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Abstract

Samet introduced a notion of hypothetical knowledge and showed
how it could be used to capture the type of counterfactual reasoning
necessary to force the backwards induction solution in a game of per-
fect information. He argued that while hypothetical knowledge and
the extended information structures used to model it bear some resem-
blance to the way philosophers have used conditional logic to model
counterfactuals, hypothetical knowledge cannot be reduced to condi-
tional logic together with epistemic logic. Here it is shown that in fact
hypothetical knowledge can be captured using the standard counter-
factual operator “>” and the knowledge operator “K”, provided that
some assumptions are made regarding the interaction between the two.
It is argued, however, that these assumptions are unreasonable in gen-
eral, as are the axioms that follow from them. Some implications for
game theory are discussed.
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of this paper appears in Proceedings of the Seventh Conference on Theoretical Aspects of
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1 Introduction

It is well understood by now that counterfactual reasoning plays an impor-
tant role in analyzing rationality in games. In deciding what to do at a given
node, a player must analyze what would have happened had he done some-
thing else. (See [Aumann 1995; Binmore 1996] for some recent discussion of
the role of counterfactual reasoning in games.) Samet [1994, 1996] introduced
a notion of hypothetical knowledge, and showed how it could be used to cap-
ture the type of counterfactual reasoning necessary to force the backwards
induction solution in a game of perfect information. In this paper, I examine
hypothetical knowledge, argue that it can be derived from more standard no-
tions of counterfactuals, and examine some of Samet’s assumptions in more
detail.

To capture hypothetical knowledge, Samet uses a binary operator K (H, E),
which he usually writes as K”(E). He suggests it should be read as “had
H been the case, I would have known E”. He requires it to satisfy a
number of axioms, including K#(F) = K#(K(E))—if the agent would
have known FE, then he would have known that he would know E-—and
-KH%(E) = K" (-~K(E))—if the agent would not have known FE, then he
would have known that he would not have known E. (K is the standard
knowledge operator.) Samet argues in [Samet 1994] that while hypothetical
knowledge and the extended information structures used to model it bear
some resemblance to the logic of counterfactuals studied in the philosophi-
cal literature [Lewis 1973; Stalnaker 1968; Stalnaker and Thomason 1970],
hypothetical knowledge cannot be reduced to counterfactual logic together
with epistemic logic.

As I argue here, Samet’s operator is better read as “had I considered H
possible, then I would have known E”. This reading suggests that we can
then represent K% (F) as L(H) > K(F), where > is the standard counter-
factual operator (so that H > E can be read as “if H were the case, then
E would be true”), K is the standard knowledge operator, and L is its dual
(i.e., L(F) = ~K(—F), where = denotes complementation). I show that in
fact this can be done, provided that we make some assumptions about the
interaction between knowledge and counterfactuals, in order to force Samet’s
axioms to hold. However, as I show by example, these assumptions are not
always reasonable, nor are the axioms that follow from them. In particular,
it is not always reasonable for an agent to know about his counterfactual



knowledge, because it may depend on features of the world that the agent
does not know about.

The rest of this paper is organized as follows. In Section 2, I review
Samet’s framework, while in Section 3, I review conditional logic, which is
the framework used by philosophers to model counterfactuals. In Section 4,
I show that by combining conditional logic with standard epistemic logic for
reasoning about knowledge, we can indeed capture Samet’s axioms, by im-
posing some (not always reasonable) assumptions on the relationship between
knowledge and counterfactuals. In Section 5, there is some discussion of the
relevance of these results to Samet’s results. I observe that Samet’s main
result holds even without making any assumptions about the relationship
between knowledge and counterfactuals.

2 Samet’s Model

Traditionally, game theorists have considered information structures of the
form (Q,I14,...,I1,), where Q is a set of possible worlds, and fori =1,...,n,
I1; is a partition of Q2 into disjoint subsets. Given a world w € Q, let II;(w)
be the element of II; that contains w. We can think of II;(w) as the set of
worlds that agent i considers possible when in world w. Intuitively, this set
characterizes his state of mind in w.

In an information structure, we can define the standard unary knowledge
operators K1, ..., K,, which map subsets of {2 to subsets of €2, as follows:

K;(F) ={w:1L(w) C E}. (1)

It is easy to see that K;(E) is a union of cells in II;. Intuitively, K;(F) is
the event that agent ¢ knows E. For convenience, we define L;(E) to be an
abbreviation for =K;(—F), where - denotes complementation. Intuitively,
L;(F) is the event “agent i considers F possible”. It is well known (and easy
to check) that the K; operator satisfies the following axioms:

Al. K;(F) = K;(K;(E)) (positive introspection)
A2, =K;(F) = K;(-K;(E)) (negative introspection)



A3. NjesKi(Ej) = K;(NjesE;) for every index set J and events E;,j € J
(intersection)?

