
Appendix B

Introduction to Nuprl ML

Whenever Nuprl is fired up, several ML top loops are created. Running in these windows is an
ML interpreter that is embedded into the library, editor, or refiner process. Whenever one has the
ML> prompt one can type an ML expression, terminate it with ;; and press � | . ML will evaluate
the expression, and print its value and type.1

One’s primary interaction with Nuprl 5 is through the navigator and the windows opened by it.
However, advanced users will find it necessary to interact with the Nuprl 5 processes for examining
parts of Nuprl objects or customizing the behavior of Nuprl 5. In particular, all Nuprl tactics
are written in ML, as are a variety of utility functions. The tactics are documented in Chapter 8.
The utility functions are described throughout this Chapter.

B.1 The History of ML

Several versions of the programming language ML have appeared over the years, between the
time it was first designed and implemented by Milner, Morris and Wadsworth at the University of
Edinburgh in the early 1970’s, and the time it was settled and standardized in the mid-1980’s. The
original ML, the meta-language of the Edinburgh LCF system, is defined in [GMW79].

The ML used in the Nuprl system is fairly close to the original. It is derived from a early version
that Huet at INRIA and Paulson at the University of Cambridge were working on in 1981. Todd
Knoblock at Cornell made most of the Nuprl specific modifications in the mid-1980’s. Nuprl’s ML

hasn’t changed since then and is not compatible with the ML versions that are widely used today.

The ML of Huet and Paulson is described in the preface to ‘The ML Handbook ’ [CHP84].
Huet used this version in the Formel project; and it subsequently evolved into a version of ML

called CAML. Paulson also used it, as part of the first version of Cambridge LCF, but switched to
Standard ML in the later versions of Cambridge LCF [Pau87].

The CAML language [CH90, WAL+90] is now rarely used. But there is a scaled down version
called CAML-Light which is actively used in teaching programming to over 10,000 engineers a year in
France. Its object-oriented version OCaml [Ler00] have become quite popular in recent years and has
been used in the implementation of the group communication toolkit Ensemble [Hay98, BCH+00].
The Standard ML language has also become increasingly popular for implementing theorem provers
such as HOL [GM93] or Isabelle [Pau90].

1Note that the ML prompt is different in each window. It is ML[(ORB)]> in the Nuprl process windows for the
library, editor, or refiner and may later change into ML[(lib)]>, ML[(edd)]>, and ML[(ref)]>. In the Nuprl 5 top
loop it is ML[EDD]>, ML[LIB]>, or ML[REF]>. The latter already provide the double semicolon for terminating an ML

expression, so the user does not have to enter ;; in these windows.
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The description of ML that appears in Sections B.3 to B.6 is based very closely on ‘The ML

Handbook’ [CHP84]. It was adapted for Nuprl purposes from LATEX sources provided by the HOL

theorem proving group in Cambridge. For completeness (and historical interest), the preface to
‘The ML Handbook ’ and the preface to ‘Edinburgh LCF: a Mechanised Logic of Computation’ are
reproduced below.

B.1.1 Preface to ‘The ML Handbook’

This handbook is a revised edition of Section 2 of ‘Edinburgh LCF’, by M. Gordon, R. Milner, and
C. Wadsworth, published in 1979 as Springer Verlag Lecture Notes in Computer Science no 78.
ML was originally the meta-language of the LCF system. The ML system was adapted to Maclisp
on Multics by Gérard Huet at INRIA in 1981, and a compiler was added. Larry Paulson from the
University of Cambridge completely redesigned the LCF proving system, which stabilized in 1984
as Cambridge LCF. Guy Cousineau from the University Paris VII added concrete types in the
summer of 1984. Philippe Le Chenadec from INRIA implemented an interface with the Yacc parser
generator system, for the versions of ML running under Unix. This permits the user to associate a
concrete syntax with a concrete type.

The ML language is still under design. An extended language was implemented on the VAX
by Luca Cardelli in 1981. It was then decided to completely re-design the language, in order to
accommodate in particular the call by pattern feature of the language HOPE designed by Rod
Burstall and David MacQueen. A committee of researchers from the Universities of Edinburgh and
Cambridge, the Bell Laboratories and INRIA, headed by Robin Milner, is currently working on
the new extended language, called Standard ML. Progress reports appear in the Polymorphism
Newsletter, edited by Luca Cardelli and David MacQueen from Bell Laboratories. The design of a
core language is now frozen, and its description will appear in a forthcoming report of the University
of Edinburgh, as ‘The Standard ML Core Language’ by Robin Milner.

This handbook is a manual for ML version 6.1, released in December 1984. The language is
somewhere in between the original ML from LCF and standard ML, since Guy Cousineau added
the constructors and call by patterns. This is a LISP based implementation, compatible for Maclisp
on Multics, Franzlisp on VAX under Unix, Zetalisp on Symbolics 3600, and Le Lisp on 68000, VAX,
Multics, Perkin-Elmer, etc... Video interfaces have been implemented by Philippe Le Chenadec on
Multics, and by Maurice Migeon on Symbolics 3600. The ML system is maintained and distributed
jointly by INRIA and the University of Cambridge.

B.1.2 Preface to ‘Edinburgh LCF’

ML is a general purpose programming language. It is derived in different aspects from ISWIM,
POP2 and GEDANKEN, and contains perhaps two new features. First, it has an escape and escape
trapping mechanism, well-adapted to programming strategies which may be (in fact usually are)
inapplicable to certain goals. Second, it has a polymorphic type discipline which combines the
flexibility of programming in a typeless language with the security of compile-time type checking
(as in other languages, you may also define your own types, which may be abstract and/or recursive).

For those primarily interested in the design of programming languages, a few remarks here may
be helpful both about ML as a candidate for comparison with other recently designed languages,
and about the description of ML which we provide. On the first point, although we did not set out
with programming language design as a primary aim, we believe that ML does contain features
worthy of serious consideration; these are the escape mechanism and the polymorphic type discipline
mentioned above, and also the attempt to make programming with functions—including those of
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higher type—as easy and natural as possible. We are less happy about the imperative aspects of the
language, and would wish to give them further thought if we were mainly concerned with language
design. In particular, the constructs for controlling iteration both by boolean conditions and by
escape-trapping (which we included partly for experiment) are perhaps too complex taken together,
and we are sensitive to the criticism that escape (or failure, as we call it) reports information only
in the form of a string. This latter constraint results mainly from our type discipline; we do not
know how best to relax the constraint while maintaining the discipline.

Concerning the description of ML, we have tried both to initiate users by examples of program-
ming and to give a precise definition.

B.2 Introduction and Examples

ML is an interactive language. At top-level one can:

• evaluate expressions

• perform declarations

To give a first impression of the system, we reproduce below a session at a terminal in which
simple uses of various ML constructs are illustrated. To make the session easier to follow, it is split
into a sequence of sub-sessions. A complete description of the syntax and semantics of ML is given
in Section B.3 and Section B.4 respectively.

B.2.1 Expressions

In this tutorial, the ML prompt is # so lines beginning with this contain the user’s contribution;
all other lines are output by the system. The Nuprl ML prompt is different; usually ML> is used
for the first line of user input, and > is used for continuation lines.

1# 2+3;;
5 : int

# it;;
5 : int

ML prompted with #, the user then typed � 2+3;;� followed by a carriage return � | ; ML then
responded with � 5 : int� , a new line, and then prompted again. The user then typed � it;; � | � and
the system responded by typing � 5 : int� again. In general to evaluate an expression e one types
e followed by a carriage return; the system then prints e’s value and type (the type prefaced by a
colon). The value of the last expression evaluated at top level is remembered in the identifier it.

B.2.2 Declarations

The declaration let x = e evaluates e and binds the resulting value to x.

2# let x=2*3;;
x = 6 : int

# it=x;;
false : bool
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Notice that declarations do not affect the identifier it. To bind the variables x1, . . . , xn si-
multaneously to the values of the expressions e1, . . . , en one can perform either the declaration
let x1=e1 and x2=e2 ...and xn=en or let x1,x2,...,xn = e1,e2...,en. These two declara-
tions are equivalent.

3# let y=10 and z=x;;
y = 10 : int
z = 6 : int

# let x,y = y,x;;
x = 10 : int
y = 6 : int

A declaration d can be made local to the evaluation of an expression e by evaluating the
expression d in e. The expression e where b (where b is a binding such as x=2) is equivalent to
let b in e.

4# let x=2 in x*y;;
12 : int

# x;;
10 : int

# x*y where x=2;;
12 : int

B.2.3 Assignment

Identifiers can be declared assignable using letref instead of let. Values bound to such identifiers
can be changed with the assignment expression x:=e, which changes the value bound to x to be
the value of e. Attempts to assign to non-assignable variables are detected by the type checker.

5# x:=1;;

unbound or non-assignable variable x
1 error in typing
typecheck failed

# letref x=1 and y=2;;
x = 1 : int
y = 2 : int

# x:=6;;
6 : int

# x;;
6 : int

The value of an assignment x:=e is the value of e (hence the value of y:=6 is 6). Simultaneous
assignments can also be done:

6# x,y := y,x;;
(2,6) : (int # int)

# x,y;;
(2,6) : (int # int)

The type (int # int) is the type of pairs of integers.

176



B.2.4 Functions

To define a function f with formal parameter x and body e one performs the declaration
let f x = e. To apply the function f to an actual parameter e one evaluates the expression f e.

7# let f x = 2*x;;
f = - : (int -> int)

# f 4;;
8 : int

Functions are printed as a dash, -, followed by their type, since a function as such is not
printable. Application binds more tightly than anything else in the language; thus, for example,
f 3 + 4 means (f 3) + 4 not f (3 + 4). Functions of several arguments can be defined:

8# let add x y = x+y;;
add = - : (int -> int -> int)

# add 3 4;;
7 : int

# let f = add 3;;
f = - : (int -> int)

# f 4;;
7 : int

Application associates to the left so add 3 4 means (add 3) 4. In the expression add 3, the
function add is partially applied to 3; the resulting value is the function of type int -> int which
adds 3 to its argument. Thus add takes its arguments one at a time. We could have made add take
a single argument of the cartesian product type (int # int):

9# let add(x,y) = x+y;;
add = - : ((int # int) -> int)

# add(3,4);;
7 : int

# let z = (3,4) in add z;;
7 : int

# add 3;;

ill-typed phrase: 3
has an instance of type int
which should match type (int # int)
1 error in typing
typecheck failed

As well as taking structured arguments (e.g. (3,4)) functions may also return structured results.

