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Abstract

A careful analysis of conditioning in th8leeping Beautproblem is done, using the
formal model for reasoning about knowledge and probability developed by Halpern and
Tuttle. While the Sleeping Beauty problem has been viewed as revealing problems with
conditioning in the presence of imperfect recall, the analysis done here reveals that the
problems are not so much due to imperfect recall asstonchrony The implications of
this analysis for van FraasseReflection Principlend Savage’Sure-Thing Principlere
considered.

1 Introduction

The standard approach to updating beliefs in the probability literature is by conditioning. But it
turns out that conditioning is somewhat problematic if agents hmaperfect recall In the eco-
nomics community this issue was brought to the fore by the work of Piccione and Rubinstein
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[1997] (to which was dedicated a special issue of the jouBahes and Economic Behav-
ior). There has also been a recent surge of interest in the topic in the philosophy community,
inspired by a re-examination by Elga [2000] of one of the problems considered by Piccione
and Rubinstein, the so-call&leeping Beauty problem(Some recent work on the problem
includes [Arntzenius 2003; Dorr 2002; Lewis 2001; Monton 2002].)

| take the Sleeping Beauty problem as my point of departure in this paper too. | argue
that the problems in updating arise not just with imperfect recall, but algsynchronous
systems, where agents do not know exactly what time it is, or do not share a global clock.
Since both human and computer agents are resource bounded and forgetful, imperfect recall is
the norm, rather than an unusual special case. Moreover, there are many applications where it
is unreasonable to assume the existence of a global clock. Thus, it is important to understand
how to do updating in the presence of asynchrony and imperfect recall.

The Sleeping Beauty problem is described by Elga as follows:

Some researchers are going to put you to sleep. During the two days that your
sleep will last, they will briefly wake you up either once or twice, depending on
the toss of a fair coin (heads: once,; tails: twice). After each waking, they will put
you back to sleep with a drug that makes you forget that waking. When you are
first awakened, to what degree ought you believe that the outcome of the coin toss
is heads?

Elga argues that there are two plausible answers. The first is that iRisAfter all, it was

1/2 before you were put to sleep and you knew all along that you would be woken up (so you
gain no useful information just by being woken up). Thus, it should still f2when you

are actually woken up. The second is that it /8. Clearly if this experiment is carried out
repeatedly, then in the long run, at roughly one third of the times that you are woken up, you
are in a trial in which the coin lands heads.

Elga goes on to give another argumentifgs, which he argues is in fact the correct answer.
Suppose you are put to sleep on Sunday, so that you are first woken on Monday and then
possibly again on Tuesday if the coin lands tails. Thus, when you are woken up, there are three
events that you consider possible:

e ¢;: itis now Monday and the coin landed heads;

e cy: itis now Monday and the coin landed tails;

e ¢3: itis now Tuesday and the coin landed tails.
Elga’s argument has two steps:

1. If, after waking up, you learn that it is Monday, you should consideainde, equally
likely. Since, conditional on learning that it is Monday, you consigeande, equally
likely, you should consider them equally likely unconditionally.

1So named by Robert Stalnaker.



2. Conditional on the coin landing tails, it also seems reasonablethatdes; should be
equally likely; after all, you have no reason to think Monday is any more or less likely
that Tuesday if the coin landed tails. Thus, unconditionalyande; should be equally
likely.

From these two steps, it follows that, e;, andes are equally likely. The only way that this
could happen is for them all to have probability3. So heads should have probability3.

Suppose that the story is changed so that (1) heads has probability .99 and tails has proba-
bility .01, (2) you are woken up once if the coin lands heads, and (3) you are woken up 9900
times if the coin lands tails. In this case, Elga’s argument would say that the probability of
tails is .99. Thus, although you know you will be woken up whether the coin lands heads or
tails, and you are initially almost certain that the coin will land heads, when you are woken up
(according to Elga’s analysis) you are almost certain that the coin landed tails!

How reasonable is this argument? The second step involves an implicit appeal to the Prin-
ciple of Indifference. But note that onee ande; are taken to be equally likely, the only way
to get the probability of heads to €2 is to givee; probability 0, which seems quite unrea-
sonable. Thus, an appeal to the Principle of Indifference is not critical here to argug¢zhisit
not the appropriate answer.

What about the first step? If your probability is representeé@bthen, by Bayes’ Rule,

Pr(Monday | heads) Pr(heads)
Pr(heads | Monday) = .
t(heads | Monday) Pr(Monday | heads) Pr(heads) + Pr(Monday | tails) Pr(tails)

Clearly Pr(Monday | heads) = 1. By the Principle of Indifferencelr(Monday | tails) =

1/2. If we takePr(heads) = Pr(tails) = 1/2, then we gePr(heads | Monday) = 2/3. Intu-
itively, it being Monday provides stronger evidence for heads than for tails, Bir{déonday |
heads) is larger thanPr(Monday | tails). Of course, this argument already assumes that
Pr(heads) = 1/2, so we can't use it to argue thBt(heads) = 1/2. The point here is simply
that it is not blatantly obvious thatr(heads | Monday) should be taken to be/2.?

To analyze these arguments, | use a formal model for reasoning about knowledge and prob-
ability that Mark Tuttle and | developed [Halpern and Tuttle 1993] (HT from now on), which
in turn is based on the “multiagent systems” framework for reasoning about knowledge in
computing systems, introduced in [Halpern and Fagin 1989] (see [Fagin, Halpern, Moses, and
Vardi 1995] for motivation and discussion). Using this model, | argue that Elga’s argument is
not as compelling as it may seem, although not for the reasons discussed above. The problem
turns out to depend on the difference between the probability of heads conditional on it being
Monday vs. the probability of heads conditional learning that it is Monday. The analysis
also reveals that, despite the focus of the economics community on imperfect recall, the real
problem is not imperfect recall, but asynchrony: the fact that Sleeping Beauty does not know
exactly what time it is.

2Thanks to Alan Hijek for making this point.



| then consider other arguments and desiderata traditionally used to justify probabilistic
conditioning, such as frequency arguments, betting arguments, van Fraassen’'sjé88d]
tion Principle and Savage’s [1954ure-Thing Principle | show that our intuitions for these
arguments are intimately bound up with assumptions such as synchrony and perfect recall.

The rest of this paper is organized as follows. In the next section | review the basic mul-
tiagent systems framework. In Section 3, | describe the HT approach to adding probability to
the framework when the system is synchronous. HT generalized their approach to the asyn-
chronous case; their generalization supports the “evidential argument” above, giving the an-
swerl/2 in the Sleeping Beauty problem. | also consider a second generalization, which gives
the answei /3 in the Sleeping Beauty problem (although not exactly by Elga’s reasoning). In
Section 4, | consider other arguments and desiderata. | conclude in Section 5.

2 The framework

2.1 The basic multiagent systems framework

In this section, we briefly review the multiagent systems framework; see [Fagin, Halpern,
Moses, and Vardi 1995] for more details.

A multiagent systeroonsists of: agents interacting over time. At each point in time, each
agent is in soméocal state Intuitively, an agent’s local state encapsulates all the information
to which the agent has access. For example, in a poker game, a player’s state might consist of
the cards he currently holds, the bets made by the other players, any other cards he has seen,
and any information he may have about the strategies of the other players (e.g., Bob may know
that Alice likes to bluff, while Charlie tends to bet conservatively). In the Sleeping Beauty

problem, we can assume that the agent has local states corresponding to “just woken up”, “just
before the experiment”, and “just after the experiment”.

