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Abstract

We provide new and tight lower bounds on the ability of players to implement equilibria using
cheap talk, that is, just allowing communication among the players. One of our main results is
that, in general, it is impossible to implement three-player Nash equilibria in a bounded number
of rounds. We also give the first rigorous connection between Byzantine agreement lower bounds
and lower bounds on implementation. To this end we consider a number of variants of Byzantine
agreement and introduce reduction arguments. We also give lower bounds on the running time of
two player implementations. All our results extended to lower boundg:ot)-robustequilibria,

a solution concept that tolerates deviations by coalitions of size épated deviations by up té
players with unknown utilities (who may be malicious).
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1 Introduction

The question of whether a problem in a multiagent system that can be solved with a trusted mediator can
be solved by just the agents in the system, without the mediator, has attracted a great deal of attention in
both computer science (particularly in the cryptography community) and game theory. In cryptography,
the focus on the problem has been seture multiparty computationHere it is assumed that each
agenti has some private information;. Fix functions fi,..., f,. The goal is have ageritlearn

fi(z1, ..., zy,) without learning anything about; for j # i beyond what is revealed by the value of
fi(z1,...,z,). With a trusted mediator, this is trivial: each agenfist gives the mediator its private
valuez;; the mediator then sends each agehe valuef;(z1, . . ., z,). Work on multiparty computation

(see [Gol04] for a survey) provides conditions under which this can be done. In game theory, the focus
has been on whether an equilibrium in a game with a mediator can be implemented using what is called
cheap talk—that is, just by players communicating among themselves [dgeq7] for a survey).

There is a great deal of overlap between the problems studied in computer science and game theory.
But there are some significant differences. Perhaps the most significant difference is that, in the com-
puter science literature, the interest has been in doing multiparty computation in the presence of possibly
malicious adversaries, who do everything they can to subvert the computation. On the other hand, in the
game theory literature, the assumption is that players have preference and seek to maximize their utility;
thus, they will subvert the computation iff it is in their best interests to do so. FollovARysHOE],
we consider here both rational adversaries, who try to maximize their utility, and possibly malicious
adversaries (who can also be considered rational adversaries whose utilities we do not understand).

1.1 Our Results

In this paper we provide new and optimal lower bounds on the ability to implement mediators with
cheap talk. Recall thatidash equilibriuny is a tuple of strategies such that given that all other players
play their corresponding part of then the best response is also to ptayGiven a Nash equilibrium

o we say that a strategy profifeis a k-punishment strategy far if, when all butk players play their
component op, then no matter what the remainikglayers do, their payoff is strictly less than what it

is with 0. We now describe some highlights of our results in the two simplest settings: (1) where rational
players cannot form coalitions and there are no malicious players (this gives us the solution concept of
Nash equilibrium) and (2) where there is at most one malicious player. We describe our results in a
more general setting iSection 1.2

No bounded implementations: In [ADGHO0§] it was shown that any Nash equilibrium with a medi-

ator for three-player games with a 1-punishment strategy can be implemented using cheap talk. The
expected running time of the implementation is constant. It is natural to ask if implementations with
a bounded number of rounds exist for all three-player ganiégorem 2shows this is not the case,
implementations must have infinite executions and cannot be bounded for all three-player games. This
lower bound highlights the importance of using randomization. An earlier attempt to provide a three-
player cheap talk implementatioB¢n03 uses a bounded implementation, and hence cannot work in
general. The key insight of the lower bound is that when the implementation is bounded, then at some
point the punishment strategy must become ineffective. The details turn out to be quite subtle. The only
other lower bound that we are aware of that has the same flavor is the celebrated FLFF &8t for



reaching agreement in asynchronous systems, which also shows that no bounded implementation exists.
However, we use quite different proof techniques than FLP.

Byzantine Agreement and Game Theory: We give the first rigorous connection between Byzantine
agreement lower bounds and lower bounds on implementation. To get the lower bounds, we need to
consider a number of variants of Byzantine agreement, some novel. The novel variants require new
impossibility results. We have four results of this flavor:

1. Barany Bar9] gives an example to show that, in general, to implement an equilibrium with
a mediator in a three-player game, it is necessary to have a 1-punishment strategy. Using the
power of randomized Byzantine agreement lower bounds we strengthen his result and show in
Theorem 4hat we cannot even get anmplementation in this setting.

2. Using the technigues oBGW8§ or [For9q, it is easy to show that any four-player game Nash
equilibrium with a mediator can be implemented using cheap talk even if no 1-punishment strat-
egy exists. Moreover, these implementationsumizersal they do not depend on the players’
utilities. In Theorem 3we prove that universal implementations do not exist in general for three-
player games. Our proof uses a nontrivial reduction to the weak Byzantine agreement (WBA)
problem Lam8d. To obtain our lower bound, we need to prove a new impossibility result for
WBA, namely, that no protocol with a finite expected running time can solve WBA.

3. In [ADGHO06€] we show that for six-player games with a 2-punishment strategy, any Nash equi-
librium can be implemented even in the presence of at most one malicious plajiéedrem 5
we show that for five players ever-implementation is impossible. The proof uses a variant of
Byzantine agreement; this is related to the probleroroddcast with extended consisteriyo-
duced by Fitzi et al. fHHWO03. Our reduction maps the rational player to a Byzantine process
that is afraid of being detected and the malicious player to a standard Byzantine process.

4. In Theorem 8we show that for four-player games with at most one malicious player, to implement
the mediator, we must have a PKI setup in place, even if the players are all computationally
bounded and even if we are willing to settle taimplementations. Our lower bound is based on
a reduction to a novel relaxation of the Byzantine agreement problem.

Bounds on running time: We provide bounds on the number of rounds needed to implement two-
player games. Iitheorem %a) we prove that the expected running time of any implementation of a two-
player mediator equilibrium must depend on the utilities of the game, even if there is a 1-punishment
strategy. This is in contrast to the three-player case, where the expected running time is constant.
In Theorem %) we prove that the expected running time of arymplementation of a two-player
mediator equilibrium for which there is no 1-punishment strategy must depead Both results are
obtained using a new two-player variant of the secret-sharing game. The only result that we are aware of
that has a similar spirit is that of Boneh and Na®N[(], where it is shown that two-party protocols with
“bounded unfairness” of must have running time that depends on the value ®he implementations

given by Urbano and VilaV02, UV04] in the two-player case are independent of the utilities; the
above results show that their implementation cannot be correct in general.



1.2 Our results for implementing robust and resistant mediators

In [ADGHO06] (ADGH from now on), we argued that it is important to consider deviations by both
rational players, who have preferences and try to maximize them, and players that can be viewed as
malicious, although it is perhaps better to think of them as rational players whose utilities are not known
by the other players or mechanism designer. We considered equilibria th@t, aregobust roughly
speaking, this means that the equilibrium tolerates deviations by kpetional players, whose utilities

are presumed known, and up#players with unknown utilities (i.e., possibly malicious players). We
showed how(k, t)-robust equilibria with mediators could be implemented using cheap talk, by first
showing that, under appropriate assumptions, we could implement secret sharirig dir@bust way

using cheap talk. These assumptions involve standard considerations in the game theory and distributed
systems literature, specifically, (a) the relationship betwgenandn, the total number of players in

the system; (b) whether players know the exact utilities of other players; (c) whether there are broadcast
channels or just point-to-point channels; (d) whether cryptography is available; and (e) whether the
game has &k + t)-punishment strategyhat is, a strategy that, if used by all but at mbst ¢ players,
guarantees that every player gets a worse outcome than they do with the equilibrium strategy. Here we
provide a complete picture of when implementation is possible, providing lower bounds that match the
known upper bounds (or improvements of them that we have obtained). The following is a high-level
picture of the results. (The results discusse8éation 1.lare special cases of the results stated below.
Note that all the upper bounds mentioned here are either in ADGH, slight improvements of results in
ADGH, or are known in the literature; s&ection 3for the details. The new results claimed in the
current submission are the matching lower bounds.)

e If on > 3k + 3t, then mediators can be implemented using cheap talk; no punishment strategy
is required, no knowledge of other agents’ utilities is required, and the cheap-talk strategy has
bounded running time that does not depend on the utilifiag¢rem {a) in Section 3.

e If n < 3k+3t, then we cannot, in general, implement a mediator using cheap talk without knowl-
edge of other agents’ utilitieg ieorem 3. Moreover, even if other agents’ utilities are known,
we cannot, in general, implement a mediator without having a punishment strategyém 4
nor with bounded running timélbeorem 2.

e If n > 2k + 3t, then mediators can be implemented using cheap talk if there is a punishment
strategy (and utilities are known) in finite expected running time that does not depend on the
utilities (Theorem {b) in Section 3.

e If n < 2k + 3t, then we cannot, in generaljmplement a mediator using cheap talk, even if there
is a punishment strategy and utilities are knowhdorem 5.

e If n > 2k 4 2t and we can simulate broadcast then, foreallve cane-implement a mediator
using cheap talk, with bounded expected running time that does not depend on the utilities in the
game or ore (Theorem {c) in Section 3. (Intuitively, ane-implementation is an implementation
where a player can gain at maesby deviating.)

o If n < 2k + 2t, we cannot, in generak-implement a mediator using cheap talk even if we
have broadcast channelBheorem J. Moreover, even if we assume cryptography and broadcast
channels, we cannot, in generaimplement a mediator using cheap talk with expected running
time that does not depend er{Theorem @b)); even if there is a punishment strategy, then we
still cannot, in general¢e-implement a mediator using cheap talk with expected running time
independent of the utilities in the ganmiEhgorem ¢a)).

e If n > k + 3t then, assuming cryptography, we caimplement a mediator using cheap talk;
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moreover, if there is a punishment strategy, the expected running time does not depend on
(Theorem {e) in Section 3.

e If n < k + 3t, then even assuming cryptography, we cannot, in genenalplement a mediator
using cheap talkTlheorem §.

e If n > k +t, then assuming cryptography and that a PKI (Public Key Infrastructure) is in place,
we cane-implement a mediatoffheorem 1d) in Section 3; moreover, if there is a punishment
strategy, the expected running time does not depend®heorem {e) in Section 3.

The lower bounds are existential results; they show that if certain conditions do not hold, then there
exists an equilibrium that can be implemented by a mediator that cannot be implemented using cheap
talk. There are other games where these conditions do not hold but we can nevertheless implement a
mediator.

1.3 Related work

There has been a great deal of work on implementing mediators, both in computer science and game
theory. The results above generalize a number of results that appear in the literature. We briefly discuss
the most relevant work on implementing mediators here. Other work related to this paper is discussed
where it is relevant.

In game theory, the study of implementing mediators using cheap talk goes back to Crawford and
Sobel [CS83. Barany Bar9] shows that ifn > 4, £ = 1, andt = 0 (i.e., the setting for Nash
equilibrium), a mediator can be implemented in a game where players do not have private information.
Forges For9( provides what she callsaniversal mechanisrior implementing mediators; essentially,
when combining her results with those of Barany, we get the special cd$eofem {a) wherek = 1
andt = 0. Ben-PorathBen03 considers implementing a mediator with cheap talk in the case that
k = 1if n > 3 and there is a 1-punishment strategy. He seems to have been the first to consider
punishment strategies (although his notion is different from ours: he requires that there be an equilibrium
that is dominated by the equilibrium that we are trying to implement). HeHed(5 extends Ben-
Porath’s result to allow arbitrary. Theorem {b) generalizes Ben-Porath and Heller’s results. Although
Theorem {b) shows that the statement of Ben-Porath’s result is correct, Ben-Porath’s implementation
takes a bounded number of round$ieorem 2shows it cannot be corregtHeller proves a matching
lower bound;Theorem 5generalizes Heller's lower bound to the case that 0. (This turns out to
require a much more complicated game than that considered by Heller.) Urbano ardWiR [JV04]
use cryptography to deal with the case that 2 andk = 1;° Theorem {e)) generalizes their result to
arbitraryk andt. However, just as with Ben-Porath, Urbano and Vila’s implementation takes a bounded
number of rounds; As we said Bection 1.1Theorem $a) shows that it cannot be correct.

In the cryptography community, results on implementing mediators go back to 1982 (although this
terminology was not used), in the context(s&cure) multiparty computatiorSince there are no util-
ities in this problem, the focus has been on essentially what we callthersmunity no group oft
players can prevent the remaining players from learning the function value, nor can they learn the other

1We can replace the assumption of a PKI here and elsewhere by the assumption that there is a trusted preprocessing phase
where players may broadcast.

2Although Heller's implementation does not take a bounded number of rounds, it suffers from problems similar to those of
Ben-Porath.

3However, they make somewhat vague and nonstandard assumptions about the cryptographic tools they use.



players’ private values. Results of Yadgo87 can be viewed as showing thatif= 2 and appropriate
computational hardness assumptions are made, then, tomadlcan obtair -immunity with probabil-

ity greater tharl — e if appropriate computational hardness assumptions hold. Goldreich, Micali, and
Wigderson GMW87] extend Yao’s result to the case that- 0 andn > ¢t. Ben-Or, Goldwasser, and
Wigderson BGW8g and Chaum, Gpeau, and Damgar€{CD88 show that, without computational
hardness assumptions, we canigehmunity if n > 3t; moreover, the protocol of Ben-Or, Goldwasser,
and Wigderson does not needaterror” term. Although they did not consider utilities, their protocol
actually gives dk, t)-robust implementation of a mediator using cheap tatk if 3k + 3¢; that is, they
essentially provdheorem {a). (Thus, although these results predate those of Barany and Forges, they
are actually stronger.) Rabin and Ben-®B89 provide at-immune implementation of a mediator
with “error” ¢ if broadcast can be simulated. Again, when we add utilities, their protocol actually gives
ane—(k, t)-robust implementation. Thus, they essentially prétieorem {c). Dodis, Halevi, and Ra-

bin [DHRO( seem to have been the first to apply cryptographic techniques to game-theoretic solution
concepts; they consider the case that 2 andk = 1 and there is no private information (in which case

the equilibrium in the mediator game iscarrelated equilibrium{Aum87)); their result is essentially

that of Urbano and Vilal\V04] (although their protocol does not suffer form the problems of that of
Urbano and Vila).

Halpern and TeagueH[T04] were perhaps the first to consider the general problem of multiparty
computation with rational players. In this setting, they essentially pftnsmrem {d) for the case that
t = 0 andn > 3. However, their focus is on the solution conceptitefated deletion They show
that there is no Nash equilibrium for rational multiparty computation with rational agents that survives
iterated deletion and give a protocol with finite expected running time that does survive iterated deletion.
If n < 3(k+1t), it follows easily fromTheorem 2that there is no multiparty computation protocol that
is a Nash equilibrium, we do not have to require that the protocol survive iterated deletion to get the
result if n < 3(k + t). Various generalizations of the Halpern and Teague results have been proved.
We have already mentioned the work of ADGH. Lysanskaya and Triandopddii6s][independently
proved the special case ®heorem {c) wherek = 1 andt + 1 < n/2 (they also consider survival of
iterated deletion); Gordon and KatzKO06] independently proved a special cas@ bkorem {d) where
k=1,t=0,andn > 2.

