
Expressing Security Properties Using Selective
Interleaving Functions

Joseph Halpern and Sabina Petride

August 8, 2008

Abstract

McLean’s notion of Selective Interleaving Functions (SIFs) is perhaps the best-
known attempt to construct a framework for expressing various security properties.
We examine the expressive power of SIFs carefully. We show that SIFs cannot cap-
ture nondeducibility on strategies (NOS). We also prove that the set of security
properties expressed with SIFs is not closed under conjunction, from which it fol-
lows that separability is strictly stronger than double generalized noninterference.
However, we show that if we generalize the notion of SIF in a natural way, then
NOS is expressible, and the set of security properties expressible by generalized
SIFs is closed under conjunction.

1 Introduction

Trying to formalize what it means for a system to be secure is a far from trivial task.
Many definitions of security have been proposed, using quite different formalisms. One
intuition that many of these definitions have tried to capture is that a system is secure if
no information flows from a higher-level user to a lower-level user [Goguen and Meseguer
1982]. (From here on in, we just call these users high and low, respectively.) This
intuition, in turn, is captured by saying that, given their local observations, low users
cannot rule out any possible behavior of high users. But even this intuition can be
formalized in a number of ways, depending on what we understand by “high behavior”
and on what kind of information we specifically want to protect.

Many current approaches to defining security (for example, [McLean 1990; McLean
1994; Wittbold and Johnson 1990; McCullough 1987]) assume that high and low users
send input values to the system, which responds with output values. The “system” is
then modeled as a set of sequences (traces) of low/high input and output values. Various
definitions of security then impose conditions on the set of possible traces.

The following are some of the best-known definitions from the literature:

1

• Separability (abbreviated SEP) [McLean 1994] is one of the most restrictive de-
finitions. It requires that the system can be viewed as being composed of two
independent subsystems, corresponding to the low and high users: every possible
trace generated by the low user is compatible with every trace produced by the high
user. While a separable system is certainly secure under any reasonable definition
of security, it is unrealistic to expect systems to be separable in practice. Moreover,
not all interactions between high and low users may be seen as a breach in the sys-
tem’s security. After all, the main motivation behind theories of information flow
is to understand which types of such interactions are admissible.

• We can slightly relax separability by requiring only that the low activity be in-
dependent of the sequence of high inputs. The new property is called generalized
noninterference (GNI) [McCullough 1987].

• Traces are not generated at random. They usually come as a result of strategies:
rules that stipulate the next input based on the history of input-output values.
It has been argued that security really involves the low user not finding out any-
thing about the high user’s strategy. This notion is captured by nondeducibility on
strategies (NOS) [Wittbold and Johnson 1990].

Given all these different notions of security, it is helpful to have a single unified
framework in which to express them and compare their relative strengths. One attempt
to do so was suggested by McLean [1990, 1994]. McLean observed that most of the above
security properties may be expressed as closure conditions on systems (e.g. on sets of
traces): a system satisfies a given security property if for every pair of traces in the system
there is a trace in the system satisfying certain properties. This intuition is formalized
by associating to a security property a set F of functions from pairs of traces to traces;
such a mapping from pairs of traces to traces is called a selective interleaving function
(SIF). A system Σ is said to satisfy a security property if it is closed under the associated
set F of SIFs, i.e., for all σ1, σ2 ∈ Σ there is some f ∈ F such that f(σ1, σ2) ∈ Σ.

McLean focuses on some particularly natural sets of SIFs that he calls types. To
understand the notion of a type, we need to look more carefully at the structure of
traces. Traces are assumed to be sequences of tuples of the form (high input, low input,
high output, low output). A type consists of all SIFs that, given two traces as arguments,
combine some components from the first trace with some components from the second
and that satisfy certain restrictions (for example, combining the high input from the first
trace and the low output from the second trace).

McLean shows that a number of security properties, including SEP and GNI, can be
represented by types in the sense that there exists a type T such that a system Σ has
security property S if and only if Σ is closed under type T . He thus suggests that types
provide a reasonable framework in which to examine security properties. Zakinthinos
and Lee [1997] point out that, in their system model (which is slightly different from that

2

used by McLean—see Section 5), there are security properties that cannot be expressed
in terms of closure under types. In this paper, we examine this question more carefully.

We show that NOS can not be represented by types. We also show that another
natural property that we call double generalized noninterference (DGNI) cannot be ex-
pressed either. DGNI requires both that low activity is independent of the high inputs
and that high activity is independent of the low inputs. The counterexample for DGNI
actually proves the more general result that security properties expressible by types are
not closed under conjunction. More precisely, there are types T1 and T2 such that for
no type T is it the case that a system is closed under both T1 and T2 if and only if it is
closed under T .

These negative results are proved under the assumption that the only sets of SIFs
are types. If we allow more general sets of SIFs, these results no longer hold. NOS and
DGNI are all expressible; moreover, in the more general setting, we have closure under
conjunction. However, considering closure under arbitrary sets of SIFs is arguably not
the most natural setting in which to examine security properties. Moreover, it is far from
clear that even this setting is as expressive as we would like.

The rest of the paper is organized as follows. Section 2 reviews the formal definitions of
the security properties discussed above and McLean’s SIF framework. Section 3 contains
the negative results of the paper. It shows that NOS and DGNI can not be represented
by types. Section 4 shows that these negative results do not hold if we consider closure
under sets of SIFs more general than types. In fact, under the assumption that the set
of traces is countable, this framework captures all security properties. Section 5 relates
our results to those of Zakinthinos and Lee [1997]. We conclude in Section 6 with some
discussion of the general issue of representing security properties.

2 Security Properties and SIFs: A Review

Notation: Following McLean [1994], a trace σ is a sequence of tuples of the form (high
input, low input, high output, low output). We assume that we are given a set Σ∗ of
traces (which McLean [1994] calls the trace space). Intuitively, Σ∗ is the set of all possible
traces.

Definition 2.1: A system Σ (in Σ∗) is a subset of Σ∗.

Intuitively, Σ is a collection of traces generated according to some protocol or protocols.
McLean implicitly assumes that traces are infinite. We allow traces to be finite or infinite
(although we could equally well restrict to sets Σ∗ that have just finite or just infinite
traces). Note that, because of the form of traces, the system is synchronous.

Let 2Σ∗
be the power set of Σ∗.

Definition 2.2: A security property S (on Σ∗) is a predicate on 2Σ∗
; that is, a security

property is a set of systems in Σ∗.

3

Intuitively, S picks out some systems in Σ∗ as the “good” systems, the ones that
satisfy the property. We may not want to allow an arbitrary set of systems to be a
security property. However, we have not come up yet with any reasonable restrictions
on the sets of systems that count as security properties. Interestingly, Zakinthinos and
Lee [1997] do put a restriction on what counts as a security property. We discuss their
restriction in Section 5 and argue that it is not particularly well motivated. Note that our
negative results consider specific sets of systems that correspond to security properties
that have already been considered in the literature, so they should satisfy any reasonable
restrictions we may want to place on the definition.