A4. K;(E) C E (veridicality)

Samet considers what he calls extended information structures, which
are tuples of the form (Q,IIy,...,I1,,T1,...,T,), where (Q,II,...,IL,) is
an information structure and T; : II; x (2% — @) — II,. T; is what Samet
calls an hypothesis transformation. Given a nonempty event H C  and
a state of mind P € II;, Samet suggests that we can think of 7;(P, H) as
describing what agent ¢’s state of mind would have been had H been the
case. As I shall argue in Section 4, a more appropriate interpretation is
that T;(P, H) describes what agent i’s state of mind would have been had
he considered H possible. Samet assumes that hypothesis transformations
satisty the following two properties:

T1. Ty(P,H)NH # 0
T2. If PN H # 0, then T)(P,H) = P.

Samet defines binary hypothetical knowledge operators K; : (2% — @) x
2 4 =1,...,n, that map events to events. Intuitively, K;(H, F), usually
written KX (E), is meant to represent the event that i would know E had
the hypothesis H been true. This is captured by defining

KH(E)=u{Pell;: Ty(P,H) C E}. (2)

It is easy to see that the unary K; operator is equivalent to K, given T1
and T2.

Lemma 2.1: If T satisfies T2, then K; = K{*.

Proof: By T2, for any cell P € II;, we have that T;(P,2) = P. By Defini-
tion (1), P C K,;(FE) iff P C E. On the other hand, since T;(P,Q) = P, it
follows from Definition (2) that P C KX (F) iff P C E. The result follows. I

Samet wants hypothetical knowledge to satisfy the following axioms,
which hold for all events H and E:

'If J = 0, we take the intersection over the empty set to be Q, as usual. Thus, as a
special case of this axiom, we get Q = K;(Q).
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K1 K2 (E) = K(KF(E))

Ke. K (F) = KP(K(F))

K3. ~K{(E) = K (-Ki(E))

K4. NjesKE(E;) = K (NjesE;), for every index set J and events E;,j € J
K5. K (Ly(H)) =

K6. Li(H) N K (E) = L;(H) N K;(E)

Note that K1-K3 are generalizations of the introspective properties for knowl-
edge, while K4 is a generalization of the intersection property for knowledge.

The following result shows that these axioms uniquely characterize the
hypothetical knowledge operator. Moreover, it shows that K5 and K6 corre-
spond to assumptions T1 and T2, respectively.

Theorem 2.2: [Samet 1994; Samet 1996] Let 7 be a (possibly empty)
subset of {T1,T2}, let K be the corresponding subset of {K5 K6}, and let
(Q, Iy, ...,I1,) be an information structure. All hypothesis transformations
Ti,...,T, on this information structure satisfying the assumptions in T de-
fine hypothetical knowledge operators that satisfy K1-K4 and the axioms in
K. Moreover, if K : (2°—0)x 2% — 29 is a binary operator satisfying K1-K/
and the azioms in KC (for agent i), then there is an hypothesis transformation
T; on I1; satisfying T such that K(H, E) = U{P € IL;|T;(P,H) C E}.

As T said in the introduction, one of the goals of this paper is to ex-
amine Samet’s assumptions. The analysis suggests that K3, in particular,
is problematic. The proof of Theorem 2.2 shows that K3 follows from the
assumption that 7" is a function; that is, it returns a single cell given its two
arguments. (See also Theorem 4.5.) The following example, which illustrates
the problem with K3 and the assumption that 7" is a function, was inspired
by the later analysis, but can be understood without going through it.

Example 2.3: Suppose that agent 1 is in a dark room. He knows that the
door is painted either red or blue, but does not know which (and cannot tell
since the room is dark). What state of mind will the agent be in if the light
is on? He will clearly know either that the door is red or that it is blue,
but which he knows depends on the actual situation, which is something the
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agent does not know. Nor will any amount of introspection will help him
figure it out.

Formally, we can model this situation by an information structure con-
sisting of four worlds, {(red, off), (blue, off ), (red, on), (blue, on)}, with the
obvious interpretations. (For example, in the world (red, on), the door is red
and the light is on.) Let RED, ON, and OFF be the events that the door
is red, the light is on, and the light is off, respectively (so that, for exam-
ple, OFF = {(red, off ), (blue, off )}). The agent’s partition consists of three
cells: OFF, {(red, on)}, and {(blue, on)}. Clearly, the agent is only uncer-
tain about the door color if the light is off. Now what should T} (OFF, ON)
be? By T1, it must be one of {(red, on)} or {(blue, on)}, but there is no
obvious reason to choose one over the other. The agent does not know what
his state of mind would be if the light were on, because he does not know
the door color.

This translates to a problem with K3: Clearly (red, off) ¢ KPY(RED):
the agent does not know in world (red, off ) that if the light were on then the
door would be red; he considers it possible that it might be blue. On the
other hand, we also have (red, off) ¢ KV (-~K,(RED)): the agent does not
know if the light were on that he would not know that the door would be
red. If the door were actually red, he would in fact know it if the light were
on. 1

I remark that Arlo-Costa and Bicchieri [1998] independently observed
that K3 is problematic.

