Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor
Department of Computer Science
Cornell University

Median
The median of an ordered array of \(n \) values is the middle value. If \(n \) is odd, this is \(A[n/2] \); if \(n \) is even, we also opt for \(A[n/2] \) rather than averaging the middle two values.
The median of an ordered array of \(n \) values is the middle value. If \(n \) is odd, this is \(A[n/2] \); if \(n \) is even, we also opt for \(A[n/2] \) rather than averaging the middle two values.

But what if the array is not ordered. How would you find the median then?

You could sort the array and select \(A[n/2] \). But sorting requires \(n \log n \) operations.

Is it possible to do better? Try it. You will find that everyday experience is no help.
The median of an ordered array of n values is the middle value. If n is odd, this is $A[n/2]$; if n is even, we also opt for $A[n/2]$ rather than averaging the middle two values.

But what if the array is not ordered. How would you find the median then?

You could sort the array and select $A[n/2]$. But sorting requires $n \log n$ operations.

Is it possible to do better? Try it. You will find that everyday experience is no help.

We need principles to follow in such cases.
Three principles that can help are:

- Consider generalizing a problem when designing an algorithm.
- Consider Divide and Conquer when designing an algorithm.
- Consider recursion when designing an algorithm.

We will use them to derive:

- An Average-Case Linear-Time Median Algorithm
- A Worst-Case Linear-Time Median Algorithm

It is astounding that it is possible to find the median of an unordered array of length n in linear time, i.e., time proportional to n.
The median of an ordered array of n values is the middle value. If n is odd, this is $A[n/2]$; if n is even, we opt for $A[n/2]$ rather than averaging the middle two values.

Consider generalizing a problem when designing an algorithm.

Selection: Given a set of n rank-ordered values, select the j^{th} smallest value of the set.
Selection: Given a set of \(n \) rank-ordered values, select the \(j^{th} \) smallest value of the set.

Consider Divide and Conquer when designing an algorithm.

Recall: Partitioning, based on the Dutch National Flag problem, for some pivot \(p \):

\[
\begin{array}{c|c|c|c}
0 & <p & ==p & >p \\
\hline
\end{array}
\]

\(0 \leq j < w \). The \(j^{th} \) smallest value is the \(j^{th} \) smallest value of \(A[0..w-1] \)
\(w \leq j < b \). The \(j^{th} \) smallest value is the pivot, \(p \)
\(b \leq j < n \). The \(j^{th} \) smallest value is the \((j-b)^{th} \) smallest value in \(A[b..n-1] \)

Choose one of the three regions based on a Partition (Divide) and repeat (Conquer).
Start with the code for Partition, and morph it into QuickSelect:

```c
/* Rearrange A[L..R-1] into all <p, then all ==p, then all >p. */
static void Partition( int A[], int L, int R, int p ) {
  (body of Partition)
} /* Partition */
```

Don’t type if you can avoid it; clone. Cut and paste, then adapt.
Start with the code for Partition, and morph it into QuickSelect:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static void QuickSelect(int A[], int L, int R, int p) {
 ⟨body of Partition⟩
} /* Partition */
Start with the code for Partition, and morph it into Select:

```c
/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static void QuickSelect( int A[], int n, int j ) {
    int L = 0; int R = n;
    int p = /* value of pivot */ ;
    (body of Partition)
} /* QuickSelect */
```

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Move parameters L, R, and p into the body of QuickSelect, and introduce parameters n and j.
Start with the code for Partition, and morph it into Select:

/* Given int 0\leq j < n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = /* value of pivot */ ;
 (body of Partition)
 return ____;
} /* QuickSelect */

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

Change return type to int, and introduce a return statement for the result.
Could consider recursion, but it is not needed because we can just ...

```c
/* Given int 0 ≤ j < n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
    int L = 0; int R = n;
    int p = /* value of pivot */ ;
    (body of Partition)
    return ____;
} /* QuickSelect */
```
Update L, R, and p iteratively using the IN Variant shown.

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 int p = /* value of pivot */ ;
 ⟨body of Partition⟩
 return ____;
} /* QuickSelect */

/* Initialize. */
while (/* not finished */) {
 /* Compute. */
 /* Go on to next. */
}
Update L, R, and p iteratively using the INARIANT shown.

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (/* not finished */) {
 int p = /* value of pivot */ ;
 ⟨body of Partition⟩
 /* Go on to next. */
 }
 return ____;
} /* QuickSelect */
Update \(L \), \(R \), and \(p \) iteratively using the **INARIANT** shown.

