A Game-Theoretic Analysis of Updating Sets of Probabilities
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Suppose that an agent models her uncertainty about a d
main using asetP of probability distributions. How should
the agent make decisions? Perhaps the best-studied a|
most commonly-used approach in the literature is to use
the minimax criterion [Wald 1950; &denfors and Sahlin
1982; Gilboa and Schmeidler 1989]. According to the min-
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Abstract

We consider how an agent should update her un-
certainty when it is represented by a getof
probability distributions and the agent observes
that a random variabl& takes on value;, given
that the agent makes decisions using thigi-
max criterion perhaps the best-studied and most
commonly-used criterion in the literature. We
adopt a game-theoretic framework, where the
agent plays against a bookie, who chooses some
distribution from?P. We consider two reason-
able games that differ in what the bookie knows
when he makes his choice. Anomalies that have
been observed before, likime inconsistengy
can be understood as arising because different
games are being played, against bookies with dif-
ferent information. We characterize the impor-
tant special cases in which the optimal decision
rules according to the minimax criterion amount
to either conditioning or simply ignoring the in-
formation. Finally, we consider the relationship
between conditioning andalibration when un-
certainty is described by sets of probabilities.

INTRODUCTION

imax criterion, actiona, is preferred to action; if the

worst-case expected lossaf (with respect to all the prob-
ability distributions in the seéP under consideration) is bet-
ter than the worst-case expected losg0fThus, the action

chosen is the one with the best worst-case outcome.
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agent may make some observations, or learn some infor-
mation. This leads to an obvious question: If the agent rep-
resents her uncertainty using a 0f probability distrib-
utions, how should she updagein light of observing that
random variableX takes on value:? Perhaps the standard
answer is to condition each distributionon X = z
(more precisely, to condition those distributionsfnthat

give X = x positive probability onX = z), and adopt

the resulting set of conditional distributiof’s| X = z as

her representation of uncertainty. As has been pointed out
by several authors, this sometimes leads to a phenomenon
calleddilation [Augustin 2003; Cozman and Walley 2001;
Herron, Seidenfeld, and Wasserman 1997; Seidenfeld and
Wasserman 1993]: the agent may have substantial knowl-
edge about some other random variabldefore observ-

ing X = =z, but know significantly less after conditioning.
Walley [1991, p. 299] gives a simple example of dilation:
suppose that a fair coin is tossed twice, where the second
toss may depend in an arbitrary way on the first. (In par-
ticular, the tosses might be guaranteed to be identical, or
guaranteed to be different.) ¥ represents the outcome of
the first toss and” represents the outcome of the second
toss, then before observing, the agent believes that the
probability thatY” is heads id /2, while after observingy,

the agent believes that the probability thatis heads can

be an arbitrary element ¢d, 1].

While, as this example and others provided by Walley
show, such dilation can be quite reasonable, it inter-
Qcts rather badly with the minimax criterion, leading to
%]omalous behavior that has been caliimde inconsis-
cy[Grinwald and Halpern 2004; Seidenfeld 2004]: the
nimax-optimal conditional decision rule before the value
of X is observed (which has the form “X = 0 then do
ay; iIf X = 1then doas; ...") may be different from the
minimax decision rule obtained after conditioning. For ex-
ample, the minimax-optimal conditional decision rule may
say “If X = 0 then doa,”, but the minimax-optimal deci-
sion rule conditional on observing = 0 may beas. (See
Example 2.1.) If uncertainty is modeled using a single dis-

We are often interested in making decisions, not just in dribution, such time inconsistency cannot arise.
static situation, but in a more dynamic situation, where the



To understand this phenomenon better, we model the decstation. Every night the forecaster makes a prediction about
sion problem as a game between the agent and a bookie.Wthether or not it will rain the next day in the area where you
turns out that there is more than one possible game that cdive. She does this by asserting that the probability of rain
be considered, depending on what information the bookiés p, wherep € {0,0.1,...,0.9,1}. How should we inter-
has. We focus on two (closely related) games here. In theret these probabilities? The usual interpretation is that, in
first game, the bookie chooses a distribution frBrbefore  the long run, on those days at which the weather forecaster
the agent moves. We show that the Nash equilibrium of thigredict probabilityp, it will rain approximately100p% of
game leads to a minimax decision rule. (Indeed, this can bthe time [Dawid 1982]. Thus, for example, among all days
viewed as a justification of using the minimax criterion). for which she predicted.1, the fraction of days with rain
However, in this game, conditioning on the information is was close t@.1. A weather forecaster with this property is
not always optimat. In the second game, the bookie gets calledcalibrated
to choose the distributioafter the value ofX is observed. I .