3 Conditional logic

The more traditional way in the philosophical literature to capture hypo-
thetical or counterfactual reasoning is by means of conditional logic. (See
[Stalnaker 1992] for a short and readable survey.) A counterfactual of the
form H > E, read “if H were the case, then E would be true” is taken to be
true in world w if at the closest worlds where H is true, F is also true.

To make this precise, we need a “closeness” relation. The original ap-
proach, due to Stalnaker and Thomason [Stalnaker 1968; Stalnaker and
Thomason 1970], assumes that there is a selection function f: € x 2% — Q;
intuitively, f(w, F) is the world closest to w that satisfies E. This implicitly



assumes that there is a unique world closest to w that satisfies £. Many
later authors argued that there is not in general a unique closest world; ties
should be allowed (see, in particular, [Lewis 1973, pp. 77-81]). I follow this
more general interpretation here and take a counterfactual structure to be
a pair (, f), where f : Q x 2% — 29 although R4 below restricts to the
case considered by Stalnaker. Define the binary operator >: 2% x 2% — 2%
in counterfactual structures as follows:

H>FE={w: f(w,H) C E}. (3)

This captures the intuition that w € H > FE if the closest worlds to w where
H is true all satisfy E. To simplify the exposition, if w € H, we say that w
is an H-world.

Given our description of the selection function, the following restrictions
on it seem reasonable:

Rl. f(w,H) C H: the worlds closest to w satistying H are in fact H-worlds.

R2. If H # () then f(w,H) # 0: this says that there always is some world
closest to H if H is nonempty.

R3. If w € H, then f(w, H) = {w}: if wis an H-world, then it is the closest
H-world to w.

As I mentioned above, we can also consider a restriction that forces there
always to be a unique closest world, as was done by Stalnaker.

R4. If H # 0 then f(w, H) is a singleton.

Of course, R4 implies R2. Note that R4 is similar in spirit to Samet’s assump-
tion that the hypothesis transformation is a function. As we shall see, there
is more than a spiritual similarity between the two assumptions. Once the
appropriate connections are made between Samet’s approach and standard
conditional logic, R4 implies the functionality of hypothesis transformations.

Each of these restrictions corresponds to an axiom. Consider the following
axioms:

CO0. Njes(H > Ej) = H > NjesE;, for any index set J and events Ej, j € J

Cl. (H>H)=Q



C2. H>0=0if H#0
C3. HN(H>E)=HNE
Ci H>-FE=-(H>E)itH#10

Theorem 3.1: Let S be a (possibly empty) subset of {R1,R2,R3,R}}, let C
be the corresponding subset of {C1,C2,C3,C4}, and let Q2 be a set of worlds.
If f is a selection function on ) that satisfies the properties in S and > is
defined in (Q, f) by (3), then > satisfies CO and the axioms in C. Conversely,
if > Q x 22 — 292 and satisfies CO and the azioms in C, then there is
a selection function f on Q satisfying S such that >' is the counterfactual
operator > in (Q, f).2

Proof: It is easy to check that if f satisfies the properties in &, then >
satisfies CO and all the properties in C. For the second half, given an operator
>’  define f(w,H) =N{F : w € H > E}. I leave it to the reader to check
that >’ is the counterfactual operator > in (€2, f). I

4 Conditional epistemic logic

Counterfactuals clearly do not suffice to capture Samet’s hypothetical knowl-
edge; we need knowledge as well. Define a counterfactual information struc-
ture to be a tuple (Q,ILy,...,IL,, f1,..., fn), where (Q,II;,... II,) is an
information structure and f;, i = 1,...,n, is a selection function. In a coun-
terfactual epistemic structure, we can make sense of events defined in terms

2Although completeness results for counterfactuals are well known—the first goes back
to Stalnaker and Thomason [1970]—these proofs are syntactic. That is, they start with
a language (a collection of formulas) and a notion of what it means for a formula to
be true in a counterfactual structure, and then characterize the formulas that are true
in all structures. Not surprisingly, there is a close similarity between some of the axioms
above and the axioms used to characterize syntactic completeness for conditional logic. For
example, C1 and C3 are the derived theorems t4.4 and t4.9 from [Stalnaker and Thomason
1970, p. 31]. Since Stalnaker and Thomason allow f(w, H) to be the empty set, they have
no analogue of C2. One can derive a finitary analogue of CO from the standard axioms
for counterfactuals given in the literature, but not the infinitary analogue. Indeed, in a
precise sense, it is consistent with the standard axioms that the infinitary analogue does
not hold; see [Halpern 1998] for discussion of this issue and more details on semantic
axiomatizations of counterfactuals.



of both knowledge operators and counterfactual operators. Of course, now
the counterfactual operators must be indexed according to the agent, so we
have expressions such as H >; F and K;(H >; E). An expression such as
H >; E can be read as “according to agent j, if H were the case, then F
would be true”. Thus, w € H >, E if, according to the selection function
agent 7 uses at the world w, the closest worlds to w where H is true all sat-
isfy E. Note that, since the selection function that j uses at world w may
be different from that j uses at another world w’ that is in the same cell of
J’s partition as w, whether w is in H >; E may depend on features of w, not
just on j’s state of mind at w. We return to this issue later.

