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Abstract

We analyze a model of interactive unawareness introduced by Heifetz, Meier and Schipper (HMS).
We consider two axiomatizations for their model, which capture different notions of validity. These
axiomatizations allow us to compare the HMS approach to both the standard (S5) epistemic logic and
two other approaches to unawareness: that of Fagin and Halpern and that of Modica and Rustichini.
We show that the differences between the HMS approach and the others are mainly due to the notion of

validity used and the fact that the HMS is based on a 3-valued propositional logic.
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1 Introduction

Reasoning about knowledge has played a significant role in work in philosophy, economics, and distributed
computing. Most of that work has used standard Kripke structures to model knowledge, where an agent
knows a facty if ¢ is true in all the worlds that the agent considers possible. While this approach has
proved useful for many applications, it suffers from a serious shortcoming, knownlagitted omniscience
problem (first observed and named by Hintikka [1962]): agents know all tautologies and know all the logical
consequences of their knowledge. This seems inappropriate for resource-bounded agents and agents who
are unaware of various concepts (and thus do not know logical tautologies involving those concepts). To
take just one simple example, a novice investor may not be aware of the notion of the price-earnings ratio,
although that may be relevant to the decision of buying a stock.

There has been a great deal of work on the logical omniscience problem (see [Fagin, Halpern, Moses,
and Vardi 1995] for an overview). Of most relevance to this paper are approaches that have focused on
(lack of) awareness. Fagin and Halpern [1988] (FH from now on) were the first to deal with lack of model
omniscience explicitly in terms of awareness. They did so by introducing an explicit awareness operator.
Since then, there has been a stream of papers on the topic in the economics literature (see, for example,
[Modica and Rustichini 1994; Modica and Rustichini 1999; Dekel, Lipman, and Rustichini 1998]). In these
papers, awareness is defined in terms of knowledge: an agent is awaf@ekither knows or knows that
he does not know. All of them focused on the single-agent case. Recently, Heifetz, Meier, and Schipper
[2003] (HMS from now on) have provided a multi-agent model for unawareness. In this paper, we consider
how the HMS model compares to other work.

A key feature of the HMS approach (also present in the work of Modica and Rustichini [1999]—MR
from now on) is that with each world or state is associated a (propositional) language. Intuitively, this is the

language of concepts defined at that world. Agents may not be aware of all these concepts. The way that is



modeled is that in all the states an agent considers possible at a,$@ter concepts may be defined than
are defined at state Because a propositignmay be undefined at a given statethe underlying logic in
HMS is best viewed as a 3-valued logic: a propositianay be true, false, or undefined at a given state.
We consider two sound and complete axiomatizations for the HMS model, that differ with respect to the
language used and the notion of validity. One axiomatization captueak validity a formula is weakly
valid if it is never false (although it may be undefined). In the single-agent case, this axiomatization is
identical to that given by MR. However, in the MR model, validity is taken with respect to “objective” state,
where all formulas are defined. As shown by Halpern [2001], this axiomatization is also sound and complete
in the single-agent case with respect to a special case of FH's awareness structures; we extend Halpern’s
result to the multi-agent case. The other axiomatization of the HMS model cajsin@sy) validity a
formula is (strongly) valid if it is always true. If we add an axiom saying that there is no third value to this
axiom system, then we just get the standard axiom system for S5. This shows that, when it comes to strong
validity, the only difference between the HMS models and standard epistemic models is the third truth value.
The rest of this paper is organized as follows. In Section 2, we review the basic S5 model, the FH model,
the MR model, and the HMS model. In Section 3, we compare the HMS approach and the FH approach,
both semantically and axiomatically, much as Halpern [2001] compares the MR and FH approaches. We
show that weak validity in HMS structures corresponds in a precise sense to validity in awareness structures.
In Section 4, we extend the HMS language by adding a nonstandard implication operator. Doing so allows
us to provide an axiomatization for strong validity. We conclude in Section 5. Further discussion of the
original HMS framework and an axiomatization of strong validity in the purely propositional case can be

found in the appendix.

2 Background

We briefly review the standard epistemic logic and the approaches of FH, MR, and HMS here.



2.1 Standard epistemic logic

The syntax of standard epistemic logic is straightforward. Given dlset.,n} of agents, formulas are
formed by starting with a seb = {p,q,...} of primitive propositions as well as a special formdla
(which is always true), and then closing off under conjunctio) fiegation {) and the modal operators;,
i=1,...,n. Call the resulting languageX (®).! As usual, we define v 1) andy = ¢ as abbreviations
of =(—¢ A —1p) and—¢ V 1, respectively.

The standard approach to giving semantic£fo(®) uses Kripke structures. Kripke structure for
n agents (over®) is a tupleM = (3,7, Ky,...,K,), whereX is a set of statesy : ¥ x & — {0,1}
is an interpretation, which associates with each primitive propositions its truth value at each $fate in
K; : ¥ — 2% is apossibility correspondender agenti. Intuitively, if ¢ € KC;(s), then ageni considers
statet possible at state. K; is reflexiveif for all s € X, s € ;(s); it is transitiveif for all s,t € %, if
t € K;(s) thenkC;(t) C K;(s);itis Euclideanif for all s, € X, if t € K;(s) thenkC;(t) D K;(s).2 A Kripke
structure is reflexive (resp., reflexive and transitive; partitional) if the possibility correspondépees
reflexive (resp., reflexive and transitive; reflexive, Euclidean, and transitive)M,gtP) denote the class
of all Kripke structures fom agents over>, with no restrictions on thé&; correspondences. We use the

superscripts, e, andt to indicate that theéC; correspondences are restricted to being reflexive, Euclidean,

'In MR, only the single-agent case is considered. We consider multi-agent epistemic logic here to allow the generalization to

HMS. In many cases[ is defined in terms of other formulas, e.g.,-&® A —p). We take it to be primitive here for convenience.
2t is more standard in the philosophy literature to taketo be a binary relation. The two approaches are equivalent, since

if XC; is a binary relation, we can define a possibility correspondéncby takingt € IC;(s) iff (s,t) € Kj. We can similarly

define a binary relation given a possibility correspondence. Given this equivalence, it is easy to see that the notions of a possibility
correspondence being reflexive, transitive, or Euclidean are equivalent to the corresponding notion for binary relations. We remark
that while we use the standard terminology in the logic and philosophy here, other terminology has occasionally been used in
the economics literature. For example, Geanakoklos [1989] calls a reflexive correspondadekidecand takes a transitive
correspondence to be one where the adg@otvs what he knowsThere is a deep connection between these properties of the

possibility correspondence and notions suchastive introspectiorwe discuss that shortly.



and transitive, respectively. Thus, for examphe’!(®) is the class of all reflexive and transitive Kripke
structures forn agents.
We write (M, s) = ¢ if ¢ is true at states in the Kripke structureV/. The truth relation is defined

inductively as follows:
(M,s) =p, forpe ®,if n(s,p) =1
(M, s) = —pif (M, s) [~ ¢

(M, s) = Apif (M, s) = pand(M, s) =1

(M, s) E K;pif (M,s') = pforall s’ € K;(s).

A formulap is said to bevalid in Kripke structureM if (M, s) = ¢ for all s € 3. A formulay is valid
in a classV of Kripke structures, denotell” |= ¢, if it is valid for all Kripke structures inV.

An axiom systemX consists of a collection cixiomsandinference rulesAn axiom is a formula, and
an inference rule has the form “from, . . . , ¢ infer,” wherey, . . ., v, 1 are formulas. A formula is
provablein AX, denoted AXF ¢, if there is a sequence of formulas such that the last opedasd each one
is either an axiom or follows from previous formulas in the sequence by an application of an inference rule.
An axiom system AX is said to beoundfor a languagel with respect to a clasd” of structures if every
formula in £ provable in AX is valid with respect t&/. The system AX izompletefor £ with respect to
N if every formula in£ that is valid with respect td/ is provable in AX.

Consider the following set of well-known axioms and inference rules:
Prop. All substitution instances of valid formulas of propositional logic.
K. (Kip NKi(p = 1)) = K.

T. Kip = .

4. Kitp = KZ'Kitp.



5. Ko = K~ K;p.
MP. Fromy andy = v infer (modus ponens).

Gen. Fromy infer K;¢.

These axioms go by various names in the economics, philosophy, and logic lit€rdforeexample,
the axiom T has been called tkmowledge AxionilOsborne and Rubinstein 1994]; axiom 4 has been called
the Positive Introspection AxiofAumann 1999; Fagin, Halpern, Moses, and Vardi 1995] andAtkiem
of TransparencyOsborne and Rubinstein 1994]; and axiom 5 has been calleNébative Introspection
Axiom[Aumann 1999; Fagin, Halpern, Moses, and Vardi 1995] andAtkiem of WisdonjOsborne and
Rubinstein 1994]. It is well known that the axioms T, 4, and 5 correspond to the requirements that the
IC; correspondences are reflexive, transitive, and Euclidean, respectiveljyiK,1 e the axiom system
consisting of the axioms Prop, K and rules MP, and Gen, anfiigtbe the system consisting of all the
axioms and inference rules above. The following result is well known (see, for example, [Chellas 1980;

Fagin, Halpern, Moses, and Vardi 1995] for proofs).

Theorem 2.1: Let C be a (possibly empty) subset f, 4,5} and letC be the corresponding subset of
{r,t,e}. ThenK, U C is a sound and complete axiomatization of the languéfj€®) with respect to

ME (D).

In particular, this shows th&5,, characterizes partitional models, where the possibility correspondences

are reflexive, transitive, and Euclidean.

3In the economics literature, they are typically applied to semantic knowledge operators, which are functions from sets to sets,

rather than to syntactic knowledge operators, but they have essentially the same form.



2.2 The FH model

The Logic of General Awareness model of Fagin and Halpern [1988] introduces a syntactic notion of aware-
ness. This is reflected in the language by adding a new modal operator each agent. The intended
interpretation ofA;p is “i is aware ofy”. The power of this approach comes from the flexibility of the
notion of awareness. For example, “ageigtaware ofp” may be interpreted as “ageits familiar with all
primitive propositions iny” or as “agent; can compute the truth value gfin time¢”.

Having awareness in the language allows us to distinguish two notions of knowledge: implicit knowl-
edge and explicit knowledge. Implicit knowledge, denoted with is defined as truth in all worlds the
agent considers possible, as usual. Explicit knowledge, denotedXijtis defined as the conjunction of
implicit knowledge and awareness. L&f*4(®) be the language extendintf< (®) by closing off under
the operatorsi; and X;, fori = 1,...,n. Let £X4(®) (resp.LX (®)) be the sublanguage @fXX-4(®)
where the formulas do not mentidty, . .., K, (resp.,K1,..., K, andAy,... A,).

An awareness structure for agents overd is a tupleM = (X, 7,K4,...,Kp, A1, ..., Ay), Where
(X, 7, Kq,...,K,) is a Kripke structure andl; is a function associating a set of formulas for each state, for
i = 1,...,n. Intuitively, 4;(s) is the set of formulas that agehis aware of at state. The set of formulas
the agent is aware of can be arbitrary. Depending on the interpretation of awareness one has in mind, certain

restrictions ond; may apply. There are two restrictions that are of particular interest here:

e Awareness igienerated by primitive propositioni for all agentsi, ¢ € A;(s) iff all the primitive
propositions that appear inare in4;(s) N ®. That is, an agent is aware ¢fiff she is aware of all

the primitive propositions that appearn
e Agents know what they are awareigffor all agentsi, t € IC;(s) implies thatA4;(s) = A;(¢).

Following Halpern [2001], we say that awareness structupgapositionally determined awareness is

generated by primitive propositions and agents know what they are aware of.
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The semantics for awareness structures extends the semantics defined for standard Kripke structures by

adding two clauses defining; and X;:

(M, s) = Ajpif o € Ai(s)

(M, s) = Xipif (M,s) E Aipand(M,s) = K;p.

FH provide a complete axiomatization for the logic of awareness; we omit the details here.

