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Abstract

Awareness has been shown to be a useful addition to standard epistemic logic. However, stan-
dard propositional logics for knowledge and awareness cannot express the fact that an agent knows
that there are facts of which he is unaware without there being an explicit fact that the agent knows
he is unaware of. We extend Fagin and Halpern’s Logic of General Awareness to a logic that allows
quantification over variables, so that there is a formula in the language that says “an agent explicitly
knows that there exists a fact of which he is unaware”. Moreover, that formula can be true without
the agent explicitly knowing that he is unaware of any particular formula. We provide a sound and
complete axiomatization of the logic. Finally, we show that the validity problem for the logic is
recursively enumerable, but not decidable.

Keywords: Modal Logic, Awareness, Axiomatization, Decidability, Multi-agent System, Interac-
tive Epistemology.
Journal of Economic Literature Classification Numbers: D80, D83.
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1 Introduction

As is well known, standard models of epistemic logic suffer from the logical omniscience problem (first
observed and named by Hintikka [1962]): agents know all tautologies and all the logical consequences
of their knowledge. This seems inappropriate for resource-bounded agents and agents who are unaware
of various concepts (and thus do not know logical tautologies involving those concepts). Many ap-
proaches to avoiding this problem have been suggested. One of the best-known is due to Fagin and
Halpern [1988] (FH from now on). It involves distinguishing explicit knowledge from implicit knowl-
edge, using a syntactic awareness operator. Roughly speaking, implicit knowledge is the standard (S5)
notion of knowledge; explicit knowledge amounts to implicit knowledge and awareness.

Since this approach was first introduced by FH, there has been a stream of papers on issues related
to awareness in the economics literature. For example, Dekel et al. [1998] prove an impossibility result,
showing that in a standard state-space model, any unawareness operator (mapping sets to sets) satisfy-
ing some intuitive axioms must be trivial. (This impossibility result does not apply to the FH syntactic
awareness operator.) Modica and Rusticchini [1994, 1999] define awareness in terms of knowledge: an
agent is aware of p if he either knows p or knows that he does not know p. These models focused on
the single-agent case. Heifetz et al. [2006] provided a multi-agent set-theoretic model for unawareness.
A key feature of their approach (also present in the work of Modica and Rustichini [1999]) is that with
each world or state is associated a (propositional) language. Intuitively, this is the language of concepts
defined at that world. Heifetz et al. [2007] and Halpern and Rêgo [2008] independently gave axiom-
atizations of Heifetz al.’s [2006] model of interactive unawareness. Li [2006a, 2006b] also provides a
model for unawareness. In the language of [Halpern 2001], all of these models are special cases of the
original awareness model where awareness is generated by primitive propositions, that is, an agent is
aware of a formula iff the agent is aware of all primitive propositions that appear in the formula. If
awareness is generated by primitive propositions, then it is impossible for an agent to (explicitly) know
that he is unaware of a specific fact; since if the agent (explicitly) knows that he is unaware of ϕ, he
must be aware that he is unaware of ϕ, and if awareness is generated by primitive propositions, then it
follows that the agent is aware of all primitive propositions in ϕ. On the other hand, if the agent knows
that he is unaware of ϕ, then he must indeed be unaware of ϕ, and if awareness is generated by primitive
propositions, then it follows that there exists at least one primitive proposition appearing in ϕ that the
agent is not aware of, a contradiction.

Nevertheless, knowledge of unawareness comes up often in real-life situations. For example, when
a primary physician sends a patient to an expert on oncology, he knows that an oncologist is aware
of things that could help the patient’s treatment of which he is not aware. Moreover, the physician is
unlikely to know which specific thing he is unaware of that would improve the patient’s condition (if
he knew which one it was, he would not be unaware of it!). Similarly, when an investor decides to
let his money be managed by an investment fund company, he knows the company is aware of more
issues involving the financial market than he is (and is thus likely to get better results with his money),
but again, the investor is unlikely to be aware of the specific relevant issues. In strategic situations,
there might be one agent who might be aware that there are moves that another agent (or even she
herself) might be able to make, although she is not aware of what they are. For example, in the war
setting, one side might believe that the other side may have developed some new technology, without
understanding exactly what that technology might be, and thus might be aware that the other might have
moves available to them without being aware of what they are. This, in turn, may encourage peace
overtures. To take another example, an agent might delay making a decision because she considers it
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possible that she might learn about more possible moves, even if she is not aware of what these moves
are. If we interpret “lack of awareness” as “unable to compute” (cf. [Fagin and Halpern 1988]), then
awareness of unawareness becomes even more significant. Consider a chess game. Although all players
understand in principle all the moves that can be made, they are certainly not aware of all consequences
of all moves. A more accurate representation of chess would model this computational unawareness
explicitly.

To model knowledge of unawareness, we extend the syntax of the logic of general awareness con-
sidered by FH to allow for quantification over variables. Thus, we allow formulas such asXi(∃x¬Aix),
which says that agent i (explicitly) knows that there exists a formula of which he is not aware. The idea
of adding propositional quantification to modal logic is well known in the literature (see, for example,
[Bull 1969; Engelhardt, Meyden, and Moses 1998; Fine 1970; Kaplan 1970; Kripke 1959]). However,
as we explain in Section 3, because Ai is a syntactic operator, we are forced to give somewhat non-
standard semantics to the existential operator, taking the quantification to be over syntactic formulas.
This quantification is critical to our approach. While quantification seems clearly necessary to deal
with knowledge of unawareness, it is not clear how to deal with knowledge of unawareness using more
standard quantification. Despite the nonstandard quantification, we are able to provide a sound and
complete axiomatization of the resulting logic, using standard axioms from the literature to capture the
quantification operator. Using the logic, we can easily characterize the knowledge of the relevant agents
in all the examples we consider.

Recently, Grant and Quiggin [2006] also proposed a logic to model “the notion that individuals may
be aware that there might be unconsidered propositions which they might subsequently discover, or
which might be known to others”. To do this, they use two modal operators, c and a; they interpret aϕ
as “the agent is aware of ϕ” and cϕ as “the agent considers ϕ”; in our language cϕ can be interpreted
as the formula (Xiϕ ∨Xi¬ϕ) ∨Xi¬(Xiϕ ∨Xi¬ϕ). Thus, if an agent considers a formula ϕ he must
be aware of it. They have existential quantification over propositions, where the existential quantifier
ranges over formulas that do not mention quantification, just as we do here. They prove that while
an agent cannot consider that there might be some unconsidered propositions, agents may be aware
there might be some unconsidered propositions. As they point out, their notion of awareness is tied
to a hierarchy of state spaces, while Example 3.1 shows that in our logic we can have awareness of
unawareness even in a state space with a single state. On the other hand, their logic already incorporates
notions of time and probability.

The rest of the paper is organized as follows. In Section 2, we review the standard semantics for
knowledge and awareness. In Section 3, we introduce our logic for reasoning about knowledge of
unawareness. In Section 4 we axiomatize the logic, and in Section 5, we consider the complexity of the
decision problem for the logic. We conclude in Section 6.

2 The FH model

We briefly review the FH Logic of General Awareness here, before generalizing it to allow quantification
over propositional variables. The syntax of the logic is as follows: given a set {1, . . . , n} of agents,
formulas are formed by starting with a set Φ = {p, q, . . .} of primitive propositions, and then closing
off under conjunction (∧), negation (¬), and the modal operators Ki, Ai,Xi, i = 1, . . . , n. Call the
resulting language LK,X,A

n (Φ). As usual, we define ϕ ∨ ψ and ϕ⇒ ψ as abbreviations of ¬(¬ϕ ∧ ¬ψ)
and ¬ϕ ∨ ψ, respectively. The intended interpretation of Aiϕ is “i is aware of ϕ”. The power of this
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approach comes from the flexibility of the notion of awareness. For example, “agent i is aware of ϕ”
may be interpreted as “agent i is familiar with all primitive propositions in ϕ” or as “agent i can compute
the truth value of ϕ in time t”.

Having awareness in the language allows us to distinguish two notions of knowledge: implicit
knowledge and explicit knowledge. Implicit knowledge, denoted by Ki, is defined as truth in all states
that the agent considers possible, as usual. Explicit knowledge, denoted by Xi, is defined as the con-
junction of implicit knowledge and awareness.

We give semantics to formulas inLK,X,A
n (Φ) in awareness structures. A tupleM = (S,π,K1, ...,Kn,A1, . . . ,An)

is an awareness structure for n agents (over Φ) if S is a set of states, π : S × Φ → {true, false} is an
interpretation that determines which primitive propositions are true at each state, Ki is a binary relation
on S for each agent i = 1, . . . , n, and Ai is a function associating a set of formulas with each state in S,
for i = 1, ..., n. Intuitively, if (s, t) ∈ Ki, then agent i considers state t possible at state s, while Ai(s)
is the set of formulas that agent i is aware of at state s. The set of formulas the agent is aware of can be
arbitrary. Depending on the interpretation of awareness one has in mind, certain restrictions on Ai may
apply. (We discuss some interesting restrictions in the next section.)

Let Mn(Φ) denote the class of all awareness structures for n agents over Φ, with no restrictions
on the Ki relations and on the functions Ai. We use the superscripts r, e, and t to indicate that the Ki

relations are restricted to being reflexive, Euclidean,1 and transitive, respectively. Thus, for example,
Mrt

n (Φ) is the class of all reflexive and transitive awareness structures for n agents.
We write (M,s) |= ϕ if ϕ is true at state s in the awareness structure M . The truth relation is

defined inductively as follows:

(M,s) |= p, for p ∈ Φ, if π(s, p) = true

(M,s) |= ¬ϕ if (M,s) ̸|= ϕ

(M,s) |= ϕ ∧ ψ if (M,s) |= ϕ and (M,s) |= ψ

(M,s) |= Kiϕ if (M, t) |= ϕ for all t such that (s, t) ∈ Ki

(M,s) |= Aiϕ if ϕ ∈ Ai(s)

(M,s) |= Xiϕ if (M,s) |= Aiϕ and (M,s) |= Kiϕ.

A formula ϕ is said to be valid in awareness structure M , written M |= ϕ, if (M,s) |= ϕ for all
s ∈ S. A formula is valid in a class N of awareness structures, written N |= ϕ, if it is valid for all
awareness structures in N , that is, if N |= ϕ for all N ∈ N .

Consider the following set of well-known axioms and inference rules:

Prop. All substitution instances of valid formulas of propositional logic.

K. (Kiϕ ∧Ki(ϕ⇒ ψ)) ⇒ Kiψ.

T. Kiϕ⇒ ϕ.

4. Kiϕ⇒ KiKiϕ.

5. ¬Kiϕ⇒ Ki¬Kiϕ.
1Recall that a binary relation Ki is Euclidean if (s, t), (s, u) ∈ Ki implies that (t, u) ∈ Ki.
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A0. Xiϕ⇔ Kiϕ ∧Aiϕ.

MP. From ϕ and ϕ⇒ ψ infer ψ (modus ponens).

GenK . From ϕ infer Kiϕ.

It is well known that the axioms T, 4, and 5 correspond to the requirements that the Ki relations are
reflexive, transitive, and Euclidean, respectively. LetKn be the axiom system consisting of the axioms
Prop, K and rules MP, and GenK . The following result is well known (see, for example, [Fagin, Halpern,
Moses, and Vardi 1995] for proofs).

Theorem 2.1: Let C be a (possibly empty) subset of {T, 4, 5} and let C be the corresponding subset of
{r, t, e}. ThenKn ∪ {A0}∪ C is a sound and complete axiomatization of the language LK,X,A

n (Φ) with
respect toMC

n (Φ).

3 A logic for reasoning about knowledge of unawareness

To allow reasoning about knowledge of unawareness, we extend the language LK,X,A
n (Φ) by adding a

countable set of propositional variables X = {x, y, z, . . .} and allowing universal quantification over
these variables. Thus, if ϕ is a formula, then so is ∀xϕ. As usual, we take ∃xϕ to be an abbreviation for
¬∀x¬ϕ. Let L∀,K,X,A

n (Φ,X ) denote this extended language.
We assume that X is countably infinite for essentially the same reason that the set of variables is

always taken to be infinite in first-order logic. Without it, we seriously limit the expressive power of
the language. For example, a formula such as ∃x∃y(¬(x ⇔ y) ∧ A1x ∧ A1y) says that there are two
distinct formulas that agent 1 is aware of. We can similarly define formulas saying that there are k
distinct formulas that agent 1 is aware of. However, to do this we need k distinct primitive propositions.

Essentially as in first-order logic, we can define inductively what it means for a variable x to be free
in a formula ϕ. If ϕ does not contain the universal operator ∀, then every occurrence of x in ϕ is free;
an occurrence of x is free in ¬ϕ (or Kiϕ, Xiϕ, Aiϕ) iff the corresponding occurrence of x is free in
ϕ; an occurrence of x in ϕ1 ∧ ϕ2 is free iff the corresponding occurrence of x in ϕ1 or ϕ2 is free; and
an occurrence of x is free in ∀yϕ iff the corresponding occurrence of x is free in ϕ and x is different
from y. Intuitively, an occurrence of a variable is free in a formula if it is not bound by a quantifier. A
formula that contains no free variables is called a sentence.

Let S∀,K,X,A
n (Φ,X ) denote the set of sentences in L∀,K,X,A

n (Φ,X ). If ψ is a formula, let ϕ[x/ψ]
denote the formula that results by replacing all free occurrences of the variable x in ϕ by ψ. (If there is
no free occurrence of x in ϕ, then ϕ[x/ψ] = ϕ.) We extend this notion of substitution to sequences of
variables, writing ϕ[x1/ψ1, . . . , xn/ψn]. We say that ψ is substitutable for x in ϕ if, for all propositional
variables y, if an occurrence of y is free in ψ, then the corresponding occurrence of y is free in ϕ[x/ψ].

We want to give semantics to formulas in L∀,K,X,A
n (Φ,X ) in awareness structures (where now we

allow Ai(s) to be an arbitrary subset of S∀,K,X,A
n (Φ,X )). The standard approach for giving semantics

to propositional quantification ([Engelhardt, Meyden, and Moses 1998; Kripke 1959; Bull 1969; Ka-
plan 1970; Fine 1970]) uses semantic valuations, much like in first-order logic. A semantic valuation V
associates with each propositional variable and state a truth value, just as an interpretation π associates
with each primitive proposition and state a truth value. Then (M,s,V) |= x if V(s, x) = true and
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(M,s,V) |= ∀xϕ if (M,s,V ′) |= ϕ for all valuations V′ that agree with V at every state on all proposi-
tional variables other than x.2 We write V ∼x V ′ if V(s, y) = V ′(s, y) for all states s and all variables
y ̸= x.