Besides the agents, it is also conceptually useful to have an “environment” (or “nature”)
whose state can be thought of as encoding everything relevant to the description of the system
that may not be included in the agents’ local states. For example, in the Sleeping Beauty
problem, the environment state can encode the actual day of the week and the outcome of the
coin toss. In many ways, the environment can be viewed as just another agent. In fact, in the
case of the Sleeping Beauty problem, the environment can be viewed as the local state of the
experimenter.

We can view the whole system as being in sogh&bal state a tuple consisting of the
local state of each agent and the state of the environment. Thus, a global state has the form
(Se, S1,---,5n), Wheres, is the state of the environment argdis agenti’s state, fori =
1,...,n.

A global state describes the system at a given point in time. But a system is not a static
entity. It is constantly changing over time. rin captures the dynamic aspects of a system.
Intuitively, a run is a complete description of one possible way in which the system’s state can



evolve over time. Formally, a run is a function from time to global states. For definiteness, |
take time to range over the natural numbers. Th(®), describes the initial global state of the
system in a possible executior(,l) describes the next global state, and so on. A paimn)
consisting of a run- and timem is called apoint If r(m) = (s, s1,...,s,), then define
re(m) = s, andr;(m) = s;, 4 = 1,...,n; thus,r;(m) is agent’s local state at the poirit:, m)
andr.(m) is the environment’s state at, m). | write (r, m) ~; (v',m’) if agenti has the same
local state at botlir, m) and (+', m'), that is, ifr;(m) = ri(m’). LetKC;(r,m) = {(+',m') :

(r,m) ~; (r',m’)}. Intuitively, IC;(r, m) is the set of points thatconsiders possible &t, m);

these are the states thiatannot distinguish based basisisfinformation at(r, m). Sets of the

form KC;(r, m) are sometimes calldédformation sets

In general, there are many possible executions of a system: there could be a number of
possible initial states and many things that could happen from each initial state. For example,
in a draw poker game, the initial global states could describe the possible deals of the hand by
having playeri’s local state describe the cards held by play&tor each fixed deal of the cards,
there may still be many possible betting sequences, and thus many runs. Formegdiiera
is a nonempty set of runs. Intuitively, these runs describe all the possible sequences of events
that could occur in the system. Thus, | am essentially identifying a system with its possible
behaviors.

There are a number of ways of modeling the Sleeping Beauty problem as a system. Perhaps
simplest is to consider it as a single-agent problem, since the experimenter plays no real role.
(Note that it is important to have the environment though.) Assume for now that the system
modeling the Sleeping Beauty problem consists of two runs, the first corresponding to the coin
landing heads, and the second corresponding to the coin landing tails. (As we shall see, while
restricting to two runs seems reasonable, it may not capture all aspects of the problem.) There
are still some choices to be made with regard to modeling the global states. Here is one way:
At time 0, a coin is tossed; the environment state encodes the outcome. At time 1, the agent is
asleep (and thus is in a “sleeping” state). At time 2, the agent is woken up. If the coin lands
tails, then at time 3, the agent is back asleep, and at time 4, is woken up again. Note that | have
assumed here that time in both of these runs ranges from 0 to 5. Nothing would change if |
allowed runs to have infinite length or a different (but sufficiently long) finite length.

Alternatively, we might decide that it is not important to model the time that the agent is
sleeping; all that matters is the point just before the agent is put to sleep and the points where the
agent is awake. Assume that Sleeping Beauty is in sth&fore the experiment starts, in state
a after the experiment is over, and in statevhen woken up. This leads to a model with two
runsr; andry, where the first three global statesrinare (H,b), (H,w), and(H, a), and the
first four global states im, are (7', b), (T, w), (T, w), (T,a). Let R, be the system consisting
of the runsr; andr,. This system is shown in Figure 1 (where only the first three global states
in each run are shown). The three points where the agent’s local statenamely,(r, 1),

(re,1), and(rq, 2), form what is traditionally called in game theory enfiormation set These
are the three points that the agent considers possible when she is woken up. For definiteness, |
useR, in much of my analysis of Sleeping Beauty.



Figure 1. The Sleeping Beauty problem, captured u&ng

Notice thatR, is also compatible with a somewhat different story. Suppose that the agent
is not aware of time passing. At time 0 the coin is tossed, and the agent knows this. If the coin
lands heads, only one round passes before the agent is told that the experiment is over; if the
coin lands tails, she is told after two rounds. Since the agent is not aware of time passing, her
local state is the same at the poifits, 2), (9, 1), and(r2, 2). The same analysis should apply
to the question of what the probability of heads is at the information set. The key point is that
here the agent does not forget; she is simply unaware of the time passing.

Various other models are possible:

e We could assume (as Elga does at one point) that the coin toss happens only after the
agent is woken up the first time. Very little would change, except that the environment
state would bé) (or some other way of denoting that the coin hasn’t been tossed) in the
first two global states of both runs. Call the two resulting renandrs.

e All this assumes that the agent knows when the coin is going to be tossed. If the
agent doesn't know this, then we can consider the system consisting of the four runs
1,7, T2, Th.

e Suppose that we now want to allow for the possibility that, upon wakening, the agent
learns that it is Monday (as in Elga’s argument). To do this, the system must include
runs where the agent actually learns that it is Monday. Now two runs no longer suffice.
For example, we can consider the systBm= (ry, o, 7], r5), Wherer; is the same as
r; except that on Monday, the agent’s local state encodes that it is Monday. Thus, the
sequence of global statesiihis (H,b), (H, M), (H,a), and the sequence it is (7', b),

(T, M), (T,w). Rs is described in Figure 2. Note that on Tuesdaysirthe agent forgets
whether she was woken up on Monday. She is in the same local state on Tueslay in
as she is on both Monday and Tuesdaysin

Yet other representations of the Sleeping Beauty problem are also possible. The point that |

want to emphasize here is that the framework has the resources to capture important distinctions
about when the coin is tossed and what agents know.
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Figure 2: An alternate representation of the Sleeping Beauty problem, Hsing

2.2 Synchrony and perfect recall

One advantage of the multiagent systems framework is that it can be used to easily model a
number of important assumptions. | focus on two of them heygichrony the assumption

that agents know the time, aperfect recall the assumption that agents do not forget [Fagin,
Halpern, Moses, and Vardi 1995; Halpern and Vardi 1989]

Formally, a systenR is synchronous for ageritif for all points (r, m) and(r',m’) in R,
if (r,m) ~; (r',m’), thenm = m’. Thus, if R is synchronous for agert then at timem,
agent; knows that it is timen, because it is time» at all the points he considers possibieis
synchronousf it is synchronous for all agents. Note that the systems that model the Sleeping
Beauty problem are not synchronous. When Sleeping Beauty is woken up on Monday, she
does not know what day it is.

Consider the following example of a synchronous system, taken from [Halpern 2003]:

Example 2.1 Suppose that Alice tosses two coins and sees how the coins land. Bob learns
how the first coin landed after the second coin is tossed, but does not learn the outcome of the
second coin toss. How should this be represented as a multiagent system? The first step is to
decide what the local states look like. There is no “right” way of modeling the local states.
What | am about to describe is one reasonable way of doing it, but clearly there are others.