Definition 2.3: Given a trace σ, we denote by σ|L the low view of σ, the sequence
consisting of (low input, low output) projection. We similarly denote by σ|H the high
view of σ, and by σ|HI the sequence consisting just of the high inputs.

We can now formalize the notions of security discussed in the Introduction.

Separability As mentioned before, SEP is a strong security requirement that the low
and high events be independent, meaning that any low view of a trace should be com-
patible with any high view of a trace. Formally, a system Σ satisfies SEP if

∀σ1, σ2 ∈ Σ, ∃σ ∈ Σ (σ|L = σ1|L ∧ σ|H = σ2|H).

Thus, if Σ satisfies SEP, then we can combine the low view of one trace in Σ and the
high view of another trace in Σ to obtain a trace in Σ. Notice that SEP is a closure
condition on the set of traces, since for every pair of traces in Σ, there is a trace in Σ
with a specific property (namely, the same low view as the first trace, and the same high
view as the second trace).

GNI and DGNI GNI is a weakening of SEP. A system Σ satisfies GNI if the low view
of one trace is compatible with the high input view of any other trace; that is,

∀σ1, σ2 ∈ Σ ∃σ ∈ Σ (σ|L = σ1|L ∧ σ|HI = σ2|HI).

As SEP, GNI is a closure condition on the set of traces. Notice that, unlike SEP, GNI
places no constraints on the high output sequence in σ.

A system Σ satisfies reverse GNI (RGNI) if,

∀σ1, σ2 ∈ Σ ∃σ ∈ Σ (σ|H = σ1|H ∧ σ|LI = σ2|LI).

Again, RGNI is a closure condition on the set of traces.

A system Σ satisfies double GNI (DGNI) if it satisfies both GNI and reverse GNI.
(While DGNI is not a standard notion, an example of a property requiring it serves as a
useful example, and it captures the relatively natural requirement that high-level activity

4

is independent of low-level activity). Unlike the above properties, DGNI is not a closure
condition on the set of traces; it is the conjunction of two such closure conditions.

Clearly SEP implies GNI and DGNI: given σ1 and σ2, the trace σ guaranteed to exist
by SEP satisfies all the properties required for GNI and DGNI. However, as we shall see,
the converse does not hold in general.

Nondeducibility on strategies Wittbold and Johnson [1990] pointed out that in
security it is often necessary to take into account the strategies being used by low and
high to generate the traces. A protocol for user u determines the input that u provides
to the system as a function of u’s previous input and output values. A protocol for the
system determines the high and low output values as a function of previous high and low
inputs and outputs and the current high and low inputs.

Protocols can be nondeterministic or probabilistic. In this paper we do not consider
probabilistic protocols, since the security conditions we consider are possibilistic (that is,
they make no mention of probabilities). For the purposes of this discussion, assume that
the low user is following a fixed protocol PL and the system is following a fixed protocol
PS. Let H∗ be the set of all possible high protocols. If H ∈ H∗, let ΣH be the set of
traces generated by running (PS, PL, H). If H ⊆ H∗, then define ΣH = ∪H∈HΣH . (Note
that this is not necessarily a disjoint union.) Let SH∗ consist of all systems of the form
ΣH for some H ⊆ H∗.

With this background, we can define NOS. The system ΣH satisfies NOS if

∀σ ∈ ΣH ∀H ∈ H ∃σH ∈ ΣH (σH |L = σ|L).

Thus, for every trace σ ∈ ΣH and every high strategy H ∈ H, there must be a trace
σH ∈ ΣH where the high user runs H and the low user’s view is the same as in σ. Note
that NOS is defined only for systems of the form ΣH.

For the definition above to make sense, it must be the case that if two sets H and H′

of protocols generate the same set of traces, i.e., if ΣH = ΣH′ , then ΣH satisfies NOS if
and only if ΣH′ satisfies NOS. One way to ensure this is by focusing on sets of strategies
H∗ such that there is an injective mapping from H to ΣH; in other words, if H and H′ are
distinct subsets of H∗, then we have ΣH 6= ΣH′ . This is equivalent to requiring that for
any protocol H ∈ H∗ and subset H ⊆ H∗ such that H 6∈ H, we have ΣH−ΣH 6= ∅. To see
why this the case, suppose first that if H 6= H′, then ΣH 6= ΣH′ . Let H ⊆ H∗ and choose
H ∈ H∗ such that H 6∈ H. Then we can simply take H′ = {H} ∪ H and since H′ 6= H,
we can apply the hypothesis and deduce that ΣH′ 6= ΣH, or equivalently, ΣH ∪ΣH 6= ΣH.
This means that ΣH − ΣH 6= ∅. For the converse, suppose that ΣH − ΣH 6= ∅ for all H
and H such that H 6∈ H. Let H and H′ be two distinct subsets of H∗; since H 6= H′,
either H−H′ 6= ∅, or H′−H 6= ∅. Without loss of generality, we can assume that we are
in the first case, and let H be a strategy in H−H′. By assumption, ΣH −ΣH′ 6= ∅. Since
H ∈ H, it follows that ΣH ⊆ ΣH, and so ΣH − ΣH′ 6= ∅; in particular, ΣH 6= ΣH′ . In
short, for the definition of NOS to make sense, it suffices to assume that for any strategy

5

H and set H such that H 6∈ H, there is a trace generated by H that is not generated
by any protocol in H. For the rest of the paper, we make this assumption when dealing
with NOS.

It is interesting to notice that NOS is not a closure condition on the set of traces, which
suggests a different nature of NOS from SEP or GNI; this intuition will be formalized in
Theorem 3.1.

These security properties are related.

Proposition 2.4: Let Σ be a system and let H ⊆ H∗.

(a) If Σ satisfies SEP, then it satisfies DGNI.

(b) If Σ satisfies DGNI, then it satisfies GNI.

(c) If ΣH satisfies SEP, then it satisfies NOS.

Proof: Parts (a) and (b) are almost immediate from the definitions. For part (c), suppose
that system ΣH satisfies SEP, σ ∈ ΣH, and H ∈ H. Choose σH ∈ ΣH . (There must
always be at least one trace generated by running (PS, PL, H), so ΣH 6= ∅.) By SEP, there
exists some σ′ ∈ ΣH such that σ′|L = σ|L and σ′|H = σH |H . Since the inputs determined
by H at time k + 1 depend only on the sequence of H’s input and output values up to
and including time k, it immediately follows that σ′ ∈ ΣH . Thus, ΣH satisfies NOS.

The converses to (a), (b), and (c) do not hold in general, as the following examples
show.