In this paper we are interested in implementing equilibrium by using standard communication chan-
nels. An alternate option is to consider the possibility of simulating equilibrium by using much stronger
primitives. 1zmalkov, Micali, and LepinskilILO5] show that, if there is a punishment strategy and we
have available strong primitives that they oativelopesndballot boxeswe can implement arbitrary
mediators perfectly (without anerror) in the case thdt = 1, in the sense that every equilibrium of
the game with the mediator corresponds to an equilibrium of the cheap-talk game, and vice versa. In
[LMPS04 LMSO05], these primitives are also used to obtain implementation that is perfectly collusion
proof in the model where, in the game with the mediator, coalitions cannot communicate. (By way of
contrast, we allow coalitions to communicate.) Unfortunately, envelopes and ballot boxes cannot be
implemented under standard computational and systems assumpti¢865].

It is reasonable to ask at this point whether mediators are of practical interest. After all, if three
companies negotiate, they can just hire an arguably trusted mediator, say an auditing firm. The dis-
advantage of this approach in a setting like the internet, with constantly shifting alliances, there are
always different groups that want to collaborate; a group may not have the time and flexibility of hiring
a mediator, even assuming they can find one they trust. Another concern is that our results simply shift



the role of what has to be trust elsewhere. It is certainly true that our results assume point-to-point
communication that cannot be interceptedn 1K k + 3t, then we must also assume the existence of

a public-key infrastructure. Thus, we have essentially shifted from trusting the mediator to trusting the
PKI. In practice, individuals who want to collaborate may find point-to-point communication and a PKI
more trustworthy than an intermediary, and easier to work with.

The rest of this paper is organized as follows.Section 2 we review the relevant definitions. In
Section 3we briefly discuss the upper bounds, and compare them to the results of ADGettion 4
we prove the lower bounds. The missing proofs appear in the appendix.

2 Definitions

In this section, we give detailed definitions of the main notions needed for our results. Sometimes there
are subtle differences between our differences and those used in the game-theory literature. We discuss
these differences carefully.

2.1 Mediators and cheap talk

We are interested in implementing mediators. Formally, this means we need to consider three games: an
underlying gam@’, an extensiof'y of I with a mediator, and a cheap-talk extensign of I'. Our un-

derlying games arénormal-form) Bayesian game¥hese are games of incomplete information, where
players make only one move, and these moves are made simultaneously. The “incomplete information”
is captured by assuming that nature makes the first move and chooses for each plypein some

set7;, according to some distribution that is commonly known. Formally, a Bayesian Gasmaefined

by a tuple(NV, 7, A, u, ), whereN is the set of players] = x;cn7; is the set of possible types,

is the distribution on typesd = x;cnA; is the set of action profiles, and : 7 x A is the utility of

player: as a function of the types prescribed by nature and the actions taken by all players.

A strategyfor playeri in a Bayesian game is a function fromi’s type to an action in4;; in a
game with a mediator, a strategy is a function fromtype and message history to an action. We
allow behavior strategies (i.e., randomized strategies); such a strategy gets an extra argument, which is
a sequence of coin flips (intuitively, what a player does can depend on its type, the messages it has sent
and received if we are considering games with mediators, and the outcome of some coin flips). We use
lower-case Greek letters suchasr, andp to denote a strategy profile; denotes the strategy of player
1 in strategy profiles; if K C N, thenog denotes the strategies of the playerddrando_ i denotes
the strategies of the players notiifi. Given a strategy profile a playeri € N and a type; € T; let
u;(t;, o) be the expected utility of playérgiven that his type ig; and each playef € N is playing the
strategyo;.

Given an underlying Bayesian garieas above, a gami; with a mediatord that extendd" is,
informally, a game where players can communicate with the mediator and then perform an action from
I'. The utility function of a playei in I'; is the same as that if; thus, the utility of a playef in I'y;
depends just on the types of all players and the actions taken by all players. Formally, we view both the
mediator and the players as interacting Turing machines with access to an unbiased coin (which thus
allows them to choose uniformly at random from a finite set of any size). The mediator and players
interact for some (possibly unbounded) number of stages. A mediator is characterized by a function



‘P that maps the inputs it has received up to a stage (and possible some random bits) to an output for
each player. Given an underlying Bayesian gdimghere player’s actions come from the set; and

a mediatord, the interaction with the mediator in; proceeds in stages, where each stage consists of
three phases. In the first phase of a stage, each plagads an input td (playeri can send the empty

input, i.e., no input at all); in the second phadgesgends each playéran output according t®, (again,

the mediator can send the empty output); and in the third phase, each ptiygrses an action iA;

or no action at all. A player can play at most one action frépin each execution (play) df;. Player

¢'s utility function in I'; is the same as that in the underlying galheand depends only on the action
profile in A played by the players and the types. To make this precise, we need to define what move
an action inA4; is played by playei in executions ofl’; wheres in fact never plays an action id;.

For ease of exposition, we assume that for each plgysame default action] € A is chosen. There

are other ways of dealing with this issue (see, for examplElOR3] for an alternative approach). Our
results do not depend on the choice, since in our upper bounds, with probability 1, all players do play
an action in equilibrium, and our impossibility results are independent of the action chosen if players
do not choose an action. (We remark that the question of what happens after an infinite execution of the
cheap-talk game becomes much more significant in asynchronous systemdd) kg [

Although we think of acheap-talkgame as a game where players can communicate with each other
(using point-to-point communication and possibly broadcast), formally, it is a game with a special kind
of mediator: playeti send the mediator whatever messages it wants to send other players in the first
phase of a round; the mediator forwards these messages to the intended recipients in the second phase.
We can model broadcast messages by just having the mediator tag a message as a broadcast (and sending
the same message to all the intended recipients, of course).

We assume that cheap talk games are always unbounded; players are allowed to talk forever. The
running timeof an execution of a joint strategyis the number of steps taken until the last player makes
a move in the underlying game. The running time may be infinite.

It is standard in the game theory literature to view cheap tafiragplaycommunication. Thus, al-
though different plays dffct may have different running times (possibly depending on random factors),
it is assumed that it is commonly known when the cheap-talk phase ends; then all players make their
decisions simultaneously. It is not possible for some players to continue communicating after some
other players have decided (see, for exampghel(g, where this assumption is explicit). For their
possibility results, ADGH define games and give recommended strategies for these games such that, as
long as players use the recommended strategy, all players make a move at the same time in each play of
the cheap-talk game. However, it is not assumed that this is the case off the equilibrium path (that is, if
players do not follow the recommended strategy). The assumption that all players stop communicating
at the same time seems to us very strong, and not implementable in practice, so we do not make it here.
(Dropping this assumption sometimes makes our impossibility results harder to prove; see the proof
of Theorem 7in Appendix A.5for an example.) Thus, there is essentially only one cheap-talk game
extending an underlying gang; I'ct denotes the cheap-talk extensiormof

When we consider a deviation by a coalitiiiy we want to allow the players iR to communicate
with each other. Il is an extension of an underlying garfig(including T itself) and K C N, let
I" + CT(K) be the extension of where the mediator provides private cheap-talk channels for the
players inK in addition to whatever communication there idih Note thatlct + CT(K) is justlcr;
players inK can already talk to each otherliar.



2.2 Implementation

Note that a strategy profile—whether it is in the underlying game, or in a game with a mediator ex-
tending the underlying game (including a cheap-talk game)—induces a mapping from type profiles to
distributions over action profiles. If; andT'; are extension of some underlying gaiethen strat-

egy o in I'; implementsa strategy, in I's if both o ando’ induce the same function from types to
distributions over actions. Note that although our informal discussion in the introduction talked about
implementing mediatoyrshe formal definitions (and our theorems) talk about implementing strategies.
Our upper bounds show that, under appropriate assumptionsyéoy(k, t)-robust equilibrium in a
gamel’; with a mediator, there exists an equilibriurhin the cheap-talk gamg, corresponding td';

that implements; the lower bounds in this paper show that, if these conditions are not met, there exists
a game with a mediator and an equilibrium in that game that cannot be implemented in the cheap-talk
game. Since our definition of games with a mediator also allow arbitrary communication among the
agents, it can also be shown that every equilibrium in a cheap-talk game can be implemented in the
mediator game: the players simply ignore the mediator and communicate with each other.

2.3 Solution concepts

We can now define the solution concepts relevant for this paper. In particular, we consider a number of
variants of(k, t) robustness, and the motivation behind them.

In defining these solution concepts, we need to consider the expected utility of a strategy profile
conditional on players having certain types. We abuse notation and continueitdaoisthis, writing for
exampleu;(tx, o) to denote the expected utility to play#if the strategy profiler is used, conditional
on the players irf{ having the typesy. Since the strategy here can come from the underlying game
or some extension of it, the functian is rather badly overloaded. We sometimes include the relevant
game as an argument tQ to emphasize which game the strategy profilis taken from, writing, for
exampley;(tx, I, o).

k-resilient equilibrium: A strategy profile is a Nash equilibrium if no player can gain any advantage
by using a different strategy, given that all the other players do not change their strategies. We want to
define a notion ok-resilient equilibriumthat generalizes Nash equilibrium, but allows a coalition of up

to k players to change their strategies. One way of capturing this, which goes back to Auknanie],

is to require that there be no deviations that result in everyone in a group of size &t dwmsy better.

To make this intuition precise, we need some notation. Given a type SpagesetK of players,
andt € 7, let7 (tx) = {t’ : t’, =tk }. If I is a game over type spadg o is a strategy profile iff,
andPr is the probability on the type spage let

uilt, o)=Y Pr(t' | T(tg))uw(t, o).

t'e7 (tk)
Thus,u;(tx, o) isi's expected payoff if everyone uses strateggnd types are restricted (¢ ).

Definition 1. o is ak-resilient equilibriumif, for all K C N and all types € 7, itis not the case that
there exists a strategy such thatu; (tx, 7k, 0-x) > u;(tx, o) forall i € K.



Thus, o is k-resilient if no subsetK of at mostk players can all do better by deviating, even if
they share their type information (so that if the true type,ishe players inK know tg). This is
essentially Aumann’sAum59 notion of resilience to coalitions, except that we place a bound on the
size of coalitions.

As the prime suggests, this will not be exactly the definition we focus on. ADGH consider a stronger
notion, which requires that there be no deviation where even one player does better.

Definition 2. ¢ is a strongly k-resilient equilibriumif, for all K C N with |K| < k and all types
t € 7, itis not the case that there exists a strategyuch thatu;(tx, 7, 0— ) > u;(tx, o) for some
ie K.

Both of these definitions have a weakness: they implicitly assume that the coalition members can-
not communicate with each other beyond agreeing on what strategy to use. While, in general, there are
equilibria in the cheap-talk game that are not available in the underlying game (so having more commu-
nication can increase the number of possible equilibria), perhaps surprisingly, allowing communication
between coalition members can afgeventcertain equilibria, as the following example shows.

Example 1. Consider a game with four players. Players 1 and 2 have a tyge, in}; the type of
players 3 and 4 is 0. All tuples of types are equally likely. Players 3 and 4 can each choose an action
in the set{0, 1, PUNISH, PASS}; players 1 and 2 each choose an actioRRWNISH, PASS}. If anyone
playsPUNISH, then everyone gets a payoff efl. If no one playseuNisH, the payoffs are as follows:

If player 3 playspAss then 3 gets a payoff of 1; similarly, if player 4 playass then 4 gets a payoff

of 1. If player 3 plays 0 or 1 and this is 1's type, then 3 gets 5; if not, then 3 gets -5; similarly for
player 4. Finally, if player 2's type i8, then player 1 and 2’s payoffs are the same as plagqrayoffs;
similarly, if player 2 has a 1, then 1 and 2's payoffs are the same as 4's payoffs. It is easy to see that
everyone playingrAssis a 3-resiliertequilibrium in the underlying game and it is also an equilibrium

in the game with a mediator, if the players cannot communicate. However, if players can communicate
for one round, then players 1, 2, and 3 can do better if player 1 sends player 3 his type, and player 3
plays it. This guarantees player 3 a payoff of 5, while players 1 and 2 get an expected pa&yaff of

Now suppose that we consider a variant of this game, where the actions are the same and the payoffs
for players 3 and 4 are the same, but the payoffs for players 1 and 2 are modified as follows. If player
2's type is0, then if no one playsUNISH, player 1 and 2's payoffs are the same as pl&jgepayoffs if
player 4 playseAss if player 4 plays 0 or 1, then their payoff is5. Similarly, if player 2's type is 1,
then player 1 and 2's payoffs are the same playgpayoffs if player 3 play®Ass if player 3 plays 0
or 1, then their payoff is-5. Itis easy to show that everyone playiprgssis still 3-resilient if we allow
only one round of communication. But with two rounds of communication, everyone playiggis
no longer 3-resilierit players 1, 2, and 3 can do better if player 2 sends player 1 his type, player 1 sends
player 3 his type if player 2's type is 0 (and sends nothing otherwise), and player 3 plays player 1's type
if player 1 sends it0

Since it seems reasonable to assume that coalition members will communicate, it seems unreason-
able to call everyone playingass 3-resilient if some communication among coalition members can
destroy that equilibrium. More generally, we clearly cannot hope to implememesilient equilibrium
in the mediator game using cheap talk if the equilibrium does not survive once we allow communication
among the coalition members. This motivates the following definition.



Definition 3. o is a(strongly)k-resilient equilibriumin a gamel” if, for all K C N with |K| < k and
all typest € 7, itis not the case that there exists a strategyuch thatu; (¢, I'+CT(K), 7,0 _x) >
ui(tx, I, o) for somei € K.

This definition makes precise the intuition that players in the coalition are allowed arbitrary communi-
cation among themselves.

