maze.
 M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
 for (int r=lo-1; r<=hi+1; r++) {
 String line = in.nextLine();
 for (int c=lo-1; c<=hi+1; c++)
 if ((r%2==1) && (c%2==1)) M[r][c] = Unvisited;
 else if (line.substring(c,c+1).equals(" "))
 M[r][c] = NoWall;
 else M[r][c] = Wall;
 }
 /* Rat. */
 r = lo; c = lo; d = 0;
 /* Path. */
 move = 1; M[r][c] = move;
 } /* Input */
 } /* MRP */

Fussy detail that we
shall skip over.

Controlled Testing: Try every sort of maze you can think of.

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Deeper cul-de-sacs

Higgledy-piggledy cul-de-sacs

1 1 2 1 2 3 1 2 1 1

2

1

2 3 4

5

. . .

1 2 3 6 7

4 5 8

1 2 3

4 5

6 7

9 8

1 2 3

5 4

6 7

8

9 10 11

☞ Beware of premature self-satisfaction.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

1
. . .

☞ Test programs thoroughly.

Controlled Testing: But how can you know when you are done?

Review Code:

• You were supposed to be very systematic, but did you consider every case?

Review Test data:

• You were supposed to be very systematic, but did you consider every case?

Do you have to just keep trying until you think of a room-shaped cul-de-sac?

Aargh! We only considered corridor-shaped cul-de-sacs.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

.

☞ Test programs thoroughly.

1 1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

.

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Unwind abortive exploration. */
 private static void Retract () {
 MRP.StepBackward();
 MRP.TurnCounterClockwise();
 } /* Retract */
 ...
 } /* RunMaze */

Marker: You have just been deliberately
led astray, but we will keep going.

Retract: Implemented as follows.

1 2 3

5 4

This didn’t unwind the traversal of the cul-de-sac; it only undid the first step into the cul-de-sac. This worked
fine even for deep corridor-shaped cul-de-sacs (which could be backed out of one “first-step” at a time).

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Unwind abortive exploration. */
 private static void Retract () {
 while (/* not unwound */) {
 MRP.FacePrevious();
 MRP.StepBackward();
 }
 TurnCounterClockwise();
 } /* Retract */
 } /* RunMaze */

Correction: Now we are going in the right
direction, truly unwinding the path.

Retract: Implemented as follows.

1 1 2 3

5 4

1 2 3

4

1 3

4

1 3

3 4

1 3

3 4

4 5 6

.

1 1 2 3

5 4

1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

Picking
up the
“bread
crumbs”.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

⟨r,c⟩

↑ d
Code as if in class MRP, where there is access to the data representation.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

↑ d
Trace: There are actually two separate cul-de-sacs, 2-5 and 1-2.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

→ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction. ↑
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

↑ d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ↑
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction. ←
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

2

☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction. ←
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

Second call to Retract.
⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction.
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

1☞

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞
1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction.
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction. ←
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

1

⟨r,c⟩

← d

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
 int neighborDirection = d; // Save direction. ←
 while (M[r][c] != neighborNumber) {
 FacePrevious();
 StepBackward();
 }
 d = neighborDirection; // Restore direction. ↓
 TurnCounterClockwise();
 } /* Retract */
 ...
 } /* MRP */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

☞

⟨r,c⟩

↓ d

1

/* Rat running. See Chapter 15 of text. */
class RunMaze {
 ...
 /* Unwind abortive exploration. */
 public static void Retract() {
 MRP.RecordNeighborAndDirection();

 while (!MRP.isAtNeighbor()) {
 MRP.FacePrevious();
 MRP.StepBackward();
 }
 MRP.RestoreDirection();
 MRP.TurnCounterClockwise();
 } /* Retract */
 ...
 } /* RunMaze */

1 1 2 3

4

1 2 3 1 2 1

2.
1

2

3 4 5

1 2 3

5 4

But Retract is too algorithmic for MRP. It really
belongs in RunMaze.

MRP can provide three helpful primitives:
 RecordNeighborAndDirection
 isAtNeighbor
 RestoreDirection

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
 ...
 private static int neighborNumber; // Recorded visit #.
 private static int neighborDirection; // Dir. at time of recording.

 public static void RecordNeighborAndDirection ()
 { neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]; neighborDirection = d; }

 public static boolean isAtNeighbor() { return M[r][c]==neighborNumber; }

 public static void RestoreDirection() { d = neighborDirection; }
 ...
 } /* MRP */

MRP state variables: Support the notion of an “arrow in a cell”.

MRP operations (colloquially):
• “Toss an arrow into a neighbor”,
• “Detect being in that neighbor”, and
• “Align direction with the arrow”.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 public static void FacePrevious() {
 int d = 0;
 while (isFacingWall() || M[r][c]-1 != M[r+2*deltaR[d]][c+2*deltaC[d]])
 d++;
 } /* FacePrevious */
 ...
 } /* MRP */

Remaining Implementation: FacePrevious, just a Sequential Search.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Running a Maze can be viewed as a search problem that either succeeds (by finding a path),
or that announces “unreachable”.