Example 2.5: Let ΣDGNI consist of the 15 traces of the form (As usual, we use the
notation (x1, x2, x3, x4)

ω to denote the trace where (x1, x2, x3, x4) repeats forever.) It is
easy to see that this system does not satisfy SEP (for example, (0, 0, 0, 0)ω and (1, 1, 1, 1)ω

are in ΣDGNI , but (1, 0, 1, 0)ω is not), but does satisfy DGNI.

Example 2.6: Consider the system ΣGNI = {σ1, σ2, σ3, σ4}, where σ1 = (1, 0, 1, 0)ω,
σ2 = (1, 1, 0, 1)ω, σ3 = (0, 0, 0, 0)ω, and σ4 = (0, 1, 1, 1)ω. It is easy to check that ΣGNI

satisfies GNI, but it does not satisfy DGNI, since there is no trace σ ∈ ΣGNI such that
σ|H = σ4|H and σ|LI = σ3|LI .

Example 2.7: Let H∗ consist of one protocol H; according to H, the high user first
inputs 0 and then, at each step, inputs the previous low input value. Let PL’s protocol
be such that, initially, the low user nondeterministically chooses either 0 or 1, and then
inputs that value at every step. Finally, let the system protocol be such that the low
output and high output agree with the low input. The system ΣNOS generated by this
protocol consists of two traces: (0, 1, 1, 1)(1, 1, 1, 1)ω and (0, 0, 0, 0)ω. Since H∗ consists
of only one protocol, ΣNOS trivially satisfies NOS. It is also immediate that ΣNOS does
not satisfy SEP, since (0, 1, 0, 1)ω is not in ΣNOS.

6

One common trait of the majority of the above security properties is their correspon-
dence to closure conditions on sets of traces (e.g. on systems): a system Σ satisfies a
security property if some closure condition on Σ holds. One way to formalize this ap-
proach is to associate to each security property a set F of functions from pairs of traces
to traces.

Definition 2.8: A SIF (on Σ∗) is a partial function f : Σ∗ × Σ∗ → Σ∗. That is, a SIF
takes two traces and (if defined) returns a trace.

Our notion of SIF slightly extends McLean’s by allowing partial functions; this is conve-
nient for the positive results in Section 4.

Definition 2.9: A system Σ is closed under a set F of SIFs if, for all σ1, σ2 ∈ Σ, there
exists some f ∈ F such that (f(σ1, σ2) is defined and) f(σ1, σ2) ∈ Σ.1

Of particular interest are certain sets of SIFs called types.2

Definition 2.10: A SIF f has type 〈(inH : inL), (outH : outL)〉, where inH , inL, outH , outL ∈
{0, 1, 2}, if f is total and σ3 = f(σ1, σ2) satisfies the following constraints:

• If inH = 1, then σ3|HI = σ1|HI : the high inputs of f(σ1, σ2) is the same as the high
input of σ1.

• If inH = 2, then σ3|HI = σ2|HI : the high inputs of f(σ1, σ2) is the same as the high
input of σ2.

• If inH = 0, then there are no constraints on σ3|HI .

There are 9 other similar clauses, depending on the value of the other components in the
tuple.

Thus, for example, if f has type 〈(1 : 2), (0 : 2)〉 and f(σ1, σ2) = τ , then τ ∈ Σ∗,
τ |HI = σ1|HI (the high input views of τ and σ1 are identical), τ |LI = σ2|LI (the low input
views of τ and σ2 are identical), there is no restriction on the high output view τ |HO of
τ , and τ |LO = σ2|LO (the low output views of τ and σ2 are identical).

Let T〈(i1,i2),(j1:j2)〉 consist of all SIFs of type 〈(i1, i2), (j1, : j2)〉. Note that if none of i1,
i2 ,j1, or j2 is 0, then T〈(i1,i2),(j1:j2)〉 is a singleton set.

1We remark that McLean [1994] actually does not make it clear if the choice of f can depend on the
pair of traces, although it seems that it can. In any case, in our positive results, we show that we can
take the f to depend only on the system, not the traces. Indeed, in the framework of Section 4, the two
choices lead to equivalent definitions.

2We remark that McLean [1994] occasionally interchanges the terms function and type. For example,
when he says that a system is closed under a function, what is meant is that the system is actually
closed under the type of the function (that is, under the set of functions of a particular type). We have
tried to be careful in our usage here.

7

If there is a single high user and a single low user (as we have been assuming here)
there are 81 possible types. (Not all these types are distinct, as we shall see.) Since a
type is just a set of SIFs, it makes sense to talk about a system being closed under a
type, using our earlier definition.

Definition 2.11: Let S ′ be a set of systems (i.e., subsets of Σ∗) and let S be a security
property. (Recall that a security property is also a set of systems.) A type T S ′-represents
a security property S with respect to S ′ if, for all systems Σ ∈ S ′, Σ ∈ S if and only if
Σ is closed under type T .

The reason that we allow the generality of representation with respect to a set S ′ of
systems is that, in the case of NOS, we are interested only in systems in SH∗ (that is,
systems of the form ΣH for some H ⊆ H∗). Let S∗ denote the set of all subsets of Σ∗.
McLean shows that SEP and GNI can both be represented by types.

Proposition 2.12: [McLean 1994]

(a) SEP is S∗-represented by the type T〈(1:2),(1:2)〉.

(b) GNI is S∗-represented by the type T〈(1:2),(0:2)〉.

McLean [1994] also shows that other security properties, such as noninference [O’Halloran
1990], generalized noninference [McLean 1994], and noninterference [Goguen and Meseguer
1982], are represented by types.

3 Types are Insufficiently Expressive

Although McLean did show that a number of security properties of interest can be repre-
sented by types, given that there are only 81 types, it is perhaps not surprising that there
should be some interesting security properties that are not representable by any type.
In this section, we prove the two negative results discussed in the introduction: that
neither NOS nor DGNI are representable by types, and that the properties representable
by types are not closed under conjunction. We also show that the properties represented
by types are not closed under disjunction either.

Theorem 3.1: NOS is not SH∗-representable by a type.

Theorem 3.2: DGNI is not S∗-representable by a type.

Since there are only 34 = 81 possible types, we can prove both Theorem 3.1 and 3.2
by checking each of these types. We make a number of observations that allow us to
significantly reduce the number of types that need to be checked, making it a manageable
problem. We leave details to the appendix.

Theorem 3.2 is actually an instance of a more general result.

8

Definition 3.3: A set P of security properties is closed under conjunction if S1,S2 ∈ P
implies that S1 ∩ S2 ∈ P . Similarly, P is closed under disjunction if for all S1,S2 ∈ P
implies that S1 ∪ S2 ∈ P .