The environment state will be used to model what actually happens. At time @,)ittise
empty sequence, indicating that nothing has yet happened. At time 1, it is @ither (T'),
depending on the outcome of the first coin toss. Attime 2, itis eithedd), (H,T), (T, H),
or (T, T), depending on the outcome of both coin tosses. Note that the environment state is
characterized by the values of two random variables, describing the outcome of each coin toss.
Since Alice knows the outcome of the coin tosses, | take Alice’s local state to be the same as
the environment state at all times.

What about Bob’s local state? After the first coin is tossed, Bob still knows nothing; he
learns the outcome of the first coin toss after the second coin is tossed. The first thought might
then be to take his local states to have the foymat time 0 and time 1 (since he does not know
the outcome of the first coin toss at time 1) and eittféy or (T") at time 2. This choice would
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not make the system synchronous, since Bob would not be able to distinguish time 0 from time
1. If Bob is aware of the passage of time, then at time 1, Bob’s state must somehow encode the
fact that the time is 1. | do this by taking Bob’s state at time 1 tdtlu), to denote that one
time tick has passed. (Other ways of encoding the time are, of course, also possible.) Note that
the time is already implicitly encoded in Alice’s state: the time is 1 if and only if her state is
either(H) or (T).

Under this representation of global states, there are seven possible global states:

e ((),(),()), the initial state,
e two time-1 states of the forr{ X,), (X ), (tick)), for X, € {H, T},
o four time-2 states of the for(.X;, X»), (X1, X»), (tick, X)), for Xy, X» € {H,T'}.

In this simple case, the environment state determines the global state (and is identical to Alice’s
state), but this is not always so.

The system describing this situation has four rurs, .., r*, one for each of the time-2
global states. The runs are perhaps best thought of as being the branches of the computation
tree described in Figure 3.

Figure 3: Tossing two coins.

Modeling perfect recall in the systems framework requires a little care. In this framework,
an agent’s knowledge is determined by his local state. Intuitively, an agent has perfect recall if
his local state is always “growing”, by adding the new information he acquires over time. This
is essentially how the local states were modeled in Example 2.1. In general, local states are not
required to grow in this sense, quite intentionally. It is quite possible that information encoded
in r;(m)—i’s local state at timen in run ~—no longer appears in;(m + 1). Intuitively,
this means that agenthas lost or “forgotten” this information. There are often scenarios of
interest where it is important to model the fact that certain information is discarded. In practice,
for example, an agent may simply not have enough memory capacity to remember everything
he has learned. Nevertheless, although perfect recall is a strong assumption, there are many
instances where it is natural to model agents as if they do not forget.
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Intuitively, an agent with perfect recall should be able to reconstruct his complete local
history from his current local state. To capture this intuitionalgént:’s local-state sequence
at the point(r,m) be the sequence of local states that she has gone through inupirio
time m, without consecutive repetitions. Thus, if from time O through time 4 inmragenti
has gone through the sequeneg s;, s, s;, s;) of local states, where;, # s., then her local-
state sequence @t 4) is (s;, ., s;). Agenti’s local-state sequence at a pointm) essentially
describes what has happened in the run up to tim&om i’s point of view. Omitting consec-
utive repetitions is intended to capture situations where the agent has perfect recall but is not
aware of time passing, so she cannot distinguish a run where she stays in a giverfatate
three rounds from one where she stays for only one round.

An agent has perfect recall if her current local state encodes her whole local-state sequence.
More formally,agent: has perfect recall in systef if, at all points(r, m) and(r’,m’) in R,
if (r,m) ~; (r',m'), then agent has the same local-state sequence at both) and(r’, m’).
Thus, agent has perfect recall if she “remembers” her local-state sequence at all*times.
system with perfect recalt;(m) encodeg’s local-state sequence in that, at all points whére
local state is-;(m), she has the same local-state sequence. A system where gsmerfect
recall is shown in Figure 4.

Figure 4: An asynchronous system where agédas perfect recall.

The combination of synchrony and perfect recall leads to particularly pleasant properties. It
is easy to see thatR is a synchronous system with perfect recall énan+1) ~; (', m+1),
then(r,m) ~; (r',m). That is, if agent considers run’ possible at the poir(i-, m + 1), then
i must also consider ruri possible at the poir{t-, m). (Proof: since the system is synchronous
and: has perfect recall,s local state must be different at each pointirFor if i’s local state
were the same at two poin(s, k) and(r, k') for k # k’, then agent would not know that it
was timek at the point(r, k). Thus, at the point&, m + 1), i’s local-state sequence must have
lengthm + 1. Since(r, m+1) ~; (r',m+ 1), i has the same local-state sequende.at. + 1)

3This definition of perfect recall is not quite the same as that used in the game theory literature, where agents
must explicitly recall the actions taken (see [Halpern 1997] for a discussion of the issues), but the difference
between the two notions is not relevant here. In particular, according to both definitions, the agent has perfect
recall in the “game” described by Figure 1.



and(r’,m + 1). Thus,i must also have the same local-state sequence at the paints and

(r',m), sincei’s local-state sequence at these points is just the prefig lafcal-state sequence
at(r,m + 1) of lengthm. It is then immediate thdt, m) ~; (r’,m).) Thus, in a synchronous
system with perfect recall, agei's information set refines over time, as shown in Figufe 5.
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Figure 5: A synchronous system with perfect recall.

Note that whether the agent has perfect recall in the Sleeping Beauty problem depends in
part on how we model the problem. In the syst@&n she does; iR, she does not. For
example, at the point;, 2) in Ry, where her local state i§, w), she has forgotten that she
was woken up at time 1 (because she cannot distinguisi2) from (r3,2)). (It may seem
strange that the agent has perfect recaRin but that is because iR, the time that the agent
is asleep is not actually modeled. It happens “between the points”. If we explicitly include local
states where the agent is asleep, then the agent would not have perfect recall in the resulting
model. The second interpretation®f, where the agent is unaware of time passing, is perhaps
more compatible with perfect recall. | us here so as to stress that perfect recall is not really
the issue in the Sleeping Beauty problem; it is the asynchrony.)

3 Adding probability

To add probability to the framework, | start by assuming a probability on the set of runs in

a system. Intuitively, this should be thought of as the agents’ common probability. It is not
necessary to assume that the agents all have the same probability on runs; different agents may
have use probability measures. Moreover, it is not necessary to assume that the probability is
placed on the whole set of runs. There are many cases where it is convenient to partition the

“4In the language of probabilists, in synchronous systems with perfect recall, information setsfiltratian
[Billingsley 1986, Section 35]. The importance of assuming that the information sets form a filtration in the
context of the Sleeping Beauty problem is emphasized by Schervish, Seidenfeld, and Kadane [2004]. However,
my analysis applies in the asynchronous case applies despite the fact that the information sets do not form a
filtration.
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set of runs and put a separate probability measure on each cell in the partition (see [Halpern
2003] for a discussion of these issues). However, to analyze the Sleeping Beauty problem, it
suffices to have a single probability on the rungrababilistic systens a pair(R, Pr), where

R is a system (a set of runs) aird is a probability orR. (For simplicity, | assume thak is

finite and that all subsets & are measurable.) In the case of the Sleeping Beauty problem, the
probability onR, is immediate from the description of the problem: each,adndr, should

get probabilityl /2. To determine a probability on the runs®t, we need to decide how likely

it is that the agent will discover that it is actually Monday. Suppose that probability 18

that casey; andr, both get probability1 — «) /2, while r andr; both get probabilityy/2.