2.3 The MR model

We follow Halpern’s [2001] presentation of MR here; it is easily seen to be equivalent to that in [Modica
and Rustichini 1999].
Since MR consider only the single-agent case, they use the langlfag@e). A generalized standard

model(GSM) over® has the formM = (S, %, 7, K, p), where

¢ SandX are disjoint sets of states; moreover= Uyce Sy, Where the setSy are disjoint. Intuitively,
the states ir5 describe the objective situation, while the state&iidescribe the agent’s subjective

view of the objective situation, limited to the vocabulary that the agent is aware of.
o m:5x ®={0,1} is an interpretation.
e K:S — 2% is ageneralized possibility correspondence

e pis a projection fromS onto X such that (1) ifo(s) = p(t) € Sy then (a)s andt agree on the truth
values of all primitive propositions i, that is,r (s, p) = «(t,p) forall p € ¥ and (b)KC(s) = K(t)
and (2) ifp(s) € Sy, then(s) C Sy. Intuitively, p(s) is the agent’s subjective state in objective

States.

We can extendC to a map (also denoteld for convenience) defined a$i U X in the following way:

if s € ¥ andp(s) = ¢, define(s’) = K(s). Condition 1(b) orp guarantees that this extension is well
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defined. A GSM is reflexive (resp., reflexive and transitive; partition&l)iéstricted ta: is reflexive (resp.,
reflexive and transitive; reflexive, Euclidean and transitive). Similarly, we can extéod function (also
denotedr) defined onS U X: if s’ € Sy, p € ¥ andp(s) = ¢, definen(s’,p) = w(s,p); and if s’ € Sy
andp ¢ ¥, definer(s',p) = 1/2.

With these extensions ¢&f andr, the semantics for formulas in GSMs is identical to that in standard

Kripke structures except for the case of negation, which is defined as follows:

if s €S, then(M,s) =—piff (M,s) =

if s € Sy, then(M,s) = —ypiff (M,s) [~ pandp € LE (D).

Note that for states in the “objective” state spatehe logic is 2-valued; and every formula is either true
or false (where we take a formulato be false at a stateif —¢ is true ats). On the other hand, for states
in the “subjective” state spacethe logic is 3-valued. A formula may be neither true nor false. It is easy to
check that ifs € Sy, then every formula irC¥ (¥) is either true or false at, while formulas not inC{ (o)
are neither true nor false. Intuitively, an agent can assign truth values only to formulas involving concepts
he is aware of; at states By, the agent is aware only of concepts expressed in the langifage).

The intuition behind MR’s notion of awareness is that an agent is unawagréf dfe does not know,
does not know he does not know it, and so on. Thus, an agent is awaré loé either knowsp or knows
he does not know, or knows that he does not know that he does not kpowar . ... MR show that under
appropriate assumptions, this infinite disjunction is equivalent to the first two disjuncts, so theyAlefine
to be an abbreviation dp vV K- K.

Rather than considering validity, MR consider what we call lndajective validity truth in all objective
states (that is, the states #). Note that all classical (2-valued) propositional tautologies are objectively
valid in the MR setting. MR provide a systeathat is a sound and complete axiomatization for objective

validity with respect to partitional GSM structures. The systéronsists of the axioms Prop, T, and 4, the



inference rule MP, and the following additional axioms and inference rules:

M. K(oAv) = Ko A K.

C. KpANKyp = K(pA).

A. Ap & A-op.

AM. A(p A1) = Ap N A,

N. KT.

RE,,. Fromy < ¢ infer K < K1), wherep andy contain exactly the same primitive propositions.

Theorem 2.2:[Modica and Rustichini 1999} is a complete and sound axiomatization of objective validity

for the languageC X (®) with respect to partitional GSMs ovér.

2.4 The HMS model

HMS define their approach semantically, without giving a logic. We discuss their semantic approach in
the appendix. To facilitate comparison of HMS to the other approaches we have considered, we define an
appropriate logic. (In recent work done independently of ours [Heifetz, Meier, and Schipper 2005], HMS
also consider a logic based on their approach, whose syntax and semantics is essentially identical to that
described here.)

Given a setd of primitive propositions, consider again the languatfge(®). An HMS structure for
n agents(over ®) is a tupleM = (X,Kq,...,Kp, 7, {pw v : ¥ C ¥ C &}), where (as in MR)Y =
UwcoSy is aset of states; : 3 x & — {0,1,1/2} is an interpretation such that ferc Sy, 7(s,p) # 1/2
iff p € ¥ (intuitively, all primitive propositions inV are defined at states 6% ), andpg’ ¢ mapsSy onto
Sy. Intuitively, pgr ¢ (s) is a description of the state € Sy in the less expressive vocabulary 8.

Moreover, if¥; C Wy C U3, thenpy, v, © pw, v, = pw,w,. Note that although both MR and HMS
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have projection functions, they have slightly different intuitions behind them. Ford¢fRjs the subjective
state (i.e., the way the world looks to the agent) when the actual objective stateas HMS, there is no
objective statepy ¢ (s) is the description of in the less expressive vocabulary$f. For B C Sy,, let
pw,.u, (B) = {pw,w,(s) : s € B}. Finally, the|= relation in HMS structures is defined for formulas in
LE(®) in exactly the same way as it is in subjective states of MR structures. Moreover, likedMRs
defined as an abbreviation &f;¢p vV K;—K;p.

Note that the definition of= does not use the functiops /. These functions are used only to impose
some coherence conditions on HMS structures. To describe these conditions, we need a definition. Given

B C Sy, let Bl = Uyisupyi o (B). Thus,BT consists of the states which project to a stat@in

=

. Confinedness: § € Sy thenK;(s) C Sy for somed’ C 0.
2. Generalized reflexivitys € KC;(s)! for all s € .
3. Stationarity:s’ € K;(s) implies

@) Ki(s') € Ki(s);

(b) Ki(s") 2 Ki(s).

4. Projections preserve knowledgeWf C Wy C W3, s € Sy,, andk;(s) C Sy,, thenpy, v, (Ki(s)) =

’Ci(p\Ps,\Ill(S))'
5. Projections preserve ignorances € Sy and¥ C ¥’ then(KC;(s))" € (Ki(pwrw(s)))1.4

We remark that HMS combined parts (a) and (b) of stationarity into one statement ($ayig—

K;(s')). We split the condition in this way to make it easier to capture axiomatically. Roughly speaking,

HMS explicitly assume thalt; (s) # () for all s € X, but since this follows from generalized reflexivity we do not assume it
explicitly. HMS also mention one other property, which they gadljections preserve awarene$sit, as HMS observe, it follows

from the assumption that projections preserve knowledge, so we do not consider it here.
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generalized reflexivity, part (a) of stationarity, and part (b) of stationarity are analogues of the assumptions
in standard epistemic structures that the possibility correspondences are reflexive, transitive, and Euclidean,
respectively. The remaining assumptions can be viewed as coherence conditions. See [Heifetz, Meier, and
Schipper 2003] for further discussion of these conditions.

If C'is asubsetofr,t,e}, letHS (®) denote the class of HMS structures ofesatisfying confinedness,
projections preserve knowledge, projections preserve ignorance, and the subset of generalized reflexivity,
part (a) of stationarity, and part (b) of stationarity corresponding toThus, for exampleH"!(®) is the
class of HMS structures far agents overd that satisfy confinedness, projections preserve knowledge,
projections preserve ignorance, generalized reflexivity, and part (a) of stationarity.

HMS consider only “partitional” HMS structures, that is, structureii(®). However, we can get
more insight into HMS structures by allowing the greater generality of considering non-partitional struc-
tures. In particular, by considering non-partitional structures, we can make precise the sense in which
generalized reflexivity and parts (a) and (b) of stationarity are analogues of the assumptions that possiblity
correspondences are reflexive, transitive, and Euclidean. Moreover, non-partitional structures are of interest
in their own right. Philosophers have long argued that negative introspection is an inappropriate axiom for
knowledge (see, for example, [Hintikka 1962]). In the economics literature, the consequences of dropping
properties such as negative introspection (axiom 5) and the knowledge axiom (T) on speculation and Au-
mann’s [1976] results about the impossibility of agreeing to disagree have been considered by Bacharach
[1985], Geanakoplos [1989], and Samet [1987], among others. All this work has been done in the “stan-
dard” setting (essentially, in Kripke structures where all agents are aware of all formulas), so the results
cannot just be lifted to HMS structures. However, by considering non-partitional HMS structures, we can
separate the effects of awareness from the effects of the properties of knowledge. This lets us distinguish
arguably “intrinsic” properties of the approach from ones that depend on these additional properties. For

example, an intrinsic property of Kripke structures is that agents know all tautologies (this is basically a

12



consequence of the inference rule Gen) and that agents know the logical consequences of their knowledge
(this is the content of the axiom K). These properties hold no matter what assumptions we make about the
correspondence relation. Similarly, considering non-partitional HSM structures allows us to consider the

“intrinsic” properties of the HSM approach.

3 A Comparison of the Approaches

There is a difference in the philosophy behind HMS structures and awareness structures. HMS view states as
subjective—in the agents’ heads. In awareness structures, states are objective. In a given state, formula
is true, even though no agent is awargoT his is fairly standard in modal logic. For example, in reasoning
about belief, we may want a state wheris true even though no agent belieyeis true. However, there is
an added subtlety that arises in dealing with awareness. What does it mean for aintagensider a state
t possible where is true when is not aware op? To make sense of this,dfe IC;(s), then we implicitly
assume that's “understanding” oft is limited to the formulas that is aware of ats (which are also the
formulas that is aware of at, under the assumption that agents know what they are aware of).

Despite this difference in philosophy, there are quite close connections between the MR, HMS, and FH

approaches. As a first step to comparing the approaches, we recall a result proved by Halpern.

Lemma 3.1: [Halpern 2001, Lemma 2.1f M is a partitional awareness structure where awareness is

generated by primitive propositions, then

MEAip < (XieV (Xip AN Xi—Xp)).

Halpern proves this lemma only for the single-agent case, but the proof goes through without change for
the multi-agent case. Note that this equivalence does not hold in general in non-partitional structures. Thus,
if we restrict attention to partitional awareness structures where awareness is generated by primitive propo-

sitions, we can define awareness just as MR and HMS do. Halpern [2001, Theorem 4.1] proves an even
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stronger connection between the semantics of FH and MR, essentially showing that partitional GSMs are
in a sense equivalent to propositionally determined awareness structures. We prove a generalization of this
result here.

If C'is a subset ofr, t, e}, let VP4(®) and NP9 denote the set of propositionally determined aware-
ness structures over and the set of awareness structures a@vevhere awareness is propositionally gen-
erated, respectively, whogé€; relations satisfy the conditions i@. Given a formulay € LX(®), let
ox € LX(®) be the formula that results by replacing all occurrencek gin ¢ by X;. Finally, let®,, be

the set of primitive propositions appearingg4n

Theorem 3.2:LetC' be a subset ofr, ¢, e}.

@ If M = (,K1,...,Kp,m {pwrg : ¥ C ¥ C ®&}) € H{(®), then there exists an awareness
structure M’ = (3, K4, ..., KL, 7', A1, ..., Ay) € NEPI(®) such that, for allp € LE(®), if
s € Syand®, C VU, then(M,s) = ¢iff (M, s) = ¢x. Moreover, ifC N {t,e} # 0, then we can

take M’ € NSPd.

(b) f M = (B,K1,...,Kp, 7, A1, ..., An) € NEPYD), then there exists an HMS structulé’ =
(XK K Apwrw : O C W C @))€ HY(®) such that! = ¥ x 2%, Sy = ¥ x {U}
forall ¥ C @, and, for ally € LE(®), if &, C U, then(M,s) & ox iff (M',(s,¥)) E ¢. If

{t,e} N C = 0, then the result holds evenif € (NCP9(d) — NCP4(P)).

It follows immediately from Halpern’s analogue of Theorem 3.2 [Halpern 2001, Theorem 4.1} that
is objectively valid in GSMs iffpx is valid in propositionally determined partitional awareness structures.
Thus, objective validity in GSMs and validity in propositionally determined partitional awareness structures
are characterized by the same set of axioms.