Up to now, calibration has been considered only when un-

Again, in this game, the Nash equilibrium leads to the use L . . A
of minimax, but now conditionings the right thing to do. certainty is characterized by a single distribution. We gen

eralize the notion of calibration to our setting, where un-
If P is a singleton, the two games coincide (since there iertainty is characterized by a set of distributions. We then
only one choice the bookie can make, and the agent knowshow that a rule for updating a set of probabilities is guar-
what it is). Not surprisingly, conditioning is the appropri- anteed to be calibrated if and only if it is an instanc& of

ate thing to do in this case. The moral of this analysis isconditioning. In combination with our earlier results, this
that, when uncertainty is characterized by a set of distribimplies that if calibration is considered essential, then an
utions, if the agent is making decision using the minimaxupdate rule may sometimes result in decisions that are not
criterion, then the right decision depends on the game beinminimax optimal.

played. Th? agent must consider if she is trying to protecRNe make no claim here that either the use of $&{sather
herself against an adversary who knows the valug ef = . - o .
than singletons), or the minimax criterion, or the calibra-

when choosing the distribution or one that does not knoV\{ion criterion, constitutes the single “best” method to deal
the value ofX = z.

with uncertainty. Still, it is worth pointing out that the use
In earlier work [Giinwald and Halpern 2004] (GH from of setsP is not as artificial as is often thought. Since it
now on), we essentially considered the first game, ananay be very hard for an agent to determine precise, nonar-
showed that, in this game, conditioning was not always théitrary boundaries of the s&, it is sometimes claimed that
right thing to do when using the minimax criterion. In- “soft” boundaries are more natural. It will be seen though
deed, we showed there are sPtand games for which the that, at least in some cases, such as the Monty Hall problem
minimax-optimal decision rule is to simply ignore the in- (Example 5.3 below), there is a unique, obvious choice of
formation. Our analysis of the first game lets us go beyondoundaries. Similarly, the use of the minimax criterion is
GH here intwo ways. First, we characterize exactly when itnot as pessimistic as is often thought. The minimax solu-
is minimax optimal to ignore information. Second, we pro- tion often coincides with the Bayes optimal solution under
vide a simple sufficient condition for when conditioning on some “maximum entropy” prioPr € P [Grunwald and
the information is minimax optimal. Dawid 2004], which is hot commonly associated with be-

Ignoring the information can be viewed as the result of con—Ing overly pessimistic. In fact, in the Monty Hall problem,

2 . i X . the minimax optimal decision rule coincides with the usu-
ditioning; not conditioning on the information, but condi- ! L .

o X . ally advocated solution, which is based on making further
tioning on the whole space. This leads to a natural question: . : .

o assumptions abo(R® that reduce it to a singleton.

suppose that when we obsemeve condition on the event
that X € C(z), whereC(x) is some set containing, but  The rest of this paper is organized as follows. In Section 2,
not necessarily equal thr}. Is this variant of condition- we define the basic framework. In Section 3, we formally
ing, an approach we call-conditioning always minimax  define the two games described above and show that the
optimal in the first game? That is, is it always optimal to minimax-optimal decision rule gives a Nash equilibrium.
condition onsomethin@ As we show by considering the In Section 4, we characterize the minimax-optimal deci-
well-known Monty Hall Problem (Example 5.3), this is not sion rule for the first game, in which the bookie chooses a
the case in general. NevertheleSs;onditioning has some distribution beforeX is observed. In Section 5, we discuss
interesting properties: it is closely related to the concept of-conditioning and calibration.
calibration [Dawid 1982]. Calibration is usually defined in

terms of empirical data. To explain what it means, consideh, NOTATION AND DEFINITIONS
an agent that is a weather forecaster on your local television

Lin some other senses of the words “conditioning” and “opti- Preliminaries: For ease of exposition, we assume

mal,” conditioning on the informatiois always optimal. Thisis throughout this paper that we are interested in two ran-
discussed further in Section 6. dom variables X andY’, which can take values in spaces



X and)), respectively. P always denotes a set of distri- to P and A if

butions onX x Y; that is,? C A(X x Y), where, as

usual,A(S) denotes the set of probability distributions on  maxp,cp Ep,[Lso] = minsep(x, 4)maxprep Lpr[Ls).