Unfortunately, the probability on runs is not enough for the agent to answer questions like
“What is the probability that heads was tossed?” if she is asked this question at the point
(r1,1) when she is woken up iR, for example. At this point she considers three points
possible:(r, 1), (r9, 1), and(rq, 2), the three points where she is woken up. She needs to put
a probability on this space of three points to answer the question. Obviously, the probability
on the points should be related to the probability on runs. But how? That is the topic of this
section.

As the preceding discussion should make clear, points can be viewed possible worlds. In
HT, a modal logics of knowledge and probability is considered where truth is defined relative
to points in a system. Points are somewhat analogous to what Lewis [1979¢eatered
possible worlds, since they are equipped with a time (although they are not equipped with a
designated individual). Runs can then be viewed as uncentered possible worlds. Lewis [1979]
argued that credence should be placed not on possible worlds, but on centered possible worlds.
The key issue here is that in many applications, it is more natural to start with a probability on
uncentered worlds; the question is how to define a probability on centered worlds.

3.1 The synchronous case

Tuttle and | suggested a relatively straightforward way of going from a probability on runs
to a probability on points in synchronous systems. For all timgeshe probabilityPr on R,

the set of runs, can be used to put a probabifit§ on the points inR™ = {(r,m) : r €

R}: simply takePr™(r,m) = Pr(r). Thus, the probability of the point-,m) is just the
probability of the runr. Clearly,Pr"™ is a well-defined probability on the set of time-points.
SinceR is synchronous, at the poiitt, m), agenti considers possible only time- points.
That is, all the points iiC;(r,m) = {(+',m’) : (r,m) ~; (+',m’)} are actually timex points.
Since, at the pointr, m), the agent considers possible only the point&jr, m), it seems
reasonable to take the agent’s probability at the p@int:) to the result of conditioningr™

SAs a cultural matter, in the computer science literature, defining truth/credence relative to centered worlds is
the norm. Computer scientists are, for example, interested in temporal logic for reasoning about what happens
while a program is running [Manna and Pnueli 1992]. Making time part of the world is necessary for this rea-
soning. Interestingly, economists, like philosophers, have tended to focus on uncentered worlds. | have argued
elsewhere [Halpern 1997] that centered worlds (represented as points) are necessary to capture some important
temporal considerations in the analysis of games.

11



on K;(r,m), provided thatr™ (IC;(r,m)) > 0, which, for simplicity, | assume here. Taking
Pr.. to denote agents probability at the pointr, m), this suggests thatr, ., ;) (7', m) =
Pr™((r',m) | KCi(r,m)).

To see how this works, consider the system of Example 2.1. Suppose that the first coin has
bias2/3, the second coin is fair, and the coin tosses are independent, as shown in Figure 6.
Note that, in Figure 6, the edges coming out of each node are labeled with a probability, which
is intuitively the probability of taking that transition. Of course, the probabilities labeling the
edges coming out of any fixed node must sum to 1, since some transition must be taken. For
example, the edges coming out of the root have probakifityand1/3. Since the transitions
in this case (i.e., the coin tosses) are assumed to be independent, it is easy to compute the
probability of each run. For example, the probability of minis 2/3 x 1/2 = 1/3; this
represents the probability of getting two heads.

Figure 6: Tossing two coins, with probabilities.

3.2 The general case

The question now is how the agents should ascribe probabilities in arbitrary (not necessarily
synchronous) system, such as that of the Sleeping Beauty problem. The approach suggested
above does not immediately extend to the asynchronous case. In the asynchronous case, the
points inC;(r, m) are not in general all time: points, so it does not make sense to condi-

tion Pr™ on /C;(r,m). (Of course, it would be possible to condition on the timepoints

in IC;(r,m), but it is easy to give examples showing that doing this gives rather nonintuitive
results.)

| discuss two reasonable candidates for ascribing probability in the asynchronous case here,
which are generalizations of the two approaches that Elga considers. | first consider these ap-
proaches in the context of the Sleeping Beauty problem, and then give the general formaliza-
tion.

Consider the system described in Figure 1, but now suppose that the probabilitis of
and the probability of, is 1 — 3. (In the original Sleeping Beauty problem~= 1/2.) It seems
reasonable that at the poirfig, 0) and(r, 0), the agent ascribes probabiljtyto (r;,0) and1—
[ 1o (rqe,0), using the HT approach for the synchronous case. What about at each of the points
(r1,1), (r9, 1), and(ry,2)? One approach (which | henceforth call tH& approach since it
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was advocated in HT), is to say that the probabitityf runr; is projected to the pointr, 1),

while the probabilityl — 3 of r, is projected tdr,, 1) and(r,, 2). How should the probability be

split over these two points? Note that splitting the probability essentially amounts to deciding
the relative probability of being at time 1 and time 2. Nothing in the problem description gives
us any indication of how to determine this. HT avoid making this determination by making
the singleton set§(r,, 1}} and{(r,,2)} nonmeasurable. Since they are not in the domain of
the probability measure, there is no need to give them a probability. The only measurable sets
in this space would then & {(r1,1)}, {(r2,1), (r2,2)}, and{(r1, 1), (2, 1), (72, 2) }, which

get probability 0,5, 1 — 3, and 1, respectively. An alternative is to apply the Principle of
Indifference and take times 1 and 2 to be equally likely. In this case the probability of the set
{((r9, 1), (19, 2)} is split over(ry, 1) and(r,, 2), and they each get probability — 3) /2. When

8 = 1/2, this gives Elga’s first solution. Although it is reasonable to assume that times 1 and 2
are equally likely, the technical results that | prove hold no matter how the probability is split
between times 1 and 2.

The second approach, which | call thya approach(since it turns out to generalize what
Elga does), is to require that for any pair of poifitsm) and (’,m’) on different runs, the
relative probability of these points is the same as the relative probabilityapfd»’. This
property is easily seen to hold for the HT approach in the synchronous case. With this approach,
the ratio of the probability ofr,, 1) and(re, 1) is 5 : 1 — 3, as is the ratio of the probability of
(r1,1) and(rq, 2). This forces the probability df;, 1) to be3/(2 — 3), and the probability of
each of(ry, 1) and(r, 2) to be(1 — 3)/(2 — 3). Note that, according to the Elga approach, if
Pr is the probability on the runs &¢,, 3 = 1/2, so thatPr(r;) = Pr(ry) = 1/2, andPr’ is the
probability that the agent assigns to the three points in the information set, then

((7’1, )|{(T1’ )7( 71)})
= Pr'((r,1) [ {(r1,1), (r2,2)})
= Pr(?"l ’ {7"1,7’2})
= 1/2.

Thus, we must haver’((ry, 1)) = Pr'((rq, 1)) = Pr'((r2,2)), so each of the three points has
probability 1/3, which is Elga’s second solution. Moreover, note that

Pr'((re, 1) [{(r1,1), (r2, D}) = Pr'((re, 1) [ {(r1,1), (r2,2)}) = 1/2.

This is one way of formalizing the first step of Elga’s argument; i.e., Brashould have the
property that, conditional on learning it is Monday, you should consider “it is now Monday
and the coin landed heads” and “it is now Monday and the coin landed tails” equally likely.
The second step of Elga’s argument used the Principle of Indifference to conclude that, if the
coin landed tails, then all days were equally likely. That use of the Principle of Indifference is
implicit in the assumption that the relative probability (@f, m) and(ry, m) is the same for
m = 1andm = 2.