Checking the answer “unreachable” is no easier than the original problem because it involves
discovering a path that contradicts the unreachability claim.

Self-checking: The setting.

It is often easier to automatically check the correctness of a problem solution than it is to find
the solution in the first place.

Running a Maze can be viewed as a search problem that either succeeds (by finding a path),
or that announces “unreachable”.

Checking the answer “unreachable” is no easier than the original problem because it involves
discovering a path that contradicts the unreachability claim.

But if the program claims a path, it can be checked for correctness.

Self-checking: The checking code.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Return false iff rat reached cell ⟨r,c⟩ via an invalid path. */
 public static boolean isValidPath(int r, int c) {
 if (M[r][c]==Unvisited) return true; // No claim if Unvisited.
 else
 while (!((r==lo)&&(c==lo))) {
 /* Go to any valid predecessor; return false if there is none. */
 int d = 0;
 while (d<4 && (M[r+deltaR[d]][c+deltaC[d]] == Wall ||
 M[r+2*deltaR[d]][c+2*deltaC[d]] != M[r][c]-1)) d++;
 if (d==4) return false;
 r = r+2*deltaR[d]; c = c+2*deltaC[d];
 }
 return true; // Reached upper-left cell.
 } /* isValidPath */
 ...
 } /* MRP */

Self-checking: The checking code.

/* Rat running. See Chapter 15 of text. */
class MRP {
 ...
 /* Return false iff rat reached lower-right cell via an invalid path. */
 public static boolean isSolution () {
 return isValidePath(hi,hi);
 } /* isSolution */
 ...
 } /* MRP */

Self-checking:. Making the assertion as a last step in RunMaze.

assert MRP.isSolution(): "internal program error";

N.B. The code in MRP.isValidPath() is missing a check for
the absence of noise off the path.

Exhaustive Bounded Testing:

There are an infinite number of mazes, so exhaustive testing is not
possible.

For given N, there are a finite number of N-by-N mazes, so exhaustive
testing of up to size N is feasible, in principle. How many are there?

Answer: 2w , where w is the number of places where a wall can either
exist or not exist:

• Outer walls must exist.
• Each of N rows of cells has N-1 interior vertical-wall positions.
• Each of N columns of cells has N-1 inerior horizontal-wall positions.

So w = 2*N*(N-1).

Feasible up through N=4.

N 22·N·(N-1)

1 20 = 1

2 24 = 16

3 212 = 4,096

4 224 = 16,777,216

5 290

Exhaustive Bounded Testing: Maze generation.

/* Create an N-by-N maze with walls given by the bits of w. */
public static void GenerateInput(int N, int w) {
 /* Maze. */
 M = new int[2*N+1][2*N+1];
 lo = 1; hi = 2*N-1;
 /* Set boundary walls. */
 for (int i=0; i<=hi+1; i++)
 M[lo-1][i] = M[hi+1][i] = M[i][lo-1] = M[i][hi+1] = Wall;
 /* Set 2*n*(n-1) interior walls to the corresponding bits of w. */
 for (int r=lo; r<=hi; r++)
 for (int c=lo; c<=hi; c++)
 if ((r%2==0 && c%2==1)||(r%2==1 && c%2==0)) {
 if (w%2==1) M[r][c] = Wall; else M[r][c] = NoWall;
 w = w/2;
 }
 /* Rat. */
 r = lo; c = lo; d = 0;
 /* Path. */
 move = 1; M[r][c] = move;
 } /* GenerateInput */

Exhaustive Bounded Testing: Iterating through mazes.

/* Generate/solve all mazes of sizes up through 4, and validate paths found. */
public static void test() {
 for (int N = 1; N<=4; N++)
 for (int i=0; i<Math.pow(2,2*N*(N-1)); i++) {
 MRP.GenerateInput(N,i);
 Solve();
 assert MRP.isValidPath(): "internal program error";
 }
 System.out.println("passed");
 } /* test */

Random Testing: For larger mazes.

Can’t test them all, but can generate and test random mazes of a given size (for as long as
you want), and validate solutions. This is called fuzz testing.

N.B. Given the way wall configurations are expressed above, you will have to use
Java’s long or BigInteger integers for big values of N.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Top-level Code Structure
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	Algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	Data Representation, revisited
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

	Initial Tests
	Slide 74
	Slide 75
	Slide 76
	Slide 77

	Direct Paths
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

	Input
	Slide 97
	Slide 98
	Slide 99

	Testing, revisited
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

	Direct Paths, revisited
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135

	Self-Checking Code
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

	Testing, revisited yet again
	Slide 143
	Slide 144
	Slide 145
	Slide 146