Closure under conjunction seems like a natural requirement for security properties. We
may be interested in systems that satisfy both security property S1 and security property
S2. Closure under disjunction may also be of interest; that is, we may investigate a system
that satisfies either one of properties S1 or S2.

Corollary 3.4: The set of security properties representable by types is not closed under
conjunction.

Proof: GNI and reverse GNI are representable by types, but the security property
resulting from their conjunction (DGNI) is not representable by types.

Theorem 3.5: The set of security properties representable by types is not closed under
disjunction.

Proof: See the appendix.

4 Representation by SIFs

The definition of closure under a set F of SIFs makes sense for arbitrary sets F , not just
for types. Thus, just as for types, we can say that a set F of SIFs S ′-represents a security
property S if, for all systems Σ ∈ S ′, Σ ∈ S if and only if Σ is closed under F . In this
section we show that, if we consider arbitrary sets of SIFs rather than types, the negative
results of the previous section no longer hold. More specifically, we prove that NOS
is representable by SIFs and that the set of security properties representable by SIFs
is closed under conjunction and disjunction. Furthermore, under certain assumptions
(that are satisfied by most systems of interest), we show that every security property can
be represented by SIFs. However, the representation is rather convoluted, and requires
understanding what set of systems satisfy the property. This negates the whole point of
using the approach to describe properties. If we already know what systems satisfy the
security property, we can just work with that set directly. However, we show that a more
uniform way of representing security properties can be obtain by allowing generalized
SIFs that associate with each pair of traces a set of traces.

We start by showing that NOS is representable by SIFs.

Theorem 4.1: NOS is SH∗-representable by SIFs.

9

Proof: We must find a set F of SIFs such that a system Σ ∈ SH∗ satisfies NOS if and
only if it closed under F . Given a protocol H ∈ H∗ and a trace σ ∈ ΣH , let fH,σ(σ1, σ2)
be the trace σ if σ|L = σ1|L and σ2 ∈ ΣH , and undefined, otherwise. (Recall that we
allow partial functions.)3 Let F be the set of all such functions. It is easy to show that
if ΣH satisfies NOS, then it is closed under F . Now suppose that ΣH is closed under F .
Given σ ∈ ΣH and H ∈ H, as we mentioned earlier, by our assumption that ΣH 6= ΣH′

for any H′ (in particular, for H′ = H − {H}), there must be a trace σH generated by
H that is not generated by any other protocol in H. Since ΣH is closed under F , there
is a function fH′,σ′ in F , such that fH′,σ′(σ, σH) ∈ ΣH. Then fH′,σ′(σ, σH) = σ′, and
σ′|L = σ|L, σ′ ∈ ΣH . By definition of σH , it must be the case that H ′ = H, so σ′ ∈ ΣH

and σ′|L = σ|L. Thus, ΣH satisfies NOS.

The following result is also easy to see.

Proposition 4.2: The set of security properties S∗-representable by SIFs is closed under
disjunction.

Proof: Suppose that S1 is represented by F1 and S2 is represented by F2. Then S1 ∪ S2

is represented by F1 ∪ F2.

These results show that allowing arbitrary SIFs gives much more expressive power
than just considering types. Exactly how expressive are they? As we now show, they
are quite expressive: if Σ∗ is countable, then every security property is representable by
SIFs. This already means that for many systems of interest, all security properties are
expressible with SIFs. For example, if the underlying protocols being represented by Σ∗

all terminate, and there are only countably many of them, then Σ∗ will be countable.
But if we allow nonterminating protocols that, for example, nondeterministically output
either 0 or 1 at every step, then the set of traces will be uncountable. However, we can
extend the result to uncountable sets, provided that they are not “unreasonable”.

Say that a set S ′ of systems is countably generated if for all Σ ∈ S ′, there exists a
countable set Σc of traces in Σ such that if Σ′ ∈ S ′ and Σ′ ⊂ Σ, then there is a trace
σ ∈ Σc − Σ′. Clearly if Σ∗ is countable, then any security property on Σ∗ is countably
generated. (Just take Σc = Σ.) But the notion of countable generation also applies to
interesting possible uncountable systems. Given a trace σ, let σ1:n be the prefix of σ of
length n; if σ is finite and has length less than n, then σ1:n = σ. A set Σ ⊆ Σ∗ of traces
is limit closed [Emerson 1983] if for every σ ∈ Σ∗ and for all n ∈ N such that there
exists σ′ ∈ Σ with σ1:n = σ′

1:n, it is the case that σ ∈ Σ. Intuitively, Σ is limit closed if,
whenever it contains every prefix of a trace σ, it also contains σ.

3If we restrict to systems Σ∗ and sets H∗ such that there is some trace σ0 /∈ ∪H∈H∗ΣH , then SH∗ is
representable by total SIFs. The proof is essentially the same as that given for Theorem 4.1, but rather
than taking f(σ1, σ2) to be undefined in the proof, we take f(σ1, σ2) = σ0. It is then a matter of taste
whether it is more reasonable to consider partial SIFs or to assume that there are traces that cannot be
generated by any protocol.

10

Lemma 4.3: If S ′ consists only of limit-closed sets of traces, and the set of possible
inputs and outputs is countable, then S ′ is countably generated.

Proof: Given Σ, let A consist of all the prefixes of traces in Σ. Since the set of all
inputs and outputs is countable, A must be a countable set. Let Σf be a subset of Σ
such that for each prefix τ of length n in A, there exists a trace σ ∈ Σf such that σn = τ .
Clearly we can take Σf to be countable. Now let Σ′ ⊂ Σ be such that Σ′ ∈ S ′, and let
A′ consist of all prefixes of traces in Σ′. If A = A′, then an easy argument shows that,
by limit closure, we must have Σ = Σ′. Thus, there must be some prefix τ in A with no
extension in Σ′. By construction of Σf , there is some trace σ extending τ in Σf . Clearly,
σ ∈ Σf − Σ′.

Limit closure is a natural condition that arises frequently in practice. In particular,
ΣH is limit closed. Thus, SH∗ is countably generated, even if the set of traces in ΣH∗

is uncountable. In light of this, a good case can be made that we are interested in
S ′-representability only for sets S ′ that are countably generated.

Theorem 4.4: If S ′ is countably generated, then all security properties are S ′-representable
by SIFs.

Proof: Suppose that Σ ∈ S ′. We show that there exists a SIF fΣ such that Σ is the only
set in S ′ that is closed under fΣ. It follows that the security property S is S ′-representable
by the set of SIFs {fΣ : Σ ∈ S}.

Since Σ is in S ′ and S ′ is countably generated, there is a countable subset Σc of Σ
with the properties from the definition. We take fΣ(σ, σ′) to be undefined if at least one
of σ and σ′ is not in Σ. If both σ and σ′ are in Σ, but only one of them is in Σc, then we
take fΣ(σ, σ′) to be exactly the trace in Σc. If none of the traces is in Σc, then choose
some trace σc in Σc and let it be equal to fΣ(σ, σ′). There is one case left: both traces σ
and σ′ are in Σc.