To summarize, the HT approach assigns probability among points in an informatibn set
by dividing the probability of a rum among the points i that lie onr (and then normalizing
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so that the sum is one), while the Elga approach proceeds by giving each and every point in
that is on run- the same probability as that of and then normalizing.

For future reference, | now give a somewhat more precise formalization of the HT and Elga
approaches. To do so, it is helpful to have some notation that relates sets of runs to sets of
points. IfS is a set of runs and is a set of points, leS(U) be the set of runs i going
through some point ify. and letU/ (S) be the set of points ify that lie on some run i&. That
is,

S\U)={reS:(r,m)e U forsomemn} and
US)=A{(r,m)eU:reS}.

Note that, in particulariC;(r, m)(r’) is the set of points in the information skt (r, m) that

are on the run’ and R(/XC;(r,m)) is the set of runs in the systef that contain points in
KCi(r,m). According to the HT approach, Hr; is agenti’s probability onR, the set of runs,
thenPr(Hﬁn o (Ki(r,m)(1")) = Pr;(r' | R(K;(r,m))). (Note that here | am usinBr(, , to
denote agent’s probability at the pointr, m) calculated using the HT approach; | similarly
will use PrElga to denote agenis probability calculated using the Elga approach.) That is,
the probablllty that ageritassigns at the poirtt, m) to the points in”’ is just the probability of

the runr’ conditional on the probability of the runs going through the informatioriCset m).

As | said earlier, Halpern and Tuttle do not try to assign a probability to individual points in
ICi(r,m)(r") if there is more than one point ohin /C;(r, m).

By way of contrast, the Elga approach is defined as follows:

PrElga ( / /) Pri({r/} N R(’CZ(T> m))) )
) 2 rreR(i(rmy) Pri (1) [ (r, m) ({7 })]

It is easy to check thalfr i) is the unique probability measufa’ on K;(r, m) such that
Pr'((r1,my))/ Pr'((ra, mg)) = Pry(r1)/Pri(ry) if Pry(ry) > 0. Note thatPr(% . assigns
equal probability to all points on a rur in IC;(r,m). Even if PrHT m.i) 1S extended so that
all points on a given run are taken to be equally likely, in gené?q’lf, # Pr( . The

(rym,3)"

following lemma characterizes exactly when the approaches give |dent|cal results.

Elga

Lemma 3.1 Pr9% = = PriAT i |KCi(r, m)({r1})| = |Ki(r,m)({r:})| for all runsry, 7y €

r,m,i (r,m,i)

R(K;(r,m)) such thaf.Prl(rj) #0forj=1,2.
Note that, in the synchronous ca$€;(r, m)({r'})| = 1 for all runsr’ € R(/C;(r,m)), SO
the two approaches are guaranteed to give the same answers.
4 Comparing the Approaches
| have formalized two approaches for ascribing probability in asynchronous settings, both of
which generalize the relatively noncontroversial approach used in the synchronous case. Which

is the most appropriate? | examine a number of arguments here.
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4.1 Elga’s Argument

Elga argued for the Elga approach, using the argument that if you discover or learn that it is
Monday, then you should consider heads and tails equally likely. As | suggested above, | do
not find this a compelling argument for the Elga approach. | agree that if you learn that it
is Monday, you should consider heads and tails equally likely. On the other hand, Sleeping
Beauty does not actually learn that it is Monday. Elga is identifying the probability of heads
conditional on learning that it is Monday with the probability of heads given that it is Monday.
While these probabilities could be equal, they certainly do not have to be. An example of
Thomason makes the point nicélytf | think my wife is much more clever than 1, then |
might be convinced that | will never learn of her infidelity should she be unfaithful. So, my
conditional probability fory”, “I will learn that my wife is cheating on me”, giveX ,“She will

cheat on me”, is very low. Yet, the probability &fif | actually learnX is clearly 1’

In any case, in asynchronous systems, the two probabilities may be unequal for reasons
beyond those that arise in the synchronous case. This is perhaps best seen by considering
a system where the agent might actually learn that it is Monday. The sy®tedescribed
Figure 2 is one such system. Note thaflg, even if the HT approach is used, if you discover
it is Monday in runr} or 73, then you do indeed ascribe probability2 to heads. On the
other hand, in; andr,, where you daot discover it is Monday, you also ascribe probability
1/2 to heads when you are woken up, but conditional on it being Monday, you consider the
probability of heads to b2/3. Thus, using the HT approacR,; gives an example of a system
where the probability of heads given that it is Monday is different from the probability of heads
conditional on learning that it is Monday.

AlthoughR, shows that Elga’s argument for th@3—2 /3 answer is suspect, it does not fol-
low that1/3-2/3 is incorrect. In the remainder of this section, | examine other considerations
to see if they shed light on what should be the appropriate answer.

4.2 The Frequency Interpretation

One standard interpretation of probability is in terms of frequency. If the probability of a coin
landing heads i$/2, then if we repeatedly toss the coin, it will land heads in roughly half the
trials; it will also land heads roughly half the time. In the synchronous case, “half the trials”
and “half the time” are the same. But now consider the Sleeping Beauty problem. What counts
as a “trial"? If a “trial” is an experiment, then the coin clearly lands heads in half of the trials.
But it is equally clear that the coin lands hedds of the times that the agent is woken up.
Considering “times” and “trials” leads to different answers in asynchronous systems; in the

6Thanks to Jim Joyce for pointing out this example.
"There are other reasons why the probabilityrofiven X might be different from the probability af given
that you learn or observ&. In the latter case, you must take into account how you came to leariXtisathe
case. Without taking this into account, you run into difficulties with, say, the Monty Hall problem. Séevi@id
and Halpern 2003] for a discussion of this point in the synchronous setting. | ignore this issue here, since it is
orthogonal to the issues that arise in the Sleeping Beauty problem.
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case of the Sleeping Beauty problem, these different answers are precisely thelnatiral
and1/3-2/3 answers. | return to this issue in the next subsection.

4.3 Betting Games

Another standard approach to determining subjective probability, which goes back to Ramsey
[1931] and De Finetti [1931], is in terms of betting behavior. For example, one way of de-
termining the subjective probability that an agent ascribes to a coin toss landing heads is to
compare the odds at which he would accept a bet on heads to one at which he would accept a
bet on tails. While this seems quite straightforward, in the asynchronous case it is not. This
issue was considered in detail in the context of the absented-minded driver paradox in [Grove
and Halpern 1997]. Much the same comments hold here, so | just do a brief review.

Suppose that Sleeping Beauty is offered a $1 bet on whether the coin landed heads or the
coin landed tails every time she is woken up. If the bet pays off every time she answers the
guestion correctly, then clearly she should say “tails”. Her expected gain by always saying tails
is $1 (since, with probabilityl /2, the coin will land tails and she will get $1 both times she
is asked), while her expected gain by always saying heads islgflylndeed, a risk-neutral
agent should be willing to pay to take this bet. Thus, even though she considers heads and tails
equally likely and ascribes probabilities using the HT approach, this betting game would have
her act as if she considered tails twice as likely as heads: she would be indifferent between
saying “heads” and “tails” only if the payoff for heads was $2, twice the payoff for tails.

