Decision Theory with Resource-Bounded
Agents

Joseph Y. Halpern*® Rafael Pass'
Cornell University Cornell University
halpern@cs.cornell.edu rafael@cs.cornell.edu

Lior Seeman?
Cornell University
lseeman@cs.cornell.edu

December 4, 2013

Abstract

There have been two major lines of research aimed at captur-
ing resource-bounded players in game theory. The first, initiated by
Rubinstein [18], charges an agent for doing costly computation; the
second, initiated by Neyman [13], does not charge for computation,
but limits the computation that agents can do, typically by modeling
agents as finite automata. We review recent work on applying both
approaches in the context of decision theory. For the first approach,

*Supported in part by NSF grants IIS-0812045, IIS-0911036, and CCF-1214844,
AFOSR grants FA9550-08-1-0438 and FA9550-09-1-0266, and ARO grant W911NF-09-
1-0281.

fSupported in part by a Alfred P. Sloan Fellowship, a Microsoft New Faculty Fellow-
ship, NSF CAREER Award CCF-0746990, NSF grant CCF-1214844, AFOSR YIP Award
FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2- 0211. The views
and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US government.

fSupported in part by NSF grants 11S-0812045 and CCF-1214844, and AFOSR grants
FA9550-08-1-0438 and FA9550-09-1-0266.

we take the objects of choice in a decision problem to be Turing ma-
chines, and charge players for the “complexity” of the Turing machine
chosen (e.g., its running time). This approach can be used to explain
well-known phenomena like first-impression-matters biases (i.e., peo-
ple tend to put more weight on evidence they hear early on) and belief
polarization (two people with different prior beliefs, hearing the same
evidence, can end up with diametrically opposed conclusions) as the
outcomes of quite rational decisions. For the second approach, we
model people as finite automata, and provide a simple algorithm that,
on a problem that captures a number of settings of interest, prov-
ably performs optimally as the number of states in the automaton
increases.

1 Introduction

The standard approach to decision making, going back to Savage [21], sug-
gests that an agent should maximize expected utility. But computing the
relevant probabilities might be difficult, as might computing the relevant
utilities. And even in cases where the probabilities and utilities are not hard
to compute, finding the action that maximizes expected utilities can be diffi-
cult. In this paper, we consider approaches to decision making that explicitly
take computation into account.

The idea of taking computation into account goes back at least to the
work of Good [5] and Simon [22]. It has been a prominent theme in the
AT literature (see, e.g., [11, 19]). Our work has been inspired by two major
lines of research aimed at capturing resource-bounded (i.e. computationally-
bounded) agents in the game theory literature. The first, initiated by Ru-
binstein [18], charges an agent for doing costly computation; the second,
initiated by Neyman [13], does not charge for computation, but limits the
computation that agents can do, typically by modeling agents as finite au-
tomata. We review recent work on applying both approaches in the context
of decision theory.

We consider the first approach in the context of the framework of [7],
which in turn is a specialization of the framework of [8] to the case of a
single agent. The idea is the following: We assume that the agent can be
viewed as choosing an algorithm (i.e., a Turing machine); with each Turing
machine (TM) M and input, we associate its complexity. The complexity can
represent, for example, the running time of M on that input, the space used,

the complexity of M (e.g., how many states it has), or the difficulty of finding
M (some algorithms are easier to think of than others). We deliberately keep
the complexity function abstract, to allow for the possibility of representing
a number of different intuitions. The agent’s utility can then depend, not
just on the payoff, but on the complexity. Thus, we can “charge” for the
complexity of computation.

Although this approach seems quite straightforward, we show that it can
be used to explain well-known phenomena like first-impression-matters biases
(i.e., people tend to put more weight on evidence they hear early on) and belief
polarization (people with different prior beliefs, hearing the same evidence,
can end up with diametrically opposed conclusions).

We then consider the second approach: modeling agents as finite au-
tomata. Finite automata are a well-known basic model of computation. An
automaton receives a sequence of inputs from the environment, and changes
state in response to the input. We capture the fact that an agent is resource
bounded by limiting the number of states in the automaton.