Since Σc is countable, it is either finite or countably infinite. If it is infinite, then
without loss of generality it has the form {σk|k ∈ Z}. Then σ = σi and σ′ = σj for some
i and j. Let fΣ(σi, σj) = σi+1 if j even, and σi−1 if j odd. It is easy to see that Σ is
closed under fΣ. Suppose now that Σ′ in S ′ is closed under fΣ too. Then it must be the
case that Σ′ ⊆ Σ. Suppose that Σ 6= Σ′. By definition, there is some trace in Σc that
is not in Σ′. Thus, there is some i such that σi ∈ Σ′, but at least one of σi−1 or σi+1 is
not in Σ′. Suppose that σi−1 /∈ Σ′. If i is odd, then σi−1 = fΣ(σi, σi), and since Σ′ closed
under fΣ and σi ∈ Σ′, then σi−1 must be in Σ′, which contradicts our supposition. If i
is even, then fΣ(σi, σi) = σi+1, so σi+1 must be in Σ′, and so fΣ(σi, σi+1) = σi−1 is also
in Σ′, which is again a contradiction. The argument if σi ∈ Σ′, but σi+1 6∈ Σ′ is similar,
and left to the reader.

If Σc if finite, then we can write it as {σ1, . . . , σk} for some k. The proof is essentially
the same, except that i + 1 or i− 1 are now modulo k.

11

Although Theorem 4.4 shows that essentially every security property can be repre-
sented by SIFs, the representation is not terribly interesting. The proof requires one
to work backwards from an explicit representation of the security property as a set of
systems to the SIF. To the extent that SIFs are going to be a useful tool for representing
security properties, then there should be a more uniform way of representing security
properties. For example, the representation of GNI or even NOS is essentially the same,
independent of Σ∗. We do not know if there is a uniform way of representing, say, DGNI
using SIFs, although it follows from Theorem 4.4 that it can be represented in essentially
all cases of interest.

Interestingly, by somewhat extending the notion of SIF, we can give a more uniform
definition of DGNI, as well as proving closure under conjunction. The idea is to allow a
SIF to associate to all pairs of traces not necessarily a single trace, but a set of traces.

Definition 4.5: A generalized SIF is a partial function from Σ∗ × Σ∗ to 2Σ∗
.

Clearly if we restrict to functions whose values are singletons, then we get SIFs as
defined earlier. Thus, Theorems 4.1 and 4.4 continue to hold in the extended framework.
But it is easy to see that the set of security properties representable by generalized SIFs
is closed under conjunction.

Proposition 4.6: The set of security properties S∗-representable by generalized SIFs is
closed under conjunction and disjunction.

Proof: Suppose that S1 is S∗-representable by F1, and S2 is S∗-representable by F2,
where F1 and F2 are sets of generalized SIFs. For each f ∈ F1 and g ∈ F2, define
[f, g](σ1, σ2) to be undefined if either f(σ1, σ2) or g(σ1, σ2) is undefined, and f(σ1, σ2) ∪
g(σ1, σ2) otherwise. Let F = {[f, g] : f ∈ F1, g ∈ F2}. It is easy to show that if
Σ ∈ S1 ∩ S2, then Σ is closed under F . Suppose now that Σ is closed under F . Then
for all σ1, σ2 ∈ Σ, there is some function [f, g] ∈ F such that [f, g](σ1, σ2) ∈ Σ. That
means that f(σ1, σ2) and g(σ1, σ2) are both defined, and since their union is in Σ, each
of then is a subset of Σ. So Σ is closed under F1 and F2; that is, Σ ∈ S1 ∩ S2. Thus, we
have closure under conjunction. The argument for closure under disjunction is identical
to that for SIFs.

Corollary 4.7: DGNI is S∗-representable by generalized SIFs.

5 Related Approaches

Zakinthinos and Lee [1997] (ZL from now on) also consider the question of expressing
security properties, although their approach is slightly different from McLean’s. They
work in an asynchronous setting. However, many of their results also hold or have obvious

12

analogues in McLean’s synchronous setting (and ours hold in the asynchronous setting).
The issue of synchrony vs. asynchrony is orthogonal to the issues we are discussing here.

Among other things, ZL also point out that McLean’s approach is insufficiently ex-
pressive. In particular, they focus on a property they call PSP (for Perfect Security
Property) which they claim is not expressible using SIFs.4 They also introduce a general
notion of security property that has some of the flavor of McLean’s notion of “repre-
sentable by SIFs”, in that it is defined by a closure condition. As in our approach, a
security property for ZL is a predicate on sets of systems. However, for ZL, it is not an
arbitrary predicate; it must satisfy an additional constraint.

Definition 5.1: A predicate S on 2Σ∗
is a ZL-security property (on Σ∗) if there exists a

predicate Q on 2Σ∗
such that, for all Σ ⊆ Σ∗, S(Σ) holds iff for all σ ∈ Σ : Q(LLES(σ, Σ))

holds, where LLES(σ, Σ) = {τ |τ ∈ Σ ∧ τ |L = σ|L} is the set of traces with the same
low view as σ.

That is, if a set Σ of traces is in S, then for each trace in Σ, Q must hold for the set of all
traces in Σ with the same low view as σ. Conversely, if for each σ ∈ Σ, Q holds for the
set of all traces in Σ with the same low view as σ, then Σ satisfies the security property.

It is not clear why this is a reasonable definition of “security property”. There is
certainly no independent motivation for it. The following proposition gives at least one
argument against it.

Proposition 5.2: The set of ZL-security properties is not closed under disjunction.

Proof: Let Σ∗ consist of two traces, σ0 and σ1, where the L’s input and output are
always 0 in σ0 and always 1 in σ1. Thus, LLES(σi, Σ

∗) = {σi}, for i = 0, 1. Clearly
S0 = {σ0} and S1 = {σ1} are both ZL-security properties (for S0 we take Q to hold on
{σ0}, while for S1 we take Q to hold on {σ1}.) However, S1 ∪ S2 is not a ZL-security
property. For suppose it is; let Q be the corresponding security predicate. Then both
Q({σ0}) and Q({σ1}) must hold. But then Σ∗ would also satisfy S1 ∪ S2, which it does
not.

On the other hand, Zakinthinos and Lee do show that a number of natural security
properties are ZL-security properties, including SEP and GNI. A simple analysis shows
that NOS is also a ZL-security property.

Proposition 5.3: NOS is a ZL-security property.

Proof: It is easy to see that the definition of NOS is equivalent to the following definition:

NOS(Σ) ≡ ∀σ ∈ Σ ∀H ∈ H ∃τ ∈ ΣH

⋂
LLES(σ, Σ).