In this betting game, the payoff occurs at every time step. Now consider a second betting
game, where the payoff is only once per trial (so that if the coin lands tails, the agent get $1 if
she says tails both times, and $0.50 if she says tails only once). If the payoff is per trial, then
the agent should be indifferent being saying “heads” and “tails”; the situation is analogous to
the discussion in the frequency interpretation.

There is yet a third alternative. The agent could be offered a bet at only one point in the
information set. If the coin lands heads, she must be offered the ljet,a). If the coin
lands heads, an adversary must somehow choose if the bet will be offeredlator (7, 2).
The third betting game is perhaps more in keeping with the second story tokl fovhere
the agent is not aware of time passing and must assign a probability to heads and tails in the
information set. It may seem that the first betting game, where the payoff occurs at each step,
is more appropriate to the Sleeping Beauty problem—atfter all, the agent is woken up twice if
the coin lands tails. Of course, if the goal of the problem is to maximize the expected number
of correct answers (which is what this betting game amounts to), then there is no question that
“tails” is the right thing to say. On the other hand, if the goal is to get the right answer “now”,
whenever now is, perhaps because this is the only time that the bet will be offered, then the
third game is more appropriate. My main point here is that the question of the right betting
game, while noncontroversial in the synchronous case, is less clear in the asynchronous case.

It is interesting to see how these issues play out in the context of Hitchcock’s [2004] Dutch
Book analysis of the Sleeping Beauty problem. As Hitchcock points out, there is a collection
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of bets that form a Dutch book, which can be offered by a Bookie who knows no more than
Sleeping Beauty provided Sleeping Beauty ascribes probabjlityo heads when she wakes

upd

e Before the experiment starts, Sleeping Beauty is offered a bet that pays off $30 if the coin
lands tails and O otherwise, and costs $15. Since heads and tails are viewed as equally
likely before the experiment starts, this is a fair bet from her point of view.

e Each time Sleeping Beauty is woken up, she is offered a bet that pays off $20 if the coin
lands heads and O otherwise, and costs $10. Again, if Sleeping Beauty views heads and
tails as equally likely when she is woken up, this bet is fair from her point of view.

Note that, if the coin lands heads, Sleeping Beauty is only waken up once, so she loses $15 on
the first bet and has a net gain of $10 on the second bet, for an overall loss of $5. On the other
hand, if the coin lands heads, Sleeping Beauty has a net gain of $15 on the first bet, but the
second bet is offered twice and she has a loss of $10 each time it is offered. Thus, she again
has a net loss of $5.

This Dutch Book argument is essentially dealing with bets that pay off at each time step,
since if the coin lands tails, Sleeping Beauty loses $10 each time she is woken up. By way of
contrast, consider the following sequence of bets:

e Before the experiment starts, Sleeping Beauty is offered a bet that pays off $30 if the
coin lands heads and 0 otherwise, and costs $15.

e Each time Sleeping Beauty is woken up, she is offered a bet that pays off $30 if the coin
lands tails and 0 otherwise, and costs $20, with the understanding that the bet pays off
only once in each trial. In particular, if the coin in fact lands tails, and Sleeping Beauty
takes the bet both times she is woken up, she gets the $30 payoff only once (and, of
course, only has to pay $20 for the bet once). The accounting is done at the end of the
trial.

Note that the first bet is fair just as in the first Dutch Book, and the second bet is fair to an agent
who ascribes probabilit§/3 to tails when woken up, even though the payoff only happens
once if the coin lands tails. Moreover, although the second bet is somewhat nonstandard, there
is clearly no difficulty deciding when it applies and how to make payoffs. And, again, an agent
who accepts all these bets will lose $5 no matter what happens.

4.4 Conditioning and the Reflection Principle

To what extent is it the case that the agent’s probability over time can be viewed as changing
via conditioning? It turns out that the answer to this question is closely related to the question

8The importance of taking the knowledge of the Bookie into account, which is stressed by Hitchcock, is also
one of the key points in [Halpern and Tuttle 1993]. Indeed, it is argued by Halpern and Tuttle that probability
does not make sense without taking the knowledge of the adversary (the Bookie in this case) into account.

17



of when the Reflection Principle holds, and gives further support to using the HT approach to
ascribing probabilities in the asynchronous case.

There is a trivial sense in which updating is never done by conditioning: At the point
(r,m), agent:; puts probability on the spad€;(r, m); at the point(r,m + 1), agenti puts
probability on the spacé;(r,m + 1). These spaces are either disjoint or identical (since
the indistinguishability relation that determin&s(r, m) and KC;(r, m + 1) is an equivalence
relation). Certainly, if they are disjoint, ageintannot be updating by conditioning, since the
conditional probability space is identical to the original probability space. And if the spaces
are identical, it is easy to see that the agent is not doing any updating at all; her probabilities
do not change.

To focus on the most significant issues, it is best to factor out time by considering only the
probability ascribed to runs. Technically, this amounts to considetingpased eventshat is
setsU of points with the property that {fr, m) € U, then(r, m’) € U for all timesm/’. In other
words,U contains all the points in a given run or none of them. Intuitively, we can idebitify
with the set of runs that have pointsinh To avoid problems of how to assign probability in
asynchronous systems, | start by considering synchronous systems. Givéha peints, let
V= =A{(r,m): (r,m+1) € V}; thatis,IV~ consists of all the points immediately preceding
points inV. The following result, whose straightforward proof is left to the reader, shows that
in synchronous systems where the agents have perfect recall, the agents do essentially update
by conditioning. The probability that the agent ascribes to an évextttimem + 1 is obtained
by conditioning the probability he ascribes tbat timem on the set of points immediately
preceding those he considers possible at time 1.

Theorem 4.1 [Halpern 2003]Let U be a run-based event and [Rtbe a synchronous system
where the agents have perfect recall. Then

Prr,m—&-l,i(U) = PrT,m,i(U | ICZ‘(T, m + 1)7)'

Theorem 4.1 does not hold without assuming perfect recall. For example, suppose that an
agent tosses a fair coin and observes at time 1 that the outcome is heads. Then at time 2 he
forgets the outcome (but remembers that the coin was tossed, and knows the time). Thus, at
time 2, because the outcome is forgotten, the agent ascribes probafility each of heads
and tails. Clearly, her time 2 probabilities are not the result of applying conditioning to her
time 1 probabilities.

A more interesting question is whether Theorem 4.1 holds if we assume perfect recall and
do not assume synchrony. Properly interpreted, it does, as | show below. But, as stated, it
does not, even with the HT approach to assigning probabilities. The problem is the use of
Ki(r,m + 1)~ in the statement of the theorem. In an asynchronous system, some of the points
in IC;(r, m+ 1)~ may still be infC;(r, m+1), since the agent may not be aware of time passing.
Intuitively, at time(r, m), we want to condition on the set of pointski(r, m) that are on runs
that the agent considers possibléatn + 1). But this set is not necessarity;(r,m + 1)~

18



Let IC;(r,m + 1)"™) = {(+', k) € Ki(r,m) : Im/((r,m + 1) ~; (v',m))}. Note that
Ki(r,m + 1)(»™) consists precisely of those points that agent considers possiblesalt that
are on runs that the agent still considers possible,at + 1). In synchronous systems with
perfect recall jC;(r, m + 1)™™) = K;(r,m + 1)~ since, as observed above(ifm + 1) ~;
(r',m + 1) then (r,m) ~; (r';m). In general, however, the two sets are distinct. Using
Ki(r, m 4+ 1)(»™) instead ofiC,...+1 gives an appropriate generalization of Theorem 4.1.