10# let sumdiff(x,y) = (x+y,x-y);;
sumdiff = - : ((int # int) -> (int # int))

# sumdiff(3,4);;
(7, -1) : (int # int)
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B.2.5 Recursion

The following is an attempt to define the factorial function:

11# let fact n = if n=0 then 1 else n*fact(n-1);;

unbound or non-assignable variable fact
1 error in typing
typecheck failed

The problem is that any free variables in the body of a function have the bindings they had just
before the function was declared; fact is such a free variable in the body of the declaration above,
and since it is not defined before its own declaration, an error results. To make things clear consider:

12# let f n = n+1;;
f = - : (int -> int)

# let f n = if n=0 then 1 else n*f(n-1);;
f = - : (int -> int)

# f 3;;
9 : int

Here f 3 results in the evaluation of 3*f(2), but now the first f is used so f(2) evaluates to
2+1=3, hence the expression f 3 results in 3*3=9. To make a function declaration hold within its
own body, letrec instead of let must be used. The correct recursive definition of the factorial
function is thus:

13# letrec fact n = if n=0 then 1 else n*fact(n-1);;
fact = - : (int -> int)

# fact 3;;
6 : int

B.2.6 Iteration

The construct if e1 then e2 loop e3 is the same as if e1 then e2 else e3 in the true case;
when e1 evaluates to false, e3 is evaluated and control loops back to the front of the construct
again. As an illustration, here is an iterative definition of fact using two local assignable variables:
count and result.

14# let fact n =
# letref count=n and result=1
# in if count=0
# then result
# loop count,result := count-1,count*result;;
fact = - : (int -> int)

# fact 4;;
24 : int

Replacing the then in if e1 then e2 else e3 by loop causes iteration when e1 evaluates
to true: e.g., if e1 loop e2 else e3 is equivalent to if not(e1) then e3 loop e2. The con-
ditional/loop construct can have a number of conditions, each preceded by if. The expression
guarded by each condition may be preceded by then, or by loop when the whole construct is to
be re-evaluated after evaluating the guarded expression:
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15# let gcd(x,y) =
# letref x,y = x,y
# in if x>y loop x:=x-y
# if x<y loop y:=y-x
# else x;;
gcd = - : ((int # int) -> int)

# gcd(12,20);;
4 : int

B.2.7 Lists

If e1, . . . , en all have type ty then the ML expression [e1;. . .;en] has type (ty list). The standard
functions on lists are hd (head), ]tl (tail), null (which tests whether a list is empty – i.e. is equal
to []), and the infixed operators . (cons) and @ (append, or concatenation).

16# let m = [1;2;(2+1);4];;
m = [1; 2; 3; 4] : int list

# hd m , tl m;;
(1, [2; 3; 4]) : (int # int list)

# null m , null [];;
(false, true) : (bool # bool)

# 0.m;;
[0; 1; 2; 3; 4] : int list

# [1; 2] @ [3; 4; 5; 6];;
[1; 2; 3; 4; 5; 6] : int list

# [1;true;2];;

ill-typed phrase: true
has an instance of type bool
which should match type int
1 error in typing
typecheck failed

All the members of a list must have the same type (although this type could be a sum, or
disjoint union type—see Section B.5).

B.2.8 Tokens

A sequence of characters enclosed between token quotes (‘ – i.e. ascii 96) is a token.

17# ‘this is a token‘;;
‘this is a token‘ : tok

# ‘‘this is a token list‘‘;;
[‘this‘; ‘is‘; ‘a‘; ‘token‘; ‘list‘] : tok list

# it = ‘‘this is a‘‘ @ [‘token‘;‘list‘];;
true : bool

The expression ‘‘tok
1
tok

2
...tokn‘‘ is an alternative syntax for [‘tok

1
‘;‘tok

2
‘;...;‘tokn‘].
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B.2.9 Strings

A sequence of characters enclosed between string quotes (" – i.e. ascii 34) is a string .

18# "this is a string";;
"this is a string" : string

# "";;
"" : string

Although similar, strings and tokens are implemented differently in Lisp; strings are imple-
mented as character arrays, and tokens as symbols. The implementation affects the efficiency of
such operations as comparison and concatenation; Tokens are much slower to concatenate, but
faster to compare.

B.2.10 Polymorphism

The list processing functions hd, tl etc. can be used on all types of lists.

19# hd [1;2;3];;
1 : int

# hd [true;false;true];;
true : bool

# hd [1,2;3,4];;
(1, 2) : (int # int)

Thus hd has several types; for example, it is used above with types (int list) -> int,
(bool list) -> bool, and (int # int) list -> (int # int). In fact if ty is any type then
hd has the type (ty list) -> ty. Functions, like hd, with many types are called polymorphic, and
ML uses type variables *, **, *** etc. to represent their types.

20# hd;;
- : (* list -> *)

# letrec map f l = if null l then []
# else f(hd l).map f (tl l);;
map = - : ((* -> **) -> * list -> ** list)

# map fact [1;2;3;4];;
[1; 2; 6; 24] : int list

The ML function map takes a function f (with argument type * and result type **), and a list
l (of elements of type *), and returns the list obtained by applying f to each element of l (which
is a list of elements of type **). map can be used at any instance of its type: above, both * and **

were instantiated to int; below, * is instantiated to (int list) and ** to bool. Notice that the
instance need not be specified; it is determined by the type checker.

21# map null [[1;2]; []; [3]; []];;
[false; true; false; true] : bool list
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B.2.11 Lambda-expressions

The expression \x.e evaluates to a function with formal parameter x and body e. Thus the decla-
ration let f x = e is equivalent to let f = \x.e. Similarly let f(x,y) z = e is equivalent to
let f = \(x,y).\z.e. Repeated \’s, as in \(x,y).\z.e may be abbreviated by \(x,y) z.e. The
character \ is our \x.e and \(x,y) z.e are called lambda-expressions.

22# \x.x+1;;
- : (int -> int)

# it 3;;
4 : int

# map (\x.x*x) [1;2;3;4];;
[1; 4; 9; 16] : int list

# let doubleup = map (\x.x@x);;
doubleup = - : (* list list -> * list list)

# doubleup [ [1;2]; [3;4;5] ];;
[[1; 2; 1; 2]; [3; 4; 5; 3; 4; 5]] : int list list

# doubleup [];;
[] : * list list

B.2.12 Failure

Some standard functions fail at run-time on certain arguments, yielding a string (which is usually
the function name) to identify the sort of failure. A failure with token ‘t‘ may also be generated
explicitly by evaluating the expression failwith ‘t‘ (or more generally failwith e where e has
type tok).

23# hd(tl[2]);;
evaluation failed hd

# 1/0;;
evaluation failed div

# (1/0)+1000;;
evaluation failed div

# failwith (hd [‘a‘;‘b‘]);;
evaluation failed a

A failure can be trapped by ?; the value of the expression e1 ? e2 is that of e1, unless e1 causes
a failure, in which case it is the value of e2.

24# hd(tl[2]) ? 0;;
0 : int

# (1/0)?1000;;
1000 : int

# let half n =
# if n=0 then failwith ‘zero‘
# else let m=n/2
# in if n=2*m then m else failwith‘odd‘;;
half = - : (int -> int)
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The function half only succeeds on non-zero even numbers; on 0 it fails with ‘zero‘, and on
odd numbers it fails with ‘odd‘.

25# half 4;;
2 : int

# half 0;;
evaluation failed zero

# half 3;;
evaluation failed odd

# half 3 ? 1000;;
1000 : int

Failures may betrapped selectively (on string) by ??; if e1 fails with token t, then the value of
e1 ?? [t1;...;tn] e2 is the value of e2 if t is one of t1,. . . ,tn; otherwise the expression fails with
the value of t.

26# half(0) ?? [‘zero‘;‘plonk‘] 1000;;
1000 : int

# half(1) ?? [‘zero‘;‘plonk‘] 1000;;
evaluation failed odd

One may add several ?? traps to an expression, and one may add a ? trap at the end as a catch-all.

27# half(1)
# ??[‘zero‘] 1000
# ??[‘odd‘] 2000;;
2000 : int

# hd(tl[half(4)])
# ??[‘zero‘] 1000
# ??[‘odd‘] 2000
# ? 3000;;
3000 : int

One may use ! or !! in place of ? or ?? to cause re-iteration of the whole construct, analogously
to using loop in place of then.

28# let same(x,y) =
# if x>y then failwith ‘greater‘
# if x<y then failwith ‘less‘
# else x;;
same = - : ((int # int) -> int)

# let gcd(x,y) =
# letref x,y = x,y
# in same(x,y)
# !![‘greater‘] x:=x-y
# !![‘less‘] y:=y-x;;
gcd = - : ((int # int) -> int)

# gcd(12,20);;
4 : int
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B.2.13 Type abbreviations

Types can be given names:

29# lettype intpair = int # int;;
type intpair defined

# let p = 12,20;;
p = (12, 20) : intpair

The new name is simply an abbreviation; for example, intpair and int # int are completely
equivalent. The system always uses the most recently defined name when printing types.

30# gcd;;
- : (intpair -> int)

# gcd p;;
4 : int

B.2.14 Abstract types

New types can also be defined by abstraction. For example, to define a type time we could use the
construct abstype:

31# abstype time = int # int
# with maketime(hrs,mins) = if hrs<0 or 23<hrs or
# mins<0 or 59<mins
# then fail
# else abs_time(hrs,mins)
# and hours t = fst(rep_time t)
# and minutes t = snd(rep_time t);;
maketime = - : (intpair -> time)
hours = - : (time -> int)
minutes = - : (time -> int)

This defines an abstract type time and three primitive functions: maketime, hours and minutes.
In general, an abstract type declaration has the form abstype ty = ty ′ with b where b is a binding,
i.e. the kind of phrase that can follow let or letrec. Such a declaration introduces a new type
ty which is represented by ty′. Only within b can one use the (automatically declared) functions
abs ty (of type ty′ -> ty) and rep ty (of type ty -> ty′), which map between a type and its
representation. In the example above abs time and rep time are only available in the definitions
of maketime, hours and minutes; these latter three functions, on the other hand, are defined
throughout the scope of the declaration. Thus an abstract type declaration simultaneously declares
a new type together with primitive functions for the type. The representation of the type (i.e. ty ′),
and of the primitives (i.e. the right hand sides of the definitions in b), is not accessible outside the
with-part of the declaration.