Note that Nash equilibrium is equivalent to both 1-resilience and strong 1-resilience; however, the
notions differ fork > 1. It seems reasonable in many applications to bound the size of coalitions; it
is hard to coordinate a large coalition! Of course, the appropriate bound on the size of the coalition
may well depend on the utilities involved. Our interest in stréagsilience was motivated by wanting
to allow situations where one player effectively controls the coalition. This can happen in practice in
a network if one player can “hijack” a number of nodes in the network. It could also happen if one
player can threaten others, or does so much better as a result of the deviation that he persuades other
players to go along, perhaps by the promise of side payments. While it can be argued that, if there
are side payments or threats, they should be modeled in the utilities of the game, it is sometimes more
convenient to work directly with strong resilience. In this paper we consider both resilience and strong
resilience, since the results on implementation obtained using the different notions are incomparable.
Just because a strongly resilient strategy in a game with a mediator can be implemented by a strongly
resilient strategy in a cheap-talk game, it does not follow that a resilient strategy with a mediator can be
implemented by a resilient strategy in a cheap-talk game, or vice versa. However, as we show, we get
the same lower bounds for both resilience and strong resilience: in our lower bounds, we give games
with mediators with a stronglg-resilient equilibriums and show that there does not exist a cheap-talk
game and a strategy thatthat implements and isk-resilient. Similarly, we can show that we get the
same upper bounds with bothresilience and stronkg-resilience.

Other notions of resilience to coalitions have been defined in the literature. For example, Bernheim,
Peleg, and WhinstorBPW89 define a notion otoalition-proof Nash equilibriunthat, roughly speak-
ing, attempts to capture the intuition thais a coalition-proof equilibrium if there is no deviation that
allows all players to do better. However, they argue that this is too strong a requirement, in that some
deviations are notiable they are not immune from further deviations. Thus, they give a rather compli-
cated definition that tries to capture the intuition of a deviation that is immune from further deviations.
This work is extended by Moreno and Woode\J/96] to allow correlated strategies. Although it is
beyond the scope of this paper to go through the definitions, it is easy to see that our impossibility results
apply to them, because of the particular structure of the games we consider.

For some of our results we will be interested in strategies that give “almestsilience, in the
sense that no player in a coalition can do more thhetter by deviating, for some small

Definition 4. If ¢ > 0, theno is an e—k-resilient equilibriumin a gamel” if, for all K C N with
|K| < k and all typest € 7, it is not the case that there exists a strategguch thatu;(tx, " +
CT(K),Tk,0-k) > ui(tg,I",0) +eforalli € K.

Clearly if e = 0, then an—k-resilient equilibrium is &:-resilient equilibrium.

(k, t)-robust equilibrium:  We now define the main solution concept used in this pafger.)-robust
equilibrium. Thek indicates the size of coalition we are willing to tolerate, and #hedicates the
number of players with unknown utilities. Thesplayers are analogues of faulty players or adversaries
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in the distributed computing literature, but we can think of them as being perfectly rational. Since we do
not know what actions thegeplayers will perform, nor do we know their identities, we are interested
in strategies for which the payoffs of the remaining players are immune to whaptagers do.

Definition 5. A strategy profiler in a gamel is t-immuneif, for all T C N with |T'| < ¢, all strategy
profilest, all i ¢ T, and all typest; € 7; that occur with positive probability, we havg(¢;,I" +
CT(T), g_T, TT) Z ui(ti, F, 0‘).

Intuitively, o is t-immune if there is nothing that players in a §ebf size at most can do to give
the remaining players a worse payoff, even if the playefB can communicate.

Our notion of (k, t)-robustness requires botimmunity andk-resilience. In fact, it requirek-
resilience no matter what up toplayers do. That is, we require that no matter whptayers do, no
subset of size at mostcan all do better by deviating, even with the help of tipdayers, and even if all
k + t players share their type information.

Definition 6. Givene > 0, o is ane—(k, t)-robust equilibriumin gamer if ¢ is t-immune and, for all
K, T C N suchthal K| <k, |T| < t,andK NT = (), and all typesxur € Txur that occur with
positive probability, it is not the case that there exists a strategy profsech that

ui(tgur, T+ CT(KUT), Tkur, 0—(kur)) > wilts, T+ CT(T), 70, 0-1) + ¢
forall i € K. A(k,t)-robust equilibrium is just a O, ¢)-robust equilibrium.

We can define atrongly (k, t)-robust equilibriumby analogy to the definition stronghsresilient
equilibrium: we simply change “for alle K” in the definition of(k, ¢)-robust equilibrium to “for some
i € K”. Thus, in a strongly(k, t)-robust equilibrium, not even a single agentfincan do better if all
the players ik deviate, even with the help of the playersiin

Note that &1, 0)-robust equilibrium is just a Nash equilibrium, andet1, 0)-robust equilibrium
is what has been called arNash equilibrium in the literature. A (stronglyk, 0)-robust equilibrium
is just a (strongly)k-resilient equilibrium. The notiori0, ¢)-robustness is somewhat in the spirit of
Eliaz’s [Eli02] notion oft fault-tolerant implementation. Both our notion(@f ¢)-robustness and Eliaz’s
notion of¢-fault tolerance require that what the players nof'inlo is a best response to whatever the
players inT do (given that all the players not ifi follow the recommended strategy); however, Eliaz
does not require an analoguetemmunity.

In this paper, we are interested in the question of whéh, &-robust equilibriumz in a gamel’;
with a mediator extending an underlying gaimean be implemented by ar(k, ¢)-robust equilibrium
o’ in the cheap-talk extensidr:r of I'. If this is the case, we say that is ane—(k, t)-robustimple-
mentation ofs. (We sometimes say thékcr, o’) is ane—(k, t)-robustimplementation of 'y, o) if we
wish to emphasize the games.)

3 The Possibility Results

All of our possibility results have the flavor “if there is(&, ¢)-robust equilibrium in a game with a
mediator, then (under the appropriate assumptions) we can implement this equilibrium using cheap
talk.” To state the results carefully, we must define the notions of a punishment strategy and a utility
variant.
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Definition 7. If 'y is an extension of an underlying garfievith a mediatord, a strategy profilep in
T" is a k-punishment strategy with respect to a strategy prefila T'y if for all subsetsK” C N with
|K| < k, all strategiesp inT" + CT'(K), all typestx € Tk, and all players: € K:

ui(ti,Ta,0) > ui(tx, I + CT(K), 9K, p—K)-
If the inequality holds with> replacing>, p is aweakk-punishment strategy with respectdo

Intuitively, p is k-punishment strategy with respectdaif, for any coalition K of at mostk players,
even if the players itk{ share their type information, as long as all players ndt’inse the punishment
strategy in the underlying game, there is nothing that the playeks @gan do in the underlying game
that will give them a better expected payoff than playsnigp I';.

Notice that ifk + ¢t < n < 2k + ¢, 'y is a mediator game extendiig ando is a (k, t)-robust
equilibrium inT'y, then there cannot be @& + ¢)-punishment strategy with respectdo For if o is
a (k + t)-punishment strategy, consider the strategy in the mediator game wher& angtht |7'| =
t > n — (k + t) players do not send a message to the mediator, and jusppl#fyo is t-immune,
ui(on—7, pr) > ui(co). Butin the underlying game, if the playersi — T share their types, they can
compute what the mediator would have said, and thus carvglay, contradicting the assumption that
o is a punishment strategy.

The notion of utility variant is used to make precise that certain results do not depend on knowing
the players’ utilities; they hold independently of players’ utilities in the game. A gamis a utility
variantof a gamd’ if I'’ andI” have the same game tree, but the utilities of the players may be different
in T andI'’. Note that if[’’ is a utility variant ofl", thenI" andI'’ have the same set of strategies. We
use the notatiofi’(u) if we want to emphasize that is the utility function in gamd&’. We then take
I'(u') to be the utility variant of” with utility functionsw’.

We say thabroadcast can be simulated for all 6 > 0, broadcast channels can be implemented
with probability1 — §. Broadcast can be simulated if, for example, there are broadcast channels; or if
there is a trusted preprocessing phase where players may broadcast and assuming cryptography; or if
unconditional pseudo-signatures are establisR&d9q.

In the theorem, we take “assuming cryptography” to be a shorthand for the assumptialithats
transfer[Ralh EGL85 can be implemented with probability— e for any desired > 0. It is known that
this assumption holds #nhanced trapdoor permutatioesist, players are computationally bounded,
and the mediator can be described by a polynomial-size citGoiid4].

Theorem 1. Suppose thdt is Bayesian game with players and utilities:, d is a mediator that can be
described by a circuit of depth ando is a(k, t)-robust equilibrium of a gamg; with a mediatord.

(@) If 3(k +t) < n, then there exists a strategy.r in ['ct(u) such that for all utility variantd"(v’),
if o is a (k,t)-robust equilibrium ofl'y(v'), then (I'ct(u’), oct) implementgTy(u'), o). The
running time ofoct is O(c).

(b) If 2k + 3t < n and there exists & + t)-punishment strategy with respectdpthen there exists
a strategyoct in I'ct such thatocr implementsr. The expected running time @€+ is O(c).

(c) If 2(k +t) < n and broadcast channels can be simulated, then, foe all 0, there exists a
strategyo & in I'cr such thato§; e-implementsr. The running time of &+ is O(c).

(d) If £+t < nthen, assuming cryptography and that a PKIl is in place, there exists a stragggy
in T'er such thato&; e-implementsr. The expected running time @f is O(c) - f(u) - O(1/¢)
wheref(u) is a function of the utilities.
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(e) If k+3t <norif k+t < nandatrusted PKl is in place, and there existékat t)-punishment
strategy with respect to, then, assuming cryptography, there exists a strategyin I'ct such
that o&; e-implementerss. The expected running time of is O(c) - f(u) where f(u) is a
function of the utilities but is independenteof

Note that in part (a) we say “the running time”, while in the other parts we say “the expected running
time”. Although all the strategies used are behavior strategies (and thus use randomization), in part (a),
the running time is bounded, independent of the randomization. In the remaining parts, we cannot put
ana priori bound on the running time; it depends on the random choices. As our lower bounds show,
this must be the case.

We briefly comment on the differences betwédreorem land the corresponding Theorem 4 of
ADGH. In ADGH, we were interested in finding strategies that were not ¢hJy)-robust, but also
survived iterated deletion of weakly dominated strategies. Here, to simplify the exposition, we just
focus on(k, t)-robust equilibria. For part (a), in ADGH, a behavioral strategy was used that had no
upper bound on running time. This was done in order to obtain a strategy that survived iterated deletion.
However, it is observed in ADGH that, without this concern, a strategy with a known upper bound can
be used. As we observed in the introduction, part (a), as stated, actually follows from known results
in multiparty computationBGW88 CCD8§. Part (b) here is the same as in ADGH. In part (c), we
assume here the ability to simulate broadcast; ADGH assumes cryptography. As we have observed, in
the presence of cryptography, we can simulate broadcast, so the assumption here is weaker. In any case,
as observed in the introduction, part (c) follows from known restit8g9. Parts (d) and (e) are new,
and will be proved inADGHO7]. The proof uses ideas fromsMW87] on multiparty computation. For
part (d), where there is no punishment strategy, ideas fE@LB5 on gettinge-fair protocols are also
required. (Ane-fair protocols is one where if one player knows the mediator’s value with probapility
then other players know it with probability at least €.) Our proof of part (e) shows thatif > & + 3t,
then we can essentially set up a PKI on the fly. These results strengthen Theorem 4(d) in ADGH, where
punishment was required andwvas required to be greater than- 2¢.

4 The Impossibility Results

No bounded implementations

We prove that it is impossible to get an implementation with bounded running time in gengkal-if

3t < n < 3k + 3t. This is true even if there is a punishment strategy. This result is optimal. If
3k + 3t < n, then there does exist a bounded implementatiak if 3t < n < 3k + 3t there exists an
unbounded implementation that has consexmtectedunning time.

Theorem 2. If 2k + 3t < n < 3k + 3t, there is a gaméd" and a strong(k, t)-robust equilibriumo
of a gamel'; with a mediatord that extendd" such that there exists @ + t)-punishment strategy
with respect tar for which there do not exist a natural numbeand a strategyct in the cheap talk
game extendin@’ such that the running time efct on the equilibrium path is at mostandoct is a
(k, t)-robust implementation of.

Proof. We first assume that = 3, £ = 1, and¢ = 0. We consider a family of 3-player gamE@’k“,
where2k + 3t < n < 3k + 3t, defined as follows. Partitiofil, . .., n} into three setd3;, B2, andBs,
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such thatB; consists of the firstn /3] elements in{1,...,n}, Bs consists of the lastn/3] elements,
and B, consists of the remaining elements.

Let p be a prime such thai > n. Nature chooses a polynomiglof degreek + t over thep-
element field GRf) uniformly at random. Fot € {1, 2, 3}, playeri's type consists of the set of pairs
{(h, f(h)) | h € B;}. Each player wants to learf(0) (the secret), but would prefer that other players
do not learn the secret. Formally, each player must play either 0 or 1. The utilities are defined as follows:

e if all players outputf(0) then all players get 1;
e if player: does not outpuf (0) then he gets-3;
e otherwise playersgets2.

Consider the mediator game where each player is supposed to tell the mediator his type. The medi-
ator records all the pairs:, vy,) it receives. If at least — ¢ pairs are received and there exists a unique
degreek + ¢ polynomial that agrees with at least— ¢ of the pairs then the mediator interpolates this
unique polynomialf’ and sendg”’(0) to each player; otherwise, the mediator sends 0 to each player.

Leto; be the strategy where playetruthfully tells the mediator his type and follows the mediator's
recommendation. It is easy to see thais a (1, 0)-robust equilibrium (i.e., a Nash equilibrium). If
a playeri deviates by misrepresenting or not telling the mediator updbhis shares, then everyone
still learns; if the player misrepresents or does not tell the mediator about more of his shares, then the
mediator sends the default value 0. In this caseworse off. For if 0 is indeed the secret, which it is
with probability 1/2,i gets 1 if he plays 0, and 3 if he plays 1. On the other hand, if 1 is the secret,
theni gets 2 if he plays 1 and 3 otherwise. Thus, no matter whatloes, his expected utility is at most
—1/2. This argument also shows thatif is the strategy wheredecides 0 no matter what, thens a
1-punishment strategy with respectsto

Suppose, by way of contradiction, that there is a cheap-talk strategythe gamd ¢t that imple-
mentso such that any execution ef takes at most rounds. We say that a playglearns the secret by
roundb of ¢’ if, for all executions (i.e., plays) andr’ of ¢’ such that has the same type and the same
message history up to roumdthe secret is the sameirandr’. Since we have assumed that all plays
of ¢’ terminate in at most rounds, it must be the case that all players learn the secret by roafi .

For if not, there are two executiomsandr’ of ¢’ that: cannot distinguish by round where the secret

is different inr andr’. Since: must play the same move inand+’, in one case he is not playing the
secret, contradicting the assumption thatmplementss. Thus, there must exist a round< ¢ such

that all three players learn the secret at rotd o’ and, with nonzero probability, some player, which

we can assume without loss of generality is player 1, does not learn the secret ai rolird o/. This
means that there exists a tyfpeand message history, for player1 of lengthb — 1 that occurs with
positive probability when player 1 has typesuch that, afteb — 1 rounds, if player 1 has typge and
history h1, playerl considers it possible that the secret could be either 0 or 1. Thus, there must exist
type profilest and¢’ that correspond to polynomiafsand f/’ such that; = ¢}, f(0) # f(0) and, with
positive probability, player 1 can have histdry with botht andt’, given that all three players play.