Our goal is to find a statement in this framework corresponding to K (E).
To do this, we must first consider carefully how to interpret such a statement.
Samet [1996] suggests the reading “Had H been the case, I would have known
E”. The picture he has seems to be the following. Suppose agent 7 is currently
in state of mind P (that is, P = II;(w), where w is the state of the world). To
evaluate whether the statement “Had H been the case, I would have known
E” | the agent considers what his state of mind would have been if H were
true. This is given by T;(P, H). Since the agent is viewed as having perfect
introspection, he can then determine whether F is known in that state of
mind. In the state of mind T;(P, H), H is not necessarily known to be true.
The agent realizes that he does not have perfect information, so even had H
been true, he might not have known it. However, he would definitely consider
it possible. This is the content of T1, which says that T;(P, H)NH # (. If H
is already considered possible in agent i’s current state of mind—that is, if
PN H # ( or, equivalently, if w € L;(H)—then the state of mind that agent
1 would be in if H were true is his current state of mind. This is the content
of T2 (and K6).

In light of this, perhaps a better reading of KX (E) is “if agent i considered
H to be possible, then i would have known E”. We thus capture K (F)
in conditional epistemic logic as L;(H) >; K;(E), abbreviated as Ff{(E)
(Another possible translation is considered below.)

It is easy to see that Ff] satisfies K2 and K4, with no assumptions at
all on f;. K5 follows easily from C1, since K; (L:(H)) becomes L;(H) >;
K;(L;(H)), which is equivalent to L;(H) >; L;(H) (by A2 and A4). K6 is a
special case of C3. Thus, we get K5 and K6 just by requiring f; to satisfy
the minimal assumptions R1 and R3. If we assume f; satisfies R2, then we



get the additional axiom
K7. K¥(0) = 0.

It is easy to see that K7 is a special case of C2. It is not hard to see
that it holds in Samet’s framework; it follows from K3 and the fact that
Ki(Q) = KF(Q) = Q. However, in the absence of K3, we have to consider it
separately.

To get Ff{ to satisfy K1, we need to make some assumptions about the
relationship between f; and IT;. Write w ~; ' if II;(w) = II;(w’). Intuitively,
if w ~; W', then in world w, the agent considers w’ possible. We can extend
the ~; notation to sets by taking E ~; E’ if, for all w € F, there exists some
w' € E' such that w ~; &', and for all w’ € E’, there exists some w € E such
that w ~; w'.

It might seem reasonable to require that the agent should know his selec-
tion function. That is, it might seem reasonable to require

R5. If w ~; W' then fi(w, H) = fi(w', H).

However, R5' is incompatible with R3. For example, suppose we have w ~; w’
and H = {w,w'}. Then by R3 we must have f;(w,H) =w # ' = f;(w', H),
contradicting R5’. Tt turns out that there is a slightly weaker assumption
(which is comptible with R3) that suffices to get FZH to satisfy K1, and it is
that weaker assumption I focus on now:?

R5. If w ~; w' then fi(w, H) ~; fi(w', H)

To understand the intuition behind R5, given a selection function f, let
flw, H) = Uyefo,mIl(w'). Thus, f(w, H) is the smallest union of cells that
contains f(w, H). It is easy to see that R5 forces f to act the same way on
all indistinguishable worlds.

Lemma 4.1: The selection function f; satisfies R5 if and only if, for all w,
W', and H, we have that w ~; W' implies f;(w, H) = f;(w', H).

Thus, while R5’ says that f; is the same at all worlds the agent considers
possible, R5 says that f; is the same at all worlds the agent considers possible.

31 thank Dieter Balkenborg for observing that R5’ is incompatible with R3 and sug-
gesting that this be used as motivation for R5.
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Thus, if f; satisfies R5, then we can view f, as a function of the cell, not the
world. That is, we can write f;(P, H) for P € II;, taking it to be f;(w, H) for
some w € P. (The choice of w does not matter, given R5.) This means that
f; is almost an hypothesis transformation. However, f,(P, H) is a union of
cells, rather than being a single cell. This is easily seen to suffice for K1; that
is, had Samet defined an hypothesis transformation to be a function T'(P, H)
that returned a union of cells satistying T1 and T2, then all of his axioms
other than K3 would have held. For K3, T'(P, H) needs to be a single cell.
This is analogous to Stalnaker’s requirement that f(w, H) return a single
world. That is, we can think of T(P, H) as being the unique cell “closest” to
P where L(H) holds (i.e., such that HNT (P, H) # 0). It is thus perhaps not
surprising that Stalnaker’s condition R4, which says that there is a unique
world closest to w where H holds, gives us K3.4

Theorem 4.2: Let S be a (possibly empty) subset of {R1,R2,R3,R4,R5}, let
KC be the corresponding subset of { K5,K7,K6,K3,K1}, and let (0,114, ...,11,)
be an information structure. If fi,..., fn are selection functions such that
(104, ..., 1L, f1, ..., fa) satisfies the properties in S, then all the operators
FZ.H satisfy K2, K4, and all the azioms in K. Moreover, if K : (2%—0)x 2% —
2% 4s a binary operator satisfying K2, K/, and the azioms in K (for agent 1),
then there 1s a selection function f; on € satisfying the properties in S such
that K(H,E) = K, (E).