Using semantic valuations does not work in the presence of awareness. If Ai(s) consists only of
sentences, then a formula such as ∀xAix is guaranteed to be false since, no matter what the valuation
is, x /∈ Ai(s). The valuation plays no role in determining the truth of a formulas of the form Aiψ. On
the other hand, if we allow Ai(s) to include any formula in the language, then (M,s,V) |= ∀xAi(x) iff
x ∈ Ai(s). But then it is easy to check that (M,s,V) |= ∃xAi(x) iff x ∈ Ai(s), which certainly does
not seem to capture our intuition.

We want to interpret ∀xAi(x) as saying “for all sentences ϕ ∈ S∀,K,X,A
n (Φ,X ), Ai(ϕ) holds”. For

technical reasons (which we explain shortly), we instead interpret it as “for all formulas ϕ ∈ LK,X,A
n (Φ),

Ai(ϕ) holds”. That is, we consider only sentences with no quantification. To achieve this, we use
syntactic valuations, rather than semantic valuations. A syntactic valuation is a function V : X →
LK,X,A
n (Φ), which assigns to each variable a sentence in LK,X,A

n (Φ).
We give semantics to formulas in L∀,K,X,A

n (Φ,X ) by induction on the total number of free and
bound variables, with a subinduction on the length of the formula. The definitions for the constructs
that already appear in LK,X,A

n (Φ) are the same. To deal with universal quantification, we just consider
all possible replacements of the quantified variable by a sentence in LK,X,A

n (Φ).

• If ϕ is a formula whose free variables are x1, . . . , xk, then (M,s,V) |= ϕ if (M,s,V) |=
ϕ[x1/V(x1), . . . , xk/V(xk)]

• (M,s,V) |= ∀xϕ if (M,s,V ′) |= ϕ for all syntactic valuations V′ ∼x V .3

Note that although ϕ[x1/V(x1), . . . ,V(xk)]may be a longer formula than ϕ, it involves fewer variables,
since V(x1), . . . ,V(xk) do not mention variables. This is why it is important that we quantify only over
sentences in LK,X,A

n (Φ); if we were to quantify over all sentences in S∀,K,X,A
n (Φ,X ), then the semantics

would not be well defined. For example, to determine the truth of ∀xx, we would have to determine the
truth of x[x/∀xx] = ∀xx. This circularity would make |= undefined. In any case, given our restrictions,
it is easy to show that |= is well defined. Since the truth of a sentence is independent of a valuation, for
a sentence ϕ, we write (M,s) |= ϕ rather than (M,s, V ) |= ϕ.

Let C be a subset of {r, t, e}. Define MC
n (Φ,X ) to be the set of all awareness structures with no

restrictions on awareness (where now, awareness includes sentences involving variables in X ) and such
that the possibility correspondence is reflexive, transitive and Euclidean, respectively.

Under our semantics, the formulaKi(∃x(Ajx∧¬Aix)) is consistent and that it can be true at state s
even though there might be no formula ψ in LK,X,A

n (Φ) such thatKi((Ajψ∧¬Aiψ)). This situation can
happen if, at all states agent i considers possible, agent j is aware of something agent i is not, but there
is no one formula ψ such that agent j is aware of ψ in all states agent i considers possible and agent i is
not aware of ψ in all such states. By way of contrast, if ∃xKi(Ajx∧ ¬Aix) is true at state s, then there

2We remark that the standard approach does not use separate propositional variables, but quantifies over primitive propo-
sitions. This makes it unnecessary to use valuations. It is easy to see that the definition we have given is equivalent to the
standard definition. Using propositional variables is more convenient in our extension.

3Since we are ultimately interested only in sentences (and not formulas with free propositional variables), we could have
dispensed with valuations altogether and just defined (M, s) |= ∀xϕ if (M, s) |= ϕ[x/ψ] for all ψ ∈ LK,X,A

n (Φ). We use
valuations here to enable us to compare to the more standard approach.
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is a formula ψ such that Ki(Ajψ ∧ ¬Aiψ) holds at s. The difference between Ki∃x(Ajx ∧ ¬Aix) and
∃xKi(Ajx∧¬Aix) is essentially the same as the difference between ∃xKiϕ andKi(∃xϕ) in first-order
modal logic (see, for example, [Fagin, Halpern, Moses, and Vardi 1995] for a discussion).

The next example illustrates how the logic of knowledge of awareness can be used to capture some
interesting situations.

Example 3.1: Consider an investor (agent 1) and an investment fund broker (agent 2). Suppose that
we have two facts that are relevant for describing the situation: the NASDAQ index is more likely
to increase than to decrease tomorrow (p), and Amazon will announce a huge increase in earnings
tomorrow (q). Let S = {s}, π(s, p) = π(s, q) = true, Ki = {(s, s)}, A1(s) = {p,∃x(A2x∧¬A1x)},
and A2(s) = {p, q,A2q,¬A1q,A2q ∧ ¬A1q}. Thus, both agents explicitly know that the NASDAQ
index is more likely to increase than to decrease tomorrow. However, the broker also explicitly knows
that Amazon will announce a huge increase in earnings tomorrow. Furthermore, the broker explicitly
knows that he (broker) is aware of this fact and the investor is not. On the other hand, the investor
explicitly knows that there is something that the broker is aware of but he is not. This knowledge may
come from the investor having observed the broker’s behavior (perhaps the broker was talking on the
telephone while the investor was in his office, and looked like he was getting interesting information).
In any case, we have

(M,s,V) |= X1p ∧X2p ∧X2q ∧ ¬X1q ∧X2(A2q ∧ ¬A1q) ∧X1(∃x(A2x ∧ ¬A1x)).

Of course, it is precisely because the investor knows that the broker knows things that he (the investor)
is not aware that the investor is willing to pay the broker a premium.

Since X2(A2q ∧ ¬A1q) implies ∃xX2(A2x ∧ ¬A1x), there is some formula x such that the bro-
ker knows that the investor is unaware of x although he (the broker) is aware of x. However, since
(M,s,V) |= ¬A2(∃x(A2x∧¬A1x)), it follows that (M,s,V) |= ¬X2(∃x(A2x∧¬A1x)). That is, the
investor does not explicitly know that there is a formula that the broker is aware of that he (the investor)
is not aware of.

It may seem unreasonable that, in Example 3.1, the broker is aware of the formula A2q ∧ ¬A1q,
without being aware of ∃x(A2x ∧ ¬A1x). Of course, if the broker were aware of this formula, then
X2((∃x(A2x ∧ ¬A1x)) would hold at state s. This example suggests that we may want to require
various properties of awareness. Here are some that are relevant in this context:

• Awareness is closed under existential quantification if ϕ ∈ Ai(s), ϕ = ϕ′[x/ψ] and ψ ∈
LK,X,A
n (Φ), then (∃xϕ′) ∈ Ai(s).

• Awareness is generated by primitive propositions if, for all agents i, ϕ ∈ Ai(s) iff all the primitive
propositions that appear in ϕ are in Ai(s) ∩ Φ. That is, an agent is aware of ϕ iff she is aware of
all the primitive propositions that appear in ϕ.

• Agents know what they are aware of if, for all agents i and all states s, t such that (s, t) ∈ Ki we
have that Ai(s) = Ai(t).

Closure under existential quantification does not hold in Example 3.1. It is easy to see that it is a
consequence of awareness being generated by primitive propositions. As shown by Halpern [2001] and
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Halpern and Rêgo [2008], a number of standard models of awareness in the economics literature (e.g.,
[Heifetz, Meier, and Schipper 2006; Modica and Rustichini 1999]) can be viewed as instances of the FH
model where awareness is taken to be generated by primitive propositions and agents know what they
are aware of. While assuming that awareness is generated by primitive propositions seems like quite
a reasonable assumption if there is no existential quantification in the language, it does not seem quite
so reasonable in the presence of quantification. For example, if awareness is generated by primitive
propositions, then the formula Ai(∃x¬Aix) is valid, which does not seem to be reasonable in many
applications. For some applications it may be more reasonable to instead assume only that awareness is
weakly generated by primitive propositions. This is the case if, for all states s and agents i,

• ¬ϕ ∈ Ai(s) iff ϕ ∈ Ai(s);

• ϕ ∧ ψ ∈ Ai(s) iff ϕ,ψ ∈ Ai(s);

• Kiϕ ∈ Ai(s) iff ϕ ∈ Ai(s);

• Aiϕ ∈ Ai(s) iff ϕ ∈ Ai(s);

• Xiϕ ∈ Ai(s) iff ϕ ∈ Ai(s);

• if ∀xϕ ∈ Ai(s), then p ∈ Ai(s) for each primitive proposition p that appears in ∀xϕ;

• if ϕ[x/ψ] ∈ Ai(s) for some formula ψ ∈ LK,X,A
n (Φ), then ∃xϕ ∈ Ai(s).

If the language does not have quantification, then awareness is weakly generated by primitive proposi-
tions iff it is generated by primitive propositions. However, with quantification in the language, while
it is still true that if awareness is generated by primitive propositions then it is weakly generated by
primitive propositions, the converse does not necessarily hold. For example, ifA1(s) = ∅ for all s, then
awareness is weakly generated by primitive propositions. Intuitively, not being aware of any formulas
is consistent with awareness being weakly generated by primitive propositions. However, if agent 1’s
awareness is generated by primitive propositions, then, for example, ∃xAjx must be in Aj(s) for all s
and all agents j.

4 Axiomatization

In this section, we provide a sound and complete axiomatization of the logics described in the previous
section. We show that, despite the fact that we have a different language and used a different semantics
for quantification, essentially the same axioms characterize our definition of quantification as those that
have been shown to characterize the more traditional definition. Indeed, our axiomatization is very
similar to the multi-agent version of an axiomatization given by Fine [1970] for a variant of his logic
where the range of quantification is restricted.

4.1 A complete axiomatization for the language L∀,K,A
n

We start by considering the language L∀,K,A
n ; in the next subsection we provide a complete axiomatiza-

tion for L∀,X,A
n . Although arguably the language L∀,X,A

n is of more interest to game theory, it is easier
to bring out the main issues in dealing with quantification by first allowing K in the language.

Consider the following axioms for quantification:
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1∀. ∀xϕ⇒ ϕ[x/ψ] if ψ is a quantifier-free formula substitutable for x in ϕ.

K∀. ∀x(ϕ⇒ ψ) ⇒ (∀xϕ⇒ ∀xψ).

N∀. ϕ⇒ ∀xϕ if x is not free in ϕ.

Barcan. ∀xKiϕ⇒ Ki∀xϕ.

Gen∀. From ϕ infer ∀xϕ.

These axioms are almost identical to the ones considered by Fine [1970], except that we restrict
1∀ to quantifier-free formulas; Fine allows arbitrary formulas to be substituted (provided that they are
substitutable for x). K∀ and Gen∀ are analogues to the axiom K and rule of inference GenK in Kn.
The Barcan axiom, which is well-known in first-order modal logic, captures the relationship between
quantification and Ki.

LetK∀
n be the axiom system consisting of the axioms inKn together with {A0, 1∀,K∀,N∀, Barcan,

Gen∀}.

Theorem 4.1: Let C be a (possibly empty) subset of {T, 4, 5} and let C be the corresponding subset of
{r, t, e}. If Φ is countably infinite, thenK∀

n ∪ C is a sound and complete axiomatization of the language
L∀,K,X,A
n (Φ,X ) with respect toMC

n (Φ,X ).4

Showing that a provable formula ϕ is valid can be done by a straightforward induction on the length
of the proof of ϕ, using the fact that all axioms are valid in the appropriate set of models and all inference
rules preserve validity.

For completeness, we modify the standard completeness proof for modal logic. In the standard
completeness proof, a canonical modelMc is constructed where the states are maximal consistent sets
of formulas. It is then shown that if sV is the state corresponding to the maximal consistent set V , then
(M c, sV ) |= ϕ iff ϕ ∈ V . This will not quite work in our logic. We would need to define a canonical
valuation function to give semantics for formulas containing free variables. We deal with this problem
by considering states in the canonical model to consist of maximal consistent sets of sentences. There
is another problem in the presence of quantification since there may be a maximal consistent set V of
sentences such that ¬∀xϕ ∈ V , but ϕ[x/ψ] for all ψ ∈ LK,X,A

n (Φ). That is, there is no witness to
the falsity of ∀xϕ in V . We deal with this problem by restricting to maximal consistent sets V that are
acceptable in the sense that if ¬∀xϕ ∈ V , then ¬ϕ[x/q] ∈ V for infinitely many primitive propositions
q ∈ Φ.5 The details can be found in the appendix.

Note that the notion of acceptability requires Φ to be infinite. This is more than an artifact of our
proof. If Φ is finite, extra axioms are needed. To understand why, consider the case where there is only
one agent and Φ = {p}. Let ϕ be the formula that essentially forces the S5 axioms to hold:

∀x((Kx ⇒ x) ∧ (Kx ⇒ KKx) ∧ (¬Kx ⇒ K¬Kx)).

4We remark that Prior [1956] showed that, in the context of first-order modal logic, the Barcan axiom is not needed in the
presence of the axioms of S5 (that is T , 4, and 5). The same argument works here.

5The standard notion of acceptability requires only that ¬ϕ[x/q] ∈ V for some primitive proposition q. While using
the standard notion suffices to prove completeness for the language L∀,K,A

n (Φ,X ), it does not seem to suffice to prove
completeness for the language L∀,X,A

n (Φ,X ) without the implicit knowledge operator; see the proof of Theorem 4.2 in
the appendix for details.
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As is well-known, the S5 axioms force every formula in LK1 to be equivalent to a depth-one formula
(i.e., one without nested K’s). Thus, it is not hard to show that there exists a finite set F of formulas in
LK,X,A
1 ({p}) such that for all formulas ψ with one free variable y and no quantification, we have for

C ⊆ {r, e, t}
MC

1 (Φ,X ) |= (ϕ ∧ ∀xAx) ⇒ (∀yψ ⇔ ∧σ∈Fψ[y/σ]).
Thus, if Φ is finite, we would need extra axioms to capture the fact that universal quantification is
sometimes equivalent to a finite conjunction. We remark that this phenomenon of needing additional
axioms if Φ is finite has been observed before in the literature (cf. [Fagin, Halpern, and Vardi 1992;
Halpern and Lakemeyer 2001]).

We can easily extend the completeness proof to capture additional assumptions about the awareness
operator axiomatically. For example, as shown by FH, the assumption that agents know what they are
aware of corresponds to the axioms

Aiϕ⇒ KiAiϕ and
¬Aiϕ⇒ Ki¬Aiϕ.

It is not hard to check that awareness being generated by primitive propositions can be captured by the
following axiom:

Aiϕ⇔ ∧{p∈Φ: p occurs in ϕ}Aip.

In this axiom, the empty conjunction is taken to be vacuously true, so that Aiϕ is vacuously true if no
primitive propositions occur in ϕ.

We can axiomatize the fact that awareness is weakly generated by primitive propositions using the
following axioms:

A1. Ai(ϕ ∧ ψ) ⇔ Aiϕ ∧Aiψ.

A2. Ai¬ϕ⇔ Aiϕ.

A3. AiXjϕ⇔ Aiϕ.

A4. AiAjϕ⇔ Aiϕ.