4A proof of the result is sketched by Zakinthinos [1996]. While we believe the claim, we suspect that
a careful formal proof will be much longer and more involved, in light of the difficulty of our own proofs
of Theorems 3.1 and 3.2.

13

Let Q(A) ≡ ∀H ∈ H. A
⋂

ΣH 6= ∅. Thus, NOS(Σ) ≡ ∀σ ∈ Σ. Q(LLES(σ, Σ)).

We now show that ZL-security properties are closed under conjunction. Since GNI is
a ZL-security property, it follows that DGNI is too.

Theorem 5.4: The set of ZL-security properties is closed under conjunction.

Proof: Suppose S and S ′ are two security properties with Q and Q′ their corresponding
security predicates. Then S ∧ S ′ be the property

∀Σ ∀σ ∈ Σ (Q ∧Q′)(LLES(σ, Σ)).

It follows that S ∧S ′ is a security property with corresponding security predicate Q∧Q′.

As we said, ZL focus on a security property they call PSP. To explain PSP, we must
first review the asynchronous systems considered by ZL. For them (and also, for example,
for Mantel [2000]), a system is a tuple (E, I,O, Σ), where E is a set of events, partitioned
into two sets: L and H (low events and high events), and Σ is a set of traces, each of
which is a finite sequence of events in E.5 Given a trace σ, let σH denote the subsequence
of σ consisting of the high events and let σL denote the subsequence consisting of low
events. It is quite straightforward to reformulate notions like SEP, GNI, DGNI, and NOS
in this framework; we omit the details here.

The definition of PSP given by ZL is somewhat complicated. Mantel [2000] reformu-
lates it in a more comprehensible way.

Definition 5.5: A system Σ satisfies PSP if and only if for all σ ∈ Σ, σL ∈ Σ and for
all sequences of events α, β ∈ E∗ and all events e ∈ E, if e ∈ H, βα ∈ Σ, (βα)L = σL,
αH = 〈 〉, and βe ∈ Σ, then it must be the case that βeα ∈ Σ.

ZL show that PSP is a ZL-security property. We show that it is also representable
by SIFs.

Proposition 5.6: PSP is representable by SIFs.

Proof: Let F consist of the single SIF f , where f(σ1, σ2) = βeα if there exist a high
event e ∈ H and sequences of events α and β such that αH = 〈 〉, σ1 = βα, and σ2 = βe;
otherwise f(σ1, σ2) = (σ1)L. Notice that f is well defined since α, β, and e, if they exist,
are uniquely determined by σ1 and σ2. Notice also that f(σ1, σ1) = (σ1)L.

5Note that since ZL work in an asynchronous setting, their notion of “trace” is different from that
defined in Section 2. We continue to use the term “trace” even in the asynchronous setting, and hope
that what we mean is clear from context.

14

Suppose that Σ satisfies PSP. Let σ1 and σ2 be two arbitrarily chosen traces in Σ. If
there exist a high event e and sequences of events α and β such that σ1 = βα, αH = 〈 〉,
and σ2 = βe, then (βα)L = (σ1)L, and PSP ensures that βeα ∈ Σ. Since f(σ1, σ2) = βeα
in this case, f(σ1, σ2) ∈ Σ. On the other hand, if there do not exist such an e, α, and β,
then f(σ1, σ2) = (σ1)L ∈ Σ since Σ satisfies PSP. So Σ is closed under F .

For the opposite implication, suppose that Σ is closed under F . Suppose that σ ∈ Σ,
α, β ∈ E∗, αH = 〈 〉, e ∈ H, βα ∈ Σ, (βα)L = σL, and βe ∈ Σ. Since Σ is closed under
F , f(σ1, σ2) = βeα ∈ Σ. Also f(σ1, σ1) = (σ1)L, and so (σ1)L ∈ Σ. But this is exactly
what we needed to prove that Σ satisfies PSP.

6 Discussion

McLean’s framework has been the impetus for a number of frameworks for expressing
security properties (e.g., [Mantel 2000; Zakinthinos and Lee 1997]), all based on defining
security properties in terms of closure conditions. The question still remains as to what
makes a framework “good” or better than another. Certainly one criterion is that an
approach be “natural” and make it easy to express security properties. Yet another is
that it be expressive, so that it can capture all natural security properties.

We have examined McLean’s SIF framework with regard to expressiveness. Our
results show that, as McLean presented it (considering only types), the framework is
insufficiently expressive to serve as a basis for expressing security properties. The fact that
the properties expressible are not closed under conjunction or disjunction, and natural
properties such as NOS and DGNI are not expressible, should suffice to make that clear.
On the other hand, as we have shown, natural extensions of the SIF framework are
quite expressive. In the process we have shown that Zakinthinos and Lee’s approach also
has some problems of expressibility; the set of security properties expressible in their
framework is not closed under disjunction.

The question still remains, of course, whether defining security properties in terms
of closure conditions is the way to go. Mantel [2000] has perhaps the best-developed
approach along these lines. He tries to provide a framework which “provides the expres-
siveness of Zakinthinos and Lee’s framework with the elegance of McLean’s”. Certainly
his “toolkit” approach to defining security properties seems promising. Nevertheless, it is
far from clear to us that basing a framework on closure conditions is ultimately the right
approach. It would be interesting to compare the expressive power and ease of use of
these approaches to other approaches, such as process algebra (see, for example, [Focardi
and Gorrieri 2001; Ryan and Schneider 1999; Ryan, Schneider, Goldsmith, Lowe, and
Roscoe 2001]) or a knowledge-based approach (see, for example, [Bieber and Cuppens
1992; Halpern and O’Neill 2002]).

15

A Appendix: Proofs

In this appendix, we prove Theorems 3.1, 3.2, and 3.5. We restate the theorems for the
readers’ convenience.

Theorem 3.1: NOS is not SH∗-representable by a type.

Proof: We want to prove that there is no type T such that for all systems Σ, Σ ∈ H∗

satisfies NOS iff Σ is closed under T . As we observed, there are only 81 possible types.
We proceed by a sequence of lemmas to eliminate each of these possibilities. The first of
these was already proved by McLean.

Lemma A.1: [McLean 1994, Theorem 2.4] Let T ′ be the result of replacing 1 by 2 and
2 by 1 in T . (So, for example, if T is T〈(1:0),(2:1)〉, then T ′ is T〈(2:0),(1:2)〉). Then a system
Σ is closed under T iff Σ is closed under T ′.

It is immediate from Lemma A.1 that if there is a type T that represents NOS, then
we can assume without loss of generality that inH 6= 2.

The following lemma is straightforward, and is left to the reader.

