CS 671 Automated Reasoning

Tactical Theorem Proving in NuPRL

- 1. Basic Tactics
- 2. Tacticals
- 3. Advanced Tactics

Chaining, Induction, Case Analysis

TACTICS: USER-DEFINED INFERENCE RULES

• Meta-level programs built using

- Basic inference rules
- Predefined tacticals . . .
- Meta-level analysis of the proof goal and its context
- Large collection of standard tactics in the library
- May produce incomplete proofs
 - \mapsto User has to complete the proof by calling ither tactics
- May not terminate
 - \mapsto User has to interrupt execution

but

Applying a tactic always results in a valid proof

BASIC TACTICS

Subsume primitive inferences under a common name

- Hypothesis: Prove ...C... \vdash C' where C' α -equal to C Declaration: Prove ...x:T... \vdash x \in T' where T' α -equal to T
 - Variants: NthHyp i, NthDecl i
- D c: Decompose the outermost connective of clause c
- EqD c: Decompose immediate subterms of an equality in clause c

 MemD c: Decompose subterm of a membership term in clause c
 - Variants: EqCD , EqHD i, MemCD , MemHD i
- EqTypeD c: Decompose type subterm of an equality in clause c

 MemTypeD c: Decompose type subterm of a membership term in clause c
 - Variants: EqTypeCD , EqTypeHD $\it i$, MemTypeCD , MemTypeHD $\it i$
- Assert t: Assert (or cut) term t as last hypothesis
- Auto: Apply trivial reasoning, decomposition, decision procedures ...
- Reduce c: Reduce all primitive redices in clause c

TACTICALS

- tac_1 THEN tac_2 : Apply tac_2 to all subgoals created by tac_1 t THENL [tac_1 ; ...; tac_n]: Apply tac_i to the i-th subgoal created by t tac_1 THENA tac_2 : Apply tac_2 to all auxiliary subgoals created by tac_1 tac_1 THENW tac_2 : Apply tac_2 to all wf subgoals created by tac_1
- tac_1 ORELSE tac_2 : Apply tac_1 . If this fails apply tac_2 instead
- Try tac: Apply tac. If this fails leave the proof unchanged
- Complete tac: Apply tac only if this completes the proof
- Progress tac: Apply tac only if that causes the goal to change
- Repeat tac: Repeat tac until it fails RepeatFor i tac: Repeat tac exactly i times
- AllHyps tac: Try to apply tac to all hypotheses OnSomHyp tac: Apply tac to the first possible hypotheses

Supplying Parameters to Tactics

- Position of a hypothesis to be used
- Names for newly created variables
- Type of some subterm in the goal
- Term to instantiate a variable
- Universe level of a type
- ullet Dependency of a term instance C[z] on a variable z

- NthHyp **i**
- New [x] (D 0)
- With $x\!:\!S\!\! o\!\!T$ (MemD 0)
 - With [8] (D 0)
 - At |j| (D 0)
 - Using [z,C] (D 0)

Advanced Tactics: (Inductive) Analysis

• Induction

- NatInd i: standard natural-number induction on hypothesis i
- IntInd, NSubsetInd, ListInd: induction on \mathbb{Z} , \mathbb{N} subranges, lists
- CompNatInd i: complete natural-number induction on hypothesis i

• Case Analysis

- BoolCases i: case split over boolean variable in hypothesis i
- Cases $[t_1; \ldots; t_n]$: **n**-way case split over terms t_i
- **Decide** P: case split over (decidable) proposition P and its negation

ADVANCED TACTICS: CHAINING

• Instantiating Facts

- InstHyp $[t_1; ...; t_n]$ $i: instantiate hypothesis i with terms <math>t_1...t_n$
- InstLemma name $[t_1; \ldots; t_n]$: instantiate lemma name with terms $t_1 \ldots t_n$

• Forward Chaining

- FHyp i $[h_1; ...; h_n]$: forward chain through hypothesis i matching its antecedents against any of the hypotheses $h_1...h_n$
- FLemma $name [h_1; ...; h_n]: forward chain through lemma name$

Optional argument Sel n

• Backward Chaining

- BHyp i: backward chain through hypothesis i matching its consequent against the conclusion of the proof
- BLemma name: backward chain through lemma name
- Backchain $bc_names: backchain repeatedly through lemmas and hypotheses$

Optional argument Using binding

Running Nuprl from a Unix machine

```
Copy the file nuprl/utils/profile/nuprl.config.cs671 to /.nuprl.config
Edit .nuprl.config and change the entries
(iam "YourNameHere")
(sockets 1289 1980)
You may change the 0 to any number between 1-9. DO NOT change 1289!
In an xterm execute
xset fp+ nuprl/fonts/bdf
xset fp rehash
xhost +baldwin
rsh baldwin /usr/bin/X11/xterm -display 'hostname':0 -ls
Using baldwin makes sure that there are no memory issues. You may have to adjust the
-display setting. You also may want to add nuprl/bin to your path, e.g. by typing (in csh)
set path = ( nuprl/bin $path) into the new window.
On baldwin execute nuprl/bin/emacsb nuprl
In emacs type (m-x)nuprl
This should run for a minute then pop up the Nuprl windows on the display.
In the navigator, go into the directories theories, then users, click MkTHY*, enter your name
into [token], click OK* and work only in the newly created theory
To quit, type stop. into the emacs shell after the ML[(ORB)]> prompt.
```

CS 671 AUTOMATED REASONING

_ Tactical Theorem Proving NuPRL _