A5. AiKjϕ⇔ Aiϕ.

A6. Aiϕ⇒ Aip if p ∈ Φ occurs in ϕ.

A7. Aiϕ[x/ψ] ⇒ Ai∃xϕ, where ψ ∈ LK,X,A
n (Φ).

As noted in [Fagin, Halpern, Moses, and Vardi 1995], the first five axioms capture awareness generated
by primitive propositions in the language LK,X,A

n (Φ); we need A6 and A7 to deal with quantification.
A7 captures the fact that awareness is closed under existential quantification. Surprisingly (at least
for us), awareness being generated by primitive propositions and awareness being weakly generated
by primitive propositions are notions more similar than what they appear at first glance. We prove,
in Lemma A.11 in the appendix, that as long as the agent is aware of some primitive proposition, the
two notions coincide. That is, the following formula is valid in structures where awareness is weakly
generated by primitive propositions:

∃xAi(x) ⇒ (Aiϕ⇔ ∧{p∈Φ: p occurs in ϕ}Aip)

(where, as usual, we take the empty conjunction to be vacuously true).
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4.2 A complete axiomatization for the language L∀,X,A
n

Just as FH, we can also consider axiomatizing the language L∀,X,A
n (Φ,X ), which has the Xi and Ai

operators but not the Ki operators. In this case, consider the following axioms, mainly modifications of
the axioms inK∀

n so as to mention explicit knowledge rather than implicit knowledge.

KX . (Xiϕ ∧Xi(ϕ⇒ ψ)) ⇒ Xiψ.

A0X . Xiϕ⇒ Aiϕ.

A7X . Aiϕ[x/ψ] ⇒ Ai∃xϕ, where ψ ∈ LX,A
n (Φ).

GenX . From ϕ infer Aiϕ⇒ Xiϕ.

BarcanX . ∀xXiϕ⇒ Xi∀xϕ.

TX . Xiϕ⇒ ϕ.

4X . (Xiϕ ∧XiAiϕ) ⇒ XiXiϕ.

5X . ¬Xiϕ⇒ (¬Aiϕ ∨Xi¬Xiϕ).

Let X∀
n be the axiom system consisting of the axioms and inference rules in {Prop, KX , A0X , 1∀,

K∀, N∀, BarcanX , A1, A2, A3, A4, A6, A7X , MP, GenX , Gen∀}.

Theorem 4.2: Let CX be a (possibly empty) subset of {TX, 4X} and let C be the corresponding subset
of {r, t}. Then X∀

n ∪ CX is a sound and complete axiomatization of the language L∀,X,A
n (Φ,X ) with

respect to MC,wgp
n (Φ,X ), where MC,wgp

n (Φ,X ) is the class of awareness structures that are weakly
generated by primitive propositions and whose binary relations Ki satisfy the properties in C .

Proving soundness is straightforward, since all axioms are valid in the appropriate set of models
and all inference rules preserve validity. Proving completeness is similar in spirit to the proof of Theo-
rem 4.1. The main difference is that, as the language does not involve the implicit knowledge operator,
care must be taken when inferring that a formula of the form Xiϕ is provable since this formula is
only provable if Aiϕ is. In order to deal with this, we show that if Γ is an acceptable maximal set
X∀

n-consistent set of sentences, then either (1) Aiψ ∈ Γ for every sentence ψ or (2) there are infinitely
many primitive propositions q such that ¬Aiq ∈ Γ. The details can be found in the appendix.

Proving completeness in the case CX is a subset of {TX, 4X, 5X} that does not include 5X and
C is the corresponding subset of {r, t} is straightforward. However, once we add 5X to the picture,
completeness is not at all straightforward. Indeed, we can show that 5X does not suffice to give a
complete axiomatization for the language in models that satisfy the Euclidean property. The problem
is that, to get completeness, we must show that if an agent is unaware of a formula ϕ, then she must
be unaware of it in all the worlds she considers possible. Since Ki is not in the language, it is not
easy to capture this property axiomatically. Halpern [2001] solved a similar problem in the language of
sentences with no quantification, but he used an extra inference rule that he called Irr (for “Irrelevance”),
which states that if no primitive propositions in ϕ appear in ψ, then from ¬Aiϕ ⇒ ψ we can infer ψ.
While this inference rule is sound for the language considered by Halpern, which does not involve
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quantification, it is not sound once quantification is added. For example, the formula ¬Aip ⇒ ¬∀xAix
is valid in our models, but ¬∀xAix is not. It is not clear what axioms we can add to get completeness.

In fact, it is not clear that we should want the Euclidean property to hold in our framework. The
problem is perhaps easiest to see if we restrict to models where (a) the possibility relation Ki is an
equivalence relation (perhaps the most standard model considered in economics) and (b) an agent knows
what he is aware of, so that Aiϕ⇒ XiAiϕ is an axiom. In such models, it is impossible for an agent to
consider it possible that he is aware of all formulas and also consider it possible that he is not aware of
all formulas. In particular, the formula

Ai(∀xAix) ∧ (¬Xi¬(∀xAix) ∧ (¬Xi∀xAix)

is easily seen to be inconsistent. (The first conjunct is necessary to prevent it from being vacuously
true.) Even if we just consider models where the Euclidean property holds, without requiring that the
possibility relation be an equivalence relation and that Aiϕ ⇒ XiAiϕ be an axiom, we can basically
get the same effect by considering the formula

ψ = Ai(∀x(Aix ∧XiAix)) ∧ (¬Xi¬(∀x(Aix ∧XiAix))) ∧ (¬Xi∀xAix).

The second conjunct just says that ∀x(Aix ⇒ XiAix) holds at a world that i considers possible where
∀xAix holds; we do not need to require that Aiϕ ⇒ XiAiϕ hold at all worlds. Nevertheless, it is not
hard to show that ψ is not satisfiable in models where the possibility relation is Euclidean.

It seems reasonable to us that an agent should consider it possible both that she is aware of all
formulas and that she is not aware of all Thus, for the class of models we are considering here, negative
introspection does not seem appropriate. The problem seems to be our requirement that the set of
primitive propositions is the same in all worlds. We are currently exploring a new class of models where
we allow different languages at different worlds, in the hope that we can obtain negative introspection,
while still allowing formulas like ψ to be satisfiable.

5 Complexity

In this section, we analyze the complexity of the validity problem for the logics we have been con-
sidering. Since the logics are axiomatizable, the validity problem is at worst recursively enumerable
(r.e.). As the next theorem shows, the validity problem is no better than r.e. In particular, this means
that deciding if a formula is valid is undecidable; there is no algorithm that will do it. Certainly we
cannot expect a resource-bounded agent to do it either. Thus, an agent may not be able to figure out
all the logical consequences of some information he has about another agent’s awareness and lack of
it. The situation is not as grim as it appears. Deciding whether particular formulas are valid might be
much easier. Moreover, in practice, we are not so concerned with all the logical consequences of some
information regarding awareness, but various consequences that happen to be true in a particular model
(the one describing the game of interest). If the game (and hence the model) is sufficiently simple, then
computing what is true in that model may not be so difficult.

Theorem 5.1: The problem of deciding if a formula in the language L∀,K,X,A
n (Φ,X ) is valid inMC

n (Φ,X )
is r.e.-complete, for all C ⊆ {r, t, e} and n ≥ 1.

12



Proof: The fact that deciding validity is r.e. follows immediately from Theorem 4.1. For the hardness
result, we show that, for every formula ϕ in first-order logic over a language with a single binary
predicate can be translated to a formula ϕt ∈ L∀,K,A

1 (Φ,X ) such that ϕ is valid over relational models
iff ϕt is valid in M∅

n(Φ,X ) (and hence in MC
n (Φ,X ), for all C ⊆ {r, t, e}. We leave details of the

reduction to the appendix. The result follows from the well-known fact that the validity problem for
first-order logic with one binary predicate is r.e.

Theorem 5.1 is somewhat surprising, since Fine [1970] shows that his logic (which is based on S5)
is decidable. It turns out that each of the following suffices to get undecidability: (a) the presence of the
awareness operator, (b) the presence of more than one agent, or (c) not having e ∈ C (i.e., not assuming
that the K relation satisfies the Euclidean property). The fact that awareness gives undecidability is the
content of Theorem 5.1; Theorem 5.2 shows that having n ≥ 2 or e /∈ C suffices for undecidability as
well. On the other hand, Theorem 5.3 shows that if n = 1 and e ∈ C , then the problem is decidable.
Although, as we have observed, our semantics is slightly differently from that of Fine, we believe that
corresponding results hold in his setting. Thus, he gets decidability because he does not have awareness,
restricts to a single agent, and considers S5 (as opposed to, say, S4).

Let L∀,K
n (Φ,X ) consist of all formulas in L∀,K,X,A

n (Φ,X ) that do not mention the Ai or Xi opera-
tors.

Theorem 5.2: The problem of deciding if a formula in the language L∀,Kn (Φ,X ) is valid inMC
n (Φ,X )

is r.e.-complete if n ≥ 2 or if e /∈ C .

Theorem 5.3: The validity problem for the language L∀,K1 (Φ,X ) with respect to the structures in
MC

1 (Φ,X ) for C ⊇ {e} is decidable.

Interestingly, the role of the Euclidean property in these complexity results mirrors its role in com-
plexity for LK

n , basic epistemic logic without awareness or quantification. As we have shown [Halpern
and Rêgo 2007], the problem of deciding if a formula in the language LKn (Φ) is valid in MC

n (Φ) is
PSPACE complete if n ≥ 2 or n ≥ 1 and e /∈ C; if n = 1 and e ∈ C , it is co-NP-complete.

6 Conclusion

We have proposed a logic to model agents who are able to reason about their lack of awareness. We have
shown that such reasoning arises in a number of situations. We have provided a complete axiomatization
for the logic, and examined the complexity of the validity problem.

Although our focus here has been on questions of logic (completeness and complexity), it should be
clear that reasoning about awareness and knowledge of unawareness is of great relevance to game theory.
Feinberg [2004] has already shown that awareness can play a significant role in analyzing games. (In
particular, he shows that a small probability of an agent not being aware of the possibility of defecting
in finitely repeated prisoners dilemma can lead to cooperation.) It is not hard to show that knowledge of
unawareness can have a similarly significant impact. As we suggested in the introduction, a belief that
the other side in a war may have new technology, without being aware of what that technology might
be, may lead to peace overtures. If an investor knows that a broker is aware of facts the he (the investor)
is not aware of, this may lead to the investor hiring the broker. Knowledge of unawareness can have an
even greater impact if we interpret “lack of awareness” as “unable to compute” (cf. [Fagin and Halpern
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1988]). Consider a chess game. Then although all players understand in principle all the moves that
can be made, they are certainly not aware of all consequences of all moves. Such lack of awareness
has strategic implications. For example, in cases where the opponent is under time pressure, experts
will deliberately make moves that lead to positions that are hard to analyze. (In our language, these are
positions where there is a great deal of unawareness.)

Notions like Nash equilibrium do not make sense in the presence of lack of awareness. Intuitively,
a set of strategies is a Nash equilibrium if each agent would continue playing the same strategy despite
knowing what strategies the other agents are using. But if an agent is not aware of the moves available
to other agents, then he cannot even contemplate the actions of other players. In a companion paper
[Halpern and Rêgo 2006], we show how to generalize the notion of Nash equilibrium so that it applies
in the presence of (knowledge of) unawareness. That model of games does not use any of the logics
we have presented here, but we believe that it should be possible to fruitfully combine ideas from these
logics with the game-theoretic model. However, to do so, we need to extend the logic to capture proba-
bility as well as awareness and knowledge. We hope to address this issue in a future work, by handling
probability along the lines of the work in [Fagin and Halpern 1994; Fagin, Halpern, and Megiddo 1990].
We also need to address issues of learning about unawareness. Although it may seem strange to talk
about learning about lack of awareness, it is not hard to see that such learning is possible. For example,
an investor can learn that a broker is aware of things that he (the investor) is not aware of by observing
the behavior of the broker or by word of mouth. Indeed, it is exactly such learning that will typically
lead to the investor hiring the broker.
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A Proof of Theorems

If Γ is a set of sentences, then we write Γ ⊢ ϕ if there is a finite subset {β1, . . . ,βn} ⊆ Γ such that
⊢ (β1 ∧ . . . ∧ βn) ⇒ ϕ. Let Γ/Ki = {ϕ : Kiϕ ∈ Γ}.

Definition A.1: A set Γ is acceptable if Γ ⊢ ϕ[x/q] for all but finitely many primitive propositions q,
then Γ ⊢ ∀xϕ.

Theorem 4.1: Let C be a (possibly empty) subset of {T, 4, 5} and let C be the corresponding subset
of {r, t, e}. ThenK∀

n ∪ C is a sound and complete axiomatization of the language L∀,K,X,A
n (Φ,X ) with

respect toMC
n (Φ,X ).

Proof: We give the proof only for the case C = ∅; the other cases follow using standard techniques (see,
for example, [Fagin, Halpern, Moses, and Vardi 1995; Hughes and Cresswell 1996]). Showing that a
provable formula ϕ is valid can be done by a straightforward induction on the length of the proof of ϕ,
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using the fact that all axioms in K∀
n are valid inM∅

n(Φ,X ) and all inference rules preserve validity in
M∅

n(Φ,X ).
As we said in the main text, we prove completeness by modifying the standard canonical model

construction, restricting to acceptable maximal consistent sets of sentences. Thus, the first step in the
proof is to guarantee that every consistent sentence is included in an acceptable maximal consistent set
of sentences.

If q is a primitive proposition, we define ϕ[q/x] and the notion of x being substitutable for q just as
we did for the case that q is a propositional variable.

Lemma A.2: IfK∀
n ∪ C ⊢ ϕ and x is substitutable for q in ϕ, thenK∀

n ∪ C ⊢ ∀xϕ[q/x].

Proof: We first show by induction on the length of the proof of ϕ that if z is a variable that does not
appear in any formula in the proof of ϕ, then K∀

n ∪ C ⊢ ϕ[q/z]. If there is a proof of ϕ of length one,
then ϕ is an instance of an axiom. It is easy to see that ϕ[q/z] is an instance of the same axiom. (We
remark that it is important in the case of axioms N∀ and 1∀ that z does not occur in ϕ.) Suppose that the
lemma holds for all ϕ′ that have a proof of length no greater than k, and suppose that ϕ has a proof of
length k + 1 where z does not occur in any formula of the proof. If the last step of the proof of ϕ is an
axiom, then ϕ is an instance of an axiom, and we have already dealt with this case. Otherwise, the last
step in the proof of ϕ is an application of either MP, GenK , or Gen∀. We consider these in turn.

If MP is applied at the last step, then there exists some ϕ′, such that ϕ′ and ϕ′ ⇒ ϕ were previously
proved and, by assumption, z does not occur in any formula of their proof. By the induction hypothesis,
both ϕ′[q/z] and (ϕ′ ⇒ ϕ)[q/z] = ϕ′[q/z] ⇒ ϕ[q/z] are provable. The result now follows by an
application of MP.