We would like to get a similar result here. However, if we define validity in the usual way—that is,

is valid iff (M, s) = ¢ for all statess and all HMS structured/—then it is easy to see that there are no
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(non-trivial) valid HMS formulas. Since the HMS logic is three-valued, besides what we wilstralig
validity (truth in all states), we can consider another standard notion of validity. A formulaakly valid
iff it is not false at any state in any HMS structure (that is, it is either true or undefined at every state in every

HMS structure). Put another way,is weakly valid if, at all states whereis definedy is true.

Corollary 3.3: If C C {r,t,e} then
(@) if C N {t,e} = 0, theny is weakly valid inHS (@) iff px is valid iIn NP9 ();
(b) if C' N {t,e} # 0, theny is weakly valid inHS (@) iff ¢ is valid in N;CP4(P).

Halpern [2001] provides a sound and complete axiomatizations for the Ian@i‘é‘ée@) with respect
to N¢Pd(®), whereC is either(), {r}, {r,t} and{r,e,t}. Itis straightforward to extend his techniques to
other subsets ofr, e, ¢} and to arbitrary numbers of agents. However, these axioms involve combinations
of X; andA;; for example, all the systems have an axiom of the fofpA X (¢ = ) A Ay = X1). There
seems to be no obvious axiomatization ff (®) that just involves axioms in the languagé () except
for the special case of partitional awareness structures, wheésalefinable in terms oX; (see Lemma 3.1),
although this may simply be due to the fact that there are no interesting axioms for this language.

Let S5° be then-agent version of the axiom system,Sfhat Halpern proves is sound and complete for
LX (@) with respect toV"*:P4(®) (so that, for example, the axiofip A X (p = 1) A Ay = X 1) becomes
Xio AN Xi(p = ¥) AN Aiyp = X0, where now we viewd,;p as an abbreviation fakK;p V X;—X;p). Let
S5¢ be the result of replacing all occurrencesXf in formulas in S¥ by K;. Similarly, leti4, be the
n-agent version of the axiom systeitogether with the axiom; K < A;p,5 and lett/;X be the result
of replacing all instances df; in the axioms ot/,, by X;. HMS have shown that there is a sense in which a

variant oft4,, (which is easily seen to be equivalenttg) is a sound and complete axiomatization for HMS

The single-agent version of this axiotK p < A, is provable ir{, so does not have to be given separately.
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structures [Heifetz, Meier, and Schipper 2005]. Although this is not the way they present it, their results
actually show that/, is a sound and complete axiomatization of weak validity with respebt’t&(®).

Thus, the following is immediate from Corollary 3.3.

Corollary 3.4: U, and S& are both sound and complete axiomatization of weak validity for the language
LE (@) with respect taH7¢!(®); U;X and S5 are both sound and complete axiomatizations of validity for

the languageC;X (®) with respect to\7¢7%4(P).

We can provide a direct proof that, and S% (resp. /X and S&) are equivalent, without appealing
to Corollary 3.3. It is easy to check that all the axiom#/gf are valid in\¢*?(®) and all the inference
rules oft/X preserve validity. From the completeness of'Siroved by Halpern, it follows that anything
provable in/X is provable in S5, and hence that anything provablelif) is provable in S§. Similarly,
it is easy to check that all the axioms of/Sare weakly valid ir’¢!(®), and the inference rules preserve
validity. Thus, from the results of HMS, it follows that everything provable iff $§ provable ir4, (and
hence that everything provable in;S% provable irt/;¥).6

These results show a tight connection between the various approé&tiea.sound and complete ax-
iomatization for objective validity in partitional GSM&;, is a sound and complete axiomatization for weak
validity in partitional HMS structures; arid” is a sound and complete axiomatization for (the standard no-
tion of) validity in partitional awareness structures where awareness is generated by primitive propositions

and agents know which formulas they are aware of.

5The axiom systems K, Tx, S4x, and S5 considered by Halpern [2001] include an inference rule that says that certain
formulas are irrelevant in a proof. Specifically, this inference rule says that if no primitive propositiprepipear inp, then from
- Ay = 1 infer 4. Halpern conjectured that the rule was unnecessary, but could not prove it. These results show that, in the case
of S5x (where we are dealing with partitional structures), the rule is in fact unnecessary, since all the axiohtéw without

it. However, its necessity for the other logics is still open.

16



4 Strong Validity

We say a formula igstrongly) validin HMS structures if it is true at every state in every HMS structure.
We can get further insight into HMS structures by considering strong validity. However, since no nontrivial
formulas in£X (®) are valid in HMS structures, we must first extend the language. We do so by adding a
nonstandard implication operates to the languagé. The formulay — < should be ready implies)”
and, as the reading suggests, we want the semanties tif extend classical implication, so that if both
p andq) are either true or false (i.e., are not undefined), ther 1 is true exactly ifp = 1 is true in
classical logic. The question is how we should define— ¢ if one of ¢ or ¢ is undefined. We define
o — 1) to be false under exactly the same conditions ¢hat ¢ is taken to be false in classical logic:yf
is true andy is false. Ify is true, then, as we would expegt— ¢ only if ¢ is also true; ify is undefined,
then we takep < 1 to be true, which is not that surprising. The interesting case is what happeris if
false. In classical logicy = v is automatically true in this ase. Fer, if ¢ is false, thenp — 1 is true
only if ¢ is defined. Intuitively, the reason for this is that we want— 1 to be valid only if (1) is true
whenevery is true and (2)) is at least as defined as Thus, although we warip A —p) — (p A —p) to be
valid, we do not wantp A —p) — (g A —q) to be valid.

Let £K—(®) be the language that results by closing off undein addition to—, A, andK7, .. ., K,;
let £~ (®) be the propositional fragment of the language. We cannot use the MR definition of negation for
LK~ (®). The MR definition actually would work for formulas not involvirg, but with <, things get
more complicated. To understand why, note thatdf Sy andp ¢ W, it is still the case thgt — p is true
ats (indeed,p — pis true at all states). We thus also want to take(p — p) to be true at, despite the
fact that—(p — p) ¢ LI (D).

To deal appropriately with negation, rather than having one clause to handle the truthwé define

"We remark that a nonstandard implication operator was also added to the logic used by Fagin, Halpern, and Vardi [1995] for

exactly the same reason, although the semantics of the operator here is different from there, since the underlying logic is different.
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the truth of bothy and—¢ simultaneously by induction on the structureqof As usual, we say thap is
false at state if —p is true at state and thaty is undefined at if it is neither true nor false at. In the
definitions, we us€M, s) =1¢ as an abbreviation qfM, s) (= ¢ and(M, s) = —¢; and(M, s) Elp as
an abbreviation of M, s) = g or (M, s) = —p (s0(M, s) =Ty iff ¢ is neither true nor false at i.e., itis

undefined at). Let M be an HMS structure.

(M,s) =T

(M, 5) = =T

(M, s) Epif m(s,p) =1

(M, s) = —pif 7(s,p) =0

(M, s) = —mpif (M, s) = ¢

(M,s) =@ Ayif (M,s) = pand(M,s) =1

(M, s) = =(p A1) ifeither (M, s) = —~p A1por (M, s) = o A=por (M, s) i~ A=
(M, 5) |= (¢ — o) if either (M, s) |= o Adpor (M, s) ETp or (M, s) =~ and(M, ) [=1v)
(M, 5) = =(p = ) if (M, s) = o At

(M, s) = Kipif (M,s) =lpand(M,t) = pforall ¢ € K;(s)

(M7 S) ': —Kipif (M7 S) F& Kip and(M7 S) ':lSD

It is easy to check that this semantics agrees with the MR semantics for formufds(ib). Moreover,

the semantics fop — ) enforces the intuitions described earlier. In particular, it agrees with the classical

semantics fop = 1 if ¢ andvy are both defined; the conditions fpr— ¢ to be false are exactly the same

as those forp = 1 to be false, even whep andt are not both defined; and ¢ is false, thenp = ¢ is
true if and only ify is defined. Thusp — 1 is valid only if ¢ is at least as defined as

The following lemma follows by an easy induction on the structure of formulas.
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Lemma 4.1 If & C ¥, every formula inCX— () is defined at every state .

It is useful to define the following abbreviations:

e © = 1 is an abbreviation ofy — ¥) A (Y — ¢);

e ¢ = 1is an abbreviation of:(¢ — —T);

e ¢ = (is an abbreviation of:(—p < —T);

e = 1 is an abbreviation ofp — —T) A (¢ — = T).

Using the formulasgy = 0, p = % andy = 1, we can reason directly about the truth value of formulas.
This will be useful in our axiomatization.

In our axiomatization ofZ-— (®) with respect to HMS structures, just as in standard epistemic logic,
we focus on axioms that characterize properties oktheelation that correspond to reflexivity, transitivity,
and the Euclidean property.

Consider the following axioms:
Prop. All substitution instances of formulas valid £i~ (®).
K. Kip NKi(p = ¢)) = Kinh.
T Kip = oV Vippea,) Kilp = 1/2).
4. Kip — K;K;p.
5. 2Ki=Kip — (Kip) V Ki(p = 1/2).
Confl. (¢ = 1/2) — K;(p = 1/2)if p € LE(D).

Conf2. =K;(p =1/2) — K;((p V —p) = 1).
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Bl (Kip)=1/2< ¢ =1/2.
B2. ((¢=0Ve=1)AKi(p=1)) — (K;p) =1.
MP'. Fromy andy < 1 infer 1.

A few comments regarding the axioms: Prol’, T, 4, 5, and MP are weakenings of the corre-
sponding axioms and inference rule for standard epistemic logic. All of them-usather than=-; in
some cases further weakening is required. We provide an axiomatic characterization’ah Rhepap-
pendix. A key property of the axiomatization is that if we just add the axjo# 1/2 (saying that all
formulas are defined), we get a complete axiomatization of classical logic. T fwiteplaced by—)
is sound in HMS systems satisfying generalized reflexivity for formylas £X(®). But, for example,
K;(p = 1/2) — p = 1/2is not valid; p may be defined (i.e., be either true or false) at a stated
undefined at all states € K;(s). Note that axiom 5 is equivalent to its contrapositivk;—~K;p = K;.
This is not sound in its full strength; for examplepifs defined ats but undefined at the statesiti(s),
then(M, s) = - K;—K;p A ~K;p. Axioms Confl and Conf2, as the names suggest, capture confinedness.
We can actually break confinedness into two parts. 4f Sy, the first part says that each statec IC;(s)
is in some sefy such thatl’ C . In particular, that means that a formuladd (®) that is undefined at
s must be undefined at each stateiy(s). This is just what Confl says. Note that Confl does not hold for
arbitrary formulas; for example, {f is defined and is undefined at, and both are undefined at all states
in IC;(s), then(M,s) = (p — q) = 1/2 A =K;((p — ¢) = 1/2). The second part of confinedness says
that all states iriC;(s) are in the same séty. This is captured by Conf2, since it says thapiis defined at
some state it'C;(s), then it is defined at all states 46;(s). B1 and B2 are technical axioms that capture the
semantics of{;p.%

Let AXff"* be the system consisting of PfpK’, B1, B2, Confl, Conf2, MR and Gen.

8We remark that axiom B2 is slightly modified from the preliminary version of the paper.
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Theorem 4.2: Let C be a (possibly empty) subset{of’,4’, 5’} and letC be the corresponding subset of
{r,t,e}. ThenAXX~ U C is a sound and complete axiomatization of the languafjé~ (®) with respect

to HS (®).

Theorem 4.2 also allows us to relate HMS structures to standard epistemic structures. It is easy to check
that if C is a (possibly empty) subset ¢fl’,4', 5’} andC' is the corresponding subset f, e, ¢}, all the
axioms of AXX:= U C are sound with respect to standard epistemic structi&g®). Moreover, we get
completeness by adding the axigm# 1/2, which says that all formulas are either true or false. Thus, in a

precise sense, HMS differs from standard epistemic logic by allowing a third truth value.