In the context of decision theory, this approach was first used by Wilson
[24]. She examined a decision problem where an agent needs to make a sin-
gle decision, whose payoff depends on the state of nature (which does not
change over time). Nature is in one of two possible states, G (good) and B
(bad). The agent gets signals, which are correlated with the true state, until
the game ends, which happens at each step with probability n > 0. At this
point, the agent must make a decision. For each N, Wilson characterizes an
N-state optimal finite automaton for making a decision in this setting, under
the assumption that 7 is small (so that the agent gets information for many
rounds). (See Section 3 for further details.) She then uses this character-
ization to argue that an optimal N-state automaton also exhibits behavior
such as belief polarization (again, see Section 3). Thus, some observed hu-
man behavior can be explained by viewing people as resource-bounded, but
rationally making the best use of their resources (in this case, the limited
number of states).

Wilson’s model assumes that nature is static. But in many important
problems, ranging from investing in the stock market to deciding which route
to take when driving to work, the world is dynamic. Moreover, people do
not make decisions just once, but must make them often. For example,
when investing in stock markets, people get signals about the market, and
need to decide after each signal whether to invest more money, take out
money that they have already invested, or to stick with their current position.

In recent work [9], we consider the problem of constructing an optimal N-
state automaton for this setting. We construct a family of quite simple
automata, indexed by N, the number of states, and a few other parameters.
We show that as N grows large, this family approaches optimal behavior.
More precisely, for all €, there is a sufficiently large N and member of this
family with N states whose expected payoff is within e of optimal, provided
the probability of a state transition is sufficiently small. More importantly,
the members of this family reproduce observed human behavior in a series
of tasks conducted by Erev, Ert, and Roth [4] (see Section 3 for further
discussion). Again, these results emphasize the fact that some observed
human behavior can be explained by viewing people as rational, resource-
bounded agents.

2 Charging for the complexity of computa-
tion

In this section we review and discuss the approach that we used in [7] to take
cost of computation into account in decision theory. Much of the material
below is taken from [7], which the reader is encouraged to consult for further
details and intuition.

The framework that we use is essentially a single-agent version of what
we called in [6, 8] Bayesian machine games. In a standard Bayesian game,
each player has a type in some set T, and makes a single move. Player
1’s type can be viewed as describing ¢’s initial information; some facts that ¢
knows about the world. We assume that an agent’s move consists of choosing
a Turing machine. As we said in the introduction, associated with each
Turing machine and type is its complexity. Given as input a type, the Turing
machine outputs an action. The utility of a player depends on the type profile
(i.e., the types of all the players), the action profile, and the complexity profile
(that is, each player’s complexity).

Example 2.1 Suppose that an agent is given an input n, and is asked
whether it is prime. The agent gets a payoff of $1,000 if he gives the correct
answer, and loses $1,000 if he gives the wrong answer. However, he also has
the option of playing safe, and saying “pass”, in which case he gets a payoff
of $1. Clearly, many agents would say “pass” on all but simple inputs, where
the answer is obvious, although what counts as a “simple” input may depend

4

on the agent.! The agent’s type can then be taken to be the input. The set
T of possible types could be, for example, all integers, or all integers that can
be written in binary using at most 40 digits (i.e., a number that is less than
219). The agent can choose among a set of TMs, all of which output either
“prime”, “not prime” or “pass” (which can be encoded as 0, 1, and 2). One
natural choice for the complexity of a pair (M, n) consisting of TM M and
an input n is the running time of M on input n.

Since the agent’s utility takes the complexity into account, this would
justify the agent using a “quick-and-dirty” algorithm which is typically right
to compute whether the input is prime; if the algorithm does not return an
answer in a relatively small amount of time, the agent can just “pass”. The
agent might prefer using such a TM rather than one that gives the correct
answer, but takes a long time doing so. We can capture this tradeoff in the
agent’s utility function. 1

There are some issues that we need to deal with in order to finish modeling
Example 2.1 in our framework. Note that if the agent chooses the TM after
being given the number n, then one of two TMs is clearly optimal: if n is
in fact prime, then the TM which just says “prime” and halts; if n is not
prime, then the TM which says “not prime” and halts is clearly optimal.
The problem, of course, is that the agent does not know n. One approach
to dealing with this problem is to assume that the agent chooses the TM
before knowing n; this was the approach implicitly taken in [8]. But there is
a second problem: we have implicitly assumed that the agent knows what the
complexity of each pair (M,n) is; otherwise, the agent could not maximize
expected utility. Of course, in practice, an agent will not know how long it
will take a Turing machine to compute an answer on a given input.