The argument for GenK and Gen∀ is essentially identical, so we consider them together. Suppose
that GenK (resp., Gen∀) is applied at the last step. Then ϕ has the form Kiϕ′ (resp., ∀yϕ′) and there
is a proof of length at most k for ϕ′ where z does not occur in any formula in the proof. Thus, by the
induction hypothesis, ϕ′[q/z] is provable. By applying GenK (resp., Gen∀), it immediately follows that
ϕ[q/z] is provable.

This completes the proof that ϕ[q/z] is provable. By applying Gen∀, it follows that ∀zϕ[q/z] is
provable. Since x is substitutable for q in ϕ, x must be substitutable for z in ϕ[q/z]. Thus, by applying
the axiom 1∀ and MP, we can prove ϕ[q/x]. The fact that ∀xϕ[q/x] is provable now follows from Gen∀.

Lemma A.3: If Γ is an acceptable maximalK∀
n-consistent set of sentences, then Γ/Ki is acceptable.

Proof: To show that Γ/Ki is acceptable, suppose that Γ/Ki ⊢ ϕ[x/q] for all but finitely many primitive
propositions q. It follows that there exists a subset {β1 . . . ,βn} ⊆ Γ/Ki (depending on q) such that

K∀
n ⊢ β ⇒ ϕ[x/q],

where β = β1 ∧ · · · ∧ βn. Then, by inference rule Gen,

K∀
n ⊢ Ki(β ⇒ ϕ[x/q]).
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Since β1, . . . ,βn ∈ Γ/Ki, it follows that Γ ⊢ Kiβ1∧ · · ·∧Kiβn. Thus, standard modal logic arguments
show that Γ ⊢ Kiβ. Then, it follows that Γ ⊢ Kiϕ[x/q], for all but finitely many primitive propositions
q. Since Γ is acceptable, Γ ⊢ ∀xKiϕ. Barcan implies that Γ ⊢ Ki∀xϕ. Thus, by definition, ∀xϕ ∈
Γ/Ki, as desired.

Lemma A.4: If Γ is a finite set of sentences, then Γ is acceptable.

Proof: Let Γ = {β1, . . . ,βk} and β = β1 ∧ · · · ∧ βk. We need to show that if

K∀
n ⊢ β ⇒ ϕ[x/q],

for all but finitely many primitive propositions q, then

K∀
n ⊢ β ⇒ ∀xϕ.

Let q be a primitive proposition not occurring in Γ ∪ {ϕ} such that

K∀
n ⊢ β ⇒ ϕ[x/q].

(Since there are infinitely many q’s such that K∀
n ⊢ β ⇒ ϕ[x/q] and Γ is finite, it is always possible to

pick one q that does not occur in Γ ∪ {ϕ}.)
By Lemma A.2, we have

K∀
n ⊢ ∀x(β ⇒ ϕ).

Since β is a sentence, applying K∀ and N∀, it easily follows that

K∀
n ⊢ β ⇒ ∀xϕ.

Lemma A.5: If Γ is an acceptable set of sentences, then Γ ∪ {τ} is acceptable.

Proof: Let Γ′ = Γ ∪ {τ}. Suppose that Γ′ ⊢ ϕ[x/q] for all but finitely many primitive propositions q.
Then Γ ⊢ τ ⇒ ϕ[x/q] for all but finitely many q, so Γ ⊢ ∀x(τ ⇒ ϕ), since Γ is acceptable. Since τ is
a sentence, applying K∀ and N∀, it easily follows that

⊢ (∀x(τ ⇒ ϕ)) ⇒ (τ ⇒ ∀xϕ).

Thus, we have that Γ ⊢ τ ⇒ ∀xϕ, so Γ′ ⊢ ∀xϕ, as desired.

Lemma A.6: If Γ is an acceptable K∀
n-consistent set of sentences, then there is an acceptable maximal

K∀
n-consistent set of sentences that contains Γ.
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Proof: Let ψ1,ψ2, . . . be an enumeration of the set S∀,K,X,A
n such that if ψk is of the form ¬∀xϕ, then

there must exist a j < k such that ψj is of the form ∀xϕ. We construct a sequence ∆0,∆1, . . . of
acceptable K∀

n-consistent sets such that (1) ∆0 = Γ; (2) ∆k ⊆ ∆k+1 for all k ≥ 0; (3) for k ≥ 1,
either ψk ∈ ∆k or ∆k ⊢ ¬ψk; and (4) for all k ≥ 1 and 0 < j < k, if ψj has the form ∀xϕ and
∆j−1 ⊢ ¬∀xϕ, then there exist at least k − j distinct primitive propositions qj,1, . . . , qj,k−j such that
{¬ϕ[x/qj,1, . . . ,¬ϕ[x/qj,k−j]} ⊆ ∆k.

We proceed by induction. Suppose that we have constructed acceptableK∀
n-consistent sets∆0, . . . ,∆k−1

satisfying properties (1)–(4). To construct ∆k, we first add to ∆k−1 one witness ¬ϕj[x/q] for every
formula ψj of the form ∀xϕj that is notK∀

n-consistent with ∆k−1, for 1 ≤ j ≤ k− 1. Formally, we in-
ductively construct a sequence ∆k−1,0,∆k−1,1, . . . ,∆k−1,k−1 of acceptable K∀

n-consistent sets, where
we add the “witness” for ψj , if necessary, at the jth step of the construction. Let ∆k−1,0 = ∆k−1.
For 1 ≤ j ≤ k − 1, suppose that we have defined an acceptable set ∆k−1,j−1. If it is not the case
that ψj has the form ∀xϕ, ∆k−1 ⊢ ¬ψj , and there are only finitely many primitive propositions q such
∆k−1 ⊢ ¬ϕ[x/q], then ∆k−1,j = ∆k−1,j−1. Otherwise, since ∆k−1,j−1 is acceptable, there must be
infinitely many primitive propositions q such that ∆k−1,j−1 ∪ {¬ϕ[x/q]} is K∀

n-consistent. Choose q
such that ¬ϕ[x/q] /∈ ∆k−1,j−1, and let ∆k−1,j = ∆k−1,j−1 ∪ {¬ϕ[x/q]}. By Lemma A.5, ∆k−1,j is
acceptable. Let∆′

k−1 = ∆k−1,k−1;∆′
k−1 has the required witnesses. If∆′

k−1∪{ψk} isK∀
n-consistent,

then ∆k = ∆′
k−1 ∪ {ψk}. By Lemma A.5,∆k is acceptable andK∀

n-consistent. If ∆′
k−1 ∪ {ψk} is not

K∀
n-consistent, then ∆k = ∆′

k−1. Clearly this construction satisfies properties (1)–(4).
Let ∆ = ∪k∆k. Clearly, ∆ is a maximal K∀

n-consistent set of sentences that includes Γ. Thus,
it remains to verify that it is acceptable. Suppose that ∆ ⊢ ϕ[x/q] for all but finitely many primitive
propositions q. Since ∆ is maximally K∀

n-consistent, it follows that ϕ[x/q] ∈ ∆ for all but finitely
many q’s. Suppose that the formula ψk is ∀xϕ. By construction, either ψk ∈ ∆k (and hence in ∆),
or ¬ϕ[x/q] ∈ ∆ for infinitely many primitive propositions q. The latter cannot be the case, since ∆
is consistent and ϕ[x/q] ∈ ∆ for all but finitely many primitive propositions q. Thus, ∆ ⊢ ∀xϕ, as
desired.

Lemma A.7: If Γ is a maximalK∀
n-consistent set of sentences containing ¬Kiϕ, then Γ/Ki ∪ {¬ϕ} is

K∀
n-consistent.

Proof: Standard Modal logic argument; see Hughes and Cresswell 1996, Lemma 6.4.

Lemma A.8: If Γ is an acceptable maximalK∀
n-consistent set of sentences, ¬Kiϕ ∈ Γ, then there exists

an acceptable maximalK∀
n-consistent set of sentences ∆ such that Γ/Ki ∪ {¬ϕ} ⊆ ∆.

Proof: By Lemma A.7, Γ/Ki ∪ {¬ϕ} is K∀
n-consistent. By Lemma A.3, Γ/Ki is acceptable. By

Lemma A.4, it follows that Γ/Ki ∪ {¬ϕ} is an acceptable K∀
n-consistent set of sentences. The result

follows immediately from Lemma A.6.

Lemma A.9: If ϕ is aK∀
n-consistent sentence, then ϕ is satisfiable inM∅

n(Φ,X ).

Proof: Let Mc = (S,K1, ...,Kn,A1, . . . ,An,π) be a canonical awareness structure constructed as
follows

17



• S = {sV : V is an acceptable maximalK∀
n-consistent set of sentences};

• π(sV , p) =

{
1 if p ∈ V ,
0 if p /∈ V ;

• Ai(sV ) = {ϕ : Aiϕ ∈ V };

• Ki(sV ) = {sW : V/Ki ⊆ W}.

We show as usual that if ψ is a sentence, then

(M c, sV ) |= ψ iff ψ ∈ V. (1)

Note that this claim suffices to prove Lemma A.9 since, if ϕ is aK∀
n-consistent sentence, by Lemmas A.4

and A.6, it is contained in an acceptable maximalK∀
n-consistent set of sentences.

We prove (1) by induction of the depth of nesting of ∀, with a subinduction on the length of the
sentence. The base case is if ψ is a primitive proposition, in which case (1) follows immediately from
the definition of π. For the inductive step, given ψ, suppose that (1) holds for all formulas ψ′ such that
either the depth of nesting for ∀ in ψ′ is less than that in ψ, or the depth of nesting is the same, and ψ′ is
shorter than ψ. We proceed by cases on the form of ψ.

• If ψ has the form ¬ψ′ or ψ1 ∧ ψ2, then the result follows easily from the inductive hypothesis.

• If ψ has the form Aiψ′, then note that ψ′ is a sentence and (Mc, sV ) |= Aiψ′ iff ψ′ ∈ Ai(sV ) iff
Aiψ′ ∈ V .

• If ψ has the formKiψ′, then if ψ ∈ V , then ψ′ ∈ W for everyW such that sW ∈ Ki(sV ). By the
induction hypothesis, (Mc, sW ) |= ψ′ for every sW ∈ Ki(sV ), so (M c, sV ) |= Kiψ′. If ψ /∈ V ,
then ¬ψ ∈ V since V is a maximalK∀

n-consistent set. By Lemma A.8, there exists an acceptable
maximal K∀

n-consistent set of sentences W such that (V/Ki ∪ {¬ψ′}) ⊆ W . By the induction
hypothesis, (Mc, sW ) ̸|= ψ′. Thus, (M c, sV ) ̸|= Kiψ′.

• If ψ has the form Xiψ′, the argument is immediate from the preceding two cases and the obser-
vation that (M,sV ) |= Xiψ′ iff both (M,sV ) |= Kiψ′ and (M,sV ) |= A′

ψ , while Xiψ′ ∈ V iff
both Kiψ′ ∈ V and Aiψ′ ∈ V .

• Finally, suppose that ψ = ∀xψ′. If ψ ∈ V then, by axiom 1∀, ψ′[x/ϕ] ∈ V for all ϕ ∈
LK,X,A
n (Φ). The depth of nesting of ψ′[x/ϕ] is less than that of ∀xψ′, so by the induction hy-
pothesis (M,sV ) |= ψ′[x/ϕ] for all ϕ ∈ LK,X,A

n (Φ). By definition, (M,sV ) |= ψ, as desired.
If ψ /∈ V , then ¬ψ ∈ V . Since V is an acceptable maximal K∀

n-consistent set, there must
exist a primitive proposition q ∈ Φ such that ¬ψ′[x/q] ∈ V . By the induction hypothesis,
(M c, sV ) ̸|= ψ′[x/q]. Thus, (M c, sV ) ̸|= ψ, as desired.

To finish the completeness proof, suppose that ϕ is valid inM∅
n(Φ,X ). If ϕ is a sentence, then ¬ϕ

is a sentence and is not satisfiable inM∅
n(Φ,X ). So, by Lemma A.9, ¬ϕ is not K∀

n-consistent. Thus,
ϕ is provable in K∀

n. If ϕ is not a sentence, and {x1, . . . , xk} is the set of variables free in ϕ, then
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∀x1 . . . ∀xkϕ is a valid sentence. Thus, as we just showed, ∀x1 . . . ∀xkϕ is provable in K∀
n. Applying

1∀ repeatedly it follows that ϕ is provable inK∀
n, as desired.

Theorem 4.2: Let CX be a (possibly empty) subset of {TX, 4X} and let C be the corresponding subset
of {r, t}. Then X∀

n ∪ CX is a sound and complete axiomatization of the language L∀,X,A
n (Φ,X ) with

respect to MC,wgp
n (Φ,X ), where MC,wgp

n (Φ,X ) is the class of awareness structures that are weakly
generated by primitive propositions and whose binary relations Ki satisfy the properties in C .

Proof: We give the proof only for the case CX = ∅; the other cases follow using standard techniques
(see, for example, [Fagin, Halpern, Moses, and Vardi 1995; Hughes and Cresswell 1996]). Showing
that a provable formula ϕ is valid can be done by a straightforward induction on the length of the proof
of ϕ, using the fact that all axioms in X∀

n are valid in M∅,wgp
n (Φ,X ) and all inference rules preserve

validity inM∅,wgp
n (Φ,X ).

We now consider completeness for the language without the Ki operators, just Xi operators. We
proceed in much the same way as in the proof for the language with theK operator. We first prove some
results about awareness that may be of independent interest. They show that if an agent is aware of any
formula at all, then an agent is aware of ϕ iff he is aware of all the primitive propositions in ϕ. One
direction of this is just A5. The next two lemmas prove the other direction.

Lemma A.10: X∀
n ⊢ Ai(ϕ[x/q]) ⇒ Ai∀xϕ.

Proof: By A2, it follows that X∀
n ⊢ Ai(ϕ[x/q]) ⇔ Ai(¬ϕ[x/q]). By A6, we have that X∀

n ⊢
Ai(¬ϕ[x/q]) ⇒ Ai∃x¬ϕ. By A2, it follows that X∀

n ⊢ Ai∃x¬ϕ ⇒ Ai(¬∃x¬ϕ). By definition,
∀xϕxϕ is an abbreviation for ¬∃x¬ϕ, so it follows that X∀

n ⊢ Ai(ϕ[x/q]) ⇒ Ai(∀xϕ), as desired.

Lemma A.11: If P = {p : Γ ⊢ Aip} is nonempty, then Γ ⊢ Aiϕ for every sentence ϕ that mentions
only primitive propositions in ϕ.

Proof: We show this claim by induction on the depth of nesting of ∀ in ϕ, with a subinduction on the
length of ϕ. If ϕ is a primitive proposition in P, then Γ ⊢ Aiϕ by hypothesis. Suppose Γ ⊢ Aiψ for all
sentences ψ that only mention propositions in P and such that either the depth of nesting of ∀ in ψ is
less than that in ϕ, or the depth of nesting is the same and ψ is shorter than ϕ. We proceed by cases on
the form of ϕ.