5 Conclusion

We have compared the HMS approach and the FH approach to modeling unawareness. Our results show
that, as long as we restrict attention to the languéfjé®), the approaches are essentially equivalent;

we can translate from one to the other. Recently, we have extended the logic of awareness by allowing
awareness of unawareness [Halpern aBddr2006b], so that it is possible to say, for example, that there
exists a fact that agent 1 is unaware of but agent 1 knows that agent 2 is aware of it. This would be expressed
by the formulaX;3x(—Aix A Asz). Note that this formula is quite different frow X, (—Aix A Asx).

The former formula says that agent 1 knows that there is some fact that he is not aware of but agent 2 is;
however, agent 1 does not necessarily know what that fact is. According to the latter formula, there is a
fact that agent 1 knows he is not aware of but agent 2 is. Thus, with the latter formula, agent 1 knows what
fact he is not aware of, which cannot be the case if awareness is propositionally generated. The analogous
difference arises in first-order modal logic. For example, the formiilaz President(z) says that agent 1

knows that someone is the president;K President(x) says that there is someone that agent 1 knows is

the president. Thus, with the former formula, agent 1 does not know who the president is; he just knows

that there is one. With the latter formula, he knows who the president is.
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Such reasoning about awareseems of unawareness is critical to capture what is going on in a number
of games. For example, taking agent 1 to be a naive investor and agent 2 to be a sophisticated broker, the
investor may know that the broker is aware of some relevant facts of which he (the investor) not aware. If we
take a more computational notion of awareness, then if we take agent 1 to be a novice chess player and agent
2 to be an expert, the novice may know that there are some moves that the expert is aware of which he is not
(where “awareness of a move” in this setting means “understanding the consequences of the move”). See
[Halpern and Rgo 2006b] for more details of the logic. This is an instance where using the FH approach
really seems to help; it is not clear whether such awawreness of unawareness can be expressed in the HMS
framework.

We have also recently shown how awareness and awareness of unawareness can be added to extensive
games, and have described the resulting equilibrium notions [Halpern &gal Z2006a]. This work is in
the spirit of work on awareness in games by Feinberg [2004, 2005], but Feinberg’s conditions are expressed
syntactically, whereas ours are expressed semantically. We believe that there is much more to be done in

understanding the impact of awareness (and lack of it) in the context of games; these are just the first steps.
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A The Original HMS Approach

HMS describe their approach purely semantically, without giving a logic. We review their approach here
(making some inessential changes for ease of expositionHM8 frame fom agentds a tuple(%, K4, . . .,
K, (A, 2), {pga: @, B € A,a X B}), where:

e A is an arbitrary lattice, partially ordered by

24



e C1,..., K, are possibility correspondences, one for each agent;
e Y is a disjoint union of the formJ,ca Sa;
o if a = 3, thenpg,, : S3 — S, is a surjection.

In the logic-based version of HMS given in Section 2Mconsists of the subsets &, and¥ < ¥’ iff
¥ C ¥'. Thus, the original HMS definition can be viewed as a more abstract version of that given in
Section 2.4.

GivenB C S,, let B! = Uy, ajﬁ}pg’;(B). Again, B! consists of the states that project to a state in
B. HMS focus on sets of the forf&', which they take to be events.

HMS assume that their frames satisfy the five conditions mentioned in Section 2.4, restated in their more
abstract setting. The statements of generalized reflexivity and stationarity remain the same. Confinedness,

projections preserve knowledge, and projections preserve ignorance are stated as follows:
e confinedness: if € Sz then/C;(s) C S, for somea < f3;

e projections preserve knowledge: df < 8 < v, s € Sy, and;(s) C Sg, thenpg o (Ki(s)) =

Ki(py,a(s));
e projections preserve ignorancesit S anda < 3 then(K;(s))! C (Ki(pg.al(s)))!.

HMS start by considering the algebra consisting of all events of the #fm In this algebra, they
define an operator by taking—~(B') = (S, — B)! for ) # B C S,. With this definition,~—~B! = BT if
B ¢ {0, S.}. However, it remains to define))T. We could just take it to bE, but then we have-S], = %,
rather thanﬁsg = sg. To avoid this problem, in their words, HMS “devise a distinct vacuous diverit
for each subspacs,, extend the algebra with these events, and defifie = ()°> and—(% = S]. They
do not make clear exactly what it means to “devise a vacuous event”. We can recast their definitions in the

following way, that allows us to bring in the evert® more naturally.
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In a 2-valued logic, given a formula and a structurd/, the sef{¢] 5, of states where is true and the
set[—y] s of states where is false are complements of each other, so it suffices to associate witly
one set, sajy]as. In a 3-valued logic, the set of states wherés true does not determine the set of states
wherey is false. Rather, we must consider three mutually exclusive and exhaustive sets: the set ishere
true, the set where is false, and the set whegeis undefined. As before, one of these is redundant, since it
is the complement of the union of the other two. Note thatii§ a formula in the language of HMS, the set
[¢] s is either) or an event of the fornB', whereB C S,,. In the latter case, we associate witlthe pair
of sets(B', (S, — B)"), i.e., ([¢]ar, [-¢]a)- In the former case, we must hafey],, = SI for some
a, and we associate with the pair(, S}). Thus, we are using the pdid, S| ) instead of devising a new
event()*= to represenfy],; in this caseé.

HMS use intersection of events to represent conjunction. It is not hard to see that the intersection of
events is itself an event. The obvious way to represent disjunction is as the union of events, but the union
of events is in general not an event. Thus, HMS define a disjunction operator using de Morgan’s law:
EV E' = =(=EN-FE"). Inour setting, where we use pairs of sets, we can also define operasomdi

(intuitively, for negation and intersection) by taking £, E’) = (E’, E') and

(E,E"YN(F,F'y=(ENnF,(ENF)YU(E'NF)U(E NF")).

Although our definition of"1 may not seem so intuitive, as the next result shol#s, E’) 1 (F, F') is
essentially equal toF N F,—(E N F')). Moreover, our definition has the advantage of not usingo it

applies even iff and F' are not events.

°In a more recent version of their paper, HMS identify a nonempty ezewtth the pair(E, S), where, forE = BT, S is the
unique setS,, containingB. Then®® can be identified wit{®, S). While we also identify events with pairs of sets dhtiwith

(@, .5), our identification is different from that of HMS, and extends more naturally to sets that are not events.
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LemmaA.L If (EU E') = S} and(F U F’) = S}, then

-(ENF) if (ENF)#0,
(ENFYU(E'NF)U(E'NF) =

sl if (ENF)=0andy = sup(a, 3).1°

Proof: Let bethe setENF)U (ENF')U(E' NF)U(E NF'). We first show thaf = 5], where

v = sup(a, 3). By assumptionf = B' for someB C S,, andF = C' for someC C Ss. Suppose
thats € I. We claim thats € Ss, wherea < 6 andg =< §. Suppose, by way of contradiction, that
a £ 0. Thens ¢ EUFE', sos ¢ I, a contradiction. A similar argument shows tita §. Thusy < o
ands € Sl. For the opposite inclusion, suppose that S; Sincea =< v andg =< ~, the projections
pv,a(s) andp, g(s) are well defined. LelX = E if p,.(s) € BandX = E’ otherwise. Similarly, let
Y = Fif pyg(s) € C andY = F’ otherwise. It is easy to see thatc (X NY) C I. It follows that

(ENF)YU(E'NF)U(E'NF')=S!—(ENF). The result now follows easil§

Finally, HMS define an operatdf; corresponding to the possibility correspondefiGe They define

Ki(E) = {s: K;(s) C E},'* and show thaK;(E) is an eventifE is. In our setting, we define
Ki((E,E')) = ({s: Ki(s) C EYN (EUE'),(EUE) — {s: Ki(s) C E}).

Essentially, we are defining; ((E, E')) as(K;(E), —K;(E)). Intersecting withZ U E’ is unnecessary in the
HMS framework, since their conditions on frames guaranteekhd@) C £ U E’. If we think of (E, E')
as([e]a, [-¢]a), theny is defined onE' U E’. The definitions above guarantee tfity is defined on the

same set.

'"Note thatsup(a, 3) is well defined since\ is a lattice.
11 Actually, this is their definition only if{s : Ki(s) C E} # 0; otherwise, they tak&;(E) = (%« if E = B’ for some

B C S.. We do not need a special definition{i§ : K;(s) C E} = 0 using our approach.
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HMS define an awareness operator in the spirit of MR, by takiii@’) to be an abbreviation df;(£) v
K;—K;(E). They then prove a number of properties of knowledge and awareness, sucas- K;K;(E)
andA;(—F) = A;(E).

The semantics we have given for our logic matches that of the operators defined by HMS, in the sense

of the following lemma.

Lemma A.2: For all formulase, v € LK~ (®) and all HMS structures!/.
@) ([=~¢lar, [==elar) =~ ([lar, [=elar)
(0) (I A ¥lar, [=(e AP)a) = (Telars [-elnn) T ([01or, [ an)-
© ([Kielar, [-Kiplar) = Ki(([lar, [=]ar))

Proof: Part (a) follows easily from the fact that ([¢]ar, [-¢]lar)) = ([7elm), [elar) and[——¢]ar =

[las-

For part (b), note that

(lelar, I=ela) ([0 ars [=901ar) = ([edarn [0 ars (el N[=1a) U([=elarN 9] an) U=l s N [=4Dar))-

Now the result is immediate from the observation fagty, N [ ]ar = [ A ¢¥]a and

(lelar N [=9]a) U ([l N0 [90ar) U ([=elar 0 [=91ar) = [=(9 A )] ar-

For (c), by definition ok,

Ki((lelar, [=¢lan)) = ({s = Kils) C [elary 0 ([elar VI=@lan), ([elarUl=elar) —{s - Ki(s) € [l })-

Note thatt € ([¢]ar U [~@lar) iff (M,t) Elp, andt € {s : Ki(s) C [¢]a} iff for all ¢ € K;(t),
(M, ') |= . Thus,t € {s : Ki(s) € [@]ar} N (Jelar U [olar) iff (M, 1) = Kip, ie., iff t € [Kio]a.
Similarly, t € ([¢]a U [=¢la) — {s : Ki(s) € [ela} iff (M,1) =] and (M, 1) £ Ko, ie., iff
(M, t) | ~K;p. Hencet € [~Kig] . B
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Note that Lemma A.2 applies even though, once we introduce-th@perator,[¢] 5/ is not in general

an event in the HMS sense. (For examfiles— ¢] s is not in general an event.)

B An Axiomatization of L7 (®)

Note that the formulag = 0, ¢ = % andyp = 1 are 2-valued. More generally, we define a formpul&o

be 2-valuedif (¢ = 0) V (¢ = 1) is valid in all HMS structures. Because they obey the usual axioms of
classical logic, 2-valued formulas play a key role in our axiomatizatiofof®). We say that a formula is
definitely 2-valuedf it is in the smallest set containing and all formulas of the fornp = & which is closed
under negation, conjunction, nonstandard implication, Bndso that ifo andq are definitely two-valued,
then so are-p, ¢ A, ¢ — 1 (for all ¢’), andK;p. Let Dy denote the set of definitely 2-valued formulas.

The following lemma is easy to prove.
Lemma B.1: If ¢ is definitely 2-valued, then it is 2-valued.
Let AX3 consist of the following collection of axioms and inference rules:

PO. T.

PL. (p Ah) = =(p — ) if ¢,¢ € Ds.

P2. o < (1) < @) if @, € Dy,

P3.(p = (W —=¢)) = ((p=v) = (p=¢)if o4, ¢ € Da.
P4. (¢ = ¢) = ((p = ) = =) if p,1p € Ds.

P5. (pAy)=1=(p=1)A(W=1)

P6. (pAY) =0+ (p=0A=(Y=1/2))V (=(p=1/2) A¢p = 0).
P7.o=1% (—p) = 0.