Let ho be a history for player 2 of length— 1 compatible witht andh; (i.e., when the players play
o', with positive probability, player 1 has,, player 2 hag,, and the true type profile i§; similarly,
let h3 be a history of lengtlh — 1 for player 3 compatible with’ and’;. Note that playei’s action
according tas; is completely determined by his type, his message history, and the outcome of his coin
tosses. Let)[t2, ho] be the strategy for player 2 according to which player 2 ugdsr the firstb — 1
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rounds, and then from rouridon, player 2 does what it would have done accordingtd its type had
beent; and its message history for the fibst 1 rounds had beeh, (that is, player 2 modifies his actual
message history by replacing the prefix of lenigthl by hs, and leaving the rest of the message history
unchanged). We can similarly defing[t’, h3]. Consider the strategy profile?], o} [t2, ha|, o4[t5, hs]).
Sinceo’[t;, h;] is identical too!, for the firstb — 1 steps, fori = 2, 3, there is a positive probability that
player 1 will have historyh; and typet; when this strategy profile is played. It should be clear that,
conditional on this happening, the probability that player 1 plays O or 1 is independent of the actual
types and histories of players 2 and 3. This is because players 2 and 3's messages frodefiersd

only oni’s messages, and not on their actual type and history. Thus, for at least d@af, it must

be the case that the probability that player 1 plays this value is strictly less than 1. Suppose without loss
of generality that the probability of playinfy(0) is less than 1.

We now claim that}t5, ha] is a profitable deviation for player 3. Notice that player 3 receives the
same messages for the fitstounds ofs’ and (o1, 0%, o4[ts, hs]). Thus, player 3 correctly plays the
secret no matter what the type profile is, and gets payoff of at least 1. Moreover, if the type profile is
t, then, by construction, with positive probability, after- 1 steps, player 1's history will bé; and
player 2’s history will behs. In this caseg), is identical too}|ts, ko], SO the play will be identical to
(0], o4[ta, hal, ob[th, hs]). Thus, with positive probability, player 1 will not outpiit0), and player 3
will get payoff 2. This means player 3's expected utility is greater than 1.

For the general case, suppose tat+ 3t < n < 3k + 3t. Consider the:-player game ™",
defined as follows. Partition the players into three grodfss,B1, andBs, as above. As in the 3-player
game, nature chooses a polynomjabf degreek + t over the field{0, 1} uniformly at random, but
now playeri’s type is just the paifi, f(i)). Again, the players want to leayf{0), but would prefer that
other players do not learn the secret, and must output a valfie irhe payoffs are similar in spirit to
the 3-player game:

o if atleastn — ¢ players outpuff (0) then all players that outpyt(0) get 1;
e if player: does not outpuf (0) then he gets-3;
e otherwise playef gets 2.

The mediator’s strategy is essentially identical to that in the 3-player game (even though now it is
getting one paith, v;,) from each player rather than a set of such pairs from a single player). Similarly,
each playel’s strategy inl“g”"”t, which we denoter}’, is essentially identical to the strategy in the 3-
player game with the mediator. Again,df is the strategy in the-player game wherée plays 0 no

matter what his type, then it is easy to check ffais a(k + t)-punishment strategy with respect#®.

Now suppose, by way of contradiction, that there exists a stratégy the cheap-talk extension
Ikt of Tkt that is a(k, t)-robust implementation of™ such that all executions ef take at most
¢ rounds. We show i\ppendix A.3that we can use’ to get a(1,0)-robust implementation in the
3-player mediator gamﬁg,’é“”, contradicting the argument above. O

Byzantine Agreement and Game Theory

In [ADGHO6] it is shown that ifr» > 3k+ 3¢, we can implement a mediator in a way that does not depend
on utilities and does not need a punishment strategy. Using novel connections to randomized Byzantine
agreement lower bounds, we show that neither of these properties hold in generaB# + 3t.
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We start by showing that we cannot handle all utilities variants i 3k + 3¢. Our proof exposes
a new connection between utility variants and the probleriVek Byzantine Agreemefitam83.
Lamport Lam83 showed that there is no deterministic protocol with bounded running timeséak
Byzantine agreemeiift ¢ > n/3. We prove a stronger lower bound for any randomized protocol that
only assumes that the running time has finite expectation.

Proposition 1. If max{2,k + t} < n < 3k + 3t, all 2" input values are equally likely, an® is a
(possibly randomized) protocol with finite expected running time (that is, for all protde¢6snd sets
IT| < k + t, the expected running time of procesg®s_r given (Py_r, P7) is finite), then there
exists a protocolP’ and a setl” of players with|T| < k + t such that an execution ¢Px_r, PJ) is
unsuccessful for the weak Byzantine agreement problem with nonzero probability.

Proof. SeeAppendix A.1 O

The idea of our impossibility result is to construct a game that captures weak Byzantine agreement.
The challenge in the proof is that, while in the Byzantine agreement problem, nature chooses which
processes are faulty, in the game, the players decide whether or not to behave in a faulty way. Thus, we
must set up the incentives so that players gain by choosing to be faulty iff Byzantine agreement cannot
be attained, while ensuring that &, ¢)-robust cheap-talk implementation of the mediator’s strategy in
the game will solve Byzantine agreement.

Theorem 3. If 2k + 2t < n < 3k + 3t, there is a gamé'(u) and a strong(k, t)-robust equilibrium
o of a gamel'; with a mediatord that extendd™ such that there exists @& + ¢)-punishment strategy
with respect tar and there does not exist a strategyr such that for all utility variantd’(u”) of T'(u),

if o is a (k, t)-robust equilibrium ofl'4(u"), then (Tcr(u’), oct) is a (k, t)-robust implementation of
(Tyg(u’), o).

Proof. SeeAppendix A.1 O

Theorem 3hows that we cannot, in general, getraformimplementation ifn < 3k + 3t. As shown
in Theorem {b)—(e), we can implement mediatorif< 3k + 3t by taking advantage of knowing the
players’ utilities.

We next prove that i2k+3t < n < 3k+3t, although mediators can be implemented, they cannot be
implemented without a punishment strategy. In fact we prove that they cannot eveimriptemented
without a punishment strategy. BaraBa[r9g proves a weaker version of a special case of this result,
wheren = 3, kK = 1, andt = 0.t is not clear how to extend Barany’s argument to the general case, or to
e—implementation. We use the power of randomized Byzantine agreement lower bounds for this result.

Theorem 4. If 2k + 2t < n < 3k + 3t, then there exists a ganig ane > 0, and a strong %, t)-robust
equilibriumo of a gamel’; with a mediatord that extendg®, for which there does not exist a strategy
oct in the CT game that extendissuch thatoct is ane—(k, t)-robust implementation of.

Proof. SeeAppendix A.2 O

We now show that the assumption that- 2k + 3¢ in Theorem 1lis necessary. More precisely, we
show that ifn < 2k + 3t, then there is a game with a mediator that hés,a)-robust equilibrium that
does not have &, t)-robust implementation in a cheap-talk game. We actually prove a stronger result:
we show that there cannot even becaf¥k, t)-robust implementation, for sufficiently small
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Theorem 5. If k£ + 2t < n < 2k + 3t, there exists a game, a strong(k, t)-robust equilibriumo of a
gamel'; with a mediatord that extend$', a (k+t)-punishment strategy with respecttpand ane > 0,
such that there does not exist a strategy in the CT extension df such thatoct is ane—(k, t)-robust
implementation of.

The proof ofTheorem Ssplits into two cases: (Dk+2t < n < 2k+3tandt > 1 and (2)k + 2t <
n < 2k 4+ 2t. For the first case, we use a reduction to a generalization of the Byzantine agreement
problem called the€k, t)-Detect/Agreeproblem This problem is closely related to the problem of
broadcast with extended consistemutoduced by Fitzi et a.FHHWO03.

Theorem 6. If 2k + 2t < n < 2k + 3t andt > 1, there exists a gamg, ane > 0, a strong(k, t)-
robust equilibriumo of a gamel”; with a mediatord that extends’, and a(k + t)-punishment strategy
with respect tas, such that there does not exist a strategyt in the CT extension df which is an
e—(k, t)-robust implementation of.

Proof. SeeAppendix A.4 O

We then consider the second caselbEorem Swherek + 2t < n < 2k + 2¢. Since we do not
assume players know when other players have decided in the underlying game, our proof is a strength-
ening of the lower bounds 0S§RA81, Hel04.

Theorem 7. If k 4 2t < n < 2k + 2t, there exist a gamE, ane > 0, a mediator gamé&'; extendind’,

a strong(k, t)-robust equilibriume of I';, and a(k + t)-punishment strategy with respect tar, such
that there is no strategyct that is ane—(k, t)-robust implementation af in the cheap-talk extension
of I', even with broadcast channels.

Proof. SeeAppendix A.5 O

Our last lower bound using Byzantine agreement impossibility results gives a lower bound that
matches the upper bound dheorem {e) for the case that > k + 3t. We show that a PKI cannot be
set up on the fly ifv < k + 3¢. Our proof is based on a reduction to a lower bound for(the)-partial
broadcast problema novel variant of Byzantine agreement that can be viewed as capturing minimal
conditions that still allow us to prove strong randomized lower bounds.

Theorem 8. If max(2,k +t) < n < k + 3t, then there is a gamE, a strong(k, t)-robust equilibrium
o of a gamel'; with a mediatord that extendd” for which there does not exist a strategyr in the

CT game that extends such thatoct is an e—(k, t)-robust implementation of even if players are
computationally bounded and we assume cryptography.

Proof. SeeAppendix A.G O

Tight bounds on running time

We now turn our attention to running times. We provide tight bounds on the number of rounds needed
to e-implement equilibrium wheh +¢ < n < 2(k +1t). When2(k +t) < n then the expected running

time is independent of the game utilities and independeat Wfe show that fok +t < n < 2(k +t)

this is not the case. The expected running time must depend on the utilities, and if punishment does not
exist then the running time must also depend.on
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Theorem 9. If k +t < n < 2(k +t) andk > 1, then there exists a ganig a mediator gamé’; that
extendd’, a strategy in Iy, and a strategy in I" such that

(a) for all e and b, there exists a utility functiom®< such thato is a (k,t)-robust equilibrium in
I'4(u?€) forall b ande, pis a(k, t)-punishment strategy with respectitdn T'(u>€) if n > k+2¢,
and there does not exist ar(k, t)-robust implementation ef that runs in expected tiniein the
cheap-talk extensioFicr(u®€) of I'(u?€);

(b) there exists a utility functiom such thato is a (k, t)-robust equilibrium inl";(«) and, for allb,
there exists such that there does not exist aqk, t)-robust implementation of’ that runs in
expected timé in the cheap-talk extensidryr(u) of I'(u).

This is true even if players are computationally bounded, we assume cryptography and there are broad-
cast channels.

Proof. SeeAppendix A.7. O

Note that, in part (b), it is not assumed that there (% a&)-punishment strategy with respect to
o in I'(u). With a punishment strategy, for a fixed family of utility functions, we can implement an
e—(k, t)-robust strategy in the mediator game using cheap talk with running time that is independent of
€; with no punishment strategy, the running time dependsiargeneral.

5 Conclusions

We have provided conditions under which/a t)-robust equilibrium with a mediator can be imple-
mented using cheap talk, and proved essentially matching lower bounds. There are still a few gaps in
our theorems, as well as other related issues to explore. We list some of them here.

¢ In Theorem {c), we get only ar-implementation for some > 0. Can we take = 0 here?

e We require that the cheap-talk implementation be only a Nash equilibrium. But when we use a
punishment strategy, this may require a player to do something that results in him being much
worse off (although in equilibrium this will never occur, since if everyone follows the recom-
mended strategy, there will never be a need for punishment). It may be more reasonable to re-
guire that the cheap-talk implementation keeguential equilibriunfkKW82] where, intuitively, a
player is making a best response even off the equilibrium path. To ensure that the cheap-talk strat-
egy is a sequential equilibrium, Ben-PoraBeh03 requires that the punishment strategy itself
be a Nash equilibrium. We believe for our results where a punishment strategy is not required,
the cheap-talk strategy is in fact a sequential equilibrium and, in the cases where a punishment
strategy is required, if we assume that the punishment strategy is a Nash equilibrium, then the
cheap-talk strategy will be a sequential equilibrium. However, we have not checked this carefully.
It would also be interesting to consider the extent to which the cheap-talk strategy satisfies other
refinements of Nash equilibrium, sucherfect equilibriun]Sel73.

e Our focus in this paper has been the synchronous case. We are currently exploring the asynchro-
nous case. While we had originally assumed that implementation would not be possible in the
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asynchronous case, it now seems that many of the ideas of our possibility results carry over to the
asynchronous case. However, a number of new issues arise. In particular, we need to be careful in
dealing with uncertainty. The traditional assumption in game theory is to quantify all uncertainty
probabilistically. But with asynchrony, part of the uncertainty involves, how long it will take a
message to arrive and when agents will be scheduled to move. (In general, in an asynchronous
setting, one player can make many moves before a second agent makes a single move.) It is far
from clear what an appropriate distribution would be to characterize this uncertainty. Thus, the
tradition in distributed computing has been to assume that an adversary decides message delivery
time and when agents are scheduled. The results in the asynchronous case depend on how we
deal with the uncertainty, which in turn affects the notion of equilibrium.

e We have assumed that in the cheap-talk game, every player can talk directly to every other player.
It would be interesting to examine what happens if there is a communication network which
characterizes which players a given player can talk to directly.

e In the definition oft-immunity and(k, t)-robustness, we have allowed the playerg’ito use
arbitrary strategies. In practice, we may be interested only in restricting each playér to
using a strategy in some predetermined%et

We hope to return to all these issues in future work.
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Appendix

A Proofs

This section includes the proofs for all results stated in the main text. We repeat the statement of the
results for the readers’ convenience.

A.1 Proof of Theorem 3

In the weak Byzantine agreement problem, thereragrocesses, up té of which may be faulty
(“Byzantine”). Each process has some initial value, either 1. Some processes (chosen by nature)
are faulty; their “intention” is to try to prevent agreement among the remaining processes. Each non-
Byzantine process must decider 1. An execution of a protocaP is successful for weak Byzantine
agreemenif the following two conditions hold:

l. (Agreement:) All the non-Byzantine processes decide on the same v&l0glip

Il. (Weak Nontriviality:) If all processes are non-Byzantine and all processes have the same initial
valuei, then all the processes must decide

Proposition 1. If max{2,k + t} < n < 3k + 3t, all 2" input values are equally likely, an® is a
(possibly randomized) protocol with finite expected running time, then there exists a prBtcoud a
setT of players with|T'| < k + ¢ such that an execution ¢Py_r, P;) is unsuccessful for the weak
Byzantine agreement problem with nonzero probability.