Theorem 4.2 [Halpern 2003]Let U be a run-based event and I& be a system where the
agents have perfect recall. Then,
Prfnj;ﬂ,i(U) = Prfnz;,i(U | ICi(r, m + 1)(T’m))~

Thus, in systems with perfect recall, using the HT approach to assigning probabilities, up-
dating proceeds by conditioning. Note that since the theorem considers only run-based events,
it holds no matter how the probability among points on a run is distributed. For example, in the
Sleeping Beauty problem, this result holds evemdf 1) and(r,, 2) are not taken to be equally
likely.

The analogue of Theorem 4.2 does not hold in general for the Elga approach. This can
already be seen in the Sleeping Beauty problem. Consider the system of Figure 1. At time O
(in eitherr; orr,), the event heads (which consists of all the points )ns ascribed probability
1/2. Attime 1, it is ascribed probability/3. Sincegz(ri, 1) = {(r,0), (12,0)}, we
have

1/3 = Prﬁlf’ﬁSB(heads) # Prfll?U‘TSB(heads) | Kgp(ry, )0y =1/2.

The last equality captures the intuition that if Sleeping Beauty gets no additional information,
then her probabilities should not change using conditioning.

Van Fraassen’s [199%}eflection Principlas a coherence condition connecting an agent’s
future beliefs and his current beliefs. Note that what an agent believes in the future will depend
in part on what the agent learns. T@eneralized Reflection Principkays that an agent’s
current belief about an event should lie in the span of of the agent’s possible beliefs about
U at some later timen. That is, if Pr describes the agent’s current beliefs, dhgl, ..., Pry
describe the agent’s possible beliefs at timghen for each everif, Pr(U) should lie between
min; Pr;(U) andmax; Pr;(U). Savage’s [19545ure-Thing Principlaés essentially a special
case of the Generalized Reflection Principle. It says that if the probabilityistx no matter
what is learned at timen, then the probability ofA should be« right now. This certainly
seems like a reasonable criterion.

Van Fraassen [1995] in fact claims that if an agent changes his opinion by conditioning on
evidence, that is, iPr; = Pr(- | E(j,m)) for j = 1,...,k, then the Generalized Reflection
Principle must hold. The intuition is that the pieces of evideR¢é, m), ..., E(k, m) must
form a partition of underlying space (in each state, exactly one piece of evidence will be ob-
tained), so that it becomes a straightforward application of elementary probability theory to
show that ifa; = Pr(E(j,t)) for j =1,...,k, thenPr = oy Pr; + - - - + oy Pry.
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Van Fraassen was assuming that the agent has a fixétl sétpossible worlds, and his
probability on/ changed by conditioning on new evidence. Moreover, he was assuming that
the evidence was a subsetldf. In the multiagent systems framework, the agent is not putting
probability on a fixed set of worlds. Rather, at each tikimde puts probability on the set of
worlds (i.e., points) that he considers possible at im&he agent’s evidence is an information
set—a set of points. If we restrict attention to run-based events, we can instead focus on the
agent’s probabilities on runs. That is, we can t&Keo be the set of runs, and consider how
the agent’s probability on runs changes over time. Unfortunately, agexntidence at a point
(r,m) is not a set of runs, but a set of points, nam€lyr, m). We can associate witti;(r, m)
the set of runs going through the pointski(r, m), namely, in the notation of Section 3.2,
R(KCi(r,m))

In the synchronous case, for each time the possible information sets at time cor-
respond to the possible pieces of evidence that the agent has antimidese information
sets form a partition of the timer points, and induce a patrtition on runs. In this case, van
Fraassen’s argument is correct. More precisely, if, for simplicity, “now” is taken to be time 0,
and we consider some future time > 0, the possible pieces of evidence that agecduld
get at timem are all sets of the forniC;(r, m), for » € R. With this translation of terms, it
is an immediate consequence of van Fraassen’s observation and Theorem 4.1 that the Gener-
alized Reflection Principle holds in synchronous systems with perfect recall. But note that the
assumption of perfect recall is critical here. Consider an agent that tosses a coin and observes
that it lands heads at time 0. Thus, at time 0, she assigns probability 1 to the event of that coin
toss landing heads. But she knows that one year later she will have forgotten the outcome of
the coin toss, and will assign that event probabilif (even though she will know the time).
Clearly Reflection does not hold.

What about the asynchronous case? Here it is not straightforward to even formulate an
appropriate analogue of the Reflection Principle. The first question to consider is what pieces
of evidence to consider at time. While we can consider all the information sets of form
Ki(r,m), wherem is fixed andr ranges over the runs, these sets, as we observed earlier,
contain points other than time points. While it is true that eithefC;(r, m) is identical to
ICi(r', m) or disjoint from/C; (', m), these sets dootinduce a partition on the runs. It is quite
possible that, even though the set of poikit$r, m) and/C;(r', m) are disjoint, there may be
a runr” and timesm; andm, such that(r”, m,) € KC;(r,m) and (", ms) € K;(r',m). For
example, in Figure 4, if the runs from left to right arg-rs, thenKgsp(rs, 1) = {r1,...,7r5}
and Kgp(ri,1) = {r,r,r3}. However, under the assumption of perfect recall, it can be
shown that for any two information seks (r;, m) andK;(r9, m), either ()R (/C;(r1,m)) C
R(’Ci<r27 m)), (b) R(’Ci<r2> m)) - R(/Ci(rl, m)), or (C) R(Ki(rl, m)) N R(’CZ’(TQ, m)) = 0.

From this it follows that there exist a collecti@ of runs such that the sef(/C;(r’, m)) for
r" € R’ are disjoint and the union @& (/C;(r’,m)) taken over the rung € R’ consists of all
runs inR. Then the same argument as in the synchronous case gives the following result.

Theorem 4.3 If R is a (synchronous or asynchronous) system with perfect recalkafd, m),
..., KCi(rg, m) are the distinct information sets of the foid(r', m) for ' € R(K;(r,0), then
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there existyy, . .., oy such that
k
Pri(- | R(K(r,0))) = > a;Pri(- | R(Ki(rj,m))).
j=1

The following corollary is immediate from Theorem 4.3, given the definitioﬁm‘éﬁm)

Corollary 4.4: If R is a (synchronous or asynchronous) system with perfect recalkand, m),
., K;(r,, m) are the distinct information sets of the ford(r’', m) for ' € R(K;(r,0), then
there existyy, . . ., a; such that for allR’ C R,

Pr{i[,z:,O) (IC Z Q PI‘[_ZH; ,m) ’C‘(T]W m))(R,))

Corollary 4.4 makes precise the sense in which the Reflection Principle holds for the HT
approach. Although the notatidgy(r, m)(R’) that converts sets of runs to sets of points makes
the statement somewhat ugly, it plays an important role in emphasizing what | take to be an
important distinction, that has largely been ignored. An agent assigns probability to points,
not runs. At both time 0 and time we can consider the probability that the agent assigns to
the points on the runs iR’, but the agent is actually assigning probability to quite different
(although related) events at time 0 and time It is important to note that | am not claiming
here thatv; = Pr(R(/C;(r;, m)) in Theorem 4.3. While this holds in the synchronous case,
it does not hold in general. The reason we cannot expect this to hold in general is that, in the
synchronous case, the s&s/KC;(r;, m)) are disjoint, s&_7_; Pr(R(Ki(r;,m)) = 1. Thisis
not in general true in the asynchronous case. | return to this issue shortly.