32# let t = maketime(8,30);;
t = - : time

# hours t , minutes t;;
(8, 30) : intpair

Notice that values of an abstract type are printed as -, like functions.
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B.2.15 Type constructors

Both list and # are examples of type constructors; list has one argument (hence * list) whereas
# has two (hence * # **). Each type constructor has various primitive operations associated with
it, for example list has null, hd, tl, . . . etc, and # has fst, snd and the infix ,.

33# let z = it;;
z = (8, 30) : intpair

# fst z;;
8 : int

# snd z;;
30 : int

Another standard constructor of two arguments is +; * + ** is the disjoint union of types *

and **, and associated with it are the following primitives:

isl : (* + **) -> bool tests membership of left summand
inl : * -> (* + **) injects into left summand
inr : * -> (** + *) injects into right summand
outl : (* + **) -> * projects out of left summand
outr : (* + **) -> ** projects out of right summand

These are illustrated by:

34# let x = inl 1
# and y = inr 2;;
x = inl 1 : (int + *)
y = inr 2 : (* + int)

# isl x;;
true : bool

# isl y;;
false : bool

# outl x;;
1 : int

# outl y;;
evaluation failed outl

# outr x;;
evaluation failed outr

# outr y;;
2 : int

Abstract types such as time defined above can be thought of as type constructors with no
arguments (i.e. nullary constructors). The abstype...with... construct may also be used to define
non-nullary type constructors (with absrectype in place of abstype if these are recursive). For
example, trees analogous to LISP S-expressions could be defined by:
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35# absrectype * sexp = * + (* sexp) # (* sexp)
# with cons(s1,s2) = abs_sexp (inr (s1,s2))
# and car s = fst (outr(rep_sexp s))
# and cdr s = snd (outr(rep_sexp s))
# and atom s = isl(rep_sexp s)
# and makeatom a = abs_sexp(inl a);;
cons = - : ((* sexp # * sexp) -> * sexp)
car = - : (* sexp -> * sexp)
cdr = - : (* sexp -> * sexp)
atom = - : (* sexp -> bool)
makeatom = - : (* -> * sexp)

B.3 Syntax of ML

We shall use variables to range over the various constructs of ML as follows:

Variable Ranges over

var variables
con constructors
ce constant expressions
ty types
tab type abbreviation bindings (see B.5.4)
ab abstract type bindings (see B.5.5)
d declarations
b bindings
p patterns
e expressions

Variables and constructors are both represented by identifiers but they are different syntax
classes. Identifiers and constant expressions are described in Section B.3.2 below. Types and type-
bindings are explained in Section B.5. Declarations, bindings, patterns and expressions are defined
by the following BNF-like syntax equations in which:

1. Each variable ranges over constructs as above.

2. The numbers following the various variables are there merely to distinguish between different
occurrences—this will be convenient when we describe the semantics in Section B.4.

3. {C} denotes an optional occurrence of C, and for n>1 {C1|C2...|Cn} denotes a choice of
exactly one of C1,C2,. . . ,Cn.

4. The constructs are listed in order of decreasing binding power.

5. ‘L’ or ‘R’ following a construct means that it associates to the left (L) or right (R) when
juxtaposed with itself (where this is syntactically admissible).

6. Certain constructs are equivalent to others and this is indicated by ‘equiv.’ followed by the
equivalent construct.
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B.3.1 Syntax equations for ML

Table B.1 describes ML declarations, Table B.2 bindings, Table B.3 patterns, and Table B.4 on
page 187 describes expressions.

d ::= let b ordinary variables
| letref b assignable variables
| letrec b recursive functions

| lettype tab concrete types
| rectype cb recursive concrete types

| abstype ab abstract types
| absrectype ab recursive abstract types

Table B.1: Declarations

b ::= p=e simple binding
| id p1 p2 . . . pn {:ty} = e function definition
| b1 and b2 . . . and bn multiple binding

Table B.2: Bindings

p ::= () empty pattern
| id variable
| p:ty type constraint
| p1.p2 R list cons
| p1,p2 R pairing

| [] empty list
| [p1;p2 . . . ;pn] list of n elements

| (p) equivalent to p

Table B.3: Patterns

In the syntax equations constructs are listed in order of decreasing binding power. For example,
since e1e2 is listed before e1;e2 function application binds more tightly than sequencing and thus
e1e2; e3 parses as (e1e2); e3. This convention determines only the relative binding power of differ-
ent constructs. The left or right association of a construct is indicated explicitly by ‘L’ for left and ‘R’
for right. For example, as application associates to the left, the expression e1e2e3 parses as (e1e2) e3,
and since e1 => e2 | e3 associates to the right, the expression e1 => e2 | e3 => e4 | e5 parses
as e1 => e2 | (e3 => e4 | e5).

Only functions can be defined with letrec. For example, letrec x = 2-x would cause a syntax
error.

All the variables occurring in a pattern must be distinct. On the other hand, a pattern can
contain multiple occurrences of the wildcard ().

Spaces (ASCII 32), carriage returns (ASCII 13), line feeds (ASCII 10) form feeds (^L, ASCII 12)
and tabs (^I, ASCII 9) can be inserted and deleted arbitrarily without affecting the meaning (as
long as obvious ambiguities are not introduced). For example, the space in - x but not in not x
can be omitted. Comments, which are arbitrary sequences of characters surrounded by %’s, can be
inserted anywhere a space is allowed.
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e ::= ce constant

| var variable

| e1 e2 L function application

| e:ty type constraint

| -e unary minus
| e1*e2 L multiplication
| e1/e2 L division
| e1+e2 L addition
| e1-e2 L subtraction
| e1<e2 less than
| e1>e2 greater than

| e1.e2 R list cons
| e1@e2 R list append

| e1=e2 L equality

| not e negation
| e1 & e2 R conjunction
| e1 or e2 R disjunction

| e1 user-infix e2 L user declared infix identifier

| e1=>e2|e3 R equivalent to if e1 then e2 else e3

| do e evaluate e for side effects

| e1,e2 R pairing

| p:=e assignment

| fail equivalent to failwith ’fail’
| failwith e failure with explicit token

| if e1 {then|loop} e′1
{ if e2 {then|loop} e′2...

if en {then|loop} e′n }
{ {else|loop} e′′n }

conditional and loop

| e {??|!!} e1 e′1
{ {??|!!} e2 e′2...
{??|!!} en e′n }

{ {?|!|?\id|!\id} e′′n }

failure trap and loop

| e1;e2 . . . ;en sequencing

| [] empty list
| [e1;e2 . . . ;en] list of n elements

| e where b R equivalent to let b in e
| e whereref b R equivalent to letref b in e
| e whererec b R equivalent to letrec b in e
| e wheretype db equivalent to lettype db in e
| e whereabstype ab equivalent to abstype ab in e
| e whereabsrectype ab equivalent to absrectype ab in e

| d in e local declaration

| backslash p1 p2 . . . pn.e abstraction

| (e) equivalent to e

Table B.4: Expressions
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B.3.2 Identifiers and other lexical matters

In this section the lexical structure of ML is defined.

B.3.2.1 Identifiers

A variable (var) or identifier is a sequence of alphanumerics starting with a letter, where an
alphanumeric is either a letter, a digit, a prime (’) or an underbar ( ). ML is case-sensitive: upper
and lower case letters are considered to be different.

B.3.2.2 Constant expressions

The ML constant expressions (ce’s) used in Table B.4 are:

1. Integers, i.e. sequences of digits 0,1...,9.

2. Truth values true and false.

3. Tokens and token-lists:

(a) Tokens consist of any sequence of characters surrounded by token quotes (‘), e.g.
‘This is a single token‘.

(b) Token-lists consist of any sequence of tokens (separated by spaces, returns, line-feed or
tabs) surrounded by token-list quotes (‘‘). e.g.
‘‘this is a token-list containing 7 members‘‘. ‘‘ tok1 tok2 ... tokn‘‘ is equiv-
alent to [‘tok1‘; ‘tok2‘; ...; ‘tokn‘].

In any token or token-list, the occurrence of \x has the following meanings for different x’s:

\0 = ten spaces
\n = n spaces (0<n<10)
\S = one space
\R = return
\L = line-feed
\T = tab
\x = x taken literally otherwise (e.g. \‘ to include token quotes in a token or token-list)

4. Strings, consisting of any sequence of characters surrounded by string quotes ("), e.g.
"This is a single string". Any " characters within a string must be preceded by \. The
escape sequence \x for any other character means always to insert the character x.

5. The expression (), called thing , which evaluates to the unique object of ML type unit.

B.3.2.3 Prefixes and infixes

The ML prefixes px and infixes ix are given by:

px ::= not | - | do

ix ::= * | / | + | - | . | @ | = | < | > | & | or | ,

In addition, any identifier (and certain single characters) can be made into an infix. Such user-
defined infixes bind more tightly than ...=>...|... but more weakly than or. All of them have
the same power binding and associate to the left.
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Except for & and or, each infix ix (or prefix px) has correlated with it a special identifier
$ix (or $px) which is bound to the associated function. For example, the identifier $+ is bound
to the addition function, and $@ to the list-append function (see Section B.6 for the meaning of
dollared infixes). This is useful for passing functions as arguments; for example, f$@ applies f to
the append function.

See the descriptions of the functions ml paired infix and ml curried infix in Section B.6.1
for details of how to give an identifier infix status.

B.4 Semantics of ML

The evaluation of all ML constructs takes place in the context of an environment and a store. The
environment specifies what the variables and constructors in use denote. Variables may be bound
either to values or to locations. The contents of locations—which must be values—are specified in
the store. If a variable is bound to a location then (and only then) is it assignable. Thus bindings
are held in the environment, whereas location contents are held in the store. Constructors may only
be bound to values (constructor constants or constructor functions) and this binding occurs when
they are declared in a concrete type definition.