/* Given \(0 \leq j < n \), return \(j \)-th smallest in \(A[0..n-1] \). */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (/* not finished */) {
 int p = /* value of pivot */ ;
 ⟨body of Partition⟩
 /* Go on to “\(<p\)” or “\(>p\)” region if \(j \)-th smallest there; else return \(p \). */
 }
 return ____;
} /* QuickSelect */
Update L, R, and p iteratively using the INARIANT shown.

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (/* not finished */) {
 int p = /* value of pivot */ ;
 ⟨body of Partition⟩
 /* Go on to "<p" or ">p" region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 }
 return ___;
} /* QuickSelect */
Update L, R, and p iteratively using the **INARIANT** shown.

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 int p = /* value of pivot */ ;
 ⟨body of Partition⟩
 /* Go on to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 }
 return A[j];
} /* QuickSelect */
Update L, R, and p iteratively using the IN Variant shown.

```c
/* Given int $0 \leq j < n$, return $j$-th smallest in $A[0..n-1]$. */
static int QuickSelect( int A[], int n, int j ) {
    int L = 0; int R = n;
    while ( R-L > 1 ) {
        int p = /* value of pivot */;
        ⟨body of Partition⟩
        /* Go on to "<p" or ">p" region if $j$-th smallest there; else return $p$. */
        if ( j<w ) R = w;
        else if ( j<b ) return p;
        else L = b;
    }
    return A[j];
} /* QuickSelect */
```

Q. Where was j ever updated?
A. Nowhere. Partitioning moved values so the j^{th} smallest ended up in $A[j]$.
Update L, R, and p iteratively using the **INVARIANT** shown.

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect(int A[], int n, int j) {
 int L = 0; int R = n;
 while (R-L > 1) {
 ⟨body of Partition⟩
 /* Go on to “<p” or “>p” region if j-th smallest there; else return p. */
 if (j<w) R = w;
 else if (j<b) return p;
 else L = b;
 }
 return A[j];
} /* QuickSelect */

- **Best case.** On each iteration, pivot is (serendipitously) the **median** of \(A[L..R-1]\), so region sizes reduced by \(\frac{1}{2}\). Partitioning time is linear in size.

 Total effort. \(1 \cdot n + \frac{1}{2} \cdot n + \frac{1}{4} \cdot n + \ldots = 2 \cdot n\), i.e., **linear in \(n\)**

- **Worst case.** On each iteration, pivot is (serendipitously) the **min or max** of \(A[L..R-1]\), so region sizes reduced by 1. Partitioning time is linear in size.

 Total effort. \(n + (n-1) + (n-2) + \ldots + 1 = n \cdot (n-1)/2\), i.e., **quadratic in \(n\)**.

- **Average case,** i.e., summed over all permutations of values in \(A[0..n-1]\).

 Total effort. **Linear in \(n\)**

(offered without proof)
Bad News: QuickSelect can have quadratic-time performance on some arrays.

Imagine telling the widow:

But Mrs. Jones, on average the code would have been fast enough to have saved your husband’s life.

Goal. Linear-time performance on every array.
Performance Goal: Pivots computed as ________ in the hope that

- Every case.
 (1) On each iteration, region sizes reduced by constant ratio r.
 Partitioning time is linear in region size.
 Total effort for partitioning. $1\cdot n + r\cdot n + r^2\cdot n + r^3\cdot n + \ldots = n/(1-r)$
 i.e., linear in n, not counting time to compute the pivot.
 (2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

- Every case.

 (1) On each iteration, region sizes reduced by constant ratio r.
 Partitioning time is linear in region size.
 Total effort for partitioning. $1 \cdot n + r \cdot n + r^2 \cdot n + r^3 \cdot n + ... = n/(1-r)$
 I.e., linear in n, not counting time to compute the pivot.

 (2) On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.
Idea: Pivots computed as approximations to median of A[L..R-1].

Imagine that this array, with median 61:

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
51 & 60 & 73 & 92 & 57 & 54 & 75 & 59 & 91 & 58 & 71 & 62 & 67 & 66 & 59 & 52 & 61 & 72 & 55 & 60 & 79 \\
\end{array}
\]

were laid out in a 3-high 2-D array in row major order:

\[
\begin{array}{cccccccccccc}
51 & 60 & 73 & 92 & 57 & 54 & 75 \\
59 & 91 & 58 & 71 & 62 & 67 & 66 \\
59 & 52 & 61 & 72 & 55 & 60 & 79 \\
\end{array}
\]

The median of each column is shown in red.
Idea: Pivots computed as approximations to median of $A[\text{L}..\text{R}-1]$.