The obvious analogue to Corollary 4.4 does not hold for the Elga approach. Indeed, the
same example that shows conditioning fails in the Sleeping Beauty problem shows that the
Reflection Principle does not hold. Indeed, this example shows that the sure-thing principle
fails too. Using the Elga approach, the probability of heads (i.e., the probability of the points
on the run where the coin lands heads) changes frthto 1/3 between time 0 and time 1, no
matter what.

Arntzenius [2003] gives a number of other examples where he claims the Reflection Princi-
ple does not hold. In all of these examples, the agent either has imperfect recall or the system is
asynchronous and the Elga approach is being used to ascribe probabilities. Thus, his observa-
tion may not seem surprising, given the previous analysis. However, in one case, according to
my definition, Reflection in fact does not fail. This is due to the fact that | interpret Reflection
in a slightly different way from Arntzenius. Since this example is of independent interest, |
now consider it more carefully.

The example, credited by Arntzenius to John Collins, is the following: A prisoner has in his
cell two clocks, both of which run perfectly accurately. However, clddkitially reads 6 PM
and clockB initially reads 7 PM. The prisoner knows that exactly one of the clocks is accurate;
he believes that with probability//2 the accurate clock is clock and with probabilityl /2 it
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is clock B. The prisoner also knows that a fair coin has been tossed to determine if the lights
go out at midnight; if it lands heads, they do, and if it lands tails, they stay on. Since the coin
is fair, the prisoner initially places probability'2 on it landing heads.

There are four runs in the system corresponding to this problem, each of which has proba-
bility 1/4:

e 1, WwhereA is the accurate clock and the coin landed heads;
e 15, WhereA is the accurate clock and the coin landed tails;
e 13, WwhereB is the accurate clock and the coin landed heads;

e 4, WhereB is the accurate clock and the coin landed tails.

We can assume that the environment state encodes the true time and the outcome of the coin
toss, while the prisoner’s state encodes the clock readings and whether the light is off or on.
Thus, a typical global state might have the fofth1:3Q /), (11:3012:3Q 1)). In this global

state, the true time is 11:30 and the coin landed heads, clogads 11:30 (and is correct),

clock B reads 12:30, and the light is on (denoted by the component 1 in the tuple). Thus,
this is the global state at the poifit;, 11:30. The other points in the same information set as
(r1,11:30 are(ry, 11:30 and(ry, 12:30. Call this information sef;. At all the three points

in I, the prisoner’s local state {1:30 12:3Q 1). For future reference, note that the only other
information set that includes time 11:30 pointg4ds= {(r;, 10:30), (2, 10:30), (r3,11:30), (14, 11:30 }.
At all the points inl,, the pair of clocks reaf10:3Q 11:30 and the light is on.

It is easy to check that every information set has at most one point per run. It follows from
Lemma 3.1 that at every point, the HT approach and the Elga approach agree. Thus, no matter
which approach is used, Reflection in the sense of Corollary 4.4 must hold. Observe that the
prisoner’s degree of belief that the coin landed heads in informatioh $&2/3, while in I,
itis 1/2. Thus, the prisoner’s initial probability of heads/2) is a convex combination of his
possible probabilities of heads at 11:30, but the combination has coefficients 0 and 1. Taking
the coefficients to be 0 and 1 might seem a little strange. After all, why should we psefer
so strongly? But | claim that the “strangeness” here is a result of carrying over inappropriate
intuitions from the synchronous case. In the synchronous case, the coefficients reflect the
probability of the information sets. This makes sense in the synchronous case, because the
information sets correspond to possible pieces of evidence that can be obtainedraf dnee
the sum of these probabilities of the pieces of evidence is 1. However, in the asynchronous case,
we cannot relate the coefficient to probabilities of obtaining evidence. Indeed, the “evidence”
in the case of information sd¢ is that the clock readings are (10:30, 11:30) and the light is
on. This is evidence that the prisoner initially knows that he will certainly obtain at some point
(although not necessarily at 11:30). Indeed, it falls out of the analysis of Theorem 4.3 that it
does not make sense to relate the coefficients in the asynchronous case to the probabilities of
obtaining the evidence.
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Arntzenius points out another anomaly in this example. Taking denote the prisoner’s
probability at (real) time, Arntzenius observes that

Prz.00(clock B is correct| Pryy.50(clock B is correcy = 1/3) = 0.

For Pry;.30(clock B is correcj = 1/3) holds only in rung andr,, since at the point&-, 11 :
30) and (7, 11 : 30), the prisoner’s probability thaB is correct is1/3, while at the points
(rs, 11 : 30) and(r4, 11 : 30), the prisoner’s probability tha® is correct isl /2. On the other
hand,B is not correct in rung; andr,, so the conditional probability is O.

Arntzenius suggests that this is a problem, since the prisoner does not trust his later beliefs.
| would argue that the prisoner should trust all his later beliefs that he is aware of. The trouble
is, the prisoner has no idea when he has the belief;,(clock B is correcj = 1/3, since he
has noideawhenitis 11:30. (Essentially the same point is made by Schervish, Seidenfeld, and
Kadane [2004].) Of course, in a synchronous system, an agent does know when 11:30 is, so
beliefs of the formPr;1.50(U) are ones he should trust.

Note that if we modify the problem very slightly so that (a) cladkgives the true time,
(b) the lights will be turned off when the jailer’s clock reads midnight, and (c) on¢ afid B
gives the jailer’s time, but the prisoner does not know which and ascribes each prohahility
then we get a synchronous system which is identical to Arntzenius’s in all essential details.
However, now Reflection is completely unproblematic. At 11:30, if the light is still on, the
prisoner ascribes probabilit/3 to heads; if the light is off, the prisoner ascribes probability
1 to heads. Initially, the prisoner ascribes probabitifyt to the light being on at 11:30 and
probability 1/4 to the light being off. Sure enough/2 =3/4 x 1/3 +1/4 x 1.

This example emphasizes how strongly our intuitions are based on the synchronous case,
and how our intuitions can lead us astray in the presence of asynchrony. The prisoner has
perfect recall in this system, so the only issue here is synchrony vs. asynchrony.

5 Conclusion

In this paper, | have tried to take a close look at the problem of updating in the presence of
asynchrony and imperfect recall. Let me summarize what | take to be the main points of this
paper:

e It is important to have a good formal model that incorporates uncertainty, imperfect
recall, and asynchrony in which probabilistic arguments can be examined. While the
model | have presented here is certainly not the only one that can be used, it does have a
number of attractive features. As | have shown elsewhere [Halpern 1997], it can also be
used to deal with other problems involved with imperfect recall raised by Piccione and
Rubinstein [1997].

e Whereas there seems to be only one reasonable approach to assigning (and hence updat-
ing) probabilities in the synchronous case, there are at least two such approaches in the
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asynchronous case. Both approaches can be supported using a frequency interpretation
and a betting interpretation. However, only the HT approach supports the Reflection
Principle in general. In particular, the two approaches lead to the two different answers
in the Sleeping Beauty problem.

¢ We cannot necessarily identify the probability conditionalbwith what the probability
would be upon learning/. This identification is being made in Elga’s argument; the
structureR, shows that they may be distinct.

One fact that seems obvious in light of all this discussion is that our intuitions regarding how
to do updating in asynchronous systems are rather poor. This is clearly a topic that deserves
further investigation.
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