The evaluation of ML constructs may either succeed or fail . In the case of success:

1. The evaluation of a declaration, d say, changes the bindings in the environment of the identi-
fiers declared in d. If d is at top-level, then the scope of the binding is everything following d.
In d in e the scope of d is the evaluation of e, and so when this is finished the environment
reverts to its original state (see Section B.4.1).

2. The evaluation of an expression yields a value: the value of the expression (see Section B.4.2).

If an assignment is done during an evaluation, then the store will be changed — we shall refer to
these changes as side effects of the evaluation.

If the evaluation of a construct fails, then failure is signalled, and a string is passed to the context
which invoked the evaluation. This string is called the failure string , and it normally indicates the
cause of the failure. During evaluation, failures may be generated either implicitly by certain error
conditions, or explicitly by the construct failwith e (which fails with e’s value as failure string).
For example, the evaluation of the expression 1/0 fails implicitly with failure string ‘div‘, while
that of failwith ‘str‘ fails explicitly with failure string ‘str‘. We shall say two evaluations fail
similarly if they both fail with the same failure string. For example, the evaluation of 1/0 and
failwith ‘div‘ fail similarly. Side effects are not undone by failures.

If during the evaluation of a construct a failure is generated, then unless the construct is a failure
trap (i.e. an expression built from ? and/or !) the evaluation of the construct itself fails similarly.
Thus failures propagate up until trapped, or reaching top level. For example, when evaluating
(1/0)+1000, the expression 1/0 is first evaluated, and the failure which this evaluation generates
causes the evaluation of the whole expression (viz. (1/0)+1000) to fail with ‘div‘. On the other
hand, the evaluation of (1/0)?1000 traps the failure generated by the evaluation of 1/0, and
succeeds with value 1000. (In general, the evaluation of e1?e2 proceeds by first evaluating e1, and
if this succeeds with value E, then E is returned as the value of e1?e2; however, if e1 fails, then the
result of evaluating e1?e2 is determined by evaluating e2).

In describing evaluations, when we say that we pass control to a construct, we mean that the
outcome of the evaluation is to be the outcome of evaluating the construct. For example, if when
evaluating e1?e2 the evaluation of e1 fails, then we pass control to e2.
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Expressions and patterns can be optionally decorated with types by writing :ty after them (e.g.
[]:int list). The effect of this is to force the type checker to assign an instance of the asserted
type to the construct; this is useful as a way of constraining types more than the type checker
would otherwise (i.e. more than context demands), and it can also serve as helpful documentation.
Details of types and type checking are given in Section B.5, and will be ignored in describing the
evaluation of ML constructs in the rest of this section.

If we omit types, precedence information and those constructs which are equivalent to others,
then the syntax of ML can be summarized by:

d ::= let b | letref b | letrec b

b ::= p=e | var pl p2 . . . pn = e | bl and b2 . . . and bn

p ::= () |var | pl.p2 | pl, p2 | [] | [pl;p2 . . . ;pn]

e ::= ce | var | e1 e2

| px e | e1 ix e2 | v:=e | failwith e

| if e1 {then|loop} e′1
{ if e2 {then|loop} e′2...

if en {then|loop} e′n }
{ {else|loop} e′′n }

| e {??|!!} e1 e′1
{ {??|!!} e2 e′2...
{??|!!} en e′n }

{ {?|!|?\id|!\id} e′′n }

| el;e2 . . .;en | [] | [el;e2 . . .;en] | d in e

| \p1p2 . . . pn.e

B.4.1 Declarations

Any declaration must be one of the three kinds: let b, letref b or letrec b, where b is a binding.
Each such declaration is evaluated by first evaluating the binding b to produce a (possibly empty)
set of variable-value pairs, and then extending the environment (in a manner determined by the
kind of declaration) so that each variable in this set of pairs denotes its corresponding value. The
evaluation of bindings is described below in Section B.4.1.1.

1. Evaluating let b declares the variables specified in b to be an ordinary (i.e. non assignable)
variable, and binds (in the environment) each one to the corresponding value produced by
evaluating b. To understand what are the variables defined in a declaration may require some
knowledge about the environment. For example, a declaration let f x = e declares x if f is
a constructor and declares f as the function \x.e otherwise.

2. Evaluating letref b declares the variables specified in b to be assignable and thus binds
(in the environment) each one to a new location, whose contents (in the store) is set to the
corresponding value. The effect of subsequent assignments to the variables will be to change
the contents of the locations they are bound to. Bindings (in the environment) of variables to
locations can only be changed by evaluating another declaration to supersede the original one.

3. Evaluating letrec b is similar to evaluating let b except that:

(a) The binding b in letrec b must consist only of function definitions.

190



(b) These functions are made mutually recursive.

For example, consider:

(a) let f n = if n=0 then 1 else n*f(n-1)

(b) letrec f n = if n=0 then 1 else n*f(n-1)

The meaning of f defined by the first case depends on whatever f is bound before the decla-
ration is evaluated, while the meaning of f defined by the second case is independent of this
(and is the factorial function).

B.4.1.1 The evaluation of bindings

There are three kinds of variable binding each of which, when evaluated, produces a set of variable-
value pairs (or fails):

1. Simple bindings, which have the form p=e where p is a pattern and e an expression.

2. Function definitions, which have the form id p1 . . . pn = e. This is just an abbreviation for
the simple binding id = \p1 . . . pn.e.

3. Multiple bindings, which have the form b1 and b2 . . . and bn where b1, b2 . . . , bn are simple
bindings or function definitions. As a function definition is just an abbreviation for a cer-
tain simple binding, each bi (0<i<n+1) either is, or is an abbreviation for, some simple
binding pi=ei. The multiple binding b1and b2 . . . and bn then abbreviates p1,p2 . . .,pn = e1,

e2 . . . en, which is a simple binding.

As function definitions and multiple bindings are abbreviations for simple bindings we need
only describe the evaluation of the latter.

A simple binding p=e is evaluated by first evaluating e to obtain a value E (if the evaluation
fails then the evaluation of p=e fails similarly). Next the pattern p is matched with E to see if
they have the same form (precise details are given in Section B.4.1.2). If so, then to each identifier
in p there is a corresponding component of E. The evaluation of p=e then returns the set of each
identifier paired with its corresponding component. If p and E do not match then the evaluation
of p=e fails with failure token ‘MATCH‘.

B.4.1.2 Matching patterns and expression values

When a pattern p is matched with a value E, either the match succeeds and a set of identifier-
value pairs is returned (each identifier in p being paired with the corresponding component of E),
or the match fails. We describe, by cases on p, the conditions for p to match E and the sets of
pairs returned:

(): Always matches E. The empty set of pairs is returned.

var: Always matches E. The set consisting of var paired with E is returned.

p1.p2: E must be a non-empty list E1.E2 such that p1 matches E1 and p2 matches E2. The union
of the sets of pairs returned from matching p1 with E1 and p2 with E2 is returned.

p1,p2: E must be a pair E1,E2 such that p1 matches E1 and p2 matches E2. The union of the
sets of pairs returned from matching p1 with E1 and p2 with E2 is returned.

[p1;p2 . . .;pn]: E must be a list [E1;E2 . . .;En] of length n such that for each i pi matches Ei.
The union of the sets of pairs returned by matching pi with Ei is produced.
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Thus if p matches E, then p and E have a similar ‘shape’, and each identifier in p corresponds
to some component of E (namely that component paired with the identifier in the set returned by
the match). Here are some examples:

1. [x;y;z] matches [1;2;3] with x, y and z corresponding to 1, 2, and 3 respectively.

2. [x;y;z] does not match [1;2] or [1;2;3;4].

3. x.y matches [1;2;3] with x and y corresponding to 1 and [2;3] respectively, because
E1.[E2;E3...;En] = [E1;E2;E3...;En].

4. x.y does not match [] or 1,2.

5. x,y matches 1,2 with x and y corresponding to 1 and 2 respectively.

6. x,y does not match [1;2] .

7. (x,y),[(z.w);()] matches (1,2),[[3;4;5];[6;7]] with x, y, z and w corresponding to
1, 2, 3, and [4;5] respectively.

B.4.2 Expressions

If the evaluation of an expression terminates, then either it succeeds with some value, or it fails; in
either case assignments performed during the evaluation may cause side effects. If the evaluation
succeeds with some value we shall say that value is returned .

We shall describe the evaluation of expressions by considering the various cases, in the order in
which they are listed in the syntax equations.

ce: The appropriate constant value is returned.

var: The value associated with var is returned. If var is ordinary, then the value returned is the
value bound to var in the environment. If var is assignable, then the value returned is the
contents of the location to which var is bound.

e1 e2: e1 and e2 are evaluated and the result of applying the value of e1 (which must be a function)
to that of e2 is returned. Due to optimizations in the ML compiler, the order of evaluation
may vary.

px e: e is evaluated and then the result of applying px to the value of e is returned. -e and not e
have the obvious meanings; do e evaluates e for its side effects and then returns ().

e1 ix e2: e1 & e2 is equivalent to if e1 then e2 else false, so sometimes only e1 needs be
evaluated to evaluate e1 & e2. e1 or e2 is equivalent to if e1 then true else e2, so
sometimes only e1 needs to be evaluated to evaluate e1 or e2.

In all other cases e1 and e2 are evaluated (in that order) and the result of applying ix to
their two values is returned. e1,e2 returns a pair whose first component is the value of e1,
and whose second component is the value of e2. The meaning of the other infixes are given
in Section B.6.

p:=e: Every variable in p must be assignable and bound to some location in the environment.
The effect of the assignment is to update the contents of these locations (in the store) with
the values corresponding to the variables produced by evaluating the binding p=e (see Sec-
tion B.4.1.1). If the evaluation of e fails, then no updating of locations occurs, and the as-
signment fails similarly. If the matching to p fails, then the assignment fails with ‘MATCH‘.
The value of p:=e is the value of e.

failwith e: e is evaluated and then a failure with e’s value (which must be a token) is generated.
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if e1 {then|loop} e′1
{if e2 {then|loop} e′2...
if en {then|loop} e′n }

{ {else|loop} e′ }

:

e1, e2,. . . ,en are evaluated in turn until one of them, say em, returns
true (each ei must be a boolean expression). When the phrase fol-
lowing em is then e′m control is passed to e′m. However, when the
phrase is loop e′m then e′m is evaluated for its side effects, and then
control is passed back to the beginning of the whole expression again
(i.e. to the beginning of if e1 . . .).