S. For ease of exposition, we assume tRas a closed set;

this is a standard assumption in the literature that seemghat is, ¢ is a priori minimax optimal ifs° gives the best
quite natural in our applications, and makes the statemeRyorst-case expected loss with respect to all the distributions
of our results simpler. IPr € A(X x V), letPry and  in Pr. We can write max here instead of sup because of our
Pry denote the marginals &fr on X and), respectively.  assumption thaP is closed. This ensures that there is some
LetPy = {Pry : Pr € P}. If E C X x Y, thenlet  pr c P for which Ep,[Lso] takes on its maximum value.
P|E={Pr| E:PreP,Pr(F) > 0}. HerePr | E o L o ] )
(denoted by some authors Bs(- | E)) is the distribution A decision ruled is & posteriori minimax optimalith
on X x ) obtained by conditioning of. respect toP and A if, for all z € X such thatPr(X =

x) > 0 for somePr € P,

Loss Functions: As in GH, we are interested in an agent

who must choose some action from a getvhere the loss maxprep|x—s Fpr[Lsr] = 1)

of the action depends only on the value of random variable Minsep (¥, 4)MAXpPrep| x =z Fp: [Ls]-

Y. For ease of exposition, we assume in this paper that L i .

X, Y, and A are always finite. We assume that with each 10 get the a postenonlm!nlmax-optlmal dee|5|on rule we

actiona € A and valuey € ) is associated some loss to d© the obvious thing: ifv is observed, we simply condi-

the agent. (The losses can be negative, which amounts tolie" €ach probability distributio®r € 7 on X' = z, and

gain.) LetL : Y x A — IR be the loss functioA. choose the ac_tlon that gives the least expected Ioes _(m the
worst case) with respect 8 | X = z. Since all distri-

Such loss functions arise quite naturally. For example, irbutionsPr mentioned in (1) satisfPr(X = z) = 1, the

a medical setting, we can taBeto consist of the possible minimum overs < D(X,.A) does not depend on the val-

diseases and' to consist of symptoms. The sdtconsists  ues ofé(2’) for =’ # ; the minimum is effectively over

of possible courses of treatment that a doctor can choos@andomized actions rather than decision rules.

The doctor’s loss function depends only on the patient’s _ _
disease and the course of treatment, not on the sympton/aS the following example, taken from GH, shows, a pri-

But, in general, the doctor's choice of treatment depeneri minimax-optimal decision rules are in general different
on the symptoms observed from a posteriori minimax-optimal decision rules.

E le2.1: S thatt = )Y = A = {0,1 d
Decision Rules: Suppose that the agent observes th%ximfpi c A(ipzoije) . PI‘y(Yy: 1)A: 2/{3}’ }I'r?:s

\r:alu_e of s variadkg;eX ;hat takes ofn values i :\fter | P consists of all distributions whose marginal Bngives
aving observedk, she must perform an act, the qual-y _ probability 2/3. We can think of the actions in

ity of which is judged eecording to loss functidn The A as predictions of the value &f. The loss function is
agent must choosedecision rulehat determines what she 0 if the right value is predicted and 1 otherwise; that is,

does as a function of her observations. We allow decisiorL(Z. j) = |i — j|. This is the so-called/1 or classification

:_ulesate )t;e rarfoj'ﬁﬁdi 'Ir']hus, a dedelstl(_)g :_ule IS a funCToss. Itis easy to see that the optimal a priori decision rule is
lon b d_) (h ) tha C ogses a distn ]L;mnflveg 4C" to choose 1 no matter what is observed (which has expected
tions based on the agent's observations. Déx, A) be loss 1/3). Intuitively, observing the value ok tells us

the set of all decision rules. A special case is a determinisﬁothing about the value df, so the best decision is to pre-
tic decision rule, which assigns probability 1 to a particulardict according to the prior ;’)robability af — 1. However

acgon._lf(jsl/s‘ dfeterr;umsht_:, wehsometlm_es aguse Soktﬁ'onall probabilities onY” = 1 are compatible with observing
and writed(z) for the action that is assigned probability ,ipor v — 0or X = 1. Thatis, both(® | X = 0)y