Imagine that this array, with median 61:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>51</td>
<td>60</td>
<td>73</td>
<td>92</td>
<td>57</td>
<td>54</td>
<td>75</td>
<td>59</td>
<td>91</td>
<td>58</td>
<td>71</td>
<td>62</td>
<td>67</td>
<td>66</td>
<td>59</td>
<td>52</td>
<td>61</td>
<td>72</td>
<td>55</td>
<td>60</td>
<td>79</td>
</tr>
</tbody>
</table>

were laid out in a 3-high 2-D array in row major order:

51	52	58	71	55	54	66																
59	60	61	72	57	60	75																
59	91	73	92	62	67	79																

Now, imagine that each column were sorted, so its median comes to middle row.

The median of each column is shown in red.
Idea: Pivots computed as approximations to median of $A[L..R-1]$.

Imagine that this array, with median 61:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>51</td>
<td>60</td>
<td>73</td>
<td>92</td>
<td>57</td>
<td>54</td>
<td>75</td>
<td>59</td>
<td>91</td>
<td>58</td>
<td>71</td>
<td>62</td>
<td>67</td>
<td>66</td>
<td>59</td>
<td>52</td>
<td>61</td>
<td>72</td>
<td>55</td>
<td>60</td>
<td>79</td>
</tr>
</tbody>
</table>

were laid out in a 3-high 2-D array in row major order:

<table>
<thead>
<tr>
<th></th>
<th>55</th>
<th>51</th>
<th>52</th>
<th>54</th>
<th>58</th>
<th>66</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>75</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>59</td>
<td>91</td>
<td>67</td>
<td>73</td>
<td>79</td>
<td>92</td>
</tr>
</tbody>
</table>

Next, imagine that the columns were sorted by their medians. The median of the medians is shown with a green background.

The median of each column is shown in red.
Idea: Pivots computed as approximations to median of $A[L \ldots R-1]$.

Imagine that this array, with median 61:

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>60</td>
<td>73</td>
<td>92</td>
<td>57</td>
<td>54</td>
<td>75</td>
<td>59</td>
<td>91</td>
<td>58</td>
<td>71</td>
<td>62</td>
<td>67</td>
<td>66</td>
<td>59</td>
<td>52</td>
<td>61</td>
<td>72</td>
<td>55</td>
<td>60</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>

were laid out in a 3-high 2-D array in row major order:

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|-----|
| 55 | 51 | 52 | 54 | 58 | 66 | 71 | 57 | 59 | 60 | 60 | 61 | 75 | 72 | 62 | 59 | 91 | 67 | 73 | 79 | 92 |

Finally, color code the values:
- pink, if \leq median of medians
- blue, if \geq median of medians

The median of each column is shown in red.

Imagine that this array, with median 61:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
51	60	73	92	57	54	75	59	91	58	71	62	67	66	59	52	61	72	55	60	79

were laid out in a 3-high 2-D array in row major order:

<table>
<thead>
<tr>
<th>55</th>
<th>51</th>
<th>52</th>
<th>54</th>
<th>58</th>
<th>66</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>75</td>
<td>72</td>
</tr>
<tr>
<td>62</td>
<td>59</td>
<td>91</td>
<td>67</td>
<td>73</td>
<td>79</td>
<td>92</td>
</tr>
</tbody>
</table>

Finally, color code the values:
- pink, if ≤ median of medians
- blue, if ≥ median of medians

Choose the median of medians (60) as the pivot p, and partition A.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
51	55	57	54	52	59	59	58	60	60	62	67	66	71	91	61	72	75	92	79	73

Imagine that this array, with median 61:

$$
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
A & 51 & 60 & 73 & 92 & 57 & 54 & 75 & 59 & 91 & 58 & 71 & 62 & 67 & 66 & 59 & 52 & 61 & 72 & 55 & 60 & 79 \\
\end{array}
$$

were laid out in a 3-high 2-D array in row major order:

$$
\begin{array}{cccccccc}
55 & 51 & 52 & 54 & 58 & 66 & 71 \\
57 & 59 & 60 & 60 & 61 & 75 & 72 \\
62 & 59 & 91 & 67 & 73 & 79 & 92 \\
\end{array}
$$

We seek the median, i.e., the $n/2^{th}$ smallest $(n/2 = 21/2 = 10)$, which falls into $>p$ region.