Proof: It is easy to see that if f; satisfies the properties in S, then Ff
satisfies K2, K4, and all the axioms in K. For the second half, suppose K
satisfies K2, K4, and the axioms in K for agent . There are three cases to
consider. If neither K6 nor K3 is in K, then we can define f;(w, L(H)) =
MNFE : w € K(H,E)}. We leave it to the reader to check that, with this

definition, K(H,E) = K fl (E) and f; satisfies the properties in S if its second
argument is of the form L(H). We can easily define f;(w, H') if H' is not of
the form L(H) for some H (that is, if H' is not the union of cells in II;) so
that it satisfies the properties in S. Exactly how it is defined is irrelevant.
This definition must be modified slightly if either K6 or K3 is in K. The
trouble is that it follows from K2 that N{F : w € K(H,FE)} is a union

4 Actually, to get K3, it suffices to weaken R4 to require only that fi(w, H) be a subset
of some cell in II;. However, this condition is less well-motivated than R4. All of my later
comments still apply if we consider the weaker version.
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of cells in II;. Thus, it will not in general be a singleton and hence will
not satisfy R3 or R4. However, it is easy to see that if K6 € K, then if
w € L(H), then w € "{F : w € K(H,E)}. Similarly, if K3 € K, then
MNFE :w € K(H,E)} is a single cell. If K6 € K, we modify the definition
of fi(w,L(H)) so that f;(w,L(H)) = {w} if w € L(H). If K3 € K, we
modify the definition of f;(w, L(H)) so that it is a singleton consisting of
some element in N{E : w € K(H, F)}; moreover, ifw € N{F :w € K(H, E)},
then we take fi(w, L(H)) = {w}. I leave it to the reader to check that these
modifications maintain all the desired properties. I

Thus, Ff] corresponds exactly to Samet’s K provided we assume R1-
R5. R1-R3 are minimal assumptions for counterfactuals. As we shall see,
R4, which says that there is always a unique closest world, is not always
reasonable. R5 can also be problematic. However, before discussing these
properties, I briefly consider one other way of capturing K/’ in conditional
epistemic logic.

Samet [personal communication, 1997] views K/ as an epistemic condi-
tional, making statements about an agent’s epistemic state. From this point
of view, K1 follows almost tautologically. We can capture this intuition by

:H
translating K#(E) as K;(L;(H) >; K;(E)), abbreviated as K, (F).> Of
_ —H
course, in the presence of K1, K ZH (E) and K, (E) are equivalent, although

in general they are distinct. It is easy to see that Ff] satisfies K1, K2,
and K4, with no assumptions at all on f;. Again, to get K5, K6, and K7
correspond to R1, R3, and R2, respectively. Thus, by making the minimal
assumptions of counterfactual reasoning, we get all of Samet’s properties but
K3. We might hope that R4 would give us K3, just as with the previous
translation. However, as the following example shows, R4 does not suffice to
give us K3.

Example 4.3: Suppose Q = {w;,ws,ws,ws}. There is only one agent, and
I, = {{wi,wa}, {ws}, {ws}}. Let H = {ws, w4}, f(w1,H) = {ws}, and
f(wz, H) = {ws}. The definition of f for other arguments is irrelevant,
so long as it satisfies R1-R4, which can easily be arranged. Note that f

=H
5Samet [1994] considers a translation similar to K; (E)—K;(H >; K;(E))—and argues
that it does not correspond to K (E).
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does not satisfy R5, since w; ~ wy, but f(w;) o f(wy). We then have
—H —H
w) € K ({ws}) — K (mK({ws})), so K3 does not hold. I

It turns out that to get K3, we need both R4 and R5. Let R45 be the
conjunction of R4 and R5.

Theorem 4.4: Let S be a (possibly empty) subset of {R1,R2,R3,R}5}, let
K be the corresponding subset of {K5,K7,K6,K3}, and let (Q,11y,...,11,)
be an information structure. If fi,..., fn are selection functions such that
(Q Iy, ..., 10, f1,..., fa) satisfies the properties in S, then all the operators

:H
K, satisfy K1, K2, K4, and all the azioms in K. Moreover, if K : (2% —

0) x 22 — 29 4s a binary operator satisfying K1, K2, K4, and the axioms
in K (for agent i), then there is a selection function f; on Q satisfying the

H
properties in S such that K(H,E) = K, (E).