1 by the distributiony(z). Given a decision rulé and a and(P | X = 1), consist of all distributions op. Thus,

loss functionL, let L be the random variable o x Y the minimax optimal a posteriori decision rule randomizes
such thatls(z,y) = > ,c.4 0(x)(a)L{y, a). Heres(x)(a) - ith equal probability) betweek — 0 andY — 1.
stands for the probability of performing actieraccording

to the distribution(x) over actions that is adopted when ~ Thus, if you make decisions according to the minimax rule,

is observed. Note that in the special case thista deter- then before making an observation, you will predict= 1.

ministic decision ruleLs(z, y) = L(y, 6(x)). Howeverno matter what observation you makster mak-

ing the observation, you will randomize (with equal prob-

ability) between predicting” = 0 andY = 1. Moreover,
2\We could equally well use utilities, which can be viewed as you know even before making the observation that your

a positive measure of gain. Losses seem to be somewhat mofR¥Pinion as to the best decision rule will change in this way.
standard in this literature.

A decision ruled? is a priori minimax optimawith respect



3 TWO GAME-THEORETIC strategies. If, as in our cas€$i, S2) is a Nash equilib-

INTERPRETATIONS OF P rium in a zero-sum game, it is also known as a “saddle
point”; S; must be a minimax strategy, arf} must be

What does it mean that an agent's uncertainty is characte® Mmaximin strategy [Gmwald and Dawid 2004]. As the |
ized by a setP of probability distributions? How should following results show, an agent must be using an a pri-
tion here: namely, an adversary gets to choose a distriofh®7-game, and an a posteriori minimax-optimal decision
tion from the setP.® But this does not completely specify rl_Jle Is a Nash e_q_UIIIl_)rlum of t_h@-X—ggm_e. This can pe _
the game. We must also specifinenthe adversary makes viewed as a justification for using (a priori and a posteriori)
the choice. We consider two times that the adversary cafinimax-optimal decision rules.
choose: the first is before the agents observes the value of _
X, and the second is after. We formalize this as two differ-Theorem 3.1 Fix X', J, A, L, andP € A(X x ).
ent games, where we take the “adversary” to be a bookie.
(a) TheP-game has a Nash equilibriuir™, §*), where

We call the first game th@-game. It is defined as follows: * is a distribution overP with finite sUpport.

1. The bookie chooses a distributiém € P. (b) If (=*,6*) is a Nash equilibrium of th@-game such
2. The valuer of X is chosen (by nature) according to that 7 has finite support, then
Pry and observed by both bookie and agent.

i (i) for every distributionPr’ € P in the support of
3. The agent chooses an actior A.

7*, we haveEp, [L(;*] = maxp;ep Fpr [L(;*];

4. The valugy ,of Yis c.hosen according IBI.“ |'X = x.. (i) if Pr* — Zprep,n*(pr)>o 7 (Pr) Pr (e, Pr* |
5. The agent's loss id.(y,a); the bookie's loss is is the convex combination of the distributions in
—L(y,a). the support ofr*, weighted by their probability

_ . . according tor*), then
This is a zero-sum game; the agent’s loss is the bookie’s g )

gain. In this game, the agent’s strategy is a decision rule, Epy«[Ls<] = mingepx, a)Epe[Ls]

that is, a function that gives a distribution over actions for = maXprep MiNgep(x,4) Epr[Ls]
each observed value df. The bookie’s strategy is a dis- = mingep(x,4ymaxprep Ep,[Ls]
tribution over distributions irP. = maxprep Ep.[Ls-].

We now consider a second interpretationf character-

ized by a different game that gives the bookie more powerOnce nature has chosen a value #6r1in the P-X-game,
Rather than choosing the distribution before observing th&ve can regard steps 2-5 of ti#e X-game as a game be-
value of X, the bookie gets to choose the distribution aftertween the bookie and the agent, where the bookie’s strat-

observing the value. We call this the X -game. egy is characterized by a distribution’h| X = x and the
agent’s is characterized by a distribution over actions. We

1. The valuer of X is chosen (by nature) in such a way call this theP-z-game.

thatPr(X = z) > 0 for somePr € P, and observed
by both the bookie and the agent.