Proof. The proof is based on the argument B M86]. Partition the processe¥ = {1,...,n} into
three setdy, By, Bs such thatB;| < k+t. Letry,...,r, be the random tapes such that procasses
taper;.

Let ¢ be an integer parameter that will be fixed later and consider the scenario consis?ing of
processes arranged irfien setsAy, A1, . .., Agen—1. The number of processes inthe gets | B; (104 3)l,
and theindexesof processesl; correspond to the indexes of processes in theéBset,,q 3). Thus, for
each valugj in N, there arec processes whose index is setjtolf j € B; then there is exactly one
such process in each sét,,; for ¢ € {0,1,...,2¢c — 1}.

Each process whose indexjis= N executes protocaP; with random tape:;. Messages sent by
processes im; according toP reach the appropriate recipientSA3_; (mod 6cn)s Ais Ait1 (mod 6en);
the processes id; start with 1 if —6¢n/4 (mod 6¢cn) < i < 6¢n/4 (mod 6¢n) and O otherwise.

Any two consecutive setd;, A; 1 (mod 6cn) d€fin€ a possible scenario denotgdvhere the non-
faulty processesd;, A1 (mod 6cn), €X€CUtEP and the faulty processes simulate the execution of all
the remaining sets of processes. kgtlenote the probability that protocél fails the weak Byzantine
agreement conditions in scenafg

Fix ¢ = 2°b and consider the scenari®s andSs.,,. Since the expected running time is at mbst
then by Markov inequality, with probability at least8 the processes ifi; require at mos8b rounds.
So with probability at least/2 both the processes iy and the processes 8., decide in at mosib
rounds, denote this event &s
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Since we fixed: = 2°b and all processes that have the same index use the same random tape then
given&, we claim that the processes$h cannot distinguish their execution from an execution where
all processes are non-faulty and begin with a 1 and similarly processgs.itannot distinguish their
execution from an execution where all processes are non-faulty and begin with a 0. Therefore, given
&, the non-faulty processes # decidel and the non-faulty processes $., decide0. Given¢, it
cannot be the case thgt= 0 for all i. Hence there must exist an indeguch thak; > 0 givené.

Now consider the strategl’ for processes im;_; moq 3) that guesses the random tapes of the
processes il;, B 1 (moa 3) @nd simulates the processég, Ay, ..., Agen—1 €Xcept for the processes
in Ai, Ait1 (mod 6en)- With non-zero probability, the initial values of the non-faulty processes will be
as the initial values ofl;, A; 1 (mod 6cn)- Given this, with probabilityl /2 evente occurs. Given this,
the faulty processes may guess the tapes of the non-faulty processes with non-zero probability. Given
this, with probabilitye; > 0 the non-faulty processes will fail. O

Theorem 3. If 2k + 2t < n < 3k + 3t, there is a gamé'(u) and a strong(k, t)-robust equilibrium
o of a gamel'; with a mediatord that extendd™ such that there exists @ + ¢)-punishment strategy
with respect tar and there does not exist a strategyr such that for all utility variantd*(u”) of T'(u),

if o is a (k, t)-robust equilibrium ofl'4(u’), then(T'cr(u’), oct) is a (k, t)-robust implementation of
(Ta(u’), o).

Proof. Consider the following gam€& with 2k + 2t < n < 3k + 3t players. A player’s type is his
initial value, which is either 0 or 1. We assume that each oRthiiples of types is equally likely. Each
player must choose a characteristic G (for “good”) or B (for “bad”); if the player chooses G, he must
also output either 0, 1, aruNisH. The utility functionu is characterized as follows:

e If there exists a seR of at leastn — (k + t) players that choose G such that

— all players inRk either commonly output O or commonly output 1; and
— if all players in R have initial value then the common output @t is i;

then we call this ayood outcomethe utility is 1 for players that choose G and output the same
value as the players iR, and the utility is O for all other players.

e If n — (k + t) or more players choose G and outpuiNisHor all players choose B, then we call
this apunishment outcoméhe utility is —1 for all players.

e Otherwise we have had outcomgand the utility is—2n for players that choose G arfor
players that choose B.

For future reference, we take the utility functio®’ to be identical ta:, except that in a punishment
outcome, a player that chooses B g&ig, while a player that chooses G get&@n M (so thatu = u!).

Consider the strategy; for playeri in the gamd’; with a mediator based o where: sends its
value to the mediator, and chooses characteristic G and outputs the value the mediator sends if the value
is in {0,1}, and outputs 0 if the mediator senelgNISH. The mediator sendsuNIsH if there are less
thann — (k + t) values sent; otherwise it sends the majority value (in case of a tie, it $gndst p; be
the strategy in the underlying gameof choosing B and outputting O.

Lemma 2. The strategy is a strong(k, t)-robust equilibrium in the utility variant gamg,;(u™) for
all M. Moreover, results in a good outcome ands a (k + t)-punishment strategy with respectao
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Proof. If |T'| < ¢, and all the players itV — T" play o, then the mediator will get at least— ¢ values.
If the majority value isi, then all the players iV — 7" will decidei. Sincen > 2t, there must be at
least one player iV — T that has typeé. Moreover,|N — T| > n — (k + t), so the players itV — T
constitute a seR that makes the outcome good. Thus we hawramunity.

Now fix K, C N such thatK, T are disjoint,| K| < k, and|T'| < t. Clearly for anyrxr €
Skur, andi ¢ K U T we haveu;(o_(xur), 7(xkur)) = 1. If at leastn — (k + t) players playo
then the outcome will be good and all the players that playill get a utility of 1, no matter what the
other players do; moreover, any player that chooses B will get utility of 0. Here we need the fact that
n > 2k + 2t, so there cannot be two sets of size at least (k + t) where the players output different
values. It easily follows that is a(k, t)-robust equilibrium. Note that if any set of— (k£ + ¢) or more
players playp in the underlying gamé' then, no matter what the remaining players do, the utility for
all the players is-1, whereas, as we have seem if- (k + t) or more players play in 'y, then these
players get 1. Thug; is a(k + t)-punishment strategy with respectto O

Returning to the proof ofheorem 3by way of contradiction, suppose that there exists a strategy
in the CT extensioficr of I' such tha(Ter(u?), o’) is a(k, t)-robust implementation oft' s (u™), o),
for all M. Let P; be the protocol for processwvhere process sends messages accordingrfptaking
its initial value to be its type, decidésf o chooses G and outputse {0, 1}, and outputs O if chooses
B or chooses G and outpursINISH.

By Proposition ] there exists a protocdt’, setsK, T with |K| < k and|T| < T, and ane > 0
such that(P_ xur), Py r) has probabilitye of having an unsuccessful execution. Without loss of
generality, we can assume that| = k£ and|T'| = t. (If not, we can just add — | K| processes t&” and
t — |T'| processes té' and have them all use protocBl) Let a;’ be the strategy where playgchooses
B and sends messages accordin@folt is easy to see that” ;. ), o' ,r) results in a bad outcome
whenever(P_ k), Py r) results in an unsuccessful outcome. Fo(roif_(KUT), o) results in a
punishment outcome, then all players nofdinJ 7' output 0 with(P_ k), P r), so the outcome is

successful. Thus, the probability of a bad outcome \ith . 7y, o'k 7) IS €.

Fix M > 2/e. Inthe gamelcr(u?), if j € K, we haveuju(a’_(KUT),a}’(UT) > 3 (sincej’s
expected utility conditional on a bad outcome is greater thyanand a bad outcome occurs with prob-
ability €, while j's expected utility conditional on a good or punishment outcome is at legstSince
o’ is a(k, t)-robust equilibrium, ifi € K, we must have.}’ (o’ ., 0%) > u;-‘/[(U'_(KuT),U}’(U:F) > 3.
Thus, the probability of a bad outcome with’ ., o//.) must be positive. Note thatimmunity guar-
antees that, for all ¢ T, u} (o’ ,,0/) > 1. Thus, the total expected utility of the playersin— T
when playing(o’ ,, /) must be at least — ¢ + 2k (since the players i have expected utility at
least 3). However, in a good outcome, their total utility- (¢ + &); in a punishment outcome, their
total utility is —n + ¢ < 0; and in a bad outcome, their total utility is less than 0 (since even if all but
one of the players iV — (7' — K') choose characteristic B and get utility/, the player who chooses
characteristic G gets utility-2Mn). Thus, the only way that the total expected utility of the players in
N — T can be greater than— ¢ + 2k is if k£ = 0 and the probability of a bad outcome (or a punishment
outcome) with(a’_(KUT), o) is 0. This gives us the desired contradiction, and completes the proof
of Theorem 3 O
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A.2 Proof of Theorem 4

Theorem 4. If 2k + 2t < n < 3k + 3t, then there exists a ganig ane > 0, and a strond k, ¢)-robust
equilibriumo of a gamel’y; with a mediatord that extendd”, for which there does not exist a strategy
oct in the CT game that extendissuch thatoct is ane—(k, t)-robust implementation of.

Proof. Consider a variant of the game described in the prodfraforem 3

Gamel has2k + 2t < n < 3k + 3t players. Players are partitioned into three g&tsB,, Bs such
that| B;| < k +t¢. Nature chooses three independent uniformly randonbhits, b3 € {0, 1} and gives
each player imB; the typeb;. Each player must choose a characteristic G or B; if the player chooses G,
he must also output either 0 or 1. The utility functieiis characterized as follows:

e If there exists a seR of at leastn — (k + ) players that choose G such that

— all players inR either commonly output O or commonly output 1; and
— if all players in R have initial value then the common output @t is i;

then we call this gyood outcomethe utility is 1 for players that choose G and output the same
value as the players iR, and the utility is O for all other players.

e Otherwise we havelaad outcomeand the utility i) for players that choose G and for players
that choose B.

Consider the same mediator aslineorem 3 except that rather than sendingNisH if fewer than
n — (k + t) values are sent, the mediator simply sends 0. Again, it is easy to see that the strafegy
sending the true type and following the mediator’s advice (is,a)-robust equilibrium in the mediator
game. Note that there is ié + ¢)-punishment strategy with respecttan this game.

Let o’ be any strategy in the cheap talk gahag such that for any sek UT with |[K UT| < k + ¢
and any protocotyr the expected running time ()&ffgv_( KUT)® Trur) IS finite. Let P be the protocol
for Byzantine agreement induced by. Specifically, protocolP; simulatess; by giving it its initial
value, sending messages according/tand finally decide on the same value thabutputs.

We use the following lower bound on randomized Byzantine agreement protocols.

Proposition 3. If 2t < n < 3t and processes are partitioned into three s&s By, B3 such that
|B;| < t. Nature chooses three independent uniformly randombbits,, b3 € {0,1} and gives each
player in B; the initial valueb;. Then there exists a functioh that maps protocols to protocols such
that for any joint protocolP there exists a séf’ of processes such thd@t = B; for somei € {1,2,3}

and the executiofPy_p, ¥(P)r) fails to reach Byzantine Agreement with probability at least 1/6. The
running time of¥ (P) is polynomial in the number of players and the running tim&of

Proof. The proof follows from KY84]. SeeProposition Sor a self-contained proof that also handles
this special case. O

Let T be the set whose existence is guaranteedPimposition 3for protocol P. Then consider
the strategyrr in I'ct where players choose B and play according to the proté¢ét). Since with
probability at least /6 the execution of Py_r, U (P)r) fails to reach Byzantine Agreement, the ex-
ecution of(¢’y_,, 7r) reaches a bad outcome with probability at least 1/6, and the expected utility of
each member o is > 2. Hence there does not exist&a + ¢)-robust equilibrium in the cheap talk
game that can-implement the equilibrium with a mediator for aay 1. O
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A.3 Proof of Theorem 2

Theorem 2. If 2k + 3t < n < 3k + 3t, there is a gamé&" and a strong(k, t)-robust equilibriumo
of a gamel'; with a mediatord that extendd" such that there exists @ + t)-punishment strategy
with respect tar for which there do not exist a natural numbeand a strategy ¢t in the cheap talk
game extendin@' such that the running time efct on the equilibrium path is at mostandoct is a
(k, t)-robust implementation af.

Proof. It remains to show that we can uséas defined in the main text to get(& 0)-robust imple-
mentation in the 3-player mediator gaﬂﬁ@ﬁ“, contradicting the argument above. The idea is straight-
forward. Player in the 3-player game simulates the player$inin then-player game, assuming that
playerj € B; has type(j, f(4)). (Recall that, in the 3-player game, play&rtype is a tuple consisting
of (4, f(4)) forall j € B;.) In more detail, consider the strateg§ where, in each round of the 3-player
game, playef sends playey all the messages that a playerf sent to a player i3; in then-player
game (noting what the message is, to whom it was sent, and who sent it). After receiving &round
message, each playem the 3-player game can simulate what the playerBjmo in roundk 4 1 of
then-player game. If a playerdoes not send playgra message of the right form in the 3-player game,
then all the players i3; are viewed as having sent no message in the simulation. If all playé?s in
decide on the same value in the simulation, then playkcides on that value in the 3-player game;
otherwise, playef decides O.

n,k—+t

It is easy to see that” implementss in T'; and there is a bound such that all executions
of o take at most rounds, becaus& implementss” in the n-player game and takes bounded time.
It follows from the argument above that’ cannot be (1,0)-robust. Thus, some playenust have
a profitable deviation. Suppose without loss of generality that it is player 3, and 3’s strategy when
deviating ist3. Note thatrs can be viewed as prescribing what messages playebBs isend to the
remaining players in the ga é?t (Recall, that if player 3 does not send a message to plairer
the 3-player game that can be viewed as part of such as description, andjpiayenninga;’, then
player; acts as if all the players i3 had sent the players iR; no message at all. Thus, all messages
from player: to playeryj in the 3-player game can be interpreted as messages Mot B; in the
n-player game.) Note that< |Bs| < k + t. (We must havé: > 1, since otherwise we cannot have
2k + 3t < n < 3k + 3t, son > 3 + 3t.) Choose a subsét of B3 such thaiT| = ¢. Let 7, be the
strategy in thew-player cheap-talk game whereby the player®insimulaters, the players inB; — T
make the same decision as player 3 makes usjngnd the players ifi' make the opposite decision. It
suffices to show that if all players iB3 play 7, then the players i3 — 1" are better off than they are
playingo’.