In the case that all of e1,e2 . . .,en return false and there is a phrase following e′n, then if this
is else e′ control is passed to e′, while if it is loop e′ then e′ is evaluated for its side effects
and control is then passed back to the beginning of the whole expression again.

In the case that all of e1,e2 . . .,en return false, but no phrase follows e′n then (), the unique
value of type void is returned.

e {??|!!} e1e
′
1

{ {??|!!} e2e
′
2...

{??|!!} ene′n }
{ {?|!|?\id|\id} e′ }

:

e is evaluated and if this succeeds its value is returned. If e fails with
failure token tok, then each of e1,e2 . . .,en are evaluated in turn until one
of them, say em, returns a token list containing tok (each ei must be a
token). If ?? immediately precedes em, then control is passed to e′m. If
!! precedes it, then e′m is evaluated and control is passed back to the
beginning of the whole expression e {??|!!} ....

If none of e1,e2 . . . , en produces a token list containing tok, and ?\e′ follows e′n, then control
is passed to e′. But if !\e′ follows e′n, then e′ is evaluated, and control is passed back to the
beginning of the whole expression.

If ?\id e′ or ?\id e′ follows e′n, then e′ is evaluated in an environment in which id is bound
to the failure string tok (i.e. an evaluation equivalent to let id=tok in e′ is done), and then
depending on whether a ? of a ! occurred, the value of e′ is returned or control is passed back
to the beginning of the whole expression respectively.

If none of e1,e2 . . .,en returns a token list containing tok and nothing follows e′n, then the
whole expressions fails with tok.

e1;e2 . . .;en: e1,e2 . . .,en are evaluated in that order, and the value of en is returned.

[e1;e2 . . .;en]: e1, e2, . . . , en are evaluated in that order and the list of their values returned. []
evaluates to the empty list.

d in e: d is evaluated and then e is evaluated in the extended environment and its value returned.
The declaration d is local to e, so that after the evaluation of e, the former environment is
restored.

\p1p2 . . . pn.e: The evaluation of lambda-expressions always succeeds and yields a function value.
The environment in which the evaluation occurs (i.e. in which the function value is created)
is called the definition environment .

1. Simple lambda-expressions: \p.e evaluates to that function which, when applied to some
argument yields the result of evaluating e in the current (i.e. application time) store, and
in the environment obtained from the definition environment by binding any variables
in p to the corresponding components of the argument (see Section B.4.1.1).

2. Compound lambda-expressions: A lambda-expression with more than one parameter is
curried, i.e. \p1p2 . . . pn.e is equivalent to \p1. (\p2....\pn.e)....

Thus the free variables in a function keep the same binding they had in the definition envi-
ronment. So if a free variable is non-assignable in that environment, then its value is fixed
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to the value it has there. On the other hand, if a free variable is assignable in the definition
environment, then it will be bound to a location. Although that binding is fixed, the contents
of the location in the store is not, and can be subsequently changed with assignments.

B.5 ML Types

So far, little mention has been made of types. For ML in its original role as the meta-language for
proof in LCF, the importance of strict type checking was principally to ensure that every computed
value of the type representing theorems was indeed a theorem.2

The same effect could probably have been achieved by run-time type checking, but compile-
time type checking was adopted instead, in the design of ML. This was partly for the considerable
debugging aid that it provides; partly for efficient execution; and partly to explore the possibility
of combining polymorphism with type checking. This last reason is of general interest in program-
ming languages and has nothing to do specifically with proof; the problem is that there are many
operations (list mapping functions, functional composition, etc.) which work at an infinity of types,
and therefore their types should somehow be parameterized – but it is rather inconvenient to have
to mention the particular type intended at each of their uses.

The ML type checking system is implemented in such a way that, although the user may
occasionally (either for documentation or as a constraint) ascribe a type to an ML expression or
pattern, it is hardly ever necessary to do so. The user of ML will almost always be content with the
types ascribed and presented by the type checker, which checks every top-level phrase before it is
evaluated. (The type checker may sometimes find a more general type assignment than expected.)

B.5.1 Types and objects

Every data object in ML possesses a type. Such an object may possess many types, in which case
it is said to be polymorphic and possesses a polytype – i.e. a type containing type variables (for
which we use a sequence of asterisks possibly followed by an identifier or integer) – and moreover
it possesses all types which are instances of its polytype, formed by substituting types for zero or
more type variables in the polytype. A type containing no type variables is a monotype.

We saw several examples of types in Section B.2. To understand the following syntax, note
that list is a postfixed unary (one-argument) type constructor (thereafter abbreviated to tycon).
The user may introduce new n-argument type constructors. A binary type operator directory, for
example, can be introduced. The following type expressions will then be types of different kinds of
directory:

• (tok, int) directory

• (int, int -> int) directory

The user may even deal with lists of directories, with the type (int, bool) directory list

B.5.1.1 The syntax of types

The syntax of ML types is summarized in Table B.5. Type abbreviations are introduced by a
lettype declaration (see Section B.5.4 below) which allows an identifier to abbreviate an arbi-
trary monotype. An abstract type likewise consists of an identifier (introduced by an abstype or

2The Nuprl system also relies on strict type checking to ensure that objects of type proof can only be constructed
by reference to a fixed set of inference rules.

194



Types ty ::= sty Standard (non-infix) type
| ty # ty R Cartesian product
| ty + ty R Disjoint sum
| ty -> ty R Function type

Standard Types sty ::= unit | int

| bool

| tok | string Basic types
| vty Type variable
| tycon Type abbreviation (see Section B.5.4)
| tycon Nullary abstract type
| tyarg tycon L Abstract type (see Section B.5.5)
| (ty)

Type arguments tyarg ::= sty Single type argument
| (ty,...,ty) One or more type arguments

Type variables vty ::= * | ** | ...

| *id | **id | ...

| *0 | **0 | ...

| *1 | **1 | ...
|

... |
... | ...

Table B.5: ML Type Syntax

absrectype declaration; see Section B.5.5) postfixed to zero or more type arguments. Two or more
arguments must be separated by commas and enclosed by parentheses. The type operator list

is a predeclared unary type operator; and #, + and -> may be regarded as infix forms of three
predeclared binary type operators.

For an object to possess3 a type means the following: For basic types, all integers possess int,
both booleans possess bool , all strings possess string, etc. The only object possessing void (or
unit) is that denoted by () in ML. For a type abbreviation tycon, an object possesses tycon (during
execution of phrases in the scope of the declaration of tycon) if and only if it possesses the type
which tycon abbreviates. For compound monotypes ,

1. The type ty list is possessed by any list of objects, all of which possess type ty (so that the
empty list possesses type ty list for every ty).

2. The type ty1 # ty2 is possessed by any pair of objects possessing the types ty1 and ty2,
respectively.

3. The type ty1 + ty2 is possessed by the left-injection of any object possessing ty1, and by the
right-injection of any object possessing ty2. These injections are denoted by the ML function
identifiers inl : * -> * + ** and inr : ** -> * + ** (see Section B.6).

4. A function possesses type ty1 -> ty2 if, whenever its argument possesses type ty1, its result (if
defined) possesses type ty2. (This is not an exact description; for example, a function defined
in ML with non-local variables may possess this type even though some assumption about
the types of the values of these non-local variables is necessary for the above condition to
hold. The constraints on programs listed below ensure that the non-locals will always have
the right types).

3We shall talk of objects possessing types and phrases having types, to emphasize the distinction.
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5. An object possesses the abstract type tyarg id if and only if it is represented (via the abstract
type representation) by an object possessing the tyarg instance of the right-hand side of the
declaration of id.

Finally, an object possesses a polytype ty if and only if it possesses all monotypes which are
substitution instances of ty.

B.5.2 Typing of ML phrases

We now explain the constraints used by the type checker in ascribing types to ML expressions,
patterns and declarations.

The significance of expression e having type ty is that the value of e (if evaluation terminates
successfully) possesses type ty. As consequences of the well-typing constraints listed below, it is
impossible for example to apply a non-function to an argument, or to form a list of objects of
different types, or (as mentioned earlier) to compute an object of the type corresponding to theorems
which is not a theorem.

The type ascribed to a phrase depends in general on the entire surrounding ML program. In
the case of top-level expressions and declarations, however, the type ascribed depends only on
preceding top-level phrases. Thus you know that types ascribed at top-level are not subject to
further constraint.

Before each top-level phrase is executed, types are ascribed to all its sub-expressions, sub-
declarations and sub-patterns according to the following rules. Most of the rules are fairly natural;
those which are less so are discussed later. You are only presented with the types of top-level
phrases; the types of sub-phrases will hardly ever concern you.

Before giving the list of constraints, let us discuss an example which illustrates some important
points. To map a function over a list we may define the polymorphic function map recursively as
follows (where we have used an explicit abstraction, rather than letrec map f l = ..., to make
the typing clearer):

letrec map = \f.\l. null l => [] | f(hd l).map f(tl l) ;;

From this declaration the type checker will infer a generic type for map. By ‘generic’ we mean that
each later occurrence of map will be ascribed a type which is a substitution instance of the generic
type.

Now the free identifiers in this declaration are null, hd and $., which are ML primitives whose
generic (poly)types are * list -> bool, * list -> *, and * # * list -> * list respectively.
The first constraint used by the type checker is that the occurrences of these identifiers in the
declaration are ascribed instances of their generic types. Other constraints which the type checker
will use to determine the type of map are:

• All occurrences of a lambda-bound variable receive the same type.

• Each arm of a conditional receives the same type, and the condition receives type bool.

• In each application e = (e1e2), if e2 receives ty and e receives ty′ then e1 receives ty -> ty′.

• In each abstraction e = \v.e1, if v receives ty and e1 receives ty′ then e receives ty -> ty′.

• In a letrec declaration, all free occurrences of the declared variable receive the same type.