2. The bookie chooses a distributibr € P such that (@) TheP-z-game has a Nash equilibriurr*, 5* (z)),

— 4
Pr(X = z) > 0. ) wherer* is a distribution overP | X = z with finite
3. The agent chooses an actiog A. support.
4. The valugy of Y is chosen according ®r | X = x.

5. The agent's loss iS.(y,a); the bookie's loss is (b) If (=*,0*(x)) is a Nash equilibrium of th@-z-game
—L(y, a). ’ such thatr* has finite support, then

Theorem 3.2Fix X, Y, A, L, P C A(X x Y).

(i) for all Pr’ in the support of7*, we have
Ep,/ [Lts*] = maXPrEP\X:mEPr[Lﬁ*];

(il) if Pr* =3 p cp e (pry>o 7 (Pr) Pr, then

Recall that a pair of strategi€$, S>) is a Nash equilib-
rium if neither party can do better by unilaterally changing

3This interpretation remains meaningful in several practical
situations where there is no explicit adversary; see the final para-
grafh of this section. Epy«[Lg-]
If we were to consider conditional probability measures, for max _ min Eo. L
whichPr(Y = y | X = z) is defined even iPr(X = z) = mian Preplx_fnax 6€D(Xr4)EPr[[L 5]}
0, then we could drop the restriction thatis chosen such that SED(X,A) T EEPreP| X=a ZPr 20
Pr(X = x) > 0 for somePr € P. = maxXprep|x=aEpi[Ls].

mingep(x,4) Eprs [Ls)



Since all distributions Pr in the expression pected loss (in the worst case) with respecPt;mo matter
minsep(x, 4)Maxprep|x—=o Lpr[Ls] in part (b)(ii) are what valueX has. In this section we first give a sufficient
inP | X =z, as in (1), the minimum is effectively over condition for conditioning to be optimal, and then charac-
randomized actions rather than decision rules. terize when ignoring the observed value is optimal.

Theorems 3.1 and 3.2 can be viewed as saying that there fSefinition 4.1 : Let (P) = {Pr € AX x D)

no time inconsistency; rather, we must just be carefulaboup,. ., ¢ pPyand®Pr | X = 2) € (P | X = 2)
what game is being played. If the-game is being played, for all » € X such thatP | X = z is nonempty. i

the right strategy is the a priori minimax-optimal strategy,

both before and after the value &fis observed; similarly, Thus, (P) consists of all distribution®r whose marginal
if the P-X-game is being played, the right strategy is the aon X’ is the marginal ot of some distribution ir? and
posteriori minimax-optimal strategy, both before and afterwhose conditional on observing = =z is the conditional
the value ofX is observed. Indeed, thinking in terms of the of some distribution irP, for all z € X. ClearlyP C (P),
games explains the apparent time inconsistency. While ibut the converse is not necessarily true. When it is true,
is true that the agent gains more information by observingonditioning is optimal.

X = z, intheP-X game, so does the bookie. This infor- N _ o
mation may be of more use to the bookie than the agent, s&;roposition 4.2: If P = (P), then there exists an a priori

) _ o then every a priori minimax-optimal rule is also a posteri-
Of course, in most practical situations, agents (robots, Stasri minimax optimal.

tisticians,...) are not really confronted with a bookie who

tries to make them suffer. Rather, the agents may have nds we saw in Example 2.1, the minimax-optimal a pri-

idea at all what distribution holds, except that it is in someori decision rule is not always the same as the minimax-

setP. Because they have no idea at all, they decide to presptimal a posteriori decision rule. In fact, the minimax-

pare themselves for the worst-case and play the minimagptimal a priori decision rule ignores the information ob-

strategy. The fact that such a minimax strategy can be inserved. Formally, a rulé ignores informationf 6(z) =

terpreted in terms of a Nash equilibrium of a game helps tdj(z') for all z, 2" € X. If § ignores information, definé)

understand differences between different forms of minimaxo be the random variable g@such thatl}(y) = Ls(x, y)

(such as a priori and a posteriori minimax). From this pointfor some choice of. This is well defined, sincé;(x, y) =

of view, it seems strange to have a bookie choose betweeb;(2’, y) for all z, 2’ € X.