Note that every execution of (JE\/—BgﬂA-BB) in the cheap-talk extension &F** corresponds to
a unique execution’ of (07, ,,, 73) in the cheap-talk extensioi;™*. Thus, it suffices to show that
the players inB; — T do at least as well im as player 3 does ir'. Let R, R}, andR), be the set of
executions of(a’{’m}, 73) Where player 3 gets payoff3, 1, and 2, respectively. Le®; be the set of
executions of(oy_p., 75, ) that correspond to an execution Bf. If ' € Ry, then clearly a player
in B3 — T does at least as well inas player 3 does in’. If ' € R/, then all three players play the
secret inr’. Thus, inr, all the players inB3 — T play the secret, so they all get at least 1. Finally, if
r’ € R}, then iny/, player 3 plays the secret, and either player 1 or 2 does not. Hence some player in
B or B, does not play the secret in the cheap-talk extensidi’éf. Moreover, all the players iff’
do not play the secret. Thus, at least 1 players do not play the secret, so the playerBin- T get 2.
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This completes the argument.

A.4 Proof of Theorem 6

Theorem 6. If 2k + 2t < n < 2k + 3t andt > 1, there exists a gamE, ane > 0, a strong(k, t)-
robust equilibriumo of a gamd’; with a mediatord that extend$’, and a(k + t)-punishment strategy
with respect tar, such that there does not exist a strategyr in the CT extension df which is an
e—(k, t)-robust implementation cf.

The proof uses a reduction to a generalization of the Byzantine agreement problem called)the
Detect/Agregoroblem which, as we said, is closely related to the problerbrobdcast with extended
consistencyntroduced by Fitzi et a.fHHWO03. We have two parameterk,and¢. Each process has
some initial value, eithed or 1. There are at most + ¢ Byzantine processes. Each non-Byzantine
process must decidg 1, or DETECT. An execution issuccessful for Detect/Agrdfethe following three
conditions all hold (the first two of which are slight variants of the corresponding conditions in weak
Byzantine agreement):

I. (Agreement:) If there areor fewer Byzantine processes, then all non-Byzantine processes decide
on the same value, and it is a value{in 1}.
II. (Nontriviality:) If all non-Byzantine processes have the same initial valaed no non-Byzantine
process decideBETECT, then all the non-Byzantine processes must decide
lll. (Detection validity:) If there are more thaByzantine processes, then either all the non-Byzantine
processes decideeTECT, or all non-Byzantine processes decide on the same val{(g ir}.

Note that ift = 0, then clause Il is vacuous, so tfi@, t)-Detect/Agreeproblem is equivalent
to Byzantine agreement withfaulty processesLiSP8]. Note that the non-triviality condition for
Byzantine agreement requires all processes to decifithey all had initial valuev, even if there are
some faulty processes. Thus, it is a more stringent requirement than the weak nontriviality condition of
weak Byzantine agreement.

The following argument, from which it follows that there does not exist a protocol fofihe-
Detect/Agregroblem ifn < 2k + 3t, is based on a variant of the argument usedPiaposition 1 If
T C N, let17:0y_7 denote the input vector where the playerdiget an input of 1 and the players in
N — T getan input of 0.

Proposition 4. If max{2,t} < n < 2k + 3t andt > 1, then for all joint protocolsP, there exist six
scenariosSy, . . ., S5, six protocolsP/, for j = 0,1, h = 0, 1, 2, and a partition of the players into three
nonempty set8y, B, and By such thal By| < t, |B1| < k +t,and|By| < k +t, and

e in scenarioSy, the input vector i), in Sy, itis 0p,u5,15,; and in Sy, itis 0p,15,us,; IN S31h,
the input vector is the complement of the input vecta$jnfor h = 0, 1,2 (that is, if process
has input/ in Sy, it has inputl — £ in Ss.); for all protocols P/, for j = 0, 1;

e in S3;1, the processes i), are faulty and use protocdP/, for j = 0,1 andh = 0, 1, 2, while
the remaining processes are correct and use protéol

e the processes i3, receive exactly the same messages in every round of botlthath and
S3i+hee1 (Where we used, and o, to denote addition and subtraction még
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Figure 1: The construction for the proof Bfoposition 4

Proof. We explicitly construct the scenarios and protocols. Gi¥grwe simultaneously describe the
protocolsP; and scenario$’s;;, for j = 0,1, h = 0,1, 2, by induction, round by round. Suppose we
have defined the behavior of protodg] and the scenaris; ., for the first/ rounds. As required by the

proposition, in scenarids; 5, the processes i, are faulty and use protoccﬂj , the correct processes
use protocolP, and the inputs are as required by the protocol. The hexagéigime Limplicitly
defines the scenarios and what happens in r¢dadl). In round/ + 1 of scenariaSs; 1, the processes
in By, are faulty; each processc B), sends messages to the processes;ig,; as if ¢ is usingP; and

in the firstk rounds has received exactly the messages it would have received in sc&)a¥ig;,
and sends messages to the processés jn, .1 as if i is usingP; and has received exactly the same
messages it would have received in the firsbunds 0fS3; 14,1. Note that in scenarioSs; 441 and
S3j+hee—1, @ Process € By, uses protocob;. Thus,: € B, sends the same message to processes in
Bjg,1 in both scenarioss;, andSs;,q441. Finally, note that there is no need for processeBjrto
send messages to other processésyiim scenariaSs; ;. The behavior of the processesi) does not
depend on the messages they actually receive in scefigrig; they are simulating scenarid§; ., nagq1
andSs;4no61- This behavior characterizes protod@f.

The six scenarios and protocols are implicitly defined by the hexagéiigiime 1 For example,
scenarioS) is defined by the four nodes in the hexagon starting with the one latileahd going
counterclockwise. The inputs for the processe&jnare defined by the numbers in circle in the first
three nodes; in this scenario, all processes have input 0, because these numbers are all 0. The processes
in By, which are the faulty ones in this scenario, behave to the proces#gsas if they have input 0
and to the processes Iy, as if they have input 1. (This is indicated by the edge joining the node labeled
By(0) and By (0) and the edge joining,(1) and B2(0)).

By construction, the processes B)q,,2 are correct in bottts;, ), and Sz nes1; an easy proof
by induction on rounds shows that they receive exactly the same messages in every round of both
scenarios. O
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The following is a generalization of the well-known result that Byzantine agreement (which, as we
have observed, is just the, t)-Detect/Agregroblem) cannot be solvedsif < 3t.

Proposition 5. If n < 2k + 3t andt¢ > 1, then there is no protocol that solves tfie ¢t)-Detect/Agree
problem. Moreover, if there is a partition of the players into three nonemptyisgt8;, and B, as in
Proposition 4 and the four input vector8, 15,05,08,, 15,us,08,, and1 each have probability /4
then, for any protocoP, there exists a séf with |T'| < k + ¢ and protocolP’ such that the probability
that an execution of Py _r, Py) is unsuccessful fofk, t)-Detect/Agree is at leadt/20.

Proof. Suppose that < 2k + 3t and thatP solves thgk, t)-Detect/Agreeoroblem. Consider the six
scenarios fronfProposition 4 Sincet > 1, each ofBy, By, and Bz is nonempty. In scenari§y, all the
correct processes must decide on 0, by the nontriviality conditioriRBgosition 4the processes B,
cannot distinguisty, from S; and are correct in both, therefore the correct processes must decide 0 in
Si. Thus, by the agreement property|@#,| < t) or the detection validity property (jB2| > t), all the
processes i3; must also decid8 in S;. A similar argument shows that all the processeBinJ By
must decide 0 inS; and all the processes il; U B, must decide 0 inS3. But in S3 the nonfaulty
processes must decide 1. This proves the first part of the claim.

Now suppose that each 6f 15,05,05,, 15,uB,05,, and1 have probabilityl /4. Again, consider
the scenariosSy, ..., S3. We claim that, for somg < {0, 1,2, 3}, if the faulty processes use the
strategies prescribed for scenafig, then conditional on the input vector being that of scenafip
the probability that an execution is unsuccessful(fart)-Detect/Agree is at leadt/5. We prove by
induction onj that either the claim holds for some scenaiowith 0 < 5 < 3 or the probability that
each correct process in scena$ipdecides 0 is greater than— (j + 1)/5. For the base step, suppose
that in scenarid, some correct process decides 1 with probability greater tiianThen if processes
in B, are faulty and use protocdt?, no matter what their input, if the input vector is actudllyhe
execution will be unsuccessful with probability greater th@h. Assume now that the claim does not
hold for processes if¥y. Since processes iBs are correct in bottby and.S;, and cannot distinguish
Sp from S, they must decide 0 with probability at lealsts in S;. A similar argument now shows that
either the claim holds fof;, or the processes iBy must decide 0 with probability at lea3{5 in S;.
The inductive step is similar, and left to the reader. We complete the proof by observing fatfin
the claim does not hold, then all the processes must decide 0 with probability at/8aBut in Ss, all
processes are correct and have initial value 1. Thus, again the probability of an unsuccessful execution
is at leastl /5. Since each relevant input vector has probability, the probability of an unsuccessful
execution is at least/20. O

Proof of Theorem 6 Suppose thaitk+2t < n < 2k+3t,t > 1. Consider the same game and strategies
as in the proof offheorem 3with utility vector v, whereM > 20(1 + ¢). By Lemma 2o is a(k, t)-
robust strategy in the mediator gaiig Suppose, by way of contradiction, thetis ane—(k, t)-robust
implementation o in the CT extensiolict of I'y(u"). Let P; be the protocol for procesghat sends
the same messages and makes the same decisietis Bg Proposition 5 there is a protocoP’ and

a setT" with |T'| < k + ¢ such that the probability that an execution(éfy_r, Pr) is unsuccessful

for (k,t)-Detect/Agree is at leadt/20. Leto” be the strategy where the players choose characteristic
B and play according” in the cheap-talk game, no matter what their actual input. With probability
1/20, the outcome will be bad (since an unsuccessful outcome (#Ath.r, P;.) corresponds to a bad
outcome with(c’y,_ 1, 0/7). Thus, the expected utility for the playersihis greater than + ¢, soo’ is
note—(k, t)-robust. O
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L R L R

U (3,3) (1,4) U 1/3 1/3
D (4,1) (0,0) D 1/3 0
A simple 2-player game. A correlated equilibrium.

Figure 2: The game used in the prooffxoposition 6
A.5 Proof of Theorem 7

To proveTheorem 7 we start with the case that = 2, £ = 1, andt = 0. The ideas for this proof
actually go back to Shamir, Rivest, and Adlem&RA81]; a similar result is also proved by Heller
[Hel09. However, these earlier proofs assume that in the cheap-talk protocol, the players first exchange
messages and then, after the message exchange, make their decision (perhaps using some randomiza-
tion). That is, they are implicitly assuming that when the cheap-talk phase of the strategy has ended, it
is common knowledge that it has ended (although when it ends may depend on some random choices).
While this is a reasonable assumption if we have a bounded cheap-talk protocol, our possibility results
involve cheap-talk games with no a priori upper bound on running time. We do not want to assume that
the players receive a signal of some sort to indicate that the message exchange portion of the cheap-talk
has ended. Our lower bound proof does not make this assumption. We can, of course, find a round
suchb that with high probability. This solves part of the problem. However, the earlier proofs also took
advantage of the fact that players decsil@ultaneouslyafter the cheap-talk phase ends. Since we do

not make this assumption, our proof requires somewhat more delicate techniques than the proofs in the
earlier papers.

Proposition 6. If n = 2, then there exist a game ¢ > 0, a mediator gamé’; extendingl’, a Nash
equilibriumo of 'y, and a punishment strategywith respect tar such that there is no strategy that
is ane—(1, 0)-robust implementation of.

Proof. LetI" be the game described in the left table=ojure 2 where player 1 is Alice and player 2 is

Bob, Alice can choose between actidrisand D, and Bob can choose betweérand R. The players

all have a single type in this game, so we do not describe the types. The boxes in the left table describe
the utilities of Alice and Bob for each action profile. The right table describes a correlated equilibrium
of this game, giving the probabilities that each action profile is played.

Consider the mediator ganig extendingl’, where the mediator recommends the correlated equi-
librium described in the table on the right Bigure 2(that is, the mediator recommends choosing an
action profile with the probability described in the table, and recommends that each player play his/her
component of the action profile). Letbe the strategy profile of following the mediator’'s recommen-
dation. It is easy to see thatis a Nash equilibrium of the mediator game; moreové?, R) is a
punishment strategy with respectdo Also, note that the requirement of a broadcast channel trivially
holds ifn = 2.

Suppose, by way of contradiction, thdt= (o7, 05) is a(1/10)-Nash equilibrium that implements
o in a CT extensiod ¢t of I'y. Sinces’ implementso, it must be the case that, with probability 1,
an execution ob’ terminates. Hence, there must be some rousdch that, with probability at least
1 — 2, o’ has terminated (with both players choosing an action in the underlying game) by the end of
roundb. (We determing? shortly.)
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The execution of’ is completely determined by the random choices made by the player®;Let
denote the set of possible sequences of random choices by plélyer example, if playei randomizes
by tossing coins, then € R; can be taken to be a countable sequence of coin tosses.) For ease of
exposition, we assume thamakes a random choice at every time step (if the move at some time step
in the cheap-talk game is deterministic, thezan ignore the random choice at that time stepy.iff a
sequence of random choices, we uSt denote the subsequence-afonsisting of the random choices
made in the first steps. Since’ implementsr, with probability 1, both players choose an action in the
underlying game in an execution @f. (That is, while it is possible that there are infinite executions of
o’ where some party does not choose an action, they occur with probability 09 £eR, x R,. Note
that the probability on the random sequenceRidetermines the probability of outcomes according to

o’.

Suppose that is a finite random sequence of lengttior playeri. We takePr(r) = Pr({s €
Ri : s* = r}). We similarly definePr(ry,r2) for a pair (r1, o) of finite sequences of equal length.
The random sequences determine the message history and the actions. Given random sgoashces
ro Of length?, let H(r1,r2) be the pair of message historifis;, ho) determined by(r;,72), and let
A(r1,72) = (a1,a2) be the action profile chosen as a resul{af, 2) (where we take:; to be L if
playeri has not yet taken an action); in this case, we wAitér,, o) = a;, fori =1, 2.