Lemma A.2: All systems are closed under the following types: T〈(0:0),(0:0)〉, T〈(0:0),(0:1)〉,
T〈(0:0),(1:0)〉, T〈(0:1),(0:0)〉, T〈(1:0),(0:0)〉, T〈(0:0),(1:1)〉, T〈(0:1),(0:1)〉, T〈(1:0),(0:1)〉, T〈(1:0),(1:0)〉, T〈(0:1),(1:0)〉,
T〈(1:1),(0:0)〉, T〈(1:1),(1:0)〉, T〈(1:1),(0:1)〉, T〈(1:0),(1:1)〉, T〈(0:1),(1:1)〉, and T〈(1:1),(1:1)〉 (and their equiv-
alent forms, as given by Lemma A.1).

Of course, it is immediate that if S is a nontrivial security property (i.e., S 6= S∗)
then none of the types listed in Lemma A.2 can represent S (so, in particular, none of
them can represent NOS).

Consider now the system ΣNOS of Example 2.7 and recall that ΣNOS satisfies NOS.

Lemma A.3: If T = T〈(inH :inL),(outH :outL)〉 SH∗-represents NOS, then inH = 0.

Proof: Suppose, by way of contradiction, that T = T〈(inH :inL),(outH :outL)〉 (inH 6= 0) SH∗-
represents NOS. Based on Lemma A.1, with no loss of generality we can consider inH = 1.
Since ΣNOS satisfies NOS, it means that it is closed under T = T〈(1:inL),(outH :outL)〉. If at
least one of inL, outH , outL is 2, then the interleaving of σ and τ results in a trace that,
after the second step, has both zeros and ones, and so it is not in ΣNOS. So inL, outH , outL

are either 0 or 1; but then, by Lemma A.2, all systems are closed under T . This can’t be
true since NOS is not trivial.

Lemma A.4: If T = T〈(0:inL),(outH :outL)〉 SH∗-represents NOS, then inL = 0.

16

Proof: Suppose, by way of contradiction, that T = T〈(0:inL),(outH :outL)〉 with inL 6= 0
SH∗-represents NOS. Based on Lemma A.1, with no loss of generality we can consider
inL = 1. ΣNOS satisfies NOS, so it is closed under T = T〈(0:1),(outH :outL)〉. If at least one of
outH and outL is 2, then the interleaving of σ and τ contains both 0 and 1 after the second
step, and so it is not in ΣNOS. Then outH and outL are both 0 or 1; by Lemma A.2, all
systems are closed under T , which contradicts the fact that NOS is not trivial.

Following the same pattern, we can prove

Lemma A.5: If T = T〈(0:0),(outH :outL)〉 SH∗-represents NOS, then outH = 0.

From Lemmas A.3, A.4 and A.5 it follows that T = T〈(0:0),(0:outL)〉, but then by
Lemma A.2 and since NOS is not trivial, T cannot SH∗-represent NOS.

Theorem 3.2: DGNI is not S∗-representable by a type.

Proof: Suppose, by way of contradiction, that there is a type T = T〈(inH :inL),(outH :outL)〉
that S∗-represents DGNI. The following two lemmas establish a contradiction:

Lemma A.6: If T = T〈(inH :inL),(outH :outL)〉 S∗-represents DGNI, then at least one of
inH , inL, outH , outL is 0.

Proof: Recall ΣDGNI of Example 2.5 with 15 traces of the form (x1, x2, x3, x4)
ω, x1,

x2, x3 and x4 0 or 1, with the exception of (1, 0, 1, 0)ω. ΣDGNI satisfies DGNI. If T =
T〈(inH :inL),(outH :outL)〉 S∗-represents DGNI, then ΣDGNI is closed under T .

Suppose, by way of contradiction, that none of inH , inL, outH and outL is 0. By
Lemma A.1, we can assume with no loss of generality that inH = 1. If all inL, outH and
outL are 1, then by Lemma A.2, all systems are closed under T , which contradicts the fact
that NOS is not trivial. So at least one of inL, outH and outL is 2. Take τ = (0, 0, 1, 0)ω;
τ ∈ ΣDGNI . Take σ = (1, x, y, z)ω obtained from (1, 0, 1, 0)ω in the following way: if
inL = 1 take x = 0, otherwise take x = 1; if outH = 1 then take y = 1, otherwise y = 0;
if outL = 1 take z = 0, otherwise z = 1. Since at least one of inL, outH and outL is 2,
σ ∈ ΣDGNI . But an interleaving of type T of σ and τ results into (1, 0, 1, 0)ω, which is
not in ΣDGNI . This contradicts the fact that ΣDGNI is closed under T .

Lemma A.7: If T = T〈(inH :inL),(outH :outL)〉 S∗-represents DGNI, then none of inH , inL, outH , outL

is 0.

Proof: Consider the system ΣnotGNI with 8 traces of the form (x1, x1, x2, x3)
ω, x1, x2, x3 ∈

{0, 1}. ΣnotGNI does not satisfy GNI, since an interleaving of type T〈(1:2),(0:2)〉 of traces
σ1 = (0, 0, 0, 0)ω and σ2 = (1, 1, 1, 1)ω, both in ΣnotGNI , has the form (0, 1, x, 1)ω, which
is not in ΣnotGNI . It follows that ΣnotGNI does not satisfy DGNI, too. ΣnotGNI is closed

17

under all types T = T〈(inH :inL),(outH :outL)〉 with inH = 0 or inL = 0; it follows that if
T = T〈(inH :inL),(outH :outL)〉 S∗-represents DGNI, then inH 6= 0 and inL 6= 0.

Consider the system ΣGNInotDGNI consisting of 8 traces of the form (x1, x2, x2, x3)
ω,

with x1, x2, x3 ∈ {0, 1}. ΣGNInotDGNI satisfies GNI, since an interleaving of type T〈(1:2),(0:2)〉
of two traces (x1, x2, x2, x3)

ω and (y1, y2, y2, y3)
ω has the form (x1, y2, x, y3)

ω, and for
x = y2 this is a trace in ΣGNInotDGNI . But ΣGNInotDGNI does not satisfy reverse GNI,
and for this reason DGNI too, since an interleaving of type T〈(1:2),(1:0)〉 of traces (0, 0, 0, 0)ω

and (1, 1, 1, 1)ω has the form (0, 1, 0, x)ω, which is not in ΣGNInotDGNI . ΣGNInotDGNI is
closed under all types T = T〈(inH :inL),(outH :outL)〉 with inL = 0 or outH = 0. It means that,
if T = T〈(inH :inL),(outH :outL)〉 S∗-represents DGNI, then inL 6= 0 and outH 6= 0.