Now the type checker will ascribe the type (*->**)->* list->** list to map. This is in fact
the most general type consistent with the constraints mentioned. Moreover, it can be shown that
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any instance of this type also allows the constraints to be satisfied; this is what allows us to claim
that the declaration is indeed polymorphic.

In the following constraint list, we say p has ty to indicate that the phrase p is ascribed a type ty
which satisfies the stated conditions. We use x, p, e, d to stand for variables, patterns, expressions
and declarations respectively.

Constants:

1. () has type unit

2. 0 has type int , 1 has type int, ...

3. true has type bool, false has type bool

4. ‘...‘ has type tok

5. "..." has type string

Variables and constructors: The constraints described here are discussed in Section B.5.3 below.

1. If x is a variable bound by \, fun or letref, then x is ascribed the same type as
its binding occurrence. In the case of letref, this must be monotype if the letref is
top-level or an assignment to x occurs within a lambda-expression within its scope.

2. If x is bound by let or letrec, then x has ty, where ty is an instance of the type of the
binding occurrence of x (i.e. the generic type of x), in which type variables occurring in
the types of current lambda-bound or letref-bound identifiers are not instantiated.

3. If x is not bound in the program (in which case it must be an ML primitive), then x
has ty, where ty is an instance of the type of x given in Section B.6.

Patterns: Cases for a pattern p:

• (): p has ty, where ty is any type.

• p1:ty:
p1 and p have an instance of ty.

• p1,p2: If p1 has ty1 and p2 has ty2, then p has ty1 # ty2.

• p1.p2: If p1 has ty then p2 and p have ty list.

• [p1;...;pn]: For some ty, each pi has ty and p has ty list.

Expressions: Cases for an expression e (not a constant or identifier):

• e1e2: If e2 has ty and e has ty′ then e1 has ty -> ty′.

• e1:ty: e1 and e have an instance of ty.

• px e1: Treated as $px(e1) when px is a prefix. If e is -e1, then e and e1 have int.

• e1 ix e2: Treated as $ix(e1,e2) if ix is introduced with ml paired infix, and as
($ix e1 e2) if ix is introduced by ml curried infix. If e is (e1 & e2) or (e1 or e2)

then e, e1 and e2 have bool.

• e1,e2: If e1 has ty1 and e2 has ty2 then e has ty1#ty2.

• p:=e1: For some ty, p, e1 and e all have ty.

• failwith e1: e1 has tok, and e has any type.

197



• if e1 then e′1 . . . if en then e′n else e′: Each ei has bool, and e, each e′i, and e′ all
have ty for some ty. However, this constraint does not apply to an e′i preceded by loop

in place of then, nor to e′ preceded by loop in place of else. If e′ is absent, then ty =
void.

• e′0 ?? e1 e′1 . . . ?? en e′n ?{\x}e′: Each ei has tok list, and e, e′0, each e′i and e′ all
have ty for some ty. However, this constraint does not apply to an e′i preceded by !! in
place of ?? nor to e′ preceded by ! in place of ?. If \x is present, x has tok.

• e1;...;en: If en has ty then e has ty.

• [e1;...;en]: For some ty, each ei has ty and e has ty list.

• d in e1: If e1 has ty then e has ty. If d is a type definition (see Sections B.5.4 and B.5.5)
then ty must contain no type defined in d.

• \p.e1: If p has ty and e1 has ty′ then e has ty ->ty′.

Declarations:

1. Each bindingx p1 . . . pn = e is treated as x = \p1. ...\pn.e.

2. let p1 = e1 and ...and pn = en is treated as let p1,...,pn = e1,...,en (similarly
for letrec and letref).

3. If d is let p=e, then d, p and e all have ty for some ty (similarly for letref). Note that
e is not in the scope of the declaration.

4. If d is letrec x1,...,xn = e1,...,en, then xi and ei have tyi, and d has ty1#...#tyn

for some tyi. In addition, each free occurrence of xi in e1,. . . ,en has tyi, so that the type
of recursive calls of xi is the same as the declaring type.

B.5.3 Discussion of type constraints

We give here reasons for our constraints on the types ascribed to occurrences of identifiers. The
reader may like to skip this section at first reading.

1. Consider constraint (1) for lambda-bound identifiers. This constraint implies that the ex-
pression let x = e in e′ may be well-typed even if the semantically-equivalent expression
let f x = e′ in f e is not, since in the former expression x may occur in e′ with two in-
compatible types which are both instances of the declaring type. The greater constraint on f
is associated with the fact that f may be applied to many different arguments during evalua-
tion. To show the need for the constraint, suppose that it is replaced by the weaker constraint
for let-bound identifiers, so that for example let f x = if x then 1+x else x(1) is a
well-typed declaration of type *->int, in which the occurrences of x receive types *, bool,
int, int->int respectively. In the absence of an explicit argument for the abstraction, no
constraint exists for the type of the binding occurrence of x. But, because f is let-bound,
expressions such as f true and f ‘dog‘ are admissible in the scope of f, although their
evaluation should result in either nonsense or run-time type-errors; one of our purposes is to
preclude these.

The only exception to this rule is for expressions of the form (\x.e′)e, which is treated exactly
as let x=e in e′. Here we know the unique instance of type of the argument x, namely the
type of e.
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2. The analogous restriction for letref-bound identifiers is also due to the possibility that the
identifier-value binding may change during evaluation (this time because of assignments).
Consider the following:

letref x = [] in
(if e then do(x := 1.x) else do(x := [true]) ; hd x) ;;

If letref were treated like let, this phrase would be well-typed and indeed have type *,
despite the fact that the value returned is either 1 or true. So, calling the whole expression
e, all manner of larger expressions involving e would be well-typed, even including e(e)!

3. Top level letrefs must be monomorphic to avoid retrospective type constraints at top-level.
If this restriction were removed the following would be allowed:

letref x = [] ;;
...
2.x ;;

But on type checking the last phrase, it would appear that the type of x at declaration should
have been int list, not * list, and the types of intervening phrases may likewise need
constraining.

4. To see the need for the exclusion of polymorphic non-local assignments, consider this example
in the HOL system (this example is originally due to Lockwood Morris). (The type thm is
the type of theorems.)

let store,fetch =

letref x = [] in (\y. x:=[y]) , (\(). hd x ) ;;

store "T = F" ;;

let eureka :thm = fetch() ;;

Now suppose we lift our constraint. Then in the declaration, x has type * list throughout
its (textual) scope, and store, fetch receive types *->* list, **->* respectively. In the
two ensuing phrases they get respective types term->term list, void->thm (instances of
their declaring types), and the value of eureka is a contradictory formula masquerading as a
theorem!

The problem is that the type checker has no simple way of discovering the types of all values
assigned to the polymorphic x, since these assignments may be invoked by calls of the function
store outside the (textual) scope of x. This is not possible under our constraint.

However, polymorphic assignable identifiers are still useful: consider

let rev l =

letref l,l’ = l,[] in

if null l then l’ loop (l,l’:= tl l, hd l.l’) ;;

Such uses of assignable identifiers for iteration may be avoided given a suitable syntax for
iteration, but assignable identifiers are useful for a totally different purpose, namely as ‘own
variables’ shared between one or more functions (as in the store-fetch example). Our constraint
of course requires them to be monomorphic; this is one of the few cases where the user
occasionally needs to add an explicit type to a program.
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B.5.4 Type abbreviations

The syntax of type abbreviation bindings tab is

tab ::= id1 = ty1 and . . . and idn = tyn

Then the declaration

lettype tab

in which each tyi must be a monotype, built from basic types and previously defined types, allows
you to introduce new names idi for the types tyi. Within the scope of the declaration the expression
e:idi behaves exactly like e:tyi, and the type tyi will always be printed as idi.

One aspect of such type abbreviations should be emphasized. Suppose for the rational numbers
you declare lettype rat = int # int;; and set up the standard operations on rationals. Within
the scope of this declaration any expression of type int # int will be treated as though it had
type rat, and this could be not only confusing but also incorrect (in which case it ought to cause
a type failure). If you wish to introduce the type rat, isomorphic to int # int but not matching
it for type checking purposes, then you should use abstract types.

B.5.5 Abstract types

As with concrete types, abstract type constructors may be introduced by a declaration in which
type variables are used as dummy arguments (or formal parameters) of the operators. The syntax
of abstract type bindings ab is

ab ::= vtyarg1 tycon1 = ty1 and ...and vtyargn tyconn = tyn with b

where each vtyargi must contain no type variable more than once, and all the type variables in
tyi must occur in vtyargi. An abstract type declaration takes the form

{abstype|absrectype} ab

The declaration introduces a set of type operators, and also incorporates a normal binding b
(treated like let) of ML identifiers. Throughout the scope of the abstract type declaration the
type operators and ML identifiers are both available, but it is only within b that the representation
of the type operators (as declared in terms of other operators) is available. In an abstract type
declaration

abs{rec}type vtyarg1 id1 = ty1 and ...and vtyargn idn = tyn with b

the sense in which the representation of each idi is available only within b is as follows: the isomor-
phism between objects of types tyi and vtyargi idi is available (only in b) via a pair of implicitly
declared polymorphic functions

abs idi : tyi -> vtyargi idi

rep idi : vtyargi idi -> tyi

which are to be used as coercions between the abstract types and their representations. Thus in
the simple case abstype a= ty with x=e′ in e the scope of a is e′ and e, the scope of abs a and
rep a is e′, and the scope of x is e.

As an illustration, consider the definition of the type rat of rational numbers, represented by
pairs of integers, together with operations plus and times and the conversion functions

inttorat : int->rat

rattoint : rat->int
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Since rat is a nullary type operation, no type variables are involved, and rat can be defined by:

abstype rat = int# int

with plus(x,y) = (abs_rat(x1*y2+x2*y1, x2*y2)

where x1,x2 = rep_rat x

and y1,y2 = rep_rat y )

and times(x,y) = (abs_rat(x1*y1, x2*y2)

where x1,x2 = rep_rat x

and y1,y2 = rep_rat y )

and inttorat n = abs_rat(n,1)

and rattoint x = ((x1/x2)*x2=x1 => x1/x2 | failwith ‘rattoint‘

where x1,x2 = rep_rat x ) ;;

Most abstract type declarations are probably used at top-level, so that their scope is the re-
mainder of the top-level program. But for non-top-level declarations, a simple constraint ensures
that a value of abstract type cannot exist except during the execution of phrases within the scope
of the type declaration. In the expression

abs{rec}type vtyarg1 id1 = ty1 and ...and vtyargn idn = tyn with b in e

the type of e, and the types of any non-local assignments within b and e, must not involve any of
the idi.