P8. o =0= (—¢p) = 1.
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PO. (p 1) = 1= ((p=0A=(6=1/2) V(p=1/2)V(p = 1A =1)).

P10. (p =) =0= (p=1A1 =0).

Pll. (¢ =0Ve=1/2Ve=1)A(-(p=iANp=7)), fori,j € {0,1/2,1} andi # j.
R1. Fromyp = 1 infer ¢.

MP’. Fromy andp < 1 infer .

It is well known that PO-P4 together with MProvide a complete axiomatization for classical 2-valued
propositional logic with negation, conjunction, implication, and? Axioms P5-P10 are basically a trans-
lation to formulas of the semantics for conjunction, negation and implication.

Note that all the axioms of AXare sound in classical logic (all formulas of the fogn= 1/2 are
vacuously false in classical logic). Moreover, it is easy to show that if we add the axjpm= 1/2) to
AX3, we get a sound and complete axiomatization of classical propositional logic (although many axioms

then become redundant).
Theorem B.2: AX; is a sound and complete axiomatizationof ().

Proof: The proof that the axiomatization is sound is a straightforward induction on the length of the proof
of any theoremp. We omit the details here. For completeness, we need to show that a valid formula
p € L7 (D) is provable in AX. We first prove thap = 1 is provable in AX using standard techniques,
and then apply R1 to infep. We proceed as follows.

Given a se of formulas, letAG = A g . A setG of formulas isAX-consistentif for all finite
subsety)’ C G, AX I =(AG'). A setG of formulas ismaximal AX-consisteiift G is AX-consistent and for

all ¢ ¢ G, G U {p} is not AX-consistent.

12\We remark that we included formulas of the fofi) among the formulas that are definitely 2-valued. While such formulas
are not relevant in the axiomatization 6t (®), they do play a role when we consider the axiom PiopAX %>, which applies

to instances in the languagd~ (®) of valid formulas of£ ™ (®).
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Lemma B.3: If G is an AX-consistent subset gf, thenG can be extended to a maximal AX-consistent

subset of}’.

Proof: The proof uses standard techniques. {:£ty», . . . be an enumeration of the formulasgh Define
Fy = GandF;, = F,_1 U{y;} if F;_1 U {¢;} is AX-consistent and®; = F;_;, otherwise. LetF =
Use,F;. We claim thatF is an maximal AX-consistent subset@f. Suppose thap € G’ andy ¢ F. By
construction, we have = ¢, for somek. If F;,_ U {1} were AX-consistent, thet;, would be inFj,
and hence),, would be inF. Sinceyy, = ¢ ¢ F, we have thaF,_, U {1} is not AX-consistent and hence

F U{¢}, is not AX-consistentl

The next lemma shows that maxim&Ks-consistent sets of definitely 2-valued formulas satisfy essen-

tially the same properties as maximal classically consistent sets of formulas.

Lemma B.4: Let AX be any axiom system that includes; ARor all maximal AX-consistent subsetsof

D, the following properties hold:
(1) for every formulap € D,, exactly one ofp and - is in F;
(2) forevery formulap € L7 (), exactly one op = 0, o = 1/2, andy = lisin F;
(3) if1,..., 0010 € Dy, @1,...,0r € F,andAXs F (o1 A ... Apy) — 1, theny € F;
4) (pAY)=1€eFiffp=1c Fandy =1¢€ F;
(5B) (pAY)=0¢€ Fiffeithero=0€ Fandy =1/2¢ F,oryy=0€ Fandp =1/2 ¢ F;
6) v=1€ Fiff () =0¢€ F,;
7)p=0eFiff (-)=1¢€F,

B) (p—v)=1¢€ Fiffeitherp =0 Fandy =1/2¢ F,orp=1/2 € F,or p =1 € F and
Yv=1¢€F,
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9) (¢p—v)=0eFiffp=1€ Fandy =0¢ F;

(10) ifp € Dy andAX I ¢, theny € F;

Proof: First, note that axioms P0-P4 and Miiarantee that classical propositional reasoning can be used
for formulas inD,. We thus use classical propositional reasoning with minimal comment.

For (1), we first show that exactly one &f U {¢} and F U {—p} is AX-consistent. Suppose that
F U {¢} andF U {—p} are both AX-consistent. Thep € F and—¢ € F. Since—(p A =p) € Dy,
AX F =(p A =), but this is a contradiction sincg is AX-consistent. Now suppose that neittferJ {¢}
nor F U {—¢} is AX-consistent. Then there exist finite subsHts Hy C F such thaAX - —(o A (AH1))
andAX F —(=pA(AH3)). LetG = H1UH>. By classical propositional reasonilgX - —(oA(AG)) and
AX F =(=9p A (AG)), SOAX F =((p A (AG))V (= A (AG))) andAX F =((p A (AG)) V (mp A (AG))) —
-(AG). Hence, by MP, AX - =(AG). This is a contradiction, sina@ C F and.F is AX-consistent.

Suppose that U {¢} is AX-consistent (the other case is completely analogous). Skhieea maximal
AX-consistent subset aby; andy € D,, we havepy € F. And sinceF U {—p} is not AX-consistent,
o & F.

For (2), we first show that exactly one 8fU {¢ = i}, fori = {0,1/2,1}, is AX-consistent. Suppose
that7 U {p =i} andF U {p = j}, i # j, are AX-consistent. Thep = i € F andy = j € F. By axiom
P11,AX F —=(¢ =i A ¢ = j). This is a contradiction, sincg is AX-consistent.

Next, suppose that none 8fU {p = i} is AX-consistent. Then there exist finite sésC F such that
AX F —(p =i A (AF})), i = 0,1/2,1. LetG = Fy U Fy )5 U F1. By classical propositional reasoning,
AX F =(p =i A (AG)), andAX F =((¢ = 0A (AG)) V (¢ = 1/2 A (AG)) V (¢ = 1 A (AG))). Now
using axiom P11, we haweX - —(AG). This is a contradiction, sina@ C F andF is AX-consistent.

Leti* be the unique such thatF U {¢ = i*} is AX-consistent. Sincé is a maximal AX-consistent

subset ofD; andy = i* € Do, we have tha{y = i*} € F. And sinceF is AX-consistent, it is clear by
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P11, thatifj # i*, then{p = j} ¢ F.

For (3), by part (1), ify ¢ F, then— € F. Thus,{¢1,...,0r, ¢} C F. But sinceAXs +
w1 A ... AN — 1, by classical propositional reasonilgXs - — (o1 A ... A ¢ A =), a contradiction
sinceF is AX-consistent.

The proof of the remaining properties follows easily from parts (2) and (3). For example, for part (4), if
(e A1) =1 € F,then the factthap = 1 € F andy) = 1 € F follows from P5 and (3). We leave details

to the readen

Aformulay is said to besatisfiable in a structurd/ if (M, s) = ¢ for some world inM; ¢ is satisfiable
in a class of structured/ if it is satisfiable in at least one structureAh Let M p be the class of all 3-valued

propositional HMS models.

Lemma B.5: If ¢ = i is AX3-consistent, thep = i is satisfiable inM p, fori € {0,1/2,1}.

Proof: We construct a special mod&f© € Mp called thecanonical 3-valued modelM/ ¢ has a statey,

corresponding to every/ that is a maximal AX-consistent subset d?,. We show that

(M, sv) =3 iff o=jeV, forje{0,1/21}.

Note that this claim suffices to prove Lemma B.5 since, by Lemma B3#=fi is AX3-consistent, then
it is contained in a maximal A)consistent subset d,. We proceed as follows. Lét/¢ = (X, 7), where

¥ = {sy : V is a maximal consistent subsetf } and

1 fp=1€V,

T(sv,p)=9 0 ifp=0€V,

1/2 ifp=1/2€V.

Note that by Lemma B.4(2), the interpretatioris well defined.
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We now show that the claim holds by induction on the structure of formulag.idfa primitive propo-
sition, this follows from the definition of (sy-, ¢).

Suppose thap = —¢. By Lemma B.4(7){(—¢) = 1 € V iff ¢ = 0 € V. By the induction hypothesis,
o =0 € Viff (M¢sy) | ¢ = 0. By the semantics of the logic, we hay&/¢ sy) = ¢ = 0 iff
(M€, sy) = —p, and the latter holds iftA €, sy) = (—¢) = 1. Similarly, using Lemma B.4(6), we can
show(—¢) = 0 € V iff (M€, sy) = (-¢) = 0. The remaining casg = 1/2 follows from the previous
cases, axiom P11, and the fact thaf€, sy/) = ¢ = i for exactly one € {0,1/2,1}. (For all the following
steps of the induction the cage= 1/2 is omitted since it follows from the other cases for exactly the same
reason.)

Suppose that) = p1 A po. By Lemma B4(4),y =1 € Viff o =1 € Vandypy = 1 €
V. By the induction hypothesisy; = 1 € V iff (M¢ sy) = ¢; = 1for j € 1,2, which is true iff
(M¢,sy) = (o1 A p2) = 1. Similarly, using Lemma B.4(5), we can show thiat A o) = 0 € V iff
(M€, sv) = (o1 Ap2) = 0.

Suppose that = ¢1 — ¢3. By LemmaB.4(8))) =1 € Viffeitherp; =0 € Vandps, =1/2 ¢ V;
orp; =1/2€ V;ore; =1 € Vandypy, =1 € V. By the induction hypothesis, this is true iff either
(M€, sy) = o1 = 0and (M€, sy) = o2 = 1/2; 0r (M€, sy) = o1 = 1/2;0r (M€ sy) = o1 =1
and (M€, sy) = @2 = 1. This, in turn, is true iff(M¢, sy) E —p1 and (M€, sy) = —(p2 = 1/2); or
(M€, sy) = (p1 = 1/2); or (M€, sy) E ¢1 and(M€, sy) | 2. By the semantics of-, this holds iff
(M€, sy) E (p — o) = 1. Similarly, using Lemma B.4(9), we can show thiat — ) = 0 € V iff

(M€ sv) = (¢ =) =0.1

We can finally complete the proof of Theorem B.2. Supposeghatalid. This impliesy = 0)V (¢ =
1/2) is not satisfiable. By Lemma B.%p = 0) V (¢ = 1/2) is not AXz-consistent, S;AX3 = —((¢ =

0) V (p = 1/2)). By axioms P0-P4, P11 and MRAX3 + ¢ = 1. And finally, applying R1AX3 F ¢. So,
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the axiomatization is completh.

C Proofs of Theorems

In this section, we provide proofs of the theorems in Sections 3 and 4. We restate the results for the reader’s

convenience.
The next lemma, which is easily proved by induction on the structure of formulas, will be used through-

out. We leave the proof to the reader.

LemmaC.l: If M € Hy(®), ¥ C U C®,s€V,s =pyu(s) ¢ € LE(P), and(M,s) | ¢, then

(M, 3) = .

Theorem 3.2: LetC be a subset ofr, ¢, e}.

@ fM = (E,K,....Kp,m{pww : ¥ C UV C ®}) € HE (@), then there exists an awareness
structure M’ = (%,K},..., K., 7' Ay,..., Ay) € NSPI(®) such that, for allp € LK (®), if
s € Syand®, C U, then(M,s) = ¢iff (M, s) = ¢x. Moreover, ifC N {t,e} # 0, then we can

take M’ € NPd.

(b) f M = (B,K1,...,Kp, 7, A1L,..., An) € NEPYD), then there exists an HMS structuld’ =
(XK, Ko parg - U C W C ®}) € HS(®) such thaty = X x 2%, Sy = X x {U}
forall ¥ C @, and, for allp € LX(®), if &, C U, then(M,s) & ox iff (M',(s,¥)) E ¢. If

{t,e} N C = 0, then the result holds evenif € (NCP9(d) — NCPd(P)).