• If ϕ has the form ¬ϕ′, then the result follows from A2.

• If ϕ has the form ϕ1 ∧ ϕ2, then the result follows from A1.

• If ϕ has the form Ajϕ′, then the result follows from A4.

• If ϕ has the form Xjϕ′, then the result follows from A3.

• Finally, if ϕ has the form ∀xϕ′ then, by the induction hypothesis, Γ ⊢ Ai(ϕ′[x/q]) for q ∈ P ,
since the depth of nesting of ∀ in ϕ′[x/q] is less than that in ϕ. Thus, Lemma A.10 implies that
Γ ⊢ Ai∀xϕ′.
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Lemma A.12: If Γ is an acceptable maximal setX∀
n-consistent set of sentences, then either (1)Aiψ ∈ Γ

for every sentence ψ or (2) there are infinitely many primitive propositions q such that ¬Aiq ∈ Γ.

Proof: Suppose (2) is not the case, i.e, suppose that there are only finitely many primitive propositions
q such that ¬Aiq ∈ Γ. Since Γ is maximally X∀

n-consistent, it follows that Γ ⊢ Aiq for all but finitely
many q’s. Since Γ is acceptable, it follows that Γ ⊢ ∀xAix. Thus, by 1∀, it follows that Γ ⊢ Aiq for
every q. Thus, by Lemma A.11, it follows that Aiψ ∈ Γ for every sentence ψ. Thus, (1) holds.

Let Γ/Xi = {ϕ : Xiϕ ∈ Γ}.

Lemma A.13: If Γ is an acceptable maximalX∀
n-consistent set of sentences, then Γ/Xi is acceptable.

Proof: To show that Γ/Xi is acceptable, suppose that Γ/Xi ⊢ ϕ[x/q] for all but finitely many primitive
propositions q. Given Lemma A.12, it suffices to consider two cases: (1) Aiψ ∈ Γ for all sentences
ψ; and (2) Γ ̸⊢ Aiq for infinitely many primitive propositions q. Consider case (1) first. Since, for
all but finitely many primitive propositions q, Γ/Xi ⊢ ϕ[x/q], it follows that there exists a subset
{β1 . . . ,βn} ⊆ Γ/Xi (depending on q) such that

X∀
n ⊢ β ⇒ ϕ[x/q],

where β = β1 ∧ · · · ∧ βn. Then, by inference rule GenX ,

X∀
n ⊢ Ai(β ⇒ ϕ[x/q]) ⇒ Xi(β ⇒ ϕ[x/q]).

Since β1, . . . ,βn ∈ Γ/Xi, it follows that Γ ⊢ Xiβ1 ∧ · · ·∧Xiβn. Since Γ ⊢ Aiβ, standard modal logic
arguments show that Γ ⊢ Xiβ. Since Γ ⊢ Ai(ϕ[x/q]) by assumption, it follows that Γ ⊢ Xiϕ[x/q], for
all but finitely many primitive propositions q. Since Γ is acceptable, Γ ⊢ ∀xXiϕ. BarcanX implies that
Γ ⊢ Xi∀xϕ. Thus, by definition, ∀xϕ ∈ Γ/Xi, as desired.

In case (2), suppose that Γ ̸⊢ Aiq for infinitely many primitive propositions q. By A0X and A5,
if ψ contains the primitive proposition q, then X∀

n ⊢ Xiψ ⇒ Aiq. Since by definition, ψ ∈ Γ/Xi iff
Γ ⊢ Xiψ, it follows that Γ/Xi does not contain any formulas that mention primitive propositions q such
that Γ ̸⊢ Aiq. Since there are infinitely many such q’s, pick one that does not appear in ϕ and such that
Γ/Xi ⊢ ϕ[x/q]. Since Γ/Xi ⊢ ϕ[x/q], it follows that there exists a subset {β1 . . . ,βn} ⊆ Γ/Xi such
that

X∀
n ⊢ β ⇒ ϕ[x/q],

where β = β1 ∧ · · · ∧ βn. Since q does not occur in β or ϕ, by Lemma A.2, we have

X∀
n ⊢ ∀x(β ⇒ ϕ).

Since β is a sentence, applying K∀ and N∀, it easily follows that

X∀
n ⊢ β ⇒ ∀xϕ,

which implies that Γ/Xi ⊢ ∀xϕ, as desired. Thus, the result also holds in case (2).

Lemma A.14: If Γ is an acceptable X∀
n-consistent set of sentences, then there is an acceptable maximal

X∀
n-consistent set of sentences that contains Γ.
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Proof: Exactly the same proof as that of Lemma A.6 replacing K∀
n withX∀

n everywhere.

Lemma A.15: If Γ is a maximalX∀
n-consistent set of sentences containing ¬Xiϕ and Aiϕ, then Γ/Xi∪

{¬ϕ} isX∀
n-consistent.

Proof: Standard Modal logic argument; see Hughes and Cresswell 1996, Lemma 6.4.

Lemma A.16: If Γ is an acceptable maximal X∀
n-consistent set of sentences, ¬Xiϕ ∈ Γ and Aiϕ ∈ Γ,

then there exists an acceptable maximalX∀
n-consistent set of sentences ∆ such that Γ/Xi∪{¬ϕ} ⊆ ∆.

Proof: By Lemma A.15, Γ/Xi ∪ {¬ϕ} is X∀
n-consistent. By Lemma A.13, Γ/Xi is acceptable. By

Lemma A.5, it follows that Γ/Xi ∪ {¬ϕ} is an acceptable X∀
n-consistent set of sentences. The result

follows immediately from Lemma A.14.

Lemma A.17: If ϕ is aX∀
n-consistent sentence, then ϕ is satisfiable inM∅,wgp

n (Φ,X ), whereM∅,wgp
n (Φ,X )

is the class of awareness structures that are weakly generated by primitive propositions.

Proof: Let Mc = (S,K1, ...,Kn,A1, . . . ,An,π) be a canonical awareness structure constructed as
follows

• S = {sV : V is an acceptable maximal X∀
n-consistent set of sentences};

• π(sV , p) =

{
1 if p ∈ V ,
0 if p /∈ V ;

• Ai(sV ) = {ϕ : Aiϕ ∈ V };

• Ki(sV ) = {sW : V/Xi ⊆ W}.

Again, we show that if ψ is a sentence, then

(M c, sV ) |= ψ iff ψ ∈ V. (2)

Note that this claim suffices to prove Lemma A.17 since, if ϕ is a X∀
n-consistent sentence, by Lem-

mas A.4 and A.14, it is contained in an acceptable maximalX∀
n-consistent set of sentences.

We prove (2) by induction of the depth of nesting of ∀, with a subinduction on the length of the
sentence.

The base case is if ψ is a primitive proposition, in which case (2) follows immediately from the
definition of π. For the inductive step, given ψ, suppose that (2) holds for all formulas ψ′ such that
either the depth of nesting for ∀ in ψ′ is less than that in ψ, or the depth of nesting is the same, and ψ′ is
shorter than ψ. We proceed by cases on the form of ψ.

• If ψ has the form ¬ψ′ or ψ1 ∧ ψ2, then the result follows easily from the inductive hypothesis.

• If ψ has the form Aiψ′, then note that ψ′ is a sentence and (Mc, sV ) |= Aiψ′ iff ψ′ ∈ Ai(sV ) iff
Aiψ′ ∈ V .
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• If ψ has the formXiψ′, then if ψ ∈ V , then ψ′ ∈ W for everyW such that sW ∈ Ki(sV ). By the
induction hypothesis, (Mc, sW ) |= ψ′ for every sW ∈ Ki(sV ). By A0X , we have that Aiψ′ ∈ V .
Thus, ψ′ ∈ Ai(sV ) which implies that (Mc, sV ) |= ψ. If ψ /∈ V , then ¬ψ ∈ V . If Aiψ′ /∈ V ,
then ψ′ /∈ Ai(sV ) which implies that (Mc, sV ) ̸|= ψ. If Aiψ′ ∈ V then, by Lemma A.16, there
exists an acceptable maximal X∀

n-consistent set of sentences W such that V/Xi ∪ {¬ψ′} ⊆ W .
By the induction hypothesis, (Mc, sW ) ̸|= ψ′. Thus, (M c, sV ) ̸|= ψ.

• Finally, suppose that ψ = ∀xψ′. If ψ ∈ V then, by axiom 1∀, ψ′[x/ϕ] ∈ V for all ϕ ∈
LX,A
n (Φ). The depth of nesting of ψ′[x/ϕ] is less than that of ∀xψ′, so by the induction hypothesis

(M,sV ) |= ψ′[x/ϕ] for all ϕ ∈ LX,A
n (Φ). By definition, (M,sV ) |= ψ, as desired. If ψ /∈ V ,

then ¬ψ ∈ V . Since V is an acceptable maximal X∀
n-consistent set, there must exist a primitive

proposition q ∈ Φ such that ¬ψ′[x/q] ∈ V . By the induction hypothesis, (Mc, sV ) ̸|= ψ′[x/q].
Thus, (M c, sV ) ̸|= ψ, as desired.

To finish the completeness proof, suppose that ϕ is valid inM∅,wgp
n (Φ,X ). If ϕ is a sentence, then

¬ϕ is a sentence and is not satisfiable inM∅,wgp
n (Φ,X ). So, by Lemma A.17, ¬ϕ is notX∀

n-consistent.
Thus, ϕ is provable inX∀

n. If ϕ is not a sentence, and {x1, . . . , xk} is the set of variables free in ϕ, then
∀x1 . . . ∀xkϕ is a valid sentence. Thus, as we just showed, ∀x1 . . . ∀xkϕ is provable in X∀

n. Applying
1∀ repeatedly it follows that ϕ is provable in X∀

n, as desired.

Theorem 5.1: Deciding if a formula in the language L∀,K,X,A
n (Φ,X ) is valid in MC

n (Φ,X ) is r.e.-
complete, for all C ⊆ {r, t, e} and n ≥ 1.

Proof: The fact that deciding validity is r.e. follows immediately from Theorem 4.1. For the hardness
result, to do the reduction, we first fix some notation. Take an R-formula to be a first-order formula
(without equality) whose only nonlogical symbol is the binary predicate R. Take an R-model to be a
relational structure which provides an interpretation for R. A countable R-model is an R-model with a
countable domain. It is well known that the satisfiability problem for R-formulas is undecidable [Lewis
1979]. Thus, it suffices to reduce the satisfiability problem for R-formulas to the satisfiability problem
for formulas in L∀,K,X,A

n (Φ,X ).
For easy of exposition, assume that the set Φ of primitive propositions includes q1, q2, and r; later

we show how to get rid of this assumption. Given an R-model N , we will construct an awareness
structure M that represents N . Roughly speaking, a state in M represents an ordered pair of domain
elements in N . The primitive proposition r will be true at a state s inM iff R(d1, d2) is true inN of the
pair (d1, d2) represented by s. The primitive propositions q1 and q2 are used to encode d1 and d2. Let σ
be the awareness formula that, roughly speaking, forces it to be the case that for all states s, if r is true
at some state t that represents (d1, d2) such that (s, t) ∈ K, then r is true at all states t′ that represent
(d1, d2) such that (s, t′) ∈ K. (It follows that if ¬r is true at some state t that represents (d1, d2) such
that (s, t) ∈ K, then ¬r is true at all states t′ that represent (d1, d2) such that (s, t′) ∈ K. The formula
σ is

∀x1∀x2(¬K¬(A(x1 ∧ q1) ∧A(x2 ∧ q2) ∧ r) ⇒ K((A(x1 ∧ q1) ∧A(x2 ∧ q2)) ⇒ r)).

Now we translate an R-formula ψ to an awareness formula ψt. We consider only R-formulas formulas
in negation normal form, i.e., formulas ψ that use ∧, ∨, ∀, and ∃, where the negation has been pushed
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in so that it occurs only in front of the predicate R. It is well known that every R-formula is equivalent
to a formula in negation normal form.

• (R(x, y))t = ¬K¬(r ∧A(x ∧ q1) ∧A(y ∧ q2))

• (¬R(x, y))t = ¬K¬(¬r ∧A(x ∧ q1) ∧A(y ∧ q2))

• (ϕ1 ∧ ϕ2)t = ϕt
1 ∧ ϕt

2

• (ϕ1 ∨ ϕ2)t = ϕt
1 ∨ ϕt

2

• (∀xϕ)t = ∀xϕt

• (∃xϕ)t = ∃xϕt

We say that an awareness structure M = (S,K,A,π) is universal if K = S × S. It is easy to
see that if M is a universal structure, then M ∈ MC

1 (Φ,X ) for all C ⊆ {r, t, e}. Moreover, an easy
argument by induction on structure, whose proof we leave to the reader, shows the following.

Lemma A.18: IfM = (S, . . .) is a universal structure, ψ is an R-formula in negation normal form, and
V is a syntactic valuation, then (M,s,V) |= ψt for some s ∈ S iff (M,s′,V) |= ψt for all states s′ ∈ S.

We write (M,V) |= ψt if (M,s,V) |= ψt for all s ∈ S.
Theorem 5.1 follows from the following claim:

Claim A.19: For all C ⊆ {r, t, e}, ϕ is satisfiable in an R-model iff ϕt ∧ σ is satisfiable inMC
1 (Φ,X ).

To prove Claim A.19, first suppose that ψ is a satisfiable R-formula. It is well known that an R-
formula is satisfiable iff it is satisfiable in a countable R-model [Enderton 1972] (that is, an R-model
with a countable domain. (Of course, this result holds for arbitrary first-order formulas, not just R-
formulas.) Thus, we can assume without loss of generality that ψ is satisfied in the R-model N with
countable domain DN .

Let L be a surjection from LK,X,A
1 (Φ) to DN . (Since DN is countable, such a surjection exists.)

Given the R-model N with countable domain DN , define MN = (S,K,A,π) to be the universal
awareness structure such that

• S = {(d1, d2) : d1, d2 ∈ DN};

• π((d1, d2), r) = true iff (d1, d2) ∈ R;

• π((d1, d2), q) = true for all q ∈ Φ− {r};

• A((d1, d2)) = {ψ ∧ q1 : L(ψ) = d1} ∪ {ψ′ ∧ q2 : L(ψ′) = d2}.

It is easy to check thatMN |= σ; we leave the proof to the reader. Thus, it suffices to show that there
is some state s and syntactic valuation V such that (MN , s,V) |= ϕt. This follows from the following
result.
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Lemma A.20: For every first-order formula ψ in negation normal form, if N |= ψ thenMN |= ψt.

Proof: We actually prove a slightly more general result. A syntactic valuation V is L-compatible with
a valuation V on N (that is, a function mapping variables to elements of DN ) if, for all variables x,
L(V(x)) = V (x). We show that for all first-order formulas ψ (not necessarily a sentence) and all
valuations V on N , if (N,V ) |= ψ, then (MN ,V) |= ψt for all syntactic valuations V L-compatible
with V . The proof is by induction on structure.