Proof: It is easy to check that Ff] satisfies K1, K2, K4, and the axioms in
K if f; satisfies the properties in S. For the second half, we define f; just as
in the proof of Theorem 4.2. I leave it to the reader to check that this has
the required properties. 1

There is an even more direct relationship between Ff and Samet’s K}
that becomes clear if we consider a slight generalization of Samet’s frame-
work. Define a generalized information structure to be a tuple of the form
(Q,I,..., 1L, Ty, ..., T,), where (Q,II;,...,II,) is an information structure
and T; : IL; x (22 — @) — (2™ — Q) is a generalized hypothesis transformation.
We can think of T;(P, H) as the set of possible states of mind agent i could
be in if he considered H possible. Consider the following three properties of
generalized hypothesis transformations:

TO. T;(P, H) is a singleton.
T1. P"NH # { for all P' € T;,(P,H).
T2. If PN H # 0, then T,(P, H) = {P}.

T1" and T2' are the obvious generalizations of T1 and T2. If we assume TO,
then we are back in the setting of hypothesis transformations and extended
information structures.
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In a generalized information structure, we can define the binary operator
K; as follows:
KM (E)=uU{P€ll;: UTy(P,H) C E}.
Clearly this definition generalizes (2).
We now have the following generalization of Theorem 2.2.

Theorem 4.5: Let T be a (possibly empty) subset of {T0,T1', T2}, let K
be the corresponding subset of {K3,K5 K6}, and let (,1I;,...,1I,,) be an
information structure. All generalized hypothesis transformations Ty, ..., T,
on this information structure satisfying the assumptions in T define hypo-
thetical knowledge operators that satisfy K1, K2, K4, K7, and the azrioms
in K. Moreover, if K : (2% — 0) x 2% — 29 4s a binary operator sat-
isfying K1, K2, K4, K7, and the azioms in K (for agent i), then there
18 a generalized hypothesis transformation T; on II; satisfying T such that
KH(E)=uU{P ell;: UTy(P,H) C E}.

As a corollary to this result, it follows that there is a direct correspondence
between counterfactual information structures and generalized information
structures such that K; = K;. More precisely, we have the following result.

Theorem 4.6: Let S be a (possibly empty) subset of {R1,R3,R45} and let T
be the corresponding subset of { T0,T1,T2}. IfC = (Q,11y,..., 1., fi,.. ., fn)
1s a counterfactual information structure such that the selection functions f;
satisfy R2 and the properties in S, then there exist generalized hypothesis
transformations Ty, ..., T, such that FlH(E) = KH(E) (where K; is de-
fined in the counterfactual information structure C and K; is defined in the
generalized information structure (Q,11y,... 1L, T1,...,T,)). Similarly, if
G = (QIL,... I, T,...,T,) is a generalized information structure such
that the generalized hypothesis transformations satisfy the properties in T,
then there exist selection functions fi,..., f, satisfying R2 and the proper-

—H
ties in S such that K, (E) = KX (E).
Proof: For the first part, note that by Theorem 4.4, the ?z operators in

C satisfy K1, K2, K4, K7 and the subset of {K5,K6,K3} corresponding to
{R1,R3,R45}. Thus, it follows from Theorem 4.5 that there exist generalized

transformation operators 7T; such that ?f] (E) = KH(E). (In fact, we can
define T;(P, H) = {II(v') : W' € fi(w, L;(H)), for some w € P}.) The proof
of the second half is similar. i
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5 Discussion

How reasonable is Samet’s framework? The translation of it into conditional
logic suggests that it suffers from three potential problems: (1) unreasonable
assumptions, (2) lack of expressive power, and (3) missing axioms. I treat
each of these issues in turn. As we shall see, for Samet’s main result, these
in fact do not turn out to be problems.

5.1 A Closer Look at K1 and K3

Using our translation(s), all of Samet’s axioms follow from minimal assump-
tions in the standard framework for modeling counterfactuals except for K3
(and K1 if we use ?f) To get these properties, we need both R4 and R5,
whichever translation we use. As the following examples show, neither is a
reasonable assumption in general, and hence neither is K3.

Example 5.1: Consider again Example 2.3. As we observed, there seems
to be no appropriate definition for 77 in this case, since T; is required to be
a function. On the other hand, taking f((red, off ), ON) = {(red, on)} and
f((blue, off ), ON) = {(blue, on)} seems to capture the story, but it does not
satisfy R5.

This shows why we may not want an agent to know his selection function,
in the sense that it is the same at all worlds that he consider possible. In
general, we may want the selection function to depend on features of the ac-
tual world (and yet still be subjective). With this selection function, we have
that (red, off ) € ON >1 RED while (blue, off ) ¢ ON >; RED, although the
agent cannot distinguish (red, off ) from (blue, off). Translated to English,
this says that, according to agent 1, the question of whether or not he would
see a red door if the light were on depends on whether the door is actually
red. As a result, Ky (RED) # K(K\" (RED)), violating K1.