different distributions irfP according to some distribution

7*. However, if P is convex, we can replace the distribu- Theorem 4.3: Fix X, ¥, L, A, andP C A(X x )).

tion 7* on P by a single distribution irP, which consists  If, for all Pry € Py, P contains a distributiorPr’ such

of the convex combination of the distributions in the sup-that X and Y are independent undePr’, and Pr), =

port of 7*; this is just the distributio®r* of Theorems 3.1 Pry, then there is an a priori minimax-optimal decision

and 3.2. Thus, Theorems 3.1 and 3.2 hold with the bookigule that ignores information. Under these conditions,

restricted to a deterministic strategy. if 0 is an a priori minimax-optimal decision rule that
ignores information, ther essentially optimizes with re-
spect to the marginal olt’; that is, maxp,cp Ep.[Ls] =

4 CHARACTERIZING A PRIORI maxpy,cpy, Epry, [Lj].

MINIMAX DECISION RULES GH focused on the case th@a$ is a singleton (i.e., the mar-

o ) o ginal probability onY” is the same for all distributions iR)
To get the a posteriori minimax-optimal decision rule We gnq for allz, Py C (P | X = z)y. Itis immediate from

o_Io the obvious thi_ng: _ifz: @s o_bserved, we simply condi- Theorem 4.3 that ignoring information is a priori minimax
tion each probability distributiof’r € P on X = z, and optimal in this case.

choose the action that gives the least expected loss (in the

worst case) with respect® | X = . 5 C-CONDITIONING & CALIBRATION

We might expect that the a priori minimax-optimal deci-

sion rule should do the same thlng That is, it should b%onditioning is the most common way of updating uncer-
the decision rule that says,ifis observed, then we choose tainty. In this section, we examine updating by condition-
the action that again gives the best result (in the worst casghg. The following definition makes precise the idea that a
with respect taP | X = z. However, as shown in GH, this decision rule is based on Conditioning.

intuition is incorrect in general. There are times, for exam-

ple, that the best thing to do is to ignore the observed valu®efinition 5.1: A probability update ruleis a function

of X, and just choose the action that gives the least exiI : 28(X*Y) » x¥ — 24(XxY) mapping a seP of dis-



tributions and an observationto a seflI(P, «) of distrib- ~ whether Monty opens door 2 or door 3. Since the game
utions; intuitively,IT(P, z) is the result of updating with is an instance of th@-game, this means that the decision
the observation:. Il rule §* given byd*(Gs) = 3; §*(Gs3) = 2 is an a priori
o N minimax rule.¢* is notbased or€-conditioning: there ex-
Definition 5.2: Let C = {A),..., A} be a partition of st only two partitions oft. The corresponding two update
X thatis, &y # Pfori = 1,... .k X U... X = X7 pyles based od-conditioning amount to, respectively, (a)
andX; N &; = Ofori # j. If v € &, letC(x) be the  jgnoring X and choosing each door with probability 1/3, or
cell containingz; i.e., the unique element; < C such () conditioning onX in the standard way and thus choos-
thatz € &;. TheC-conditioningprobability update rule  jng each of the two remaining doors with probability 1/2.
is the functionll defined by takindI(P,z) = P | X €  Neither strategy (a) nor (b) is minimax optimal. Thus, the

C(z). A decision rules is based onC-conditioningif it 5 priori minimax decision rule in th®-game is not always
amounts to first updating the setto P | X € C(z), and  pased org-conditioning i

then taking the minimax-optimal distribution over actions
relatiyg toP _| X € C(x). Fo_rmaIIy, d is based orC-  While the example shows tha-conditioning is not al-
conditioning if, for allz € & with Pr(X = z) > 0for  ways optimal in the minimax sense, it can be justified by

somePr € P, other means; as we now sho@sconditioning is closely
max  Ep[Ls] = min max  Ep,[Ls]. .relate'd tocalipration. Indeed, a probgbility update rule

PreP|XeC(x) 6€D(X,A) PreP|X eC() is calibrated if and only if for eactP, it amounts toC-