Suppose that ψ = R(x, y). Then, (N,V ) |= ψ iff s = (V (x), V (y)) ∈ R. By definition, s ∈ R iff
π(s, r) = true and (MN , s,V) |= A(x∧q1)∧A(y∧q2) for all syntactic valuations V L-compatible with
V. SinceMN is universal and R(x, y)t = ¬K¬(r∧A(x∧ q1)∧A(y ∧ q2)), it follows that (MN ,V) |=
R(x, y)t for all V L-compatible with V . A similar argument applies if ψ is of the form ¬R(x, y). If
ψ = ψ1 ∧ ψ2 or ψ = ψ1 ∨ ψ2, the result follows easily from the induction hypothesis. Suppose that
ψ = ∀xψ′, (N,V ) |= ∀xψ′, and V is L-compatible with V . We want to show that (MN ,V) |= ψt.
Since ψt = ∀x(ψ′)t, we must show that (MN ,V ′) |= (ψ′)t for all V′ ∼x V . Given a valuation V′ ∼x V ,
consider the valuation V ′ = L ◦ V ′ on N ; that is, V ′(y) = L(V ′(y)) for all variables y. Clearly, if
y ̸= x, V ′(y) = L(V ′(y)) = L(V(y)) = V (y). Thus, V ′ ∼x V , so (N,V ′) |= ψ′. Moreover, since
V ′ is clearly L-compatible with V ′, it follows from the induction hypothesis that (MN ,V ′) |= (ψ′)t.
Hence, (MN ,V) |= ∀x(ψ′)t, as desired. Finally, suppose that ψ = ∃xψ′, (N,V ) |= ψ, and V is L-
compatible with V . We want to show that (MN ,V) |= ψt. Since (N,V ) |= ∃xψ′, there must exist some
valuation V ′ ∼x V such that (N,V ′) |= ψ′. By the induction hypothesis, for all V′′ L-compatible with
V ′, we have (MN ,V ′′) |= (ψ′)t. Choose some formula ϕ′ ∈ L−1(V ′(x)) (such a ϕ′ exists since L is a
surjection). Define V′ by taking V′(y) = V(y) for y ̸= x and V′(x) = ϕ′. Clearly V ′ is L-compatible
with V ′. Thus, (MN ,V ′) |= (ψ′)t, by the induction hypothesis. Hence, (MN ,V) |= ∃x(ψ′)t. This
completes the induction proof.

We have now proved one direction of Claim A.19: for all C ⊆ {r, t, e}, if ϕ is satisfiable in some
R-model, then ϕt ∧ σ is satisfiable in some structure in MC

n (Φ,X ). For the converse, suppose that
ϕt ∧σ is satisfiable in some structureM = (S,K, A,π) inMC

1 (Φ,X ). If (M,s) |= ϕt ∧σ, then define
an R-model NM,s whose domain DM,s = LK,X,A

1 (Φ) and RM,s (the interpretation of R in NM,s) is
{(ψ,ψ′) : π(t, r) = true for all t such that (s, t) ∈ K, ψ ∧ q1 ∈ A(t), and ψ′ ∧ q2 ∈ A(t)}. Note that
because the domain onNM,s is LK,X,A

1 (Φ), a syntactic valuation is also a valuation onNM,s. The other
direction of Claim A.19 follows immediately from the following result.

Lemma A.21: For all formulas ψ in negation normal form and all syntactic valuations V , if (M,s,V) |=
ψt ∧ σ then (NM,s,V) |= ψ.

Proof: We prove the lemma by induction on the length of ψ. If ψ = R(x, y) and (M,s,V) |= ψt ∧ σ,
then that there exists t such that (s, t) ∈ K, π(t, r) = true, V(x) ∧ q1 ∈ A(t), and V(y) ∧ q2 ∈ A(t).
Since σ implies that for all t′ such that (s, t′) ∈ K, V(x) ∧ q1 ∈ A(t′) and V(y) ∧ q2 ∈ A(t′), it must
be the case that π(t′, r) = true. Thus, by definition of RM,s, it follows that (V(x),V(y)) ∈ RM,s.
Therefore, (NM,s,V) |= ψ. A similar argument applies if ψ is of the form ¬R(x, y). If ψ = ψ1 ∧ ψ2

or ψ = ψ1 ∨ ψ2, the result follows easily from the induction hypothesis. If ψ = ∀xψ′ and (M,s,V) |=
ψt ∧ σ, then, since σ is a sentence, for all V′ ∼x V , we have (M,s,V ′) |= (ψ′)t ∧ σ. By the induction
hypothesis, it follows that (NM,s,V ′) |= ψ′ for all V′ such that V′ ∼x V . Since Dn = LK,X,A

1 (Φ),
it follows that (NM,s,V) |= ∀xψ′. Finally, suppose that ψ = ∃xψ′ and (M,s,V) |= ψt ∧ σ. Again,
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since σ is a sentence, there exists some V′ ∼x V such that (M,s,V′) |= (ψ′)t ∧ σ. By the induction
hypothesis, it follows that (NM,s,V ′) |= ψ′. Thus, (NM,s,V) |= ∃xψ′, as desired.

This completes the proof of Claim A.19 and Theorem 5.1. Note that exactly the same proof works
if we take q2 = ¬q1 and r = q1. Therefore, the assumption that Φ includes q1, q2 and r can be made
without loss of generality.

Theorem 5.2: The problem of deciding if a formula in the language L∀,Kn (Φ,X ) is valid inMC
n (Φ,X )

is r.e.-complete if n ≥ 2 or if e /∈ C .

Proof: The fact that deciding validity is r.e. in all these cases follows immediately from Theorem 4.1.
To prove hardness, we start with the case that e ∈ C and n = 2. For ease of exposition, we assume

that Φ is countably infinite. We show at the end of the proof how to remove this assumption. Let an
R-formula, an R-model, and an countable R-model be as defined in the proof of Theorem 5.1. Again,
it suffices to reduce the satisfiability problem for R-formulas to the satisfiability problem for formulas
in L∀,K

n (Φ,X ).
Assume that Φ contains the primitive propositions p, q, and r. Our goal is to write a modal formula

that forces a model to have four types of states:

• States satisfying ¬p∧¬q. Intuitively, these states will represent pairs (d1, d2) of domain elements
in an R-model.

• States satisfying p ∧ ¬q. Intuitively, these states represent the first element d1 in a pair (d1, d2).

• States satisfying ¬p∧q. Intuitively, these states represent the second element d2 in a pair (d1, d2).

• States satisfying p ∧ q. Intuitively, these states represent domain elements.

We want it to be the case that the states satisfying ¬p ∧ ¬q form a K1 equivalence class; for each state
satisfying ¬p∧¬q, there is aK2-edge going to a state satisfying p∧¬q and one going to a state satisfying
¬p ∧ q. Intuitively, this triple of states represents a pair (d1, d2), the first component of the pair, and the
second component of the pair. Finally, from each state satisfying p ∧ ¬q or ¬p ∧ q, there is a K1-edge
to a state satisfying p ∧ q; the latter state is the one that determines the domain element. Finally, the
primitive proposition r is true at a state satisfying ¬p ∧ ¬q iff R(d1, d2) holds in the R-model. (We
remark that this construction is somewhat similar in spirit to a construction used by Engelhardt, van der
Meyden, and Moses [2005] to prove that, in the case of semantic valuations, the validity problem is Π2-
complete.) Figure 1 describes the desired situation:

In the figure, the K1 relation consists of the pairs joined by dotted lines; the K2 consists of the pairs
liked by the continuous edges. (In both cases we omit self-loops.)

Let atomic(x ) be an abbreviation for the formula

¬K1K2K1¬(p ∧ q ∧ x) ∧ ¬∃y(¬K1K2K1¬(x ∧ y) ∧ ¬K1K2K1¬(x ∧ ¬y)).

Intuitively, atomic(x ) is true if allK1K2K1-reachable worlds that satisfy x agree on all sentences. We
use worlds where p ∧ q ∧ x holds for some atomic formula x to represent elements in d. If two worlds
satisfy the same atomic formula, then they represent the same domain element.
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Figure 1: States.

Let σ1 be the modal formula that forces the set of atomic formulas to be non-empty. σ1 is an
abbreviation for ∃x(atomic(x )).

Let σ2 be the modal formula that, roughly speaking, forces it to be the case that if r is true at some
state t that represents (d1, d2) (i.e., a state where ¬p ∧ ¬q is true), then r is true at all states t′ that
represent (d1, d2). (It follows that if ¬r is true at some state t that represents (d1, d2), then ¬r is true at
all states t′ that represent (d1, d2).) The formula σ2 is an abbreviation for

∀x∀y((atomic(x ) ∧ atomic(y)∧
¬K1¬(r ∧ ¬p ∧ ¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧ q ∧ x)) ∧ ¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y))))
⇒ K1(¬p ∧ ¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧ q ∧ x)) ∧ ¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y)) ⇒ r)).

Let σ = σ1 ∧ σ2.
We now translate an R-formula ψ to an awareness formula ψt. We consider only R-formulas in

negation normal form.

• (R(x, y))t = atomic(x ) ∧ atomic(y) ∧ ¬K1¬(r ∧ ¬p ∧ ¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧ q ∧
x )) ∧ ¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y)));

• (¬R(x, y))t = atomic(x ) ∧ atomic(y) ∧ ¬K1¬(¬r ∧ ¬p ∧ ¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧
q ∧ x )) ∧ ¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y)));

• (ϕ1 ∧ ϕ2)t = ϕt
1 ∧ ϕt

2;
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• (ϕ1 ∨ ϕ2)t = ϕt
1 ∨ ϕt

2;

• (∀xϕ)t = ∀x(atomic(x ) ⇒ ϕt );

• (∃xϕ)t = ∃x(atomic(x ) ∧ ϕt).

Theorem 5.2 in the case that C ⊇ {e} follows from the following claim:

Claim A.22: If e ∈ C and n ≥ 2, then for every R-sentence ψ, ψ is satisfiable in an R-model iff ψt ∧ σ
is satisfiable inMC

n (Φ,X ).

To prove Claim A.22, first suppose that ψ is a satisfiable R-sentence. As in Theorem 5.1, we can
assume without loss of generality that ψ is satisfied in an R-model N with countable domain DN . Let
L be a surjection from Φ − {p, q, r} to DN . (Since DN is countable and Φ is countably infinite, by
assumption, such a surjection exists.) DefineMN = (S,K1,K2,π) to be the Kripke structure such that

• S = DN ∪ (DN ×DN} ∪2
i=1 {(d1, d2, i) : d1, d2 ∈ DN};

• π(s, r) = true iff (d1, d2) ∈ R, and s = (d1, d2);

• π(s, p) = true iff either s ∈ DN or s is of the form (d1, d2, 1) for some d1, d2 ∈ DN ;

• π(s, q) = true iff either s ∈ DN or s is of the form (d1, d2, 2) for some d1, d2 ∈ DN ;

• for all p′ ∈ Φ− {p, q, r}, π(s, p′) = true iff L(p′) = d and s = d;

• K1(s) = (DN ×DN ) for s ∈ (DN ×DN ), and K1((d1, d2, 1)) = K1((d2, d1, 2)) = K1(d1) =
{(d1, d2, 1), (d2, d1, 2), d1} for d1, d2 ∈ DN ;

• K2((d1, d2)) = K2((d1, d2, 1)) = K1((d1, d2, 2)) = {(d1, d2), (d1, d2, 1), (d1, d2, 2)} for d1, d2 ∈
DN , and K2(d) = {d} for d ∈ DN .

It is easy to check thatMN ∈ Mr,e,t
2 (Φ,X ) (and hence also inMC

2 (Φ,X ) for allC such that e ∈ C)
and that (MN , (d1, d2)) |= σ for all (d1, d2) ∈ DN × DN (note that σ is a sentence and therefore is
independent of the valuation); we leave the proof to the reader. Thus, it suffices to show that there exists
a state s∗ ∈ DN ×DN such that (MN , s∗) |= ψt. This follows from the following result.

Lemma A.23: If s∗ ∈ DN × DN , then for every first-order sentence ψ in negation normal form, if
N |= ψ then (MN , s∗) |= ψt.

Proof: Fix s∗ ∈ DN ×DN . We actually prove a slightly more general result. A syntactic valuation V
is MN -compatible with a valuation V on N if, for all variables x and all s ∈ S, (MN , s,V) |= x iff
s = V (x). We show that for all first-order formulas ψ (not just sentences) and all valuations V on N , if
(N,V ) |= ψ, then (MN , s∗,V) |= ψt for all syntactic valuations V MN -compatible with V . The proof
is by induction on structure.

Suppose that ψ = R(x, y). Then, (N,V ) |= ψ iff (V (x), V (y)) ∈ R. By definition of π, if
(V (x), V (y)) ∈ R then π((V (x), v(y)), r) = true. Let V be a syntactic valuation MN -compatible
with V . By definition, (MN , s1,V) |= x iff s1 = V (x) and (MN , s2,V) |= y iff s2 = V (y). Thus,
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by definition of MN , it is easy to see that (MN , s∗,V) |= atomic(x ) ∧ atomic(y). By definition of
K1 and π, we have (MN , (V (x), V (y), 1),V) |= ¬K1¬(p ∧ q ∧ x) and (MN , (V (x), V (y), 2),V) |=
¬K1¬(p ∧ q ∧ y). By definition of K2 and π, it follows that (MN , (V (x), V (y)),V) |= r ∧ ¬p ∧ ¬q ∧
¬K2¬(p∧¬q∧¬K1¬(p∧ q∧x))∧¬K2¬(¬p∧ q∧¬K1¬(p∧ q∧y)). Since (V (x), V (y)) ∈ K1(s∗),
(MN , s∗,V) |= atomic(x )∧ atomic(y), and (R(x, y))t = atomic(x )∧ atomic(y)∧¬K1¬(r ∧¬p ∧
¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧ q ∧ x )) ∧ ¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y))), it follows that
(MN , s∗,V) |= R(x, y)t for all V MN -compatible with V . A similar argument applies if ψ is of the
form ¬R(x, y).

If ψ = ψ1 ∧ ψ2 or ψ = ψ1 ∨ ψ2, the result follows easily from the induction hypothesis.
Suppose that ψ = ∃xψ′, (N,V ) |= ψ, and V is MN -compatible with V . We want to show that

(MN , s∗,V) |= ψt. Since (N,V ) |= ∃xψ′, there must exist some valuation V ′ ∼x V such that
(N,V ′) |= ψ′. By the induction hypothesis, for all V′′ MN -compatible with V ′, we have (MN , s∗,V ′′) |=
(ψ′)t. Choose some primitive proposition p′ ∈ L−1(V ′(x)) (such a p′ exists since L is a surjection).
Define V ′ by taking V′(y) = V(y) for y ̸= x and V′(x) = p′. Clearly V ′ is MN -compatible with V ′.
Thus, by the induction hypothesis, (MN , s∗,V ′) |= (ψ′)t. Since (MN , s∗,V ′) |= atomic(x ), we have
(MN , s∗,V) |= ∃x(atomic(x ) ∧ (ψ′)t) for all V MN -compatible with V .