We could capture this situation by means of a generalized hypothesis
transformation 7', that maps a cell to a union of cells, rather than a unique
cell. For example, we could have T(OFF, ON) = ON (note that T = f).
The intuition here is that there may be more than one cell closest to OFF
where ON is true. I

Example 5.1 shows the problem with R5; the next example shows the
problem with RA4.
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Example 5.2: Suppose we have a simple game where, first, player 1 can
either go left or right. If he goes left, he gets a payoff of 3; if he goes right,
he must choose a number, either 0 or 1. Then player 2 chooses a number. If
both players choose the same number, player 1 gets a payoff of 4, otherwise
he gets a payoff of 1. Player 2’s payoff is 1 no matter what. We can now
consider a model with five worlds, one corresponding to each play of this
game. We can take L to be the world where player 1 plays left, and R to be
the event consisting of the remaining 4 worlds, where player 1 plays right. If
we assume that player 1 knows his action, then R splits into two cells, one
where player 1 chooses 0 and one where he chooses 1. Call these cells R0 and
R1. Nevertheless, it still seems reasonable to take fi(L, R) = R. Assuming
that player 1 randomizes after going right, at L, why should player 1 know
what action he would have chosen if he had gone right? Of course, with
this choice, R4 does not hold. (In fact, neither does the weaker version of R4
discussed in Footnote 4, which requires only that fi(L, R) be a subset of some

cell.) Not surprisingly, K3 does not hold either: K T(R0) # K (=K, (R0))
(and similarly if we replace K by K). I

These examples reinforce the case against K3 (and, to a lesser extent,
K1). So where does this leave Samet’s results on backwards induction? In
fact, these results hold even without K3. Indeed, they do not even require
K1. I briefly review Samet’s framework in order to explain this point. Samet
does not take strategies as primitive; rather, he defines strategies in terms
of counterfactuals. To define strategies, he makes use of statements of the
form “If I were at information set I in the game tree, I would perform action
a”. Let H; be the statement “I am at information set I” and let E, be the
statement “I perform action a”.® Assumption K3 is required to guarantee
that for each information set I, there is a unique action a such that K*1(E,)
holds; K1 is required to guarantee that an agent knows his strategy. If Samet
had used generalized information structures (where the generalized hypothe-
sis transformations satisfy T1" and T2', but not necessarily T0), rather than
extended information structures, an approach in this spirit would give us
nondeterministic strategies, where at each information set there is more than

6 Actually, Samet considers statements of the form “if I were at node n, I would perform
action a”. For games of perfect information, the information sets are nodes. In games of
imperfect information, we want the counterfactual statement to involve information sets,
not nodes.
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one possible action that the agent might perform. More precisely, suppose
we define a nondeterministic strategy s such that a is a possible action of s at
information set I if ~K (K*#1(~E,)) holds; that is, the agent considers it pos-
sible that if he were in information set I he would perform a. In generalized
information structures, this definition gives us a nondeterministic strategy,
but an agent still knows his strategy.” Moreover, in extended information
structures, this definition agrees with Samet’s.

Samet also uses his notion of hypothetical knowledge to show that in a
nondegenerate game of perfect information (that is, a game with different
payoffs at each of the terminal nodes), a common hypothesis of node ratio-
nality (see [Samet 1996] for the formal definition of this notion) implies that
the players play the backwards induction solution. However, this proof does
not require K1 and K3 at all. Indeed, Clausing [1998] has reproved Samet’s
result in epistemic conditional structures, using K; (E) as the definition of
hypothetical knowledge, and assuming only that f; satisfies R1, R2, and R3
(so that K1 and K3 do not necessarily hold).®

5.2 Restricted expressive power

The translations show that Samet’s hypothetical knowledge operators cor-
respond to rather restricted expressions of conditional logic, those of the
form L;(H) >; K;(H) or K;,(L;(H) >; K;(H)), depending on the translation.
While such expressions may suffice to deal with the particular situations con-
sidered by Samet (but see the concerns expressed in the previous subsection),
they do not suffice for general game-theoretic reasoning. For example, sup-
pose in a game of imperfect information, player 1 cannot distinguish nodes
ny and ny (that is, they are in the same information set of player 1), but
player 2 can distinguish them. Player 1 might well want to make a state-
ment such as “I know that if we were to reach node n; (H), then player 2
would play action a”. Such a statement corresponds to an event of the form
K,(H >, E), but does not correspond to an event of the form K (E’), for
any choice of H' or E’. It is not necessarily true that if player 1 considers it

If we further put a probability measure on the cells in T;(P, H), this approach would
result in a behavior strategy.

8Samet [personal communication, 1998] observes that in fact the main role of K3 is to
simplify the formulation and proofs of his results.
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possible that node n; is reached, then player 2 would play a, since at node
n9 player 2 might not play a.

Once we recognize the need for such statements, we are forced to go to
the more expressive formalism of conditional logic combined with epistemic
logic, rather than Samet’s formalism.