Finally, take Σ′
notGNI to be the system with 8 traces of the form (x1, x2, x3, x1)

ω,
x1, x2, x3 ∈ {0, 1}; Σ′

notGNI does not satisfy GNI, and for this reason DGNI either, since
an interleaving of type T〈(1:2),(0:2)〉 of (0, 0, 0, 0)ω and (1, 1, 1, 1)ω, both in Σ′

notGNI , has
the form (0, 1, x, 1)ω, which is not in Σ′

notGNI . Σ′
notGNI is closed under all types T =

T〈(inH :inL),(outH :outL)〉 with inH = 0 or outL = 0. It follows that, if T = T〈(inH :inL),(outH :outL)〉
S∗-represents DGNI, then inH 6= 0 and outL 6= 0.

Theorem 3.5: The set of security properties representable by types is not closed under
disjunction.

Proof: The proof is a corollary of the following proposition:

Proposition A.8 : Let S be the security property represented by T〈(1:2),(2:2)〉, and S ′

the security property resulting from the disjunction of SEP and S. Then S ′ is not S∗-
representable by types.

Proof: Suppose, by way of contradiction, that there is some type T = T〈(inH :inL),(outH :outL)〉
that represents S ′. Then a system is closed under T〈(1:2),(1:2)〉 (the type corresponding to
SEP) or T〈(1:2),(2:2)〉 if and only if it is closed under T . Let ΣSEP be the system consisting
of the 8 traces of the form (x1, x2, x3, x2)

ω, with x1, x2, and x3 ∈ {0, 1}. Thus, in all
traces of ΣSEP , the low output is the same as the low input and independent of the high
view. So ΣSEP satisfies SEP.

It is easy to see that both ΣGNInotDGNI and ΣSEP are in S ′, since ΣGNInotDGNI

is closed under T〈(1:2),(2:2)〉 and ΣSEP satisfies SEP. It is also easy to see that neither
ΣnotGNI nor Σ′

notGNI is in S ′. ΣSEP satisfies SEP. since neither system satisfies SEP
and neither is closed under T〈(1:2),(2:2)〉. From Lemma A.1, it follows that there is a type
T〈(inH :inL),(outH :outL)〉 that S∗-represents S ′ if and only if there is a type T〈(in′H :in′L),(out′H :out′L)〉
with in′H 6= 2 that S∗-represents S ′. Thus, it suffices to show that there is no type that
represents S ′ that has inH being 0 or 1. The following two lemmas show that neither
case can happen.

Lemma A.9: There is no type T = T〈(0:inL),(outH :outL)〉 that S∗-represents S ′.

18

Proof: Suppose, by of contradiction, that T = T〈(0:inL),(outH :outL)〉 S∗-represents S ′. All
systems are closed under T〈(0:0),(outH :outL)〉 for 〈outH , outL〉 6∈ {〈1, 2〉, 〈2, 1〉} and under
T〈(0:2),(0:outL〉 for outL ∈ {0, 2}. Since S ′ is not trivial, we can rule out all these types. By
LemmaA.1, type T = T〈(0:0),(1:2)〉 is equivalent to T〈(0:0),(2:1)〉, and ΣnotGNI is closed under
T , although it is not in S ′; similarly, ΣGNInotDGNI is not closed under T , but is not in
S ′.

Lemma A.10: There is no type T = T〈(1:inL),(outH :outL)〉 that S∗-represents S ′.

Proof: Again, suppose by way of contradiction that there is some type T = T〈(1:inL),(outH :outL)〉
that S∗-represents S ′. If inL ∈ {0, 1}, then ΣnotGNI is closed under T , but it is not in
S ′. Σ′

notGNI is closed under T〈(1:2),(outH :1)〉, T〈(1:2),(2:0)〉 and T〈(1:2),(0:0)〉, but is not in S ′,
so we can rule out these types too. T cannot be any of the types T〈(1:2),(1:outL)〉 since
ΣGNInotDGNI ∈ S ′ and is not closed under them; similarly, T 6= T〈(1:2),(2:2)〉 since ΣSEP is
not closed under it, while it is in cS ′.

We are left with the type T〈(1:2),(0:2)〉 that represents GNI. Consider the system Σ
with 8 traces of the form (0, x1, x1, x2)

ω and 8 traces of the form (1, x1, 1− x1, x2)
ω,

x1, x2 ∈ {0, 1}. Σ satisfies GNI, since any low view is compatible with any high input
sequence. Thus, Σ is closed under the type T〈(1:2),(0:2)〉. However, Σ is not separable and
it is not in S, hence Σ /∈ S ′. Thus, T〈(1:2),(0:2)〉 does not S∗-represent S ′.

References

Bieber, P. and F. Cuppens (1992). A logical view of secure dependencies. Journal of
Computer Security 1 (1), 99–130.

Emerson, E. A. (1983). Alternative semantics for temporal logics. Theoretical Com-
puter Science 26, 121–130.

Focardi, R. and R. Gorrieri (2001). Classification of security properties (Part I: In-
formation flow). In Foundations of Security Analysis and Design, pp. 331–396.
Springer.

Goguen, J. A. and J. Meseguer (1982). Security policies and security models. In
Proc. IEEE Symposium on Security and Privacy, pp. 11–20.

Halpern, J. Y. and K. O’Neill (2002). Secrecy in multiagent systems. In Proc. 15th
IEEE Computer Security Foundations Workshop, pp. 32–46.

Mantel, H. (2000). Possibilistic definitions of security—an assembly kit. In Proc. IEEE
Computer Security Foundations Workshop, pp. 185–199.

McCullough, D. (1987). Specifications for multi-level security and a hook-up property.
In Proc. IEEE Symposium on Security and Privacy, pp. 161–166.

19

McLean, J. (1990). Security models and information flow. In Proc. IEEE Symposium
on Security and Privacy, pp. 180–187.

McLean, J. (1994). A general theory of composition for trace sets closed under selective
interleaving functions. In Proc. IEEE Symposium on Security and Privacy, pp. 79–
93.

O’Halloran, C. (1990). A calculus of information flow. In Proc. of European Symposium
on Research in Information Security, pp. 147–159.

Ryan, P. Y. A. and S. A. Schneider (1999). Process algebra and non-interference. In
Proc. 12th Computer Security Foundations Workshop, pp. 214–227.

Ryan, P. Y. A., S. A. Schneider, M. H. Goldsmith, G. Lowe, and A. W. Roscoe (2001).
Modelling and Analysis of Security Protocols. Harlow, England: Addison-Wesley.

Wittbold, J. T. and D. M. Johnson (1990). Information flow in nondeterministic sys-
tems. In Proc. IEEE Symp. on Research in Security and Privacy, pp. 144–161.

Zakinthinos, A. (1996). On the Composition of Security Properties. Ph.D. thesis, Uni-
versity of Toronto.

Zakinthinos, A. and E. S. Lee (1997). A general theory of security properties. In
Proc. IEEE Symposium on Security and Privacy, pp. 94–102.

20