Choose the median of medians (60) as the pivot p, and partition A.

$$
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
A & 51 & 55 & 57 & 54 & 52 & 59 & 60 & 60 & 62 & 67 & 66 & 71 & 91 & 61 & 72 & 75 & 92 & 79 & 73 \\
\end{array}
$$

Imagine that this array, with median 61:

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
51 & 60 & 73 & 92 & 57 & 54 & 75 & 59 & 91 & 58 & 71 & 62 & 67 & 66 & 59 & 52 & 61 & 72 & 55 & 60 & 79 \\
\end{array}
\]

were laid out in a 3-high 2-D array in row major order:

\[
\begin{array}{cccccccc}
55 & 51 & 52 & 54 & 58 & 66 & 71 \\
57 & 59 & 60 & 60 & 61 & 75 & 72 \\
62 & 59 & 91 & 67 & 73 & 79 & 92 \\
\end{array}
\]

We seek the median, i.e., the $n/2^{th}$ smallest $(n/2 = 21/2 = 10)$, which falls into $>p$ region, eliminating at least $2/3 \cdot \frac{1}{2} = 1/3$ the values.

Thus, the $>p$ region is no larger than $r = 1-1/3 = 2/3$ the size of the whole.

- Every case.
 1. On each iteration, region sizes reduced by constant ratio r.
 - Partitioning time is linear in region size.
 - Total effort for partitioning. $n + r\cdot n + r^2\cdot n + r^3\cdot n + ... = n/(1-r)$
 - I.e., linear in n, not counting time to compute the pivot.
 2. On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.

- Every case.
 1. On each iteration, region sizes reduced by constant ratio r.
 Partitioning time is linear in region size.
 Total effort for partitioning. \(n + \frac{2}{3} \cdot n + \left(\frac{2}{3} \right)^2 \cdot n + \left(\frac{2}{3} \right)^3 \cdot n + \ldots = \frac{n}{1-\frac{2}{3}} = 3 \cdot n \)
 ✔️ i.e., linear in n, not counting time to compute the pivot.
 2. On each iteration, the cost to compute the pivot is also linear in region size.

Thus, total effort, would be linear in n. In particular, even in the worst-case.
Performance Goal: Pivots computed as median of medians of A[L . . R-1].

- **Every case.**
 1. On each iteration, region sizes reduced by constant ratio r.
 Partitioning time is linear in region size.
 Total effort for partitioning. $n + (2/3)n + (2/3)^2 n + (2/3)^3 n + ... = n/(1-2/3) = 3\cdot n$
 I.e., linear in n, *not counting time to compute the pivot.*
 2. On each iteration, the cost to compute the pivot is also linear in region size.
 But how will we compute the median of medians of A[L . . R-1]?

Thus, total effort, would be linear in n. In particular, even in the **worst-case**.
Performance Goal: Pivots computed as median of medians of $A[L\ldots R-1]$ using recursion, i.e., apply the worst-case median algorithm to the $n/3$ medians of groups of 3 elements.

☞ Consider recursion when designing an algorithm.
Performance Goal: Pivots computed as median of medians of \(A[L..R-1] \) using recursion, i.e., apply the worst-case median algorithm to the \(n/3 \) medians of groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super-linear.

☞ Consider recursion when designing an algorithm.
Performance Goal: Pivots computed as median of medians of $A[L..R-1]$ using recursion, i.e., apply the worst-case median algorithm to the $n/3$ medians of groups of 3 elements.

This works, but alas, there are too many groups of 3, so the total cost is super-linear.

But don’t lose heart. All is not lost, because ...
Performance Goal: Pivots computed as median of medians of $A[L..R-1]$ using recursion, i.e., apply the worst-case median algorithm to the $n/5$ medians of groups of 5 elements.

This works, and is linear.

Selection of a partition region eliminates at least $\frac{3}{5} \cdot \frac{1}{2} = \frac{3}{10}$ the values.

Thus, the selected region is no larger than $r = 1 - \frac{3}{10} = \frac{7}{10}$ the size of the whole.

Total effort for partitioning. $n + (\frac{7}{10}) \cdot n + (\frac{7}{10})^2 \cdot n + (\frac{7}{10})^3 \cdot n + ... = n/(1-\frac{7}{10}) = 3.33 \cdot n$

In effect, the reduction ratio r shrinks slightly (from $2/3$ to $3/10$), but the number of groups shrinks more than enough (from $n/3$ to $n/5$) to render the total linear.