5.3 Extra Axioms

By thinking in terms of standard conditional logic, we can employ some stan-
dard intuitions from the literature. One intuition, which I have mentioned
informally, is that f(w, H) represents the world(s) “closest” to w that are in
H. This suggests that there is an underlying ordering on worlds. However,
the selection function is not defined in terms of an ordering. Lewis [1973]
gave an explicit model of counterfactual reasoning in terms of ordering. I
briefly review his framework here.

Lewis defined a preferential structure to be a pair (2, R), where R is a
ternary preferential relation on €. We typically write w’ <“ " rather than
R(w,w',w"). This should be thought of as saying w' is at least as close to
w as w"; thus, <¥ represents the “at least as close to w” relation. As would
be expected from the intuition, we require that <“ be a partial preorder,
that is, a reflexive, transitive relation.” We define the relation <“ by taking
W< Wi W <Y W and not(w” XY W'). We also require that w be the
minimal element with respect to < (so that w is closer to itself as any other
element); formally, for all W’ # w € Q, we have w <* W'.

In a preferential structure, we can define a selection function f< such
that f<(w, H) are the worlds closest to w, according to <“, that are in H.
Formally, we have

f<(w,H)={w' € H :if " <“ ' then w" ¢ H}.

This gives us a way of defining counterfactuals in preferential structures, by
an immediate appeal to the definition of > given in (3).'°

In preferential structures, the selection function satisfies additional prop-
erties (see [Halpern 1998] for complete details) including:

9Note that <“ is not necessarily anti-symmetric. That is why it is a preorder, not an
order. Of course, we can require it to be an order; this results in additional axioms.

0T ewis [1973] uses this definition for counterfactuals if Q2 is finite, but gives a somewhat
different definition in the case that Q is infinite.
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R6. f(w,HiUH,) C f(w, H))Uf(w, Hy): if W' is one of the (H; UH,)-worlds
closest to w, then it must be one of the H;-worlds closest to w or one
of the Hy-worlds closest to w.

R7. If f(w,H) C E then f(w,HNE) = f(w, H): if the closest H-worlds to
w all satisfy F, then the closest (H N E)-worlds are the closest H-worlds
to w.

As a result, > has a number of extra properties. The ones corresponding
to R6 and RT7 are:

C6 corresponds to reasoning by cases: if E would be true both if H; were true
and if Hy were true, then E would be true if H; U Hy were true. C7 has been
called cautious monotonicity in the literature [Kraus, Lehmann, and Magidor
1990]. It says that, although in general, strengthening the hypothesis does
not result in the same conclusions, if we strengthen it by something that we
would expect given the hypothesis, then our conclusions do not change. Still
further properties arise if <“ is a total order (see [Halpern 1998]).

—y =H
Assuming R6 and R7 also has an impact on K ZH . K, ). From C6 and C7
we get:

Hy
7

(B)NnK,”(E) C K, (B).

HﬂKi(El)

K9. K, (B\) K, (E) =K, (E))NK, (Ey).

K8 K

— —H
Precisely the same properties hold if we replace K f{ by K, .

As the following example shows, K8 and K9 do not hold in general for
Samet’s K operator.

Example 5.3: Suppose Q = {1,2,3,4}. There is only one agent, and IT; =
{{1},{2},{3},{4}} is the trivial partition where the agent always knows the
true situation. Let T3(4,{1,2}) = {1}, T(4,{2,3}) = {3}, T'(4,{1,2,3}) =
{2}. The definition of T} elsewhere is irrelevant. For definiteness, we take
Ty(i,H) = {i} if i € H and T1(i,H) = min(H) if i ¢ H. It is easy to
check that T} is an hypothesis transformation satisfying T1 and T2. Taking
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E = {1,3}, H, = {1,2}, and H, = {2,3} in the corresponding extended
information structure, we have 4 € K{"(F) n K{?(E) — K[""™(E), con-
tradicting K8. Taking H = {1,2,3}, E; = {1,2}, and E, = {2,3}, we have
4 e KH(E) N KE(E,) — KM ®)(Ey), contradicting K9. 1

Samet did not need K8 or K9 for his arguments, so there was no reason for
him to assume them. However, they seem useful for general counterfactual
reasoning, and thus may also be useful when doing counterfactual reasoning
in games. For example, K8 allows us to reason by cases, which is quite likely
to arise in a number of applications. My point here is simply that by applying
standard intuitions of conditional logic, we are quickly led to these axioms.

6 Conclusion

My goal here was relatively modest: simply to show that Samet’s hypo-
thetical knowledge operators could be captured using the standard models of
conditional logic and epistemic logic. I hope that the reader is now convinced
that this can be done. By using more standard means to capture hypotheti-
cal knowledge, we can see the potential problems with K3 (and its connection
to well-known issues in philosophical logic, going back to the discussion of
whether the selection function should always return a unique closest world).
Moreover, we have access to a richer language which, as I tried to suggest in
Section 5.2, may prove useful in analyzing games of imperfect information.
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