Proof: For part (a), givenM = (3,K1,...,Kn,m{pprg : ¥ C ¥ C &}) € HJ(P), let M' =

(3, K, ... KL, 7' Ay, ..o Ay) be an awareness structure such that

o 7'(s,p) = w(s,p)if w(s,p) # 1/2 (the definition ofr’ if (s, p) = 1/2is irrelevant);
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e Ci(s) = Ki(s) if K; does not satisfy Generalized Reflexivity, a6f{s) = K;(s) U {s} otherwise;

o if ) £ K;(s) C Sy orif K;(s) =0 ands € Sy, thenA;(s) is the smallest set of formulas containing

U that is propositionally generated.

By constructionM’ € N¢P9(®). Itis easy to check that i N {t, e} # (), then agents know what they are
aware of, so thad/’ € NCP4(d).

We complete the proof of part (a) by proving, by induction on the structurg, dhat if s € Sy and
¢, C U, then(M,s) = ¢ iff (M',s) = ¢x. If ¢ is either a primitive proposition, op = -, or
© = 1 A @9, the result is obvious either from the definitiondfor from the induction hypothesis. We
omit details here.

Suppose thap = K;op. If (M,s) = K, then for allt € KC;(s), (M,t) = . By the induction
hypothesis, it follows that for all € K;(s), (M’,t) = 9. If K; satisfies generalized reflexivity, it easily
follows from Lemma C.1 that)M, s) = ¢ so, by the induction hypothesisé)M’, s) = . Hence, for
allt € Kj(s), (M',t) = v, so(M',s) = K. To show that(M’,s) = X1, it remains to show that
(M',s) E A, that is, that) € A;(s). First suppose that # K;(s) C Sy. Since(M,t) | ¢ for all
t € K;(s), it follows thaty is defined at all states i;(s). Thus,®,, C V¥, for otherwise a simple induction
shows that) would be undefined at states §y. Hence,®, C A;(s). Since awareness is generated by
primitive propositions, we have € A;(s), as desired. Now suppose théi(s) = () ands € Sy. By
assumptionp, = &, C ¥ C A;(s), so again) € A;(s).

For the converse, itM’'s) = X;v, then(M’,s) = K;v andy € A;(s). By the definition ofA,,
Ki(s) € Sy, where®,, C W. Since(M’,s) = K;o, (M',t) = ¢ forall t € K(s). Therefore, by the
induction hypothesig,M, t) = ¢ for all t € IC;(s), which implies(M, s) = K;1), as desired.

For part (b), givenV = (2, K1,..., Ky, m, Ar,. .., Ay) € NOPYD), let M = (X, K), ..., KL, 7,

{pw v : ¥ C V' C ®}) be an HMS structure such that
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o Y =3 x2%

Sy =X x {V}for¥ C o,

7'((s,¥),p) = m(s,p) if p € ¥andr'((s,V),p) = 1/2 otherwise;

Ki((s,9)) = {(t, T NY;(s)) : t € Ki(s)}, whereW;(s) = {p : p € Ai(s)} is the set of primitive

propositions that ageritis aware of at state;
o pwu((s,¥)) = (s,9).

Note that since agents know what they are aware ofcifiC;(s), thenW,(¢) = ¥,(s).

We first show that\/’ satisfies confinedness and that projections preserve knowledge and ignorance.
Confinedness follows sinc€;((s, ¥)) C Syny,s)- TO prove projections preserve knowledge, suppose
thatv; C ¥y C W3 andi;((s, ¥3)) C Sy,. Then¥y = U3 N ¥,(s) and¥; = ¥y N Y,(s). Thus
puan (K4(5,03))) = {(£. 1) = (t, W5 N Wi(s)) € Ki((s,W3))} = {(t, ¥1) : t € Ki(s)}. Similarly,
Ki(pwsw,(s,U3)) = {(t, U1 N ¥;(s)) : t € Ki(s)}. Therefore, projections preserve knowledge.

To prove that projections preserve ignorance, note Kijépy: v (s, U')) = Ki((s,¥)) = {(t,¥ N
W;(s)) : t € Ki(s)} andKl((s, ) = {(t, V' N W;(s)) : t € Ki(s)}. If (5,9") € (KL((s,¥"))T, then
U'NW,(s) C V. Since¥ C ¥, it follows that¥ N W;(s) C ¥”. Hence(s, V") € (Ki(pyr w(s, ¥)))T.
Therefore, projection preserves ignorance.

We now show by induction on the structurewthat if &, C ¥, then(M, s) = px iff (M, (s, ¥)) =
o. If pis a primitive proposition, op = —), Or o = 1 A s, the result is obvious either from the definition
of «’ or from the induction hypothesis. We omit details here.

Suppose thap = K;3. If (M, (s, 7)) = K9, then for all(t, U N ¥;(s)) € Kj((s,¥)), (M', (¢t,¥ N
U,(s))) = v. By the induction hypothesis and the definition/6f, it follows that for allt € KC;(s),

(M,t) =, s0(M,s) = K. Also note that if M, (¢, U NW,(s))) = ¢, theny is defined at all states in
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Swnw,(s)» and therefore at all states Hy, ;). Hence,®,, C ¥,(s) C A;(s). Since awareness is generated
by primitive propositionsy € A;(s). Thus,(M, s) = A;, which implies tha( M/, s) = X;v, as desired.

For the converse, suppose tliaf, s) = X,y and®, C ¥. Then(M, s) = K;¢ andy € A;(s). Since
€ Ai(s), @y C Wi(s). Hence, @, C (¥ N Y,(s)). (M,s) = K;p implies that(M,t) = v for all
t € Ki(s). By the induction hypothesis, sindg, C ¥, (M’, (t,¥)) = ¢ forall t € K;(s). Since®,, C
(¥ NT,(s)), by Lemma C.1, it follows thatM’, (¢, U N ¥;(s))) = ¢ forall (¢, ¥ N ¥;(s)) € Ki((s, V)).
Thus,(M’, (s,¥)) = K;v, as desired.

We now show thai\’ € HS(®). If K; is reflexive, then(s, ¥ N ¥;(s)) € Ki((s, ¥)), so(s, ¥) €
(Ki((s,®)))I. Thus, M’ satisfies generalized reflexivity. Now suppose tkatis transitive. If(s’, ¥ N
U,(s)) € Ki((s,¥)), thens’ € K;(s) andL((s', ¥ N W;(s))) = {(t, TN T (s) NW;(s)) : t € Ki(s)}.
Since agents know what they are aware of'iE /C;(s), thenW;(s) = W;(s’), sSOK((s', U N ¥;(s))) =
{(t, T NT,(s)) : t € K;(s')}. Sincek; is transitive JC; (s') C K;(s), SOKL((s', T NW,(s))) C Ki((s,¥)).
Thus, M’ satisfies part (a) of stationarity. Finally, suppose tkatis Euclidean. If(s’, ¥ N ¥;(s)) €
Ki((s,0)), thens’ € K;(s) andKC,((s', ¥ NW;(s))) = {(t, TN, (s)NT,(s")) : t € Ki(s")}. Since agents
know what they are aware of,4f € IC;(s), thenW;(s) = U;(s"), SOK((s', U N,(s))) = {(t, T NW;(s)) :

t € K;i(s')}. Sincek; is Euclidean/C;(s’) 2 ICi(s), soKi((s', ¥NW,(s))) 2 Ki((s, ¥)). ThusM’ satisfies
part (b) of stationarity.

If {t,e} N C = 0, then it is easy to check that the result holds evelitc (NSP9(®) — NP4 (D)),
since the property that agents know what they are aware of was only used to prove part (a) and part (b) of

stationarity in the proofl

Corollary 3.3: If C C {r,t,e} then
(@) if C N {t,e} = 0, theny is weakly valid inHS (@) iff px is valid i NP9 ().
(b) if C N {t,e} # 0, theny is weakly valid inHS (@) iff px is valid iIn NS P4().
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Proof: For part (a), suppose thaty is valid with respect to the class of awareness structtfee9(d)
where awareness is generated by primitive propositions andtlsahot weakly valid with respect to the
class of HMS structure®($ (®). Then—y is true at some state in some HMS structuretifi (®). By
part (a) of Theorem 3.25px is also true at some state in some awareness structure where awareness is
generated by primitive propositions, a contradiction sipgeis valid in N.¢P9(®),

For the converse, suppose thais weakly valid in#S' (®) and thatpy is not valid with respect to the
class of awareness structur®’?9(®). Then—yx is true at some state in some awareness structure in
NEPI(D). By part (b) of Theorem 3.2:¢ is also true at some state in some HMS structurgjn(®), a
contradiction since is weakly valid inHS (®).

The proof of part (b) is the same except th4f?9(®) is replaced throughout by ¢74(®). i

Theorem 4.2: LetC be a (possibly empty) subset{af’, 4’, 5’} and letC be the corresponding subset of

{r,t,e}. ThenAXX:= U C is a sound and complete axiomatization of the languafje (®) with respect

to HS (®).

Proof: Soundness is straightforward, as usual, by induction on the length of the proof (after showing that

all the axioms are sound and that the inference rules preserve strong validity). We leave details to the reader.
To prove completeness, we first definesieplified HMSstructure forn agents to be a tuplé/ =

(3, K1,..., Ky, 7). Thatis, a simplified HMS structure is an HMS structure without the projection func-

tions. The definition of= for simplified HMS structures is the same as that for HMS structures. (Recall

that the projections functions are not needed for defifiny Let H,, (®) consist of all simplified HMS

structures forn agents ovet that satisfy confinedness.

Lemma C.2: AXX~ is a sound and complete axiomatization of the languéfje— (®) with respect to

H,, (D).

Proof: Again, soundness is obvious. For completeness, it clearly suffices to show thatAXgry -
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consistent formula is satisfiable in some structuré{jp. As usual, we do this by constructing a canonical
modelM¢ € H;; and showing that eveny XX~ -consistent formula of the form = i fori € {0,1/2,1}

is satisfiable in some state 87¢. Since(M¢,s) | ¢ iff (M€, s) = ¢ = 1, this clearly suffices to prove
the result.

Let M€ = (¢, K¢, ..., K¢, m¢), where

S$, = {sy : V is a maximalAX X~ -consistent subsdb, and for allp € (® — ¥), p =1/2 €V,

andforallp € ¥, (p =1/2) ¢ V};

¢ = U\IJQ,I)S&,;

Ké(sy) ={sw : V/K; CW} whereV/K; ={p=1:Kjp=1€V};
1 fp=1eV
e m(sv,p))=q 0 ifp=0eV

1/2 ifp=1/2€V.

Note that, by Lemma B.4(2), the interpretatiohis well defined.

We want to show that

(M€ sy) =y =3 iff w=45€V, forje{0,1/2,1}. 1)

We show that (1) holds by induction on the structure of formulas) i$ a primitive proposition, this
follows from the definition ofr®(sy,¢). If ¥ = =~ ory = @1 A w2 Orp = 1 — 9, the argument is
similar to that of Lemma B.5, we omit details here.

If v = K¢, then by the definition o’/ K, if » = 1 € V, theny = 1 € V/K;, which implies that if
sw € K{(sv), thenp =1 € W. Moreover, by axiom Bly = 1/2 ¢ V. By the induction hypothesis, this
implies that(AM €, sy) = —(¢ = 1/2) and that(M ¢, sy) = ¢ for all W such thatsyy € K$(sy ). This in
turn implies that{ M€, sy') = K;p. Thus, (M€, sy) | (Kip) =1,i.e.,(M¢ sy) Ev = 1.