Finally, suppose that ψ = ∀xψ′, (N,V ) |= ∀xψ′, and V is MN -compatible with V . We want to
show that (MN , s∗,V) |= ψt. Since ψt = ∀x(atomic(x ) ⇒ (ψ′)t), we must show that (MN , s∗,V ′) |=
(atomic(x ) ⇒ (ψ′)t ) for all V′ ∼x V . Given a valuation V′ ∼x V , suppose that (MN , s∗,V ′) |=
atomic(x ). It follows that there is a unique t ∈ DN such that (MN , t,V ′) |= x. Let V ′ be the valuation
such that V ′ ∼x V and V ′(x) = t. Since V is MN -compatible with V , it can be easily shown that
V ′ MN -compatible with V ′. It thus follows from the induction hypothesis that (MN , s∗,V ′) |= (ψ′)t.
Hence, (MN , s∗,V) |= ∀x(atomic(x ) ⇒ (ψ′)t), as desired. This completes the induction proof.

To prove the other direction of Claim A.22, suppose that ϕt ∧ σ is satisfiable in some structure
M = (S,K1,K2,π) ∈ Me

2(Φ,X ). If (M,s,V) |= ϕt ∧ σ, then define an R-model NM,s whose
domain DM,s = {ϕ ∈ LK

2 (Φ) : (M,s) |= atomic(ϕ)} and RM,s (the interpretation of R in NM,s) is
{(ψ,ψ′) : π(t, r) = true for all t such that (s, t) ∈ K, (M, t) |= ¬p∧¬q∧¬K2¬(p∧¬q∧¬K1¬(p∧
q∧ψ))∧¬K2¬(¬p∧ q∧¬K1¬(p∧ q∧ψ′)). Define V to beDM,s-compatible with V if V(x) ∈ DM,s

implies that V (x) = V(x). The other direction of Claim A.22 follows immediately from the following
result.

Lemma A.24: For all formulas ψ in negation normal form and all syntactic valuations V , if (M,s,V) |=
ψt ∧ σ then (NM,s, V ) |= ψ for all V DM,s-compatible with V .

Proof: We prove the lemma by induction on the structure of ψ. If ψ = R(x, y) and (M,s,V) |= ψt∧σ,
then (M,s,V) |= atomic(x ) ∧ atomic(y) and there exists t such that (s, t) ∈ K1 and (M, t,V) |=
r∧¬p∧¬q∧¬K2¬(p∧¬q∧¬K1¬(p∧ q∧x))∧¬K2¬(¬p∧ q∧¬K1¬(p∧ q∧ y)). Since σ implies
that for all t′ such that (s, t′) ∈ K1 and (M, t′,V) |= ¬p ∧ ¬q ∧ ¬K2¬(p ∧ ¬q ∧ ¬K1¬(p ∧ q ∧ x)) ∧
¬K2¬(¬p ∧ q ∧ ¬K1¬(p ∧ q ∧ y)), it must be the case that π(t′, r) = true. Thus, by definition of
RM,s, it follows that (V(x),V(y)) ∈ RM,s. Since V(x),V(y) ∈ DM,s, (V (x), V (y)) ∈ RM,s for all
V DM,s-compatible with V . Therefore, (NM,s, V ) |= ψ for all V DM,s-compatible with V . A similar
argument applies if ψ is of the form ¬R(x, y). If ψ = ψ1 ∧ψ2 or ψ = ψ1 ∨ψ2, the result follows easily
from the induction hypothesis.
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Suppose that ψ = ∀xψ′ and (M,s,V) |= σ ∧ ψt. Since ψt = ∀x(atomic(x ) ⇒ (ψ′)t) and σ is a
sentence, for all V′ ∼x V , we have (M,s,V ′) |= σ∧(atomic(x ) ⇒ (ψ′)t). In particular, for all V′ ∼x V
such that (M,s,V′) |= atomic(x ), we have (M,s,V ′) |= (ψ′)t. By the induction hypothesis, it follows
that (NM,s, V ′) |= ψ′ for all V ′ DM,s-compatible with V′. Suppose that V is DM,s-compatible with V .
We want to show that (NM,s, V ) |= ∀xψ′. Consider any V ′ ∼x V . Let V ′′ be the syntactic valuation
such that V′′ ∼x V and V ′′(x) = V ′(x). Clearly V ′ is DM,s-compatible with V′′. Since V ′′ ∼x V ,
(M,s,V ′′) |= atomic(x ), and V ′ is DM,s-compatible with V′′, the induction hypothesis implies that
(NM,s, V ′) |= ψ′. It follows that (NM,s, V ′) |= ψ′. Therefore, (NM,s, V ) |= ∀xψ′, as desired.

Finally, suppose that ψ = ∃xψ′ and (M,s,V) |= ψt ∧ σ. Since ψt = ∃x(atomic(x ) ∧ (ψ′)t) and
σ is a sentence, there exists some V′ ∼x V such that (M,s,V′) |= σ ∧ atomic(x ) ∧ (ψ′)t . By the
induction hypothesis, it follows that (NM,s, V ′) |= ψ′ for all V ′ DM,s-compatible with V′. Let V be
DM,s-compatible with V . Let V ′′ be the valuation such that V ′′ ∼x V and V ′′(x) = V ′(x). Clearly V ′′

is DM,s-compatible with V′. Thus, by the induction hypothesis, (NM,s, V ′′) |= ψ′. Since V ′′ ∼x V , it
follows that (NM,s, V ) |= ∃xψ′, as desired.

This completes the proof of Theorem 5.2 in the case that e ∈ C . We next briefly describe the
changes necessary to deal with the case that e /∈ C .

Let atomic ′(x ) (resp., σ′1, σ′2, σ′, and ψT ) be the result of replacing every occurrence of K2 in
atomic(x ) (resp., σ1, σ2, σ, and ψt) by K1. (Of course, if t ∈ C , then the K1K1K1 in atomic(x ) can
be simplified to K1.) We now show that Claim A.22 holds if C ⊆ {r, t} and n ≥ 1. For the forward
direction, if ψ is satisfiable in an R-model N with a countable domain DN , we construct a structure
M ′

N = (S,K′
1,π), where S and π are just as in the construction ofMN and K′

1 is given by

• K′
1((d1, d2)) = DN ×DN ∪ {(d1, d2, 1), (d1, d2, 2), d1, d2}, K′

1((d1, d2, 1)) = {(d1, d2, 1), d1},
K′

1((d1, d2, 2)) = {(d1, d2, 2), d2}, K′
1(d1) = {d1} for d1, d2 ∈ DN ;

It is easy to check that M′
N ∈ Mr,t

1 (Φ,X ) (and hence also in MC
1 (Φ,X ) for all C such that e /∈ C)

and that (M ′
N , (d1, d2)) |= σ for all (d1, d2) ∈ DN × DN ; we leave the proof to the reader. We also

leave it to the reader to check that the analogue of Lemma A.23 holds. For the converse, if ψT ∧ σ′ is
satisfiable in a Kripke structure M ∈ M1, we construct an R-model satisfying ψ using essentially the
same construction as above, except that in defining the interpretation of R, we replace every occurrence
ofK2 byK1. We leave it to the reader to show that the analogue of Lemma A.24 holds.

Up to now we have assumed that Φ is infinite. However, we can apply the techniques of [Halpern
1995] to show that undecidability holds in all cases even if |Φ| = 1. Suppose that p∗ ∈ Φ. We briefly
sketch the argument in the case that e ∈ C . Let qj be the formula ¬K2K1¬(¬p∗∧¬(K2K1)jp∗, where
(K2K1)j is an abbreviation for j repetitions of K2K1. Intuitively, qj is true at a state if there is a path
that leads to p∗ in one K1K2-step and leads to ¬p∗ in an other j-K1K2 steps. Let r1 be q1 and let rj+1

be qj+1∧¬r1∧ . . .¬rj . Clearly the formulas rj are clearly mutually exclusive. In σ2, we replace ¬p∧q
by r1, replace p∧¬q by r2, replace r∧¬p∧¬q by r3, and replace ¬r∧¬p∧¬q by r4 (so that ¬p∧¬q is
replaced by r3 ∨ r4). In σ1, we replace p∧ q by ¬(r1 ∨ r2∨ r3∨ r4). The translation is the same, except
that now the translation for R(x, y) uses r3 instead of r∧¬q∧¬q, and the translation for ¬R(x, y) uses
r4. With these changes, the proof of the analogue of Lemma A.24 follows with essentially no change.
To prove the analogue of Lemma A.23, we need to construct the analogue of the Kripke structure MN .
The construction is essentially the same as that given above, except we need to add extra states to ensure
that the appropriate formulas rj holds. For example, we want to make sure that either r3 or r4 holds at
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all states in DN ×DN , so we need to add extra states to ensure that from each state in DN ×DN the
appropriate path exists. At each state in DN we ensure that rj holds for some j ≥ 5 and that rj holds
at some state in DN for each j ≥ 5. We then replace the surjection L from Φ − {p, q, r} to DN by a
surjection from {r5, r6, . . .} to DN . We leave details to the reader.

The argument in the case that e /∈ C proceeds along similar lines. If t /∈ C , we use the same
formulas as above, but replace K2K1 by K . If t ∈ C , a slightly different set of formulas must be used;
see [Halpern 1995] for details.

Theorem 5.3: The validity problem for the language L∀,K1 (Φ,X ) with respect to the structures in
MC

1 (Φ,X ) for C ⊇ {e} is decidable.

Proof: First, consider the case C = {r, e, t}. We use ideas originally due to Fine [1969]. The technical
details follow closely the decidability proof given by Engelhardt, van der Meyden, and Su [2003] for the
case where the semantics is given using semantic valuations rather than syntactic valuations. The proof
proceeds by an elimination of quantifiers. Following Fine [1969], we say that a world w in a structure
M is describable by a sentence ϕ is (M,w) |= ϕ and for all worlds w′, if (M,w) |= ϕ, then for all
sentences ψ, (M,w) |= ψ iff (M,w′) |= ψ. A world is describable if it is describable by some formula
ϕ.

Let describable(ϕ) be an abbreviation for

¬K¬ϕ ∧ ¬∃y(¬K¬(ϕ ∧ y) ∧ ¬K¬(ϕ ∧ ¬y)).

Intuitively, describable(ϕ) is satisfiable in a structure iff there is a world in the structure describable by
ϕ. Let Ckϕ be the formula that is satisfiable in a structureM iff there are at least k distinct describable
worlds where ϕ is true that the agent considers possible, where two worlds are distinct if they disagree
on the truth value of at least one formula. That is, Ckϕ for k ≥ 1 is an abbreviation for

∃x1 . . . ∃xk(∧1≤i<j≤k¬K(xi ⇔ xj) ∧ ∧k
i=1(describable(xi ) ∧ ¬K¬(xi ∧ ϕ)))

Let Ekϕ be an abbreviation for Ckϕ ∧ ¬Ck+1ϕ. Note that Ekϕ is satisfied in a structure M where the
K relation is universal iff there are exactly k distinct describable worlds where ϕ is true.

With semantic valuations, it is not hard to show that ¬K¬ϕ⇔ C1ϕ is valid. But this is not the case
if we use syntactic valuations. For example, let M = (W,K,π) be the structure where K is universal
and for each of the (uncountably many) truth assignments v to the countably infinite set of primitive
propositions in Φ, there is a unique world wv where π(wv) = v. Each of these worlds is clearly
distinct. Since there are only countably many formulas and uncountably many worlds, there must be
uncountably many undescribable worlds in this structure. (In fact, a symmetry argument shows that in
this structure no world is describable.) Thus, we need to distinguish structures where ϕ is satisfiable
but none of the worlds in which ϕ is satisfiable is describable, and structures where ϕ is not satisfiable.
(Both types of structures satisfy ¬C1ϕ.) Let E∞ϕ be an abbreviation for ¬K¬ϕ ∧ ¬C1ϕ and let E0ϕ
be an abbreviation for K¬ϕ. (Note that K¬ϕ ⇒ ¬C1ϕ is valid.) It is not hard to show that if E∞ϕ
is satisfied in a structure M , then there are actually infinitely many distinct worlds at which ϕ is true
(although none of them is describable). Finally, if l ̸= ∞, let Ml,Nϕ be an abbreviation for Elϕ if
l < N and for Clϕ if l ≥ N .

Let p = (p1, . . . , pm) be a vector of primitive propositions and propositional variables. Define a
point atom for p to be a formula of the form l1 ∧ . . . lm where each li is either pi or ¬pi. Let PA(p)
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denote the set of point atoms of p. Given a point atom a for p and a number N , define an N -bounded
count of a to be a formula of the form Ela where l < N or l = ∞, or CNa. Define a (p, k)-atom to be
a formula of the form

a ∧ ∧b∈PA(p)cb,

where a is a point atom for p and cb is an 2k-bounded count of b for each b ∈ PA(p), such that ca is not
E0a. We write At(p,k) for the set of (p, k)-atoms. These atoms have the following properties.

Lemma A.25:

(a) If A,A′ ∈ At(p, k) are distinct atoms, thenMr,e,t
1 |= ¬(A ∧A′).

(b) Mr,e,t
1 |= ∨A∈At(p,k)A.

(c) If A,A′ ∈ At(p, k), then eitherMr,e,t
1 |= A ⇒ ¬K¬A′ orMr,e,t

1 |= A ⇒ K¬A′. Moreover, we
can effectively decide which holds.

(d) If A ∈ At(p, k + 1) and B ∈ At(p · x, k) where x does not occur in p, then either Mr,e,t
1 |=

A ⇒ ∃xB orMr,e,t
1 |= A ⇒ ¬∃xB. Moreover, we can effectively decide which holds.

Proof: For part (a), note that if A and A′ are distinct (p, k)-atoms, then either they differ in their point
atom or they differ in the counting of some point atom. Therefore, it easily follows that Mr,e,t

1 |=
¬(A ∧ A′). For part (b), note that in each world in a structure M ∈ Mr,e,t

1 , exactly one point atom
is true, and for each point atom, exactly one 2k-bounded count holds. For part (c), it can be easily
checked thatMr,e,t

1 |= A ⇒ ¬K¬A′ iff A and A′ agree on all the conjuncts that are 2k-bounded counts
of some atom in PA(p) and that if a′ is the point atom in A′, 2k-bounded count of a′ (in both A and A′)
is not E0a′. Otherwise, it is easy to check thatMr,e,t

1 |= A ⇒ K¬A′.
For part (d), suppose that A is a (p, k + 1)-atom and B is a (p · x, k)-atom. Define an x-partition

of a 2k+1-bounded count cb of an atom b ∈ PA(p) to be a formula of the form e+ ∧ e−, where e+ is
a 2k-bounded count of b ∧ x, e− is a 2k-bounded count of b ∧ ¬x, and the following constraints are
satisfied:

1. if cb = Elb for l ̸= ∞, then e+ = Ml+,2k(b ∧ x) and e− = Ml−,2k(b ∧ ¬x) where l+ + l− = l;

2. if cb = C2k+1b, then

(a) e+ = C2k(b ∧ x) and e− = C2k(b ∧ ¬x), or
(b) e+ = C2k(b ∧ x) and e− = El−(b ∧ ¬x) where l− < 2k, or
(c) e+ = El+(b ∧ x) and e− = C2k(b ∧ ¬x) where l+ < 2k;

3. if cb = E∞b, then e+ = E∞(b ∧ x) and e− = E∞(b ∧ ¬x).