A pair of historieg h1, ho) of equal length isleterministic for playet if it is not the case that both of
playeri’s actions have positive probability, conditional on the message history bejngé,). We claim
that all history pairs that arise with positive probability must be deterministic for some player sup-
pose that a history pait, he) is not deterministic for either player. L&) = {(r1,72) : A1(r1,72) =
D, H(Tl, 7“2) = (hl, hg)} and Iel’Ré = {(7"1, 7“2) : AQ(Tl, 7“2) = R, H(’I"l, 7“2) = (hl, hz)} By assump-
tion, Pr(R} | (h1,he)) > 0 andPr(RY, | (h1,h2)) > 0. Now let Ry = {(r1,72) : Iy, r5((r1, %) €
Ry, (r],r2) € R4}, Itis easy to see that fdry,r2) € RS, we haveH (r1,r2) = (h1,h2) (we can
prove by a straightforward induction thatr{, r§) = (h¢, h$) for each round less than or equal to the
length ofr;). HenceA(ry,72) = (D, R). Moreover,Pr(RY | (hi, h2)) > Pr(R] | (h1,h2)) x Pr(RY |
(h1,h2)) > 0. Thus, if (hy, ho) has positive probability, then the outcorfi@, R) has positive proba-
bility, which contradicts the assumption thdtimplementss.

Consider the following two strategie§ ando’ for players 1 and 2, respectively. Accordingedtf,
player 1 sends exactly the messages that he would have sent accordingritl roundb, but does
not take an action until the end of round If player 1 observes the histori¢s,, h2) at the end ob
rounds, and if the probability of player 2 playidgconditional on having observed,, h2) is at least
1—1/p, then player 1 decideB, but keeps sending messages accordirg totherwise, player 1 plays
exactly according te]. (Note that computing whether to pl&ymay be difficult, but we are assuming
computationally unbounded players here.) The stratdgig similar, except now player 2 will plaj
if conditional on(hq, h2), player 1 playd/ with probability at leastt — 1//. It is easy to see that if
player1 plays a different action witlr{ when observindh, h2) than witho/, it must be because
recommendd$/ and player 1 play$). Moreover, player 1's expected gain in this case, conditional on
observingh1, h2) (given that player 2 plays,) is atleast - (1—1/5)—3-(1/8) = 1—4/4. Similarly,
if player 2 plays a different action when observifig, h2), then player 2’s expected gain conditional
on observing k1, h2) and that player 1 plays; is at leastl — 4//3.

Let R'(U, L) = {(r1,72) : A(r1,72) = (U, L), r1, 2 have lengthb}. Sinces’ implementss, the
probability of the outcoméU, L) with ¢’ must bel /3. Sinceb was chosen such that the probability of
not terminating withirb rounds is less thah/32, we must havér(R/(U, L)) > 1/3 — 1/32.
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Let H’ consists of all message historigs , h2) of lengthb such that, with probability at leasy 3,
at least one player does not terminate by the end of réumhere the probability is taken over pairs
(r1,72) such thatH (r1,r2) = (h1,h2)). The probability of H’ must be at most /g (otherwise the
probability of not terminating by the end of rouhavould be greater than/5%). Thus, for any history
that is not inH’, the probability that both players take an actiowrins at leastl — 1/43.

Let R"(U,L) = {(r1,m2) € R'(U,L) : H(r1,72) ¢ H'}. The discussion above implies that the
inequality Pr(R"(U, L)) > 1/3 — 1/3% — 1/8 holds. By the arguments above, at least half of the
histories inR"” (U, L) are deterministic for one of the players. Without loss of generality, let it be player
1 (Alice). With probability at least/2 - (1/3 — 1/3% — 1/3), Alice would have made a choice bf
by the end of round, if she had taken an action. With probability— 1/5 she will take an action,
and therefore Bob can play; and will gain an expected utilityl —4/3) - 1/2- (1/3 — 1/5% — 1/3).

We can choosg such that the expected gain is at legst0. Thus,s’ is not a(1/10)-equilibrium. By
multiplying all utilities inI" by 10¢, we get a gamé&* such thafl’; has a (1,0)-robust equilibrium that
has noc-implementation. O

We now proveTheorem 7by generalizing this result to arbitrakyandt.

Theorem 7. If k + 2t < n < 2(k + t) there exist a gamE, ane > 0, a mediator gamé&’; extending
T, a strong(k, t)-robust equilibriumy of T'y, and a(k + t)-punishment strategy with respect tar such
that there is no strategyct that is ane—(k, t)-robust implementation af in the cheap-talk extension
of I, even with broadcast channels.

Proof. Divide the players into three disjoint groups: grodp and A, have each have — (k + t)
members, and group has2k + 2t — n members. It is immediate that this can be done, sitee—
(k—1t)) + 2k + 2t — n = n. Moreover,|A; U B| = |A2 U B| = k + t. Note that neitherl; nor A, is
empty; however3 may not have any members.

Players do not get any input (i.e., there is only one type). Intuitively, a player must output a value
in field £, with |F'| > 6, signed by a check vector. More precisely, a player A; U A outputs
8(n — 1) + 2 elements ofF', and optionally eithet/ or D if i € Ay or Lor Rif i € As. The
first two elements off' output by are denoted:;; anda;>. We think of these ag's share of two
different secrets. The remainiggn — 1) elements of” consist ofn — 1 tuples of 8 elements, denoted
(Y145 Y2i5, b1jis b2jis b3jij, c1jis C24i, €35i). \We have one such tuple for each playeg i. We require
that neitherb ;; nor byj; is 0. A playeri in group B must output3 + 9(n — 1) numbers, denoted
@hi, Ynij, bngi» cnjir for b = 1,2, 3 and for each playej # 7 (again, we require thay,;; # 0); together
with an optional element, which can be anyléf D, L, or R. For each playey # i, we would like to
have

ahi + Yhijbnij = Chij 1)

forh =1,2;if i € B, then we also would like to havey; + y3;;b3;; = c3:;. Note that the field elements
ap; andyy,; are output by player, while by,,;; andcy,;; are output by playej. As we said, we think of the
valuesay,; to be shares of some secret. Thus, we would like there to be a funfgtishich interpolates
the valuesiy;; f1(0) is intended to encode an action{ty, D} for the players inA; to play. That is,
if f1(0) = 0, then the players ial; should playU; if f1(0) = 1, then they should play.) Similarly
we would like there to be a functiofy that encodes an action {i, R} for the players inAs to play.
Finally, the valuesi3; should encode a pair of values{lv, D} x {L, R}, where(U, L) is encoded by
0,(U,R)by1,(D,L)by2,and( D, R) by 3.
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The payoffs are determined as follows, where we take a player telibble if there exists a seWV’
of n — 1 — t agentsj # ¢ such that Eq.X) holds fork = 1 andk = 2, and fork = 3if i € B.

¢ If more thant players are unreliable, then all players get O.

e If all the players in groupd; U B play the same optional value and some are unreliable, then all
players get 0.

e If ¢ or fewer players are unreliable, but either (a) there does not exist a unique polyn@mial
of degreek + t — 1 that interpolates the values; sent by the reliable players ine A; U B
such thatf;(0) € {0,1}; (b) there does not exist a unique polynomfalof degreek + ¢ — 1
that interpolates the values; sent by reliable playersin group A and the valueg,; sent by
reliable players in grou@ such thatfs(i) € {0,1}; (c) (f1(0), f2(0)) encodeq D, R); or (d)
there does not exist a unique polynomjalof degreek + ¢t — 1 that interpolates the values;
sent by reliable playerse A, U A and the valuegs; sent by reliable playerse B such that
f3(0) encodeg f1(0), f2(0)), in the sense described above, then all players gt

e if (@), (b), (c), and (d) above all do not hold, then suppose k@t encodesz, y). Leto; bex
unless everyone inl; U B playsz’ as their optional value, whet€ € {U, D}, in which case
o1 = 7'. Similarly, leto, bey unless everyone in groups, U B playsy’ as their optional value,
wherey € {L, R}, in which case/ = o.. Let (p1,p2) be the payoff according t(;,02), as
described inFigure 2 Then everyone in groud; getsp;, for i = 1,2. Payoffs for players in
B are determined as follows: if everyonedn U B playedz’ € {U, D} as their optional value,
then players imB getsp;; if everyone ind, U B playedy’ € {L, R} as their optional value, then
everyone inB getsp; otherwise, everyone il gets8/3.

The mediator chooses an outgut , 02) according to the distribution described kigure 2 The
mediator then encodes as the secret of a degrée+ ¢ — 1 polynomial f;; that is,0; = f;(0) and
encodego, 02) as the secret of a degréer ¢ polynomialg. Suppose players ...n — (k +t) arein
groupA;; playersn—(k+t)+1,...,2(n—(k+t)) are in groupAy; and player@(n—(k+t))+1,...,n
are in groupB. The mediator sends each playen group4; (fi(5), g(j)), fori = 1,2, and sends each
playerj in group B (f1(j), f2(4),9(j)). In addition, the mediator sends all players consistent check
vectors such thai; (i) + Y1ijb1i; = c1ij, as (i) + Y2iib2i; = C2j andas (i) + Y3ijb3;; = c3;5 for all
i,j € N. If the players play the message sent by the mediator (and do not play the optional value), then
they get expected payadff/3.

We now show that this strategy (%, t) robust. Fort-immunity, note that the players cannot take
over all of A; U B fori = 1 ori = 2 (since both of these sets have cardinality- ¢), so they cannot
take advantage of sending the optional elemerdtdfD, L, R}. If any of thet players are shown to be
unreliable, it is easy to see that this cannot hurt the other players, since there will not be mare than
unreliable players. If the reliable players do not send values that pass checks (a), (b), (c), and (d) above,
then each player ge8&/3, which is the expected payoff of playing the recommended strategy. Finally,
if a large enough subset of thglayers manage to guess the check vectors and send values that satisfy
(@), (b), (c), and (d) above, because they do not know any of the secrets, they are effectively making a
random change to the output, so the expected payoff isgdll

For (k,t) robustness, note that a setfoft ¢ that consist of all ofd; U B for i = 1 ori = 2 can
change the output by all playing the same optional value, but they cannot improve their payoff this way,
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since we have a correlated equilibrium in the 2-player game. K allt players are in grougl; U B,
and their value i$/, they can try to change the outcome10, ) by all playing D and guessing shares
and check values in the hope of changing them tq Ihel) outcome. But if they are caught, they will
all get 0. SincdF'| > 6, the probability of getting caught is greater thgfi, so they do not gain by
deviating in this way.

Note that ifn > k + 2t, then ifn — (k + t) players deliberately do not play the values sent them by
the mediator, then this is(@ + ¢)-punishment strategy with respectapsincen — (k +t) > ¢.

Finally, the same argument as in the 2-player game shows that, by taking overAitheB or
Ao U B, a set of sizé: + t can improve their outcome by deviating. O

A.6 Proof of Theorem 8

Theorem 8. If max(2,k +¢) < n < k + 3t, then there is a gamE, a strong(k, ¢)-robust equilibrium
o of a gamel'; with a mediatord that extendd” for which there does not exist a strategyr in the

CT game that extends such thatoct is an e—(k, t)-robust implementation of even if players are
computationally bounded and we assume cryptography.

Proof. We consider a relaxation of Byzantine agreement that we callithg-partial broadcast prob-

lem There aren processes and processs designated as leader. The leader has an initial value 0 or
1. Each process must decide on a valu¢dnl, PASs}. An execution of a protocaP is successful for

(k, t)-partial broadcastf the following two conditions hold:

I. (Agreement): If there areor fewer Byzantine processes and the leader is non-Byzantine then all
non-Byzantine processes decide on the leader’s value.

Il. (No disagreement): If there afe+ ¢ or fewer Byzantine processes, then there do not exist two
non-Byzantine processes such that one decides 0 and the other decides 1.

Note that if the leader is faulty, it is acceptable that some non-Byzantine processes decide on a
common valuey € {0, 1} and all other non-Byzantine processes deeides Observe that thé0, ¢)-
partial broadcast problem is a relaxation of the well-kndyzantine generalproblem LSP83. We
provide probabilistic lower bounds for this problem, which also imply known probabilistic lower bounds
for the Byzantine generals problem.

Proposition 7. If max(2,k +t) < n < k + 3t and each input for the leader is equally likely. Then
there exists a functiof¥ that maps protocols to protocols such that for all joint protocBlghere exists
a setT of processes such that either

(@) |T| <t, 1¢ T andthe executio(Py_7, ¥(P)r) fails the agreement property with probability
at least 1/6; or

(b) |T| < k+t,1 € T and the executio(\Py_7, V(P)r) fails the no-disagreement property with
probability at least 1/6.

The running time oft ( P) is polynomial in the number of players and the running timé of
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Proof. Partition then players into 3 nonempty sef$, B, andB; such that By| < t, |B1| < k + t,
and|By| < t. Assume thatB; contains process 1 (the leader). Consider the scenario consisting of
2n processes partitioned into six sedg, A1, ..., A5 such that the processes df have the indexes

of the processes aB; (,,,0q 3); Messages sent by processesljraccording toP reach the appropriate
recipients inA4;_; (mod 6)> Ai> Ait1 (mod 6)- FOr €xample, if a processése A; has indexj € N

and is supposed to send a messages to a processes withjindeX such thatj’ € B; (104 3) and

i’ € {i —1,4,i 4+ 1} then this message will reach the procéss A; whose index ig’; the process

with index 1 (the leader) starts with initial value 1.4 with with initial value 0 in A4.

Any two consecutive setd;, A; 1 (mod 6) define a possible scenario denotgd where the non-
faulty processesd; U A; 1 (mod 6), €X€cutel, and the faulty processes simulate the execution of all
the 4 remaining sets of processes. Far{0, 1, 3,4}, lete; denote the probability that protoc#! fails
the agreement condition in scenafig for i € {2,5} lete; denote the probability that protocél fails
the no-disagreement condition in scen&fjo

We claim thates > 1 — (e; + e3). Indeed with probabilityl — e; processes imM, succeed in
S1 which implies that processes i, must decide 1 in this case. Similarly, with probability- es
processes inl; must decide 0 due t63, hence inSs, the non-faulty processes must reach disagreement
with probability at least — (e; + e3). A symmetric argument gives, > 1 — (e4 + €g).

Therefore it cannot be the case that foriadl {0, 1,2}, e; +e;43 < 2/3. Leti be an index such that
e; + eir3 > 2/3 and consider the sdt;_; (,,04 3) Of processes that are Byzantine and simulate four
sets of processors according to scena¥ior S; 3 (moa 6) With uniform probability.