40



For the other direction, the argument is essentially identical to analogous arguments for Kripke struc-
tures. Suppose thad/¢, sy) = (K;p) = 1. It follows that the sefV/K;) U {=(p = 1)} is not AX -
consistent. For suppose otherwise. By Lemma B.3, there would be a maXiXijal—-consistent setV’
that containgV/K;) U {—=(¢ = 1)} and, by construction, we would hayg, € K¢(sy). By the induction
hypothesis(M¢€, sw) ~ (¢ = 1), and so(M¢€, sw) ¥~ ¢. Thus, (M€ sy) ¥~ K;p, contradicting our
assumption. Sinc€V/K;) U {—(p = 1)} is not AXX~-consistent, there must be some finite subset, say
{©1, .., or, ~(¢ = 1)}, which is notAX X~ -consistent. By classical propositional reasoning (which can

be applied since all formulas are Iny),
AX T F o= (p2 = (o= (o = (9 = 1))

By Gen,
AXE T Ki(pr = (02 = (o= (o1 = (9 =1))))). 2)

Using axiom K and classical propositional reasoning, we can show by inductidntbat

AXET F Ki(pr = (2 = (o= (o = (9 =1))))) < (3)

= (Kipr = (Kipz = (.. = (Kipp — (Ki(p = 1))))))-
Now by MP' and Equations (2) and (3), we get
AXR T F (Kipr = (Kipz = (o = (Kigy = (Ki(p = 1))))))-
By Lemma B.4(10), it follows that
Kipr = (Kipz = (... = (Kipr — (Ki(p =1))))) € V.

Sinceys, ..., v € V/K;, there exist formulaa;, . . ., a; such thatp; has the formy; = 1,fori =1,... k.
By definition of V/ K, (K;a1) = 1, ..., (K;ax) = 1 € V. Note that, by PropAXS~ - a; < (a; = 1).
So, by Gen, K Prog, and MP, AX%™ - K;a; < K;(a; = 1). Thus, K;a; — Ki(aj = 1) € V.
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Another application of Prémives thatAX = - ((K;a;) = 1 A (Ko «— Ki(aj = 1)) — Ki(aj = 1).
Since(Ka;) = 1 A (Ko — Ki(a; = 1) € V, itfollows thatK;(a; = 1) € V; i.e,, K;p; € V. Note
that, by Profy AXX~ - (BA (3 — ~)) — ~. By repeatedly applying this observation and Lemma B.4(3),
we get thati;(¢ = 1) € V. Since, (M€, sy) | (K;p) = 1 implies (M€, sy) = ¢ = 1/2, it follows by
the induction hypothesis that=1/2 ¢ V. Therefore(¢o =0V ¢ = 1) € V, so by axiom B2 and Lemma
B.4(3),(K;p) = 1 € V, as desired?

Finally, by axiom B1 and Lemma B.4(3)K;p) = 1/2 € V iff ¢ = 1/2 € V. By the induction
hypothesisyy = 1/2 € V iff (M€, sy) = ¢ = 1/2. By the definition of=, (M€ sy) | ¢ = 1/2iff
(M€, sv) = Kip=1/2.

This completes the proof of (1). Since ever¥X >~ -consistent formula is in some maximah X~ -
consistent sety must be satisfied at some stateliff.

It remains to show thal/¢ satisfies confinedness. So suppose thate Sy. We must show that
K¢(sy) C Sy for some®’ C . This is equivalent to showing that, for aliy, sy € K¢(sy) and all
primitive proposition, (a) (M€, sw) = p = 1/2iff (M, sy+) E p =1/2and (b) if (M, sy) Ep =
1/2, then(M¢€, sw) = p = 1/2. For (a), suppose thaty, sy € K;(s) and(M¢, sy) = p = 1/2. Since
sw € KS(sy), we must havéMe, sy) = —K;((p V —p) = 1). V contains every instance of Conf2. Thus,
by (1), (M€, sy) E -Ki(p=1/2) — K;((pV —p) = 1). Itfollows that(M¢, sy) = K;(p = 1/2). Thus,
(M€, sw) = p = 1/2, as desired. For (b), suppose thaf“, sy) = p = 1/2. SinceV contains every
instance of Conf1l, it follows from (1) thadtM¢, sy') = p = 1/2 — K;(p = 1/2). It easily follows that
(M€, sw) Ep=1/2. Thus,M*¢ € H,,, as desired.

To finish the proof thah XX~ is complete with respect th;, (®), suppose thap is valid in 1, (P).

This implies that(y = 0) V (¢ = 1/2) is not satisfiable, so by (1Jy = 0) V (¢ = 1/2) is not AX -

3This proof is almost identical to the standard modal logic proof tfidt sy') = K implies K;¢ € V [Fagin, Halpern,

Moses, and Vardi 1995].
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consistent. ThusAXX:~ = —((¢ = 0) V (¢ = 1/2)). By Prog and MP, it follows that AX%—~ |- ¢ = 1

andAX%~ |- ¢, as desiredl

We now want to show that there exist projection functipf)s,, such tha{x°, K5, ..., K7, 7, {p‘fl,,’q, :
¥ C U C &}) € Hy(P). The intention is to defing§,  so thatpy, ¢ (sv) = sw, wheresy, € S and
agrees withsy on all formulas inCX— (). (We say thaty agrees withsy on o if (M€, sy) |= ¢ iff
(M€, sw) = ¢.) Butfirst we must show that this is well-defined; that is, that there exists a ubiguéth
these properties. To this end, 8§ ¢ be a binary relation on statesit such thatRy (s, sw) holds if
sy € SS,, sw € S, andsy andsy, agree on formulas igX— (¥). We want to show thaRy- ¢ actually
defines a function; that is, for each staec Sy, there exists a uniquay € Sg such thatRy:  (sv, sw).

The following lemma proves existence.
Lemma C.3:If ¥ C ¥/, then for allsy € Sy, there existsy, € SY, such thatRy g (sv, sy) holds.

Proof: Suppose thaty € Sg,. Let Vg be the subset oF containing all formulas of the formp = 1,
wherey contains only primitive propositions i¥. It is easily seen thaty U {p = 1/2 : p ¢ Y} is
AXE~-consistent. For suppose, by way of contradiction, that it isAf:"~-consistent. So, without
loss of generality, there exists a formulasuch that) = 1 € Vg andAXE = F p; = 1/2 < (py =
1/2 < (... = (pr = 1/2 — =(¢p = 1)))), wherep; # p; fori # j andpy,...,pr € (® — ¥). By
Lemma C.2, it follows that,, = p1 =1/2 = (p2 =1/2 = (... = (pr = 1/2 = (¢ = 1)))). It
easily follows that, = —(1) = 1). Applying Lemma C.2 again, we get thAK*—~ - — () = 1). This
is a contradiction, sincg = 1 € V andV is a maximalAva‘H-consistent subset db,. It follows that
Ve U{p =1/2:p ¢ T} is contained in some maximalX -~ -consistent subsé¥’ of Dy. Sosy and
sy agrees on all formulas of the form = 1 for ¢ € L£E—(¥) and therefore agree on all formulas in

L (), i.e., Ry w(sv,sw) holds.l

The next lemma proves uniqueness.
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Lemma C.4 If & C ¥, thenfor allsy € S§/, sw, sy € S, if Ry w(sv,sw) and Ry w(sv, sw) both

hold, thenWW = W',

Proof: Suppose thaRy ¢ (sv, sw) andRy g (sv, syv) both hold. We want to show th&t” = T".

Define a formula) to besimpleif it is a Boolean combination of formulas of the fogm= k, wherep is
implication-free. Itis easy to check thatgfis implication-free, sincey, € Sy, then(M€, sw) E p =1/2
iff &, — ¥ # (; the same is true fosy». Moreover, if®, C ¥, thensy andsy» agree onp. Thus, it
easily follows thatsy andsy» agree on all simple formulas. We show tliEt= 1/’ by showing that every
formula is equivalent to a simple formula; that is, for every formpla D, there exists a simple formula
¢’ suchthat, ¢ = ¢

First, we prove this for formulag of the formy = k, by induction on the structure af. If ¢ is a
primitive propositionp, theny is simple. The argument is straightforward, using the semantic definitions,
if 1 is of the form—)’, 11 A )9, Or 1)1 — hs.

If ¢ has the formK;1)’, we proceed by cases. A = 1/2, then the result follows immediately from
the induction hypothesis, using the observation gt = K;v' = 1/2 = ¢’ = 1/2. To deal with the
casek = 1, for &' C &y, defineoy or = Apco (P V —p) = 1) A Apea,—ay P = 1/2. By the induction
hypothesisy)’ = 1 is equivalent to a simple formutd’. Moreovery)” is equivalent td/aca, (" Noy.a).
Finally, note thaty” A o, ¢ is equivalent to a formula where each subformglla= % of " such that
de — O’ # () is replaced byT if £ = 1/2 and replaced byl if k£ # 1/2; each subformula of the form
¢ = 1/2 such thatd, C @' is replaced bylL. Thus,y" A o, 4 is equivalent to a formula of the form
e A oy.ar, Whereyg is simple, all of its primitive propositions are #/, and all of its subformulas have
the form¢ = 0 oré = 1. Leto 4 = Apear (0 V —p) = 1) and letoy, 4 = Ape(a,—a(p = 1/2) (S0 that
Tpd = JJQ, Ao, ¢). An easy induction on the structure of a formula shows that\ 01';{), is equivalent

ol =1A a;;q,,, where¢’ is an implication-free formula. Finally, it is easy to see that 1 A o—j;,@, is
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equivalent to a formulgy, = 1, where¢], is implication-free. To summarize, we have

Hy = =12 \/ (g =1N0y4).

PICDy,
It easily follows that we have
H, FEK( =1)= K, ( V € =1 /\Ui,qy)) : 4)
'Ch
It follows from confinedness that
H, E K; ( \V (& =1 /\01;@,)) =V Kil€y =1N0,4) (5)
P'CP P'CP

SinceH,, = K;(v1 Apo) = Kign A Kipg andH,, =€ =1/2 = K;(€ = 1/2), it follows that
H, = Ki (€] =1N0y4) = Ki( o =1) Aoy g (6)
Finally, sinceH,, = K;(¢ = 1) = K;£ = 1, we can conclude from (4), (5), and (6) that
H, | (KiY') =1 (Kigg) =1 Aoy g,

and hencel;¢’ = 1 is equivalent to a simple formula.

SinceK;y = 0 is equivalent to-(K;¢ = 1) A =(K;9 = 1/2), and each of;y) = 1 and K¢ = 1/2
is equivalent to a simple formula, it follows that;» = 0 is equivalent to a simple formula.

The arguments thatyq, 11 A 19, Y1 — 9, and K11 are equivalent to simple formulasqf; and
1o are follows similar lines, and is left to the reader. It follows that every formulB4ris equivalent to a

simple formula. This shows th&t = 1W’, as desiredl

It follows from Lemmas C.3 and C.4 th&ly  defines a function. We take this to be the definition of

Py - We now must show that the projection functions are coherent.
Lemma C.5:If ¥y C Wy C U3, thenpl, g, = Pi, v, © Piy v, -
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Proof: If sy € Sy,, we must show thaty, ¢, (sv) = p§, v, (P4, v, (V). Letsw = py, y,(sv) and
sy = pg,ﬂl(sw). Thensy, and sy agree on all formulas im{f"—’(\llg) and sy andsy agree on all
formulas in£X—(¥,). Thus,sy andsy agree on all formulas i€~ (¥;). Moreover, by construction,

sx € Sy,. By Lemma C.4, we must hawe, = p&,&%(sv). |

Since we have now shown that the projection functions are well defined, from here on, we abuse notation
and refer toM ¢ as (3¢, Kf, . .. ,K%,wc,{pfp/’q, : U C ¥ C &}). To complete the proof of Theorem 4.2,
we now show thafl/¢ satisfies projection preserves knowledge and ignorance. Both facts will follow easily
from Proposition C.7 below.

We first need a lemma, which provides a conditiondgr to be inC¢(Sy) that is easier to check.
Lemma C.6: If K¢(sy) C SS, sw € S5, andV/K; N LE= (V) C W, thensy € K§(sv).

Proof: Suppose that” andW are as in the antecedent of the statement of the lemma. We must show that
V/K; CW.