We claim that if e+ ∧ e− is an x-partition of cb, thenMr,e,t
1 |= cb ⇒ ∃x(e+ ∧ e−). To see that, first

suppose that cb = Elb for l ̸= ∞. Then we can suppose without loss of generality thatM |= cb, so that
b is satisfiable in exactly l describable worlds. Let ϕ1, . . . ,ϕl be the formulas describing these worlds,
and let ϕ = ∨l+

i=1ϕi. It is easy to see thatMr,e,t
1 |= cb ⇒ (e+ ∧ e−)[x/ϕ], as desired. Essentially the

same argument works if cb = C2k+1b except that we replace l by 2k+1 and, in addition, we replace l+ in
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the definition of ϕ by 2k in case (a); replace l+ by l− and substituting x for ¬ϕ instead of ϕ in case (b).
(No further changes are needed in case (c).) If cb = E∞b, then b is satisfied at infinitely many distinct
worlds, none of which are describable. Thus, there must exist some formula x such that both b ∧ x and
b∧¬x are satisfiable. Moreover, each of them must be satisfied in infinitely many distinct worlds, none
of which are describable. For if, say, b ∧ x were satisfied in only finitely many distinct worlds, it is
easy to show that each of these worlds are describable, from which it follows that b is satisfied in some
describable world.

A similar argument shows that if e+ ̸= E0(b ∧ x), thenMr,e,t
1 |= b ∧ cb ⇒ ∃x(b ∧ x ∧ e+ ∧ e−),

and if e− ̸= E0(b∧¬x), thenMr,e,t
1 |= b∧ cb ⇒ ∃x(b∧¬x∧ e+∧ e−). Conversely, a simple counting

argument shows that if e+ is a 2k-bounded count of b ∧ x, e− is a 2k-bounded count of b ∧ ¬x, and
e+ ∧ e− is not an x partition of cb, thenMr,e,t

1 |= cb ⇒ ¬∃x(e+ ∧ e−).
We can assume that A has the form a ∧ ∧b∈PA(p)cb, while B has the form a′ ∧ ∧b∈PA(p)(c

+
b ∧ c−b ),

where c+b is a 2k-bounded count of b ∧ x and c−b is a 2k-bounded count of b ∧ ¬x. We say that B is
x-compatible with A if either a′ = a ∧ x and c+a ̸= E0(a ∧ x), or a′ = a ∧ ¬x and c−a ̸= E0(a ∧ ¬x),
and moreover, for all point atoms b ∈ PA(p), we have that c+b ∧ c−b is an x-partition of cb. Thus, if B is
x-compatible with A, it follows from the observations of the previous paragraph that

Mr,e,t
1 |= A ⇒ ∃x(a′ ∧ c+a ∧ c−a ) ∧ ∧b∈(PA(p−{a}))∃x(c+b ∧ c−b ).

We now show that

Mr,e,t
1 |= (∃x(a′ ∧ c+a ∧ c−a ) ∧ ∧b∈(PA(p)−{a})∃x(c+b ∧ c−b )) ⇒ ∃xB.

Suppose that (M,w,V) |= ∃x(a′ ∧ c+a ∧ c−a ) ∧ ∧b∈(PA(p)−{a})∃x(c+b ∧ c−b ) for someM ∈ Mr,e,t
1 .

Then (M,w,V) |= (a′ ∧ c+a ∧ c−a )[x/ϕa] for some formula quantifier-free sentence ϕa. Similarly,
for every b ∈ PA(p) − {a}, there exists a quantifier-free sentence ϕb such that (M,w,V) |= (c+b ∧
c−b )[x/ϕb]. Note that, for each point atom c ∈ PA(p), we can replace the formulas ϕc with any formula
ψc that agrees with ϕc on c. That is, ifM |= (a∧ϕa) ⇔ (a∧ψa), then (M,w.V) |= (a′∧c+a ∧c−a )[x/ψa];
similarly, ifM |= (b ∧ϕb) ⇔ (b∧ ψb), then (M,w,V) |= c+b ∧ c−b )[x/ψb]. Let ψ = ∨c∈PA(p)(c∧ ϕc).
It is easy to see that ψ agrees with each of the formulas ϕc on c. It follows that

(M,w,V) |= (a′ ∧ c+a ∧ c−a )[x/ψ] ∧ ∧b∈(PA(p)−{a})(c
+
b ∧ c−b )[x/ψ].

Note that ψ may mention variables, since the point atoms in PA(p) may mention variables. (Recall that
{p} may include propositional variables.) However, let ψ′ be the sentence that results by replacing each
variable y in ψ by V(y). Clearly ψ′ is a quantifier-free sentence, and it is easy to see that

(M,w,V) |= (a′ ∧ c+a ∧ c−a )[x/ψ
′] ∧ ∧b∈(PA(p)−{a})(c

+
b ∧ c−b )[x/ψ

′].

Thus, (M,w) |= ∃xB, as desired. It follows that ifB is x-compatible withA, thenMr,e,t
1 |= A ⇒ ∃xB.

On the other hand, suppose that B is not x-compatible with A. Then we have that either (1) a′ is not
of the form a∧ x or a∧¬x; (2) a′ is of the form a∧ x but c+a = E0(a∧ x); (3) a′ is of the form a∧¬x
but c−a = E0(a ∧ ¬x); or (4) there exists a point atom b such that c+b ∧ c−b is not an x-partition of cb. In
each case, it is immediate thatMr,e,t

1 |= A ⇒ ¬∃xB.

Let L∀,K
1 (p, k) consist of all formulas in L∀,K

1 (p) with depth of quantification at most k. For a
formula ψ ∈ L∀,K

1 (p, k), let At(p, k,ψ) = {A ∈ At(p, k) : Mr,e,t
1 |= A ⇒ ψ}.
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Lemma A.26: For all ϕ ∈ L∀,K
1 (p, k), At(p, k) = At(p, k,ϕ) ∪ At(p, k,¬ϕ). Moreover, the sets

At(p, k,ϕ) and At(p, k,¬ϕ) are effectively computable.

Proof: We proceed by induction on k with a subinduction on the structure of ϕ. For all k, the statement
is immediate if ϕ is a primitive proposition or propositional variable in {p}, and the result follows eas-
ily from the induction hypothesis if ϕ is of the form ¬ϕ′ or of the form ϕ1 ∧ ϕ2. If ϕ is of the form
Kϕ′, by Lemma A.25(c), we can effectively compute the set At(p, k,K¬B) for each (p, k)-atom B.
It is easy to see that Mr,e,t

1 |= A ⇒ Kϕ iff Mr,e,t
1 |= A ⇒ K¬B for all B ∈ At(p, k,¬ϕ′). Thus,

At(p, k,Kϕ′) = ∩B∈At(p,k,¬ϕ′)At(p, k,K¬B). Moreover, ifMr,e,t
1 |= A ⇒ ¬K¬B for some B ∈

At(p, k,¬ϕ′), thenMr,e,t
1 |= A ⇒ ¬Kϕ′. Thus, At(p, k,¬Kϕ′) ⊇ ∪B∈At(p,k,¬ϕ′)At(p, k,¬K¬B).

It follows from LemmaA.25(c) that ∪B∈At(p,k,¬ϕ′)At(p, k,¬K¬B) = ∩B∈At(p,k,¬ϕ′)At(p, k,K¬B) =

At(p, k,Kϕ′). Since At(p, k,¬Kϕ′) and At(p, k,Kϕ′) are clearly disjoint, it follows that

At(p, k,¬Kϕ′) = ∪B∈At(p,k,¬ϕ′)At(p, k,¬K¬B),

and that bothAt(p, k,Kϕ′) andAt(p, k,¬Kϕ′) are effectively computable. Finally, ifϕ = ∀xϕ′, simi-
lar arguments using LemmaA.25(d) show thatAt(p, k,∀xϕ′) = ∩B∈At(p,k−1,¬ϕ′)At(p, k−1,∀¬B)(=
∩B∈At(p,k−1,¬ϕ′)At(p, k − 1,¬∃xB) and At(p, k,¬∀xϕ′) = ∪B∈At(p,k−1,¬ϕ′)At(p, k − 1,¬∀¬B).
Again, by Lemma A.25(d), these sets are effectively computable.

To complete the proof of Theorem 5.3 for the case C = {r, e, t}, suppose that ϕ ∈ L∀,K1 (Φ,X ).
Then there exists some finite p such that ϕ ∈ L∀,K

1 (p). We claim that ϕ is valid iff At(p, k,ϕ) =
At(p, k). The fact that ϕ is valid if At(p, k,ϕ) = At(p, k) follows immediately from Lemma A.25(b).
For the converse, note that if At(p, k,ϕ) ̸= At(p, k), then by Lemma A.26, At(p, k,¬ϕ) ̸= ∅. It is
easy to see that each atom in At(p, k) is satisfiable in some structure inMr,e,t

1 . If M is a structure in
Mr,e,t

1 satisfying A ∈ At(p, k,¬ϕ), then M also satisfies ¬ϕ, showing that ϕ is not valid. Finally, by
Lemma A.26, we can effectively compute At(p, k,ϕ) and check if At(p, k,ϕ) = At(p, k).

Thus, we have dealt with the case that C = {r, e, t}. It is well known [Fagin, Halpern, Moses,
and Vardi 1995, Lemma 3.1.5] and easy to show that a reflexive Euclidean relation is transitive. Thus,
M{r,e,} = M{r,e,t}, so we have also dealt with the case that C = {r, e}.

For the case C = {e, t}, essentially the same proof works. We briefly list the required modifica-
tions:

• We define a formula indist that is true if a world indistinguishable from the current world (in
the sense that the same formulas are true in both worlds) is considered possible. indist is an
abbreviation for:

∃x(describable(x) ∧ ∀y(y ⇔ ¬K¬(x ∧ y))).

Note that indist is guaranteed to hold in a world where the accessibility relation is reflexive.

• We modify the definition of (p, k)-atom. We define a (p, k)-atom to to include a conjunct saying
whether indist holds. Thus, we define a (p, k)-atom to have one of the following forms:

– a ∧ indist ∧ ∧b∈PA(p)cb, where ca ̸= E0a; or
– a ∧ ¬indist ∧ ∧b∈PA(p)cb.
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Note that a ∧ ¬indist ∧ E0a is satisfiable in M{e,t}, since the accessibility relation no longer
needs to be reflexive, but a ∧ indist ∧ E0a is not.

• We replaceMr,e,t byMe,t throughout the statement and proof of Lemma A.25.

• In the proof of Lemma A.25(c), we have Me,t
1 |= A ⇒ K¬A′ not only in the case that A and

A′ disagree on the 2k-bounded count of some atom in PA(p), but also if ¬indist is one of the
conjuncts of A′. This is true since all structures inMe, and hence inMe,t, the K relations satisfy
secondary reflexivity: if M = (S,K,π) ∈ Me and (s, t) ∈ K, then it is easy to check that
(t, t) ∈ K. Thus, indist holds at t.

• In the proof of Lemma A.25(d), we modify the definition of x-compatibility. We now say that B
is x-compatible with A if either

(a) indist is a conjunct of both A and B, and all the previous conditions for x-compatibility
hold; or

(b) ¬indist is a conjunct of both A and B, and all the preivous conditions for x-compatibilty
hold except that we do not require that c+a ̸= E0(a ∧ x) or c−a ̸= E0(a ∧ ¬x).

It is easy to show thatM{e,t} |= A ⇒ ∃xB if B is x-compatible with A and thatM{e,t} |= A ⇒
¬∃xB if B is not x-compatible with A.

The argument for the case C = {e} is similar to that for C = {e, t}. It depends on the following
semantics characterization of satisfiability with respect to structures in Me

1, similar in spirit to corre-
sponding characterizations forMret

1 andMrst
1 (see [Fagin, Halpern, Moses, and Vardi 1995, Proposi-

tion 3.1.6]): A formula is satisfiable in Me
1 iff there exists some structure M such that (M,s0) |= ϕ,

whereM = ({s0}∪S ∪ S′,π,K), and (a) S and S′ are disjoint sets of states; (b) if S = ∅ then S′ = ∅,
(c) K(s0) = S; (d) K(s) = S ∪ S′ if s ∈ S ∪ S′; and (e) |{s0} ∪ S ∪ S′| ≤ |ϕ|.

Given this characterization, it can be seen that for each point atom b we must count not only the
number of describable worlds where b is true that an agent considers possible, but also the number of
describable worlds that an agent considers possible that he considers possible. Define indistKK , N -
bounded KK-count, CKK

k ϕ, and EKK
k ϕ by replacing every occurrence ofK byKK in the definitions

of indist, N -bounded count, CKϕ, and Ekϕ, respectively. Since the K relation in structures in Me
1

satisfies secondary reflexivity and the Euclidean property, it is easy to check that Me
1 |= indist ⇒

indistKK ,Me
1 |= E∞ϕ⇒ ¬EKK

0 ϕ,Me
1 |= Ekϕ⇒ CKK

k ϕ, andMe
1 |= CNϕ⇒ CKK

N ϕ.
We now modify the definition of (p, k)-atom to include a description of what is true at the worlds

that an agent considers possible that he considers possible. Thus, we now take a (p, k)-atom to have the
form

• a ∧ indist ∧ indistKK ∧b∈PA(p) (cb ∧ cKK
b ),

• a ∧ ¬indist ∧ indistKK ∧b∈PA(p) (cb ∧ cKK
b ), or

• a ∧ ¬indist ∧ ¬indistKK ∧b∈PA(p) (cb ∧ cKK
b ),

where (a) cb (resp., cKK
b ) is a 2k-bounded count (resp., KK-count) for all b ∈ PA(p), (b) ca ̸= E0a

if indist is a conjunct, (c) cKK
a ̸= EKK

0 a if indistKK is a conjunct, (d) if cb = Elb and l < 2k, then
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either cKK
b = EKK

m b and l ≤ m < ∞, or cKK
b = CKK

2k b, (e) if cb = E∞b, then cKK
b ̸= EKK

0 b, and (f)
if cb = C2kb, then cKK

b = CKK
2k b.

The same ideas used to prove Lemma A.25 for the case of C = {r, e, t} can now be used to prove
an analogous result for the case C = {e}; we omit details here. The rest of the proof is identical to that
of the case C = {r, e, t}, replacing every occurrence ofMr,e,t

1 byMe
1.
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