1 conditioning for some partitio€ of X.  Calibration is

usually defined in terms of empirical data. To explain
All examples of a priori minimax decision rules that we what it means, consider a weather forecaster, who pre-
have seen so far are based @ronditioning: Standard dicts the probability of rain every day. How should we
conditioning is based og@-conditioning, where we take interpret the probabilities that she announces? The usual
C to consist of all singletons; ignoring information is also interpretation—which coincides with most people’s intu-
based orC-conditioning, where&® = {X’}. This suggests itive understanding—is that, in the long run, on those days
that, perhaps, the a priori minimax decision rule must alsat which the weather forecaster predict probabyitit will
be based od-conditioning. The following well-known ex-  rain approximately00p% of the time [Dawid 1982]. Thus,
ample shows that this conjecture is false. for example, among all days for which she predicted

the fraction of days with rain was close ol (given the
Example 5.3: [The Monty Hall Problem] [,Mosteller weather forecaster’s precision, we should require it to be
1965; vos Savant 1990]: Suppose that you're on a gaMgenyeen, say).05 and0.15). A weather forecaster with
show and given a choice of three doors. Behind one is g,;g property is said to bealibrated If a weather fore-

car; behind the others are goats. You pick door 1. Beforgaqter s calibrated, and you make bets which, based on her
opening door 1, Monty Hall, the host (who knows what is probabilistic predictions, seem favorable, then in the long

behind each door) opens one of the other two doors, say,, you cannot lose money, at least if you make a bet on
door 3, which has a goat. He then asks you if you still want, 5, day, and all your bets get accepted.
to take what's behind door 1, or to take what’s behind door '

2 instead. Should you switch? You may assume that inilf @ weather forecaster is not calibrated, there exist bets
tially, the car was equally likely to be behind each of thewhich seem favorable but which result in a loss. Note that
doors. calibration is aminimal requirement: a weather forecaster
who predicts).3 for every single day of the year may be
] . calibrated if it indeed rains on 30% of the days, but still
follows: Y = {1, 2, 3} represents the door which the car is ot yery informative. Thus, given two calibrated forecast-

behind. ¥ = {Gs, G}, where, forj € {2,3}, G coIre- o \ye prefer the one that makes “sharper” predictions, in
sponds to the quizmaster showing that there is a goat behindsanse to be defined below.

doorj. A = {1,2,3}, where actioru € A corresponds to
the door you finally choose, after Monty has opened dootn our case, we do not test probabilistic predictions with re-
2 or 3. The loss function is once again the classificatiorSpect to empirical relative frequencies, but with respect to
loss,L(i, j) = 1if i # j, thatis, if you choose a door with other sets of “potentially underlying” probability measures.
a goat behind it, and.(i, j) = 0if i = j, thatis, if you We are not the first to do this; see, for example, [Vovk,
choose a door with a caP is the set of all distributioner ~ Gammerman, and Shafer 2005]. The definition of calibra-
onX x Y satisfying tion extends naturally to this situation. To see how, we first
1 define calibration with respect to a single underlying prob-
Pry(Y =1) =Pry(Y =2) =Pry(Y =3) = 3 ability measure. LeP = {Pr} for a single distributiorPr
Pr(Y =2 X =Gy) =Pr(Y =3[ X = G3) =0. and letlI be a probability update rule (Definition 5.1) such
It is well known, and easy to show, that the minimax- thatII({Pr}, =) contains just a single distribution for each
optimal strategy is always to switch doors, no matterz € X (for example,Il could be ordinary conditioning).

We formalize this well-known problem as7-game, as

w



We define calibratedrelative toP if II is calibrated relative t@ and
there is no update ruld’ that is calibrated and strictly nar-
R={R:R=(II(P,z))yforsomexz € X}. (2)  rower thanll relative toP. II is sharply calibratedf II is
o ] S sharply calibrated relative to aft C A(X x V). 11
R is just the range ofl, restricted to distributions of’,
the random variable that we are interested in predictingiye now want to prove that every sharply calibrated update

its elements are the distributions dhthatPr is mapped  ryje must involve conditioning. To make this precise, we
to, upon observing different values of Note thatR  peed the following definition.

is defined relative to a probability update rudleand a

setP of distributions. By our assumptions dh andlIl,  pefinition 5.7: IT is ageneralized conditioning update rule
R = {{R:},{R>},...} isasetof singleton sets, each con- i for all P C A(X x V), there exists a partitiod (that

taining one distribution op. For{R} € R, let Xz bethe  may depend o) such that for all: € X, TI(P,z) = P |
set ofz € X' that mapPrto R, i.e. C(z). 1