First note thal// K; is closed under implication. That is,jf, = 1 € V/K;, andAXE~ I ¢ < ¢,
thenp, = 1 € V/K;. This follows from the observations that XX~ ¢ < o, thenAXE =
Ki(p1 < ¢2), andAXE = b Ko < K;p9; S0, by Profp AXE~ | (K;p1 — Kips) = 1. Thus,
(K;p1 — Kip2) =1 € V. Moreover, sinceo; = 1 € V/K;, we must have(;p; = 1 € V. Finally, by
Prog, AXX= - (Kijp1 = 1IN (K1 — Kips) = 1) < Kjps = 1. Thus, LemmaB.4(3);p2 = 1 € V.
Sopy =1 € W/K;, as desired. By Lemma B.4(3)/ is also closed under implication. Thus, by the proof
of Lemma C.4, it suffices to show that= 1 € W for each simple formulg such thati;p =1 € V.
Indeed, we can takg to be in conjunctive normal form: a conjunction of disjunctions of formulalsasfic
formulas that is formulas of the formp = k& wherey is implication-free. Moreover, since by Lemma B.4(4),
W is closed under conjunctiop( € W andyy € W implies thatp; A 2 € W) and it is easy to show

thatV'/ K; is closed under breaking up of conjunctions{if A p2 € V/K; theny; € V/K; fori = 1,2),
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it suffices to show thap) = 1 € W for each disjunction) of basic formulas such thdt;}) =1 € V. We
proceed by induction on the number of disjunctgin

If there is only one disjunct in, that is,?) has the form)’ = k, wherey’ is implication-free, suppose
first thatk = 1/2. Itis easy to check that,, = (¢' = 1/2) = Ve, (p = 1/2) andH,; |= K¢ =
1/2) = \/pe%l K;(p = 1/2). Since(K;(y = 1/2)) =1 € V, by Prop and Lemma B.4(3); (¢’ =
1/2) € V andK;(p = 1/2) € V for somep € &, (since, by Lemma C.2, for all formulag we have
o e Viff (M€, sy) = o). SinceK$(sy) C S, it must be the case théf;(p = 1/2) € V'iff p ¢ V. Since
sw € 8§, p=1/2 € W. SinceW is closed under implication)’ = 1/2 € W, as desired. It = 0 or
k =1, thenitis easy to see that= 1 € V/K; only if ¢y = 1 € LE— () so, by assumption) = 1 € WV.

If ) has more than one disjunct, suppose that there is some disjunct of the/form1/2 in . If
there is some € (®, — V) then, as above, we have;(p = 1/2) € V andp = 1/2 € W, and, thus,
Y = 1/2 € W. Thereforeq) = 1 € W. If there is no primitive propositiop € (®, — ¥), then
(M€, sy) E Ki(¢' #1/2) =1, and thugy)’ # 1/2) = 1 € V/K;. It follows that if /" is the formula
that results from removing the disjung¢t = 1/2 from ¢, theny” € V/K;. The result now follows from
the induction hypothesis. Thus, we can assume without loss of generality that every disjyrnitasthe
form¢’ = 0 or¢’ = 1. If there is some disjunat’ = k, k € {0, 1}, that mentions a primitive proposition
p such thap ¢ ¥, then it is easy to check thaf; (¢ = 1/2) € V. Thus,(¢' = 1/2) =1 € V/K,. Again,
it follows that if ¢/” is the formula that results from removing the disjutitt= k from ¢, theny” € V/K;
and, again, the result follows from the induction hypothesis. Thus, we can assumeahaf-— (). But

theny € V/K;, by assumptiornii

Proposition C.7: Supposel; C Wy, sy € Sy, sw = pfpm\l,l(sv), Ké(sy) C SG andC¢(sw) C S¢,-

ThenV, =¥ N Y3 andpfl,&% (/Cf(SV)) = ]CZC(SW)

Proof: By the definition of projection¥y, C ¥,. To show that¥, C ¥3, suppose thapt € ¥,. Since
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Ki(sw) € Sy, (M€ sw) = Ki(pV —p). Since¥y C ¥y, by Lemma C.1{M¢, sy) = K;i(pV —p).
Thus, (M€, sy) = pV—pforall sy € K¢(sy). Thereforep € ¥s. Thus, W, C ¥; NW3. For the opposite
containment, ifp € ¥, N W3, then(M¢, sy) = Ki(p V —p). By definition of projection, sincg € ¥; and
sw = py,w, (5v), (M€ sw) | Ki(pV —p). Thus,p € V4. It follows that¥, = ¥y N ¥s.

To show thato§,, y, (K5 (sv)) = Ki(sw), we first prove thapy,, , (Ki(sv)) 2 Kf(sw). Suppose
thatsy € Kf(sw). We construct’” such thatp§, o, (sv) = sy andsy: € Kf(sy). We claim that
V/K;U{p=1:¢=1¢c W, gisimplication-freé is AXX~-consistent. For suppose not. Then there
exist formulasps, ..., om, ¢4, -, ¢, such thatp; = 1 € V/K; for j € {1,...,m}, ¢ is implication-free
andy; = 1 € W'forj € {1,..k}, and{p1 = 1,....0m = L} = 1,...,¢p = 1} is not AX/—-
consistent. Let) = ¢} A ... Ay. Theny =1 € W/, soy = 1/2 ¢ W. Thus, by axiom B1 and Lemma
B.4(3), (K;—) = 1/2 ¢ W. By definition of K, (K;—)) = 1 ¢ W, for otherwise—) = 1 € W'.
By axiom P11, it follows that{ K;—) = 0 € W. Thus, by Lemma B.4(7)(—K;—¢) = 1 € W, so
(=K;—~) = 1 € V. Thus, there must be some maximeXX ~-consistent sev”” O V/K; such that
(=) =1 ¢ V". Sincesy» € Kf(sy) € S§,, Va C U3, sy € Sy, and(—ep) = 1/2 ¢ W', we have
(=) =1/2 ¢ V". So, by axiom P11(—¢) =0 € V". Thus,py =1 € V" andy| =1, ....,¢}, =1 € V”,
which is a contradiction sincé” D V/K; andV" is AX%~-consistent. LeV’”’ be anAX X~ -consistent
set containind//K; U {p = 1: ¢ =1 € W', pisimplication-freg. By constructionsy, € K¢(sy).
Moreover, sinc€—p) = 1 = ¢ = 0is valid in’H, andsy- € S§,, py, v, (sv/) agrees withsyy» on all
formulas of the formp = k for k € {0,1/2, 1} andy implication-free. Therefore, it is easy to show using
Prog that they agree on all simple formulas. Thus, by the proof of Lemma C.4, they agree on all formulas
in LK~ (). By uniqueness of¢, it follows thatpy, y,(sv/) = sy, as desired.

The proof of the other directiopy,, y, (Kf(sv)) € Kf(sw) is similar. Suppose that, € Kf(sv)
andsy» = pg, g,(sv/). We need to prove thaty~» € K{(Sw). We claim thatW/K; U {p = 1 :

¢ = 1 € V" pisimplication-freg is AXX~-consistent. For suppose not. Then there exist formulas
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D1y ooy Pims P15 -5 P SUCh thatp; = 1 € W/K; for j € {1,...,m}, ¢ is implication-free and; = 1 €
V" forj e {1,...,k}, and{p1 = 1,...,0m = 1,¢] = 1,...,¢) = 1} is not AXX:~-consistent. Let
Y =¢IN...A¢,. Theny =1 € V" soy = 1/2 ¢ V. Thus, by axiom B1 and Lemma B.4(3),
(K;—) = 1/2 ¢ V. Using Lemmas C.1 and C.2, it is easy to show that 1 € V" implies¢ =

1 € V', so, by definition ofC¢, (K;—) = 1 ¢ V, for otherwise—¢) = 1 € V’. By axiom P11, it
follows that (K;—¢) = 0 € V. Thus, by Lemma B.4(7)(—K;—) = 1 € V. Butassy» € S§,,

¢ =1 ¢ V" implies®, € S, Since¥y C Wy, it follows thaty = 1/2 ¢ W, thus, by definition
of projection, we havé—K;—)) = 1 € W. Thus, there must be some maximeX~-consistent set
W’ 2 W/K; such that(—¢) = 1 ¢ W’. Sincesy € Kf(sw) C S§,, we have(—y) = 1/2 ¢ W'
So by P11 it follows that—y) = 0 € W', so¢ = 1 € W'. Thus,¢} = 1,...,¢, = 1 € W', which

is a contradiction sinc®” > W/K; andW’ is AXX~-consistent. Let?V’ be anAXX~-consistent set
containing/K; U {p = 1: ¢ = 1 € V” pisimplication-freg. By construction,sy: € K¢(sw).
Moreover, sincg§—¢) = 1 = ¢ = 0isvalid in H,, andsy-,sy» € Sy, sy~ agrees withsy» on all
formulas of the formp = k for k € {0,1/2,1} andy implication-free. Therefore, it is easy to show using
Progd that they agree on all simple formulas. Thus, by the proof of Lemma C.4, they agree on all formulas

in LX< (W,). By uniqueness of¢, it follows thatsy» = sy € K¢(sw), as desiredl
The following result is immediate from Proposition C.7.
Corollary C.8: Projection preserves knowledge and ignorancé4ef.

Since projections preserve knowledge and ignorancé init follows that M ¢ € H,,(®). This finishes
the proof for the cas€ = (. If 7" € C, we must show thad/¢ satisfies generalized reflexivity. Given
sy € S§,, by confinedness(Cf(sy) C S§, for some¥, C V. It clearly suffices to show thayy, =
P%, w,(sv) € Ki(sy). ByLemma C.6, to prove this, it suffices to show thati’; N LE= () C W,

If o = 1€ V/K;NLE=(1y), thenK;o = 1 € V. Note that Propimplies thatAX— - ¢ < ¢ =1,
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which by Gen, K, Prog, and MP implies thatAX®*~  (K;o — K;(p = 1)) = 1. Therefore, as
(Kip) =1¢€V, by LemmaB.4(8,10),K;(¢ = 1)) = 1 € V. By Prog and Lemma B.4(3), it follows that
Ki(p=1) € V. By T"and Lemma B.4(3), it follows that = 1V \/(,.,ce_y Ki(p = 1/2) € V. But since
¢ € L7 (Ty), we must haved,, C W,. Moreover, sinc&Cs(sy) C S, , we must haveK;(p = 1/2) €
V forall p € Ws. Thus, it easily follows thap = 1 € V. Finally, sincesy = p§, y,(sv), we must have
p=1¢€ W, as desired.

Now supposel’ € C. We want to show thad/¢ satisfies part (a) of stationarity. Suppose that €
KS(sy) andsy € K¢(Sw). We must show thaix € K§(Sy). If (K;p) =1 € V then, by axioms Prdp
and 4 and Lemma B.4(3)(K;K;p) = 1 € V. This implies that K;») = 1 € W, which implies that
p=1€ X.Thus,V/K; C X andsx € K{(sv), as desired.

Finally, suppose that’ € C. We want to show thad/¢ satisfies part (b) of stationarity. Suppose that
sw € Kf(sy) andsx € K§(sy). We must show thatx € Kf(syw). Suppose by way of contradiction
thatsx ¢ K¢(sw), then there existy = 1 € W/K; suchthaty =1 ¢ X. ¢ =1 € W/K, implies
that (K;) = 1 € W, so by Profy B1, and Lemma B.4(3) it follows that = 1/2 ¢ . By Conf2 it
can be easily shown that = 1/2 ¢ X, so by Profy we get thatr = 0 € X. As in the proof of the case
T € C,if (K;p) =1¢€ W, then(K;(¢ =1)) =1 € W. Then it follows thaf K;—K,;(¢p = 1)) =1 ¢ V,
for otherwise sincey, € K¢(sy) we get that(—K;(¢ = 1)) =1 € W. Since(K;—K;(p = 1)) € Do,
it is easy to show that—K,;,—K;(p = 1)) = 1 € V. By Prog and 8 and Lemma B.4(8,10), it follows
that(K;(¢ = 1)V K;((¢ = 1) = 1/2)) = 1 € V. Then using Lemma B.4(5,6,7), it easily follows that
either(K;(¢p = 1)) =1 € Vor (K;((p=1) =1/2)) =1 € V. Then, eitheflp = 1) =1 € X or

((p=1)=1/2) =1 € X, but this is a contradiction singe= 0 € X andX is AX**~-consistentll
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