Finally, in keeping with the abstract nature of objects of abstract type, the value of a top-level
expression of abstract type is printed as a dash, - , as functional values are. Users who wish to
‘see’ such an object should declare a coercion function in the ‘with’ part of the type declaration, to
yield a suitable concrete representation of the abstract objects.

B.6 Primitive ML Identifier Bindings

The primitive ML identifier bindings are described in this Section. Some useful derived functions
are in Section B.7. The primitive bindings are of two kinds:

• ordinary bindings;

• dollared bindings (which are preceded by $) having prefix or infix status.

The description of the ML value to which an identifier is bound is omitted if the semantics is
clear from the identifier name and type given. For those functions whose application may fail, the
failure string is the function identifier.

Predeclared identifiers are not regarded as constants of the language. As with all other ML

identifiers, the user is free to rebind them, by let, letref, etc., but note that in the case of infix or
prefix operators rebinding the dollared operator will affect even its non-dollared uses. Predeclared
bindings are to be understood as if they had been bound by let, rather than by letref. In
particular, therefore, none of them can be changed by assignment (except, of course, within the
scope of a rebinding of the identifier by a letref-declaration).
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B.6.1 Predeclared ordinary identifiers

fst : * # ** -> *
snd : * # ** -> ** inl : * -> * + **

inr : ** -> * + **
null : * list -> bool outl : * + ** -> *
hd : * list -> * outr : * + ** -> **
tl : * list -> * list isl : * + ** -> bool

The functions hd and tl fail if their argument is an empty list. The functions outl and outr fail if
their arguments are not in the left or right summand, respectively. A function isr is not provided
because it is just the complement of isl.

explode : tok -> tok list
implode : tok list -> tok

The function explode maps a token into the list of its single character tokens in order. The
function implode maps a list of single character tokens (fails if any token is not of length one) into
the token obtained by concatenating these characters. For example:

1# explode ‘whosit‘;;
[‘w‘; ‘h‘; ‘o‘; ‘s‘; ‘i‘; ‘t‘] : tok list

# implode [‘c‘;‘a‘;‘t‘];;
‘cat‘ : tok

# implode [‘cd‘;‘ab‘;‘tu‘];;
evaluation failed implode

int_to_char : int -> char
char_to_int : char -> int

The function int to char on argument i returns the ith character in Nuprl’s font. The integer
i must be non-negative and less than 256. For arguments less than 128 the integer-character corre-
spondence is the same as in ASCII. The function char to int returns integer code of its argument,
which must be a one-character token.

string_to_toks : string -> tok list
toks_to_string : tok list -> string

These functions are similar to explode and implode except that they work on strings rather
than tokens.

int_to_tok : int -> tok
tok_to_int : tok -> int

These are bound to the obvious type coercion functions, with tok to int failing if its argument
is not a non-negative integer token.

ml_curried_infix : tok -> unit
ml_paired_infix : tok -> unit

The functions ml curried infix and ml paired infix declare their argument tokens to the
ML parser as having infix status. Infixed functions can either be curried or take a pair as an
argument. For example, after executing
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ml paired infix ‘plus‘;; let x plus y = x+y;;

1 plus 2 is synonymous with $plus(1,2) and after executing

ml curried infix ‘plus‘ ;; let x plus y = x+y ;;

1 plus 2 is synonymous with $plus 1 2.4

B.6.2 Predeclared dollared identifiers

The following prefix and infix operators are provided as primitives (where the dollar symbol is
omitted from the table; the constants are $do, and so on):

do : * -> void
not : bool -> bool
*, /, +, - : int # int -> int
>, < : int # int -> bool
= : * # * -> bool
@ : * list # * list -> * list
. : * # * list -> * list

Clarifying remarks:

• $do is equivalent to \x.(). do e evaluates e for its side effects.

• / returns the integer part of the result of a division, for example

$/(7,3) = 7/3 = 2

$/(-7,3) = -7/3 = -2

The failure token for division by zero is ‘div‘.

• - is the binary subtraction function. Negation (unary minus) is not available as a predeclared
function of ML, only as a prefix operator. Of course, the user can define negation if he or she
wishes, e.g. by

let minus x = -x

• Not all dollared infix operators are included above: $, is not provided since it would be
equivalent (as a function) to the identity on pairs, nor is & as it has no corresponding call-by-
value function (because e & e′ evaluates to false when e does even if evaluation of e′ would
fail to terminate), nor is or analogously.

• The period symbol . is an infixed Lisp cons:

x.[x1;...;xn] = [x;x1;...;xn]

• = is bound to the expected predicate for an equality test at non-function types, but is nec-
essarily rather weak, and may give surprising results, at function types. You can be sure
that semantically (i.e. extensionally) different functions are not equal, and that semantically
equivalent functions are equal when they originate from the same evaluation of the same
textual occurrence of a function-denoting expression; for other cases the equality of functions
is unreliable (i.e. implementation dependent). For example, after the top-level declarations

4Only ordinary identifiers should be used as infixes; infixing other tokens may have unpredictable effects
on the parser.
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let f x = x+1 and g x = x+2;;

let f’ = f and h x = f x and h’ x = x+1;;

f=f’ evaluates to true and f=g evaluates to false, but the truth values of f=h, f=h’, and
h=h’ are unreliable. Furthermore, after declaring

let plus = \x.\y.x+y;;

let f = plus 1 and g = plus 1;;

the truth value of f=g is also unreliable.

• @ is a predeclared list concatenation operator; the symbol @ has a special parser status and
cannot be redeclared as a curried infix.

B.7 General Purpose and List Processing Functions

This Section describes a selection of commonly useful ML functions applicable to pairs, lists and
other ML values. All the functions are definable in ML. Each function is documented by:

1. Its name and type.

2. A brief description.

3. An ML declaration defining the function (note that this is not necessarily the definition used:
some of the functions are coded directly in Lisp).

Functions preceded by $ may be used as infix operators (without the $), or in normal prefix form
or as arguments to other functions (with the $).

The functions usually fail with failure string equal to their name; sometimes, however, the failure
string is the one generated by the subfunction that caused the failure.

B.7.1 General purpose functions and combinators

The standard primitive combinators are: I, K, and S.

I : * -> *
K : * -> ** -> *
S : (* -> ** -> ***) -> (* -> **) -> * -> ***

Description: I x = x K x y = x S f g x = f x (g x)

Definition:

let I x = x

let K x y = x

let S f g x = f x (g x)

The derived combinators KI (the dual of K), C (the permutator), W (the duplicator), B (the compos-
itor) and CB (which is declared to be infix) have types:

KI : * -> ** -> **
C : (* -> ** -> ***) -> ** -> * -> ***
W : (* -> * -> **) -> * -> **
B : (* -> **) -> (*** -> *) -> *** -> **
CB : (* -> **) -> (** -> ***) -> * -> ***
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Description:

KI x y = y C f x y = f y x B f g x = f(g x) W f x = f x x CB f g x = g(f x)

Definition:

let KI = K I

let C f x y = f y x

let W f x = f x x

let B f g x = f(g x)

let (f CB g) x = g(f x)

The next group of functions are various useful infixed function-composition operators:

$o : ((* -> **) # (*** -> *)) -> *** -> **
$# : ((* -> **) # (*** -> ****)) -> (* # ***) -> (** # ****)
$Co : ((* -> ** -> ***) # (**** -> *)) -> ** -> **** -> ***

Description: (f o g) x = f(g x)

(f # g)(x, y) = (f x, g y)

(f Co g) x y = C(f o g) x y = f (g y) x

Definition:

ml paired infix ‘o‘
let (f o g) x = f(g x)

ml paired infix ‘#‘
let (f # g)(x,y) = (f x, g y)

ml paired infix ‘Co‘
let (f Co g) x y = f (g y) x

The following two functions convert between curried and uncurried versions of a binary function.

curry : ((* # **) -> ***) -> (* -> ** -> ***)
uncurry : (* -> ** -> ***) -> ((* # **) -> ***)

Description: curry f x y = f(x, y) uncurry f (x, y) = f x y

Definition:

let curry f x y = f (x,y)

let uncurry f (x,y) = f x y

The next function tests for failure.

can : (* -> **) -> * -> bool

Description: can f x evaluates to true if the application of f to x succeeds; it evaluates to
false if the evaluation fails.
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Definition:

let can f x = (f x; true) ? false

The next function iterates a function a fixed number of times.

funpow : int -> (* -> *) -> * -> *

Description: funpow n f x applies f to x n-times: funpow n f = f n

Definition:

letrec funpow n f x = if n=0 then x else funpow (n-1) f (f x)

B.7.2 Miscellaneous list processing functions

The function length computes the length of a list.

length : * list -> int

Description: length [x1;...;xn] = n

Definition:

letrec length = fun [] . 0 | ( .l) . 1+(length l)

The function append concatenates lists; @ is an uncurried and infixed version of append.

append : * list -> * list -> * list

Description: append [x1;...;xn] [y1;...;ym] = x1;...;xn;y1;...;ym]

Definition:

letrec append l1 l2 = if null l1 then l2 else hd l1.append (tl l1) l2

The function el extracts a specified element from a list. It fails if the integer argument is less than
1 or greater than the length of the list.

el : int -> * list -> *

Description: el i [x1;...;xn] = xi

Definition:

letrec el i l =
if null l or i < 1 then failwith ‘el‘

else if i = 1 then hd l
else el (i-1) (tl l)

The functions last and butlast compute the last element of a list and all but the last element of
a list. Both fail if the argument list is empty.

last : * list -> *
butlast : * list -> * list
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Description: last [x1;...;xn] = xn butlast [x1;...;xn] = [x1;...;xn−1]

Definition:

letrec last l = last (tl l) ? hd l ? failwith ‘last‘

letrec butlast l =
if null (tl l) then [] else (hd l).(butlast(tl l)) ? failwith ‘butlast‘

The next function makes a list consisting of a value replicated a specified number of times. It fails
if the specified number is less than zero.

replicate : * -> int -> * list

Description: replicate x n evaluates to [x;...;x], a list of length n.