Xp={z e & : (I{Pr},z))y = {R}}. Note that in a generalized conditioning rule, we condition
on a partition ofX’, but the partition may depend on the
setP. For example, for som@, the rule may ignore the
value ofz, whereas for otheP, it may amount to ordinary
(Pr| X € Xp)y = R. conditioning. It easily follows from Proposition 4.2 that
every generalized conditioning rule is calibrated. The next
Thus, conditioned on the event that the agent predicts result shows that evesharplycalibrated update rule must
using distributionR, the distribution oft” must indeed be Pe a generalized conditioning rule.
equal toR.

Note that the set&Xr } partitionX'. I1 is calibrated relative
to P if for all R with {R} € R,

Theorem 5.8: There exists an update rule that is sharply

Itis straightforward to generalize this notion to SB®f  cajibrated. Moreover, every sharply calibrated update rule
probability distributions that are not singletons, and updates 5 generalized conditioning update rule.

ruleslI that map to sets of probabilities. Definition (2) re-

mains unchanged. F& < R, we now taketr to be the  Theorem 5.8 says that an agent who wants to be sharply

setofz € X' that mapP to R, that s, calibrated should update her probabilities using condition-
ing (although what she conditions on may depend on the

Ar ={zeX : (I(P,z))y =R} ®) set of probabilities that she considers possible).
Once again, the sefstz } partition X Given the game-theoretic interpretation of Section 3, we
o _ _ . _ might wonder if there is a variant of the games considered
Definition 5.4: 1I is calibrated relative to? if for all  earlier for which the equilibrium involves generalized con-
PrePandR € R, Pry(- | X € Xg) € R. ditioning. As we show in the full paper, there is (although
IT is calibratedif it is calibrated relative to all sets of dis- the game is perhaps not as natural as the ones considered in
tributions? C A(X x V). 1l Section 3). Roughly speaking, we consider a three-player

N N game, with a bookie and two agents. The bookie again
Proposition 5.5: For all partitions C of X and all P, C- chooses a probability distribution from a $2tthe bookie
conditioning is calibrated relative t@. also chooses the loss function from some set. The first

agent observe® andx and update$’ to P,. The sec-

Calibration as defined here is a very weak notion. For exynq agent learn®, andb (but notP andz) and makes the

ample, the update rulll(P,z) = A(X x ) that maps  ninimax-optimal decision. As we show, in Nash equilib-

each compinatiqn of andP to the set_o?c _aII distri_butions rium, the first agent's updated set of probabiliti®s, must
ont x Y is calibrated under our definition. This update he the resylt of-conditioning, where, as in Theorem 5.8,
rule Ioses. whatever information may havgl been contameg may depend ofP.
in P, and is therefore not very useful. Intuitively, the fewer
distributions that there are iR, the more informatiorP
contains. Thus, we restrict ourselves to setthat are as 6 DISCUSSION
small as possible, while still being calibrated.

We have examined how to update uncertainty represented
Definition 5.6: Update rulell’ is wider than update rule by a set of probability distributions, where we motivate up-
II relative toP if, for all z € X, II(P,z) C II'(P, z). dating rules in terms of the minimax criterion. Our key
IT’ is strictly widerrelative toP if the inclusion is strict for  innovation has been to show how different approaches can
some some:. II is (strictly) narrowerthanIl’, relative to  be understood in terms of a game between a bookie and
P if IT is (strictly) wider tharI1 relative toP. ITissharply ~ an agent, where the bookie picks a distribution from the



set and the agent chooses an action after making an obsexxiomatic characterization of conditioning sets of probabil-
vation. Different approaches to updating arise dependingties, based on axioms given by van Fraassen [1987, 1985]
on whether the bookie’s choice is made before or after théhat characterizing conditioning in the case that uncertainty
observation. We believe that this game-theoretic approacts characterized by a single probability measure. As Grove
should prove useful more generally in understanding differand Halpern point out, their axioms are not as compelling
ent approaches to updating. We hope to explore this furthesis those of van Fraassen. It would be interesting to know

in future work.

We end this paper by giving an overview of the senses in
which conditioning is optimal and the senses in which it is

whether a similar axiomatization can be used to character-
ize the update notions that we have considered here.
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