Giventhate; +e;43 (mod 6) > 2/3 then the expected probability of failureligs if the faulty players
know the initial value. Since they can guess the initial value, the faulty playéis in ,.q 3) Will cause
P to fail with probability at leasti /6. If i = 1 then|B;| < t + k, 1 € B; and the no-disagreement
condition fails, and il € {0, 2} then|B;| < ¢, 1 ¢ B; and the agreement condition fails. O

We now construct a game that captures(thg )-partial broadcast problem. Givérandt, consider
the following game™ with n players. Player 1 is theroadcasterand has two possible types, 0 or 1,
both equally likely. Each player must choose a characteristic G or B and output a vélud jrASS}.
Let M > 6 + 6e. We define the utility function: as follows.

o If player 1 (the broadcaster) has typethen
— if there exists a sef of at leastn — ¢ players such that all players #choose G and output
v, and the broadcaster chooses G, then the broadcaster gets 1;

— if there does not exist a sé of at leastn — ¢ players and a value’ € {0, 1} such that all
players inR choose characteristic G and output a valug:ih PASS}, and the broadcaster
chooses characteristic B, then the broadcaster/gets

— in all other cases, the broadcaster gets 0.
o Ultility for playeri # 1:

— if there exists a seR of at leastn — (k + t) players and a valug’ € {0, 1} such that all
players inR choose G and all players iR output a value i{v’, PASS}, then player getsl
if he chooses G and outputs a valugiri, PASS} and gets 0 otherwise;

— in all other cases, if choosesB3 he getsi and if he chooses G he gets 0.
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Consider a mediator that receives a value from the broadcaster and sends this value to all players. It
is easy to see that the strategyhere the broadcaster truthfully tells the mediator his type and chooses
characteristic G, and all other players choose characteristic G and output the value sent by the mediator,
is a(k, t)-robust equilibrium whose payoff is 1 for all players.

We claim that we cannatimplement this mediator using cheap talkiif< k + 3t. Suppose, by
way of contradiction, that there exists a strategyn I'ct thate-implementsr. Much as in the proof of
Theorem 3we can transforna’ into a protocolP for the (k, t)-partial broadcast problem: take to
be the strategy where processends messages accordingrfotaking its initial value to be its type if
i = 1, and decides on the value outputdjy

Viewing P as a protocol for thék, ¢)-partial broadcast problem, [&tbe the set of processes guaran-
teed to exist byProposition 71If |T'| < ¢, 1 ¢ T and the executioGPy_r, V(P)r) fails the agreement
condition with probability at least 1/3, then it is easy to see tHas not e—t-immune. Otherwise,
if |T| < k+t, 1€ T and the executioliPy_r, ¥(P)r) fails the no-disagreement condition with
probability at least 1/6, then it is easy to see thal'jrdeviating to¥(P) and choosing B gives the
members ofl" an expected utility greater thail/ /6 = 1 + ¢, contradicting the assumption tla¢ is
e — (k,t)-robust. O

A.7 Proof of Theorem 9

Theorem 9. If k +t < n < 2(k+t) andk > 1, then there exists a ganig a mediator gamé'; that
extendd", a strategy in 'y, and a strategy in T" such that

(a) for all ¢ and b, there exists a utility functiom ¢ such thato is a (k,t) robust equilibrium in
I'4(u?€) for all b ande, pis a(k, t)-punishment strategy with respecttdn T'(u>€) if n > k+2¢,
and there does not exist ar(k, t)-robust implementation ef that runs in expected tiniein the
cheap-talk extensioficr(u®€) of I'(u?¢),

(b) there exists a utility functiom such thato is a (k, t) robust equilibrium inl"4(«) and, for allb,
there exists such that there does not exist an k, t)-robust implementation of that runs in
expected timé in the cheap-talk extensidrer(u) of I'(u).

This is true even if players are computationally bounded, we assume cryptography and there are broad-
cast channels.

Proof. First assume thdt = 1, ¢ = 0, andn = 2. Consider a 2-person secret-sharing gahwéth the
secret taken from the fiel = {0, ..., 6}, and the shares are signed using check vectors. Specifically,
nature uniformly chooses a seceet F' and a degre@ polynomial f over F' such thatf(0) = s and
all remaining coefficients are uniformly random. Nature also choosesdof1, 2}, check vectorsy;
uniformly in £, b; uniformly in £\ {0} andc; such thatf (i) + y;b; = ¢;. Leti = 3 — i; thus,i is the
player other than.

Playeri € {1,2} gets as inputf (i), yi, b;, ¢;) and must guess the secret. Iuéf"s be the following
utility function for playeri € {1,2}: If playeri gets the right answer (i.e., guesses the secret) dods
not, theni getsM; if both get the right answer, thengets 1; ifi gets the right answer anddoes not,
theni gets— M + 2 — 26; finally, if neither get the right answer, thémgetsl — 6.

Consider the following mediator. It expects to receive from each plagdield values: a share,,
a signaturey;, and two verification valuel;, ¢;. If any player does not send 4 values then the mediator
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chooses a value if' at random, and sends that to both players. Otherwise the mediator interpolates the
degree 1 polynomiaf from the shares; anday. Then it checks thai; + y;b; = ¢; fori € {1,2}. If

both checks are successful, he sefidy to both players, otherwise he sends both a valué\r{ f(0)}

chosen uniformly at random.

Consider the truthful strategy in the mediator game: players tell the mediator the truth, and the
mediator reports the secret. The strategy profitgves both players utility 1 for all utility function-9.
Truthfulness is easily seen to be a 1-robust strategy in the mediator game (i.e., a Nash equilibrium). If a
playeri lies andi tells the truth, then with probability/7, i will be caught. In this caseé will definitely
play the wrong value. (Note thawill play the right value iff (0) is sent, since will be able to calculate
what the true secret should have been, given his lie; his calculation will be incorrect if a value other than
£(0) is sent, which is what happensii$ lie is detected.) On the other handyill play the right value
with probability 1/6. Thus,i's expected utility if he is caught i§(1 — §)/6 + (—M + 2 — 26)/6 =
(7—-76— M)/6. If player: is not caught, then his utility i4/. Thus, cheating has expected utility
1 — 0, soi does not gain by lying as long ds> 0.

Moreover, it is easy to see thatgif> 0 andi chooses a value at random, then if playehooses the
same value, his expected utility ig7 + 6/7(1 — §) = 1 — 65/7; if player i chooses a different value,
then his expected utility i8//7 + (=M +2 —26)/7 + (1 —6)(5/7) = 1 — §; it follows that playeri’s
expected utility is at most — 65/7. Thus, ifé > 0, then choosing a value at random is a 1-punishment
strategy with respect te in I'(u,s 5) (even if the other player knows what value is chosen).

For part (a), fixe > 0 andb. We show that there is no cheap-talk strategy that e-implements
o and has expected running tindein Ter(uM€) if M > (1 — €) + 28be/3. Suppose, by way of
contradiction, that there exists such a cheap-talk strategy The key idea is to consider the expected
probability that a player will be able to guess the correct answer at any round, assuming that both players
useoct. With no information, the probability thatguesses the right answerlig7 and all values are
equally likely. When the strategy terminates, the probability must be 1 (because we assume that both
players will know the right answer at the end if they follow the recommended strategy). In general, at
roundj, player: has acquired some informatidh. (What7 is may depend on the outcome of coin
tosses, of course.) There is a well-defined probability of guessing the right answed givEnus, the
expected probability of playerguessing the right answer after roupds the sum, taken over all the
possible pieces of informatiofi thati could have at the end of rouryd of the probability of getting
information I7 times the probability of guessing the right answer givén By Markov’s inequality,
both players terminate by rour2® with probability at leasf /2, the expected probability of guessing
the right answer by roun#b must be at least/7 for both players. (Since if an execution terminates,
he can guess the right answer with probability 1; otherwise, he can guess it with probability at least
1/7.) Thus, for each playei; there must be a rourid < b such that the expected probability of player
i getting the right answer increases by at 1e&/§® between round’ and¥’ + 1. It follows that there
must be some roundd < b such that either the expected probability of player 1 guessing the answer
after roundy’ + 1 is at least3/14b more than that of player 2 guessing the answer at round after round
b, or the expected probability player 2 guessing the answer after idund is at least3/32b more
than that of player 1 guess the answer after rokindProof: Consider a rountl such that player 1's
expected probability of guessing the right answer increases by aB|&astlf player 2's probability of
guessing the right answer is at le8gt4b more than that of player 1 at round then clearly player 2's
probability of guessing the right answer at rouds at least3/14b more than player 1's probability
of guessing the right answer @t— 1; otherwise, player 1's probability of guessing the right answer at
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roundd’ + 1 is at leasB/14b more than player 2’s probability of guessing it at rowhdl

Suppose, without loss of generality, thiais such that player 1's probability of guessing the right
answer at round’ + 1 is at least3/14b more than player 2's probability of guessing the right answer
at roundd’. Then player 1 deviates fromct by not sending any messages to player 2 at rokind
and then making a decision based on his information at réurd1, using his best guess based on
his information. (Note that player 2 will still send player 1 a message at réuadcording taoct.)
The best player 2 can do is to use his roshahformation. If oy, a9, a3, anday are the probabilities
of player 1 getting the right answer and player 2 not, both getting the right answer, 2 getting the right
answer and 1 not, and neither getting the right answer, we mustdiaveas > 3/14b. Moreover,
sinceoct is ane-implementation otr, by assumption, the expected utility of playleif he deviates is
atleast(l — €)(1 — (a1 — a3)) + M (a1 — a3). It easily follows that, sincd/ > (1 — €) + 28be/3,
then 1's expected utility by deviating at routids greater than + ¢. Hence o is not ane-equilibrium
in FCT<UM’E).

For part (b), consider the utility function?’. Note that there is no 1-punishment strat@gy(u>°)
with respect tar. We show that, for ab, there is no cheap-talk strategyr thate-implementsr and has
expected running timéin Tcr(u?P) if € < 3/14b. Suppose thatcr is a cheap-talk thatimplements
o and has expected running tirheThe argument above shows that there must be a rduntlere one
of player 1 or player 2 can deviate and have expected utility at (@ast(a; — a3)) + 2(a1 — az) =
1+ (a1 — ag) > 1+ 3/14b. The result immediately follows.

For the general argument, we do the proof of part (a) here; the modifications needed to deal with
part (b) are straightforward. Consideka- ¢t + 1 out of n secret sharing game, where the initial shares
are “signed” using check vectors. Specifically, for each sliéreand for each playef € N\ i, player
i is given a uniformly random valug;; in F' and player; is given a uniformly random valug;; in
F'\ {0} and a value;; such thatf (i) + y;;b;; = ¢;;. In the underlying game, players can either choose
a value in the field (intuitively, their best guess as to the secret) orgeaycT. The utility functions
are defined as follows:

o if atleastn — t players playpeTECT, then all players playingeTecTget 1, and all others get 0;

o if fewer thann — ¢ players playpeTECTand at least — (k + t) but fewer tham — ¢ players play
the secret, then the players playing the secrefie@nd the other players getM + 2 — 2§

o if fewer thann — ¢ players playpeTECTand eithem — t or more players or fewer than— (k +1)
players play the secret, then the players playing the secret get 1, and the remaining players get
1-4.

In the mediator game, each player is supposed to send the mediator his type (share, signatures, and
verifications). The mediator checks that all the shares sent pass the checks. Note that each share can
be subjected ta checks, one for each player. A shara@alable if it passes at least — ¢t checks. If
there are not at least — ¢ reliable shares, but a unique polynomjatan be interpolated through the
shares that are sent, then the mediator sends a random value that(i8)rtotall the players; otherwise,
the mediator chooses a valuefhat random and sends it to all the players. If there are at teast
reliable shares, the mediator checks if a unique polynomial of dég#eecan be interpolated through
the shares. If so, the mediator sends the secret to all the players; if not, the mediatarsendsto
all the players. Letr be the strategy for the players where they truthfully tell the mediator their type,
and play what the mediator sends.
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We claim that playing 1 is & -+ ¢)-punishment strategy with respectdaadf 6 > 0 andn > k + 2t,
and thatr is a(k, t)-robust equilibrium. The argument that playing 1 i§at ¢)-punishment strategy
is essentially identical to the argument for the 2-player game. However, note that it + 2¢, then
t >n— (k+1t). If at mostt players play 1, this is not a punishment strategy since the remaining
players can plapeTECT and guarantee themselves a payoff of 1.

To show that is a(k, t)-robust equilibrium, we first show it isimmune. Suppose that a subgeét
of at mostt players attempt to fool the mediator by guessing shares and appropriate check values, and
the remaining players play. Then at least — ¢ shares will be reliable. Note that— ¢ > k + ¢ + 1.
Either the mediator can interpolate a unique polynoryiiaf degreek + t through the reliable shares or
not. In the former case, the good players will learn the secret; in the latter case, the good players will
play DETECT. In either case, their payoff is 1. Thusjs t-immune.

For robustness, suppose that aBetp tok + ¢ players deviate from the recommended strategy. If
the true polynomial isf, the players irfl” can convince the mediator that some polynonfiatt f is
the true polynomial, and the playersihknow (k + ¢) of the points onf’, then, once the players if
learn f(0), they will knowk + ¢ + 1 points onf’, and hence will be able to compufé They can then
compute the shares of all the other players, and thus confpoe This can happen only || = k +¢,
2(k+t) —n of the players irff” send their true shares (and the correct check vectors), and the remaining
players inT send incorrect shares. So we assume |[thigt k + t, andn — (k + t) players inT send
incorrect values. If the mediator cannot interpolate a unique polynomial through the values sent, then
the mediator chooses a value fhat random and sends it to all the players. Even if the playefs in
know that this is what happened, the players ndf'iare playing a punishment strategy, so a player in
T cannot get expected utility higher than- 65/7, even if they know that the mediator is sending a
random value. If the mediator can interpolate a unique polynoyntarough the shares sent, then the
mediator will sendf(0) if all of the n — (k + t) shares received are reliable, and a value different from
f(0) otherwise. In the former case, which occurs with probability”—(v+%), the players iril’ can
compute the true secret, and will get a payoffiddf In the latter case, they compute the wrong value.
With probability (1/6)(1 — 1/7*~(k+1), the other players get the right value and the playef® get a
payoff of —M + 2 — 2J; otherwise, they get a payoff of 1. It is easy to see that the expected utility of
the players ifil" is at mostl — 2§/7, so the rational players will not deviate.

Suppose that this mediator strategy can be implemented using cheap talk. We claim that, as in
the proof ofTheorem 7 we can use the implementation to give a cheap-talk implementation in the 2-
player game. We simply divide the players into three groups: greuaed B both haven — (k + t)
members; grougs has the remaining@(k + t) — n players (groupK’ may be empty). Notice that
|AUB| = |AUK| = k+t. Just as in the 2-player case, we can show that there must be abfcurnth
that if the players in grougl pool their information together, the probability of them guessing the right
answer at round’ + 1 is at leasB/14b more than the probability of the players in groBmuessing the
answer after roundl even if the players in group pool their knowledge together, or the same situation
holds with the roles ofA and B reversed. Assume that is the group that has the higher probability of
guessing the right answer at title Then we assume that the playersdn K deviate by not sending
a rounddy’ message to the players i (Here we use the fact tha U B| < k + ¢.) Now the argument
continues as in the 2-player case. O
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