Definition:

letrec replicate x n =
if n < 0 then failwith ‘replicate‘

else if n = 0 then []
else x . (replicate x (n-1))

B.7.3 List mapping and iterating functions

map : (* -> **) -> * list -> ** list

Description: map f l returns the list obtained by applying f to the elements of l in turn.

Definition:

letrec map f l = if null l then [] else f(hd l). map f (tl l)

The following three functions are versions of ‘reduce’.

itlist : (* -> ** -> **) -> * list -> ** -> **
rev_itlist : (* -> ** -> **) -> * list -> ** -> **
end_itlist : (* -> * -> *) -> * list -> *

Description: itlist f [x1;x2;...;xn] x = f x1 (f x2 ( . . . (f xn x) . . . ))
= ((f x1) o (f x2) o . . . o (f xn)) x

rev itlist f [x1;...;xn−1;xn] x = f xn (f xn−1 ( . . . (f x1 x) . . . ))
= ((f xn) o (f xn−1) o . . . o (f x1)) x

end itlist f [x1;x2;...;xn−1;xn] = f x1 (f x2 ( . . . (f xn−1 xn) . . . ))
= ((f x1) o (f x2) o . . . o (f xn−1)) xn

Definition:

letrec itlist f l x =
if null l then x else f (hd l) (itlist f (tl l) x)

letrec rev itlist f l x =
if null l then x else rev itlist f (tl l) (f (hd l) x)

let end itlist ff l =
if null l then failwith ‘end itlist‘

else (let last.rest = rev l in rev itlist ff rest last)
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or, equivalently:

letrec itlist f = fun [] . I | (y.l) . \x. f y (itlist f l x)

letrec rev itlist f = fun [] . I | (y.l) . \x. rev itlist f l (f y x)

B.7.4 List searching functions

The functions described in this section search lists for elements with various properties. Those
functions that return elements fail if no such element is found; those that return booleans never
fail (false is returned if the element is not found).

find : (* -> bool) -> * list -> *
tryfind : (* -> **) -> * list -> **

Description: find p l returns the first element of l that satisfies the predicate p. tryfind f l
returns the result of applying f to the first member of l for which the application of f succeeds.

Definition:

letrec find p = fun [] . failwith ‘find‘
| (x.l) . if p x then x else find p l

letrec tryfind f = fun [] . failwith ‘tryfind‘
| (x.l) . (f x ? tryfind f l)

The next two functions are analogous to the quantifiers ∃ and ∀.

exists : (* -> bool) -> * list -> bool
forall : (* -> bool) -> * list -> bool

Description: exists p l applies p to the elements of l in order until one is found which satisfies
p, or until the list is exhausted, returning true or false accordingly; forall is the dual.

Definition:

let exists p l = can (find p) l

let forall p l = not(exists ($not o p) l)

The next function tests for membership of a list.

mem : * -> * list -> bool

Description: mem x l returns true if some element of l is equal to x, otherwise it returns false.

Definition:

let mem = exists o (curry $=)

The following two functions are ML versions of Lisp’s assoc.

assoc : * -> (* # **) list -> (* # **)
rev_assoc : * -> (** # *) list -> (** # *)
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Description: assoc x l searches a list l of pairs for one whose first component is equal to x,
returning the first pair found as result; similarly, rev assoc y l searches for a pair whose second
component is equal to y. For example:

1# assoc 2 [(1,4);(3,2);(2,5);(2,6)];;
(2, 5) : (int # int)

# rev_assoc 2 [(1,4);(3,2);(2,5);(2,6)];;
(3, 2) : (int # int)

Definition:

let assoc x = find (\(x’,y). x=x’)

let rev assoc y = find (\(x,y’). y=y’)

B.7.5 List transforming functions

The next function reverses a list:

rev : * list -> * list

Description: rev [x1;...;xn] = [xn;...;x1]

Definition:

let rev = rev1 []
whererec rev1 l = fun [] . l | (x.l’) . rev1 (x.l) l’

The following two functions filter a list to the sublist of elements satisfying a predicate.

filter : (* -> bool) -> * list -> * list
mapfilter : (* -> **) -> * list -> * list

Description: filter p l applies p to every element of l, returning a list of those that satisfy
p; evaluating mapfilter f l applies f to every element of l, returning a list of results for those
elements for which application of f succeeds.

Definition:

letrec filter p = fun [] . []
| (x.l) . if p x then (x.filter p l) else filter p l

letrec mapfilter f = fun [] . []
| (x.l) . let l’ = mapfilter f l in (f x).l’ ? l’

The following three functions break-up lists.

remove : (* -> bool) -> * list -> (* # * list)
partition : (* -> bool) -> * list -> (* list # * list)
chop_list : int -> * list -> (* list # * list)
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Description: remove p l separates from the rest of l the first element that satisfies the predicate
p; it fails if no element satisfies the predicate. partition p l returns a pair of lists. The first list
contains the elements of l which satisfy p. The second list contains all the other elements of l.

chop list i [x1;...;xn] = [x1;...;xi],[xi+1;...;xn]

chop list fails if i is negative or greater than n.

Definition:

letrec remove p l =
if p (hd l) then (hd l, tl l)
else (I # (.̊ ((hd l) . r))) (remove p (tl l))

let partition p l =
itlist (\a (yes,no). if p a then ((a.yes),no) else (yes,(a.no))) l ([],[])

letrec chop list i l =
if i = 0 then ([],l)
else (let l1,l2 = chop list (i-1) (tl l) in hd l . l1 , l2)
? failwith ‘chop list‘

The next function flattens a list of lists:

flat : * list list -> * list

Description: flat [[l11;...;l1m1
]; [l21;...;l2m2

]; ...[ln1;...;lnmn]]

= [l11;...;l1m1
; l21;...;l2m2

; ...ln1;...;lnmn]

Definition:

letrec flat = fun [] . [] | (x.l) . x@(flat l)

The next two functions ‘zip’ and ‘unzip’ between lists of pairs and pairs of lists.

combine : (* list # ** list) -> (* # **) list
split : (* # **) list -> (* list # ** list)

Description: combine [x1;...;xn] [y1;...;yn] = [(x1,y1);...;(xn,yn)]

split [(x1,y1);...;(xn,yn)] = [x1;...;xn],[y1;...;yn]

Definition:

letrec combine = fun ([],[]) . []
| ((x.lx),(y.ly)) . ((x,y).combine(lx,ly))
| . failwith ‘combine‘

letrec split = fun [] . ([],[])
| ((x,y).l) . let lx,ly = split l in (x.lx,y.ly)

B.7.6 Functions for lists representing sets

The following functions behave like the corresponding set-theoretic operations on sets (represented
as lists without repetitions).

intersect : * list -> * list -> * list
subtract : * list -> * list -> * list
union : * list -> * list -> * list
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Description: intersect l1 l2 = l1 ∩ l2 subtract l1 l2 = l1 − l2 union l1 l2 = l1 ∪ l2

Definition:

let intersect l1 l2 = filter (\x. mem x l2) l1

let subtract l1 l2 = filter (\x. not(mem x l2)) l1

let union l1 l2 = l1 @ subtract l2 l1

There are also functions to test if a list is a set, remove duplicates from a list and test two lists for
set equality.

distinct : * list -> bool
setify : * list -> * list
set_equal : * list -> * list -> bool

Description: distinct l returns true if all the elements of l are distinct; otherwise it returns
false. setify l removes repeated elements from l, leaving the last occurrence of each duplicate in
the list. set equal l1 l2 returns true if every element of l1 appears in l2 and every element of l2
appears in l1; otherwise it returns false.

Definition:

letrec distinct l =
(null l) or (not (mem (hd l) (tl l)) & distinct (tl l))

let setify l = itlist (\a s. if mem a s then s else a.s) l []

let set equal l1 l2 = (subtract l1 l2 = []) & (subtract l2 l1 = [])

B.7.7 Miscellaneous string processing functions

The following functions split strings into ‘words’; words2 uses a user supplied separator, while
words uses space and carriage-return as separators.

words2 : string -> string -> string list
words : string -> string list

Description: words2 ‘c‘ ‘s1cs2c . . . csn‘ = [‘s1‘;‘s2‘; ...;‘sn‘]

words ‘s1 s2 . . . sn‘ = [‘s1‘;‘s2‘; ...;‘sn‘]

Definition:

let words2 sep string =
snd (itlist (\ch (chs,tokl).

if ch = sep then
if null chs then [],tokl
else [], (implode chs . tokl)

else (ch.chs), tokl)
(sep . explode string)
([],[]))

let word separators = [‘ ‘;‘\L‘]
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let words string =
snd (itlist (\ch (chs,tokl).

if mem ch word separators then
if null chs then [],tokl
else [], (implode chs . tokl)

else (ch.chs), tokl)
(‘ ‘ . explode string)
([],[]))

The next three functions (the second of which is an infixed version of the first) are string concate-
nation operators.

concat : string -> string -> string
$^ : string -> string -> string
concatl : string list -> string

Description: concat concatenates two strings, $^ is an infixed version of concat, and
concatl concatenates all the strings in a list of strings.

Definition:

let concat s1 s2 = implode(explode s1 @ explode s2)

ml curried infix ‘^‘
let s1 ^ s2 = concat s1 s2

let concatl sl = implode(itlist append (map explode sl) [])

B.7.8 Failure handling functions

The failure handling functions described here are useful for writing code that fails with a backtrace.

set_fail_prefix : string -> (* -> **) -> * -> **
set_fail : string -> (* -> **) -> * -> **

Description: set fail prefix s f x applies f to x and returns the result of the application if
it is successful; if the application fails then the string s is concatenated to the failure string and
the resulting string propagated as the new failure string.
set fail s f x applies f to x and returns the result of the application if it is successful; if the
application fails then the string s is propagated as the new failure string.

Definition:

let set fail prefix s f x = f x ?\s’ failwith(concatl[s;‘--‘;s’])

let set fail s f x = f x ? failwith s
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