We deal with both of these problems by adding one more parameter to
the model: a state of nature. In Example 2.1, we allow the TM’s running
time and whether n is prime to depend on the state; this means that the
“goodness” (i.e., accuracy) of the TM can depend on the state. We model
the agent’s beliefs about the running time and accuracy of the TM using a
probability distribution on these states.?

'While primality testing is now known to be in polynomial time [1], and there are
computationally-efficient randomized algorithms that that give the correct answer with
extremely high probability [16, 23], we can assume that the agent has no access to a
computer.

2This means that the states are what philosophers have called “impossible” possible

We capture these ideas formally by taking a computational decision prob-
lem with types to be a tuple D = (5,7, A, Pr, M,C, O, u). We explain each
of these components in turn. The first four components are fairly standard.
S is a state space, T is a set of types, A is a set of actions, and Pr is a
probability distribution on S x T' (there may be correlation between states
and types). In a standard decision-theoretic setting, there is a probability on
states (not on states and types), and the utility function associates a utility
with each (state, action) pair (intuitively, u(s,a) is the utility of performing
action a in state s). Here things are more complicated because we want
the utility to also depend on the TM chosen. This is where the remaining
components of the tuple come in.

The fifth component of the tuple, C, is the complexity function. Formally,
C:MxSxT — IN,soC(M,s,t) is the complexity of running TM M on
input ¢ in state s. The complexity can be, for example, the running time
of M on input t, the space used by M on input ¢, the number of states in
M (this is the measure of complexity used by Rubinstein [18]), and so on.
The sixth component of the tuple, O, is the output function. It captures the
agent’s uncertainty about the TM’s output. Formally, O : M x § x T — IN;
O(M, s,t) is the output of M on input ¢ in state s. Finally, an agent’s
utility depends on the state s, his type ¢, and the action O(M, s,t), as is
standard, and the complexity. Since we describe the complexity by a natural
number, we take the utility function © maps S x T x A x IN to IR (the reals).
Thus, the expected utility of choosing a TM M in the decision problem
D is Ysesier Pr(s, t)u(s,t,O(M,s,t),C(M,s,t)). Note that now the utility
function gets the complexity of M as an argument. The next example should
clarify the role of all these components.

Example 2.1 (cont’d): We now have the machinery to formalize Exam-
ple 2.1. We take T', the type space, to consist of all natural numbers < 24;
the agent must determine whether the type is prime. The agent can choose
either 0 (the number is not prime), 1 (the number is prime), or 2 (pass);
Thus, A = {0,1,2}. Let M be some set of TMs that can be used to test
for primality. As suggested above, the state space S is used to capture the
agent’s uncertainty about the output of a TM M and the complexity of M.

worlds [10, 17]; for example, we allow states where n is taken to be prime even when it is
not, or where a TM halts after M steps even if it doesn’t. We need such states, which are
inconsistent with the laws of mathematics, to model a resource-bounded agent’s possibly
mistaken beliefs.

Thus, for example, if the agent believes that the TM will output pass with
probability 2/3, then the set of states such that O(M,s,t) = 2 has proba-
bility 2/3. We take C(M, s,t) to be 0 if M computes the answer within 220
steps on input ¢, and 10 otherwise. (Think of 2?° steps as representing a
hard deadline.) If, for example, the agent does not know the running time of
a TM M, but ascribes probability 2/3 to M finishing in less than 22° steps
on input ¢, then the set of states s such that C(s,t, M) = 0 has probability
2/3. We assume that there is a function Prime that captures the agent’s
uncertainty regarding primality; Prime(s,t) = 1 if ¢ is prime in state s, and
0 otherwise.® Thus, if the agent believes that TM M gives the right answer
with probability 2/3, then the set of states s where Prime(s,t) = O(M,s,t)
has probability 2/3. Finally, let u(s,t,a,c) = 10 — ¢ if a is either 0 or 1,
and this is the correct answer in state s (i.e., O(M,s,t) = Prime(s,t)) and
u(s,t,2,c¢) = 1 —c. Thus, if the agent is sure that M always gives the correct
output, then u(s,t,a,c) = 10 — ¢ for all states s and a € {0,1}. 1

Example 2.2 (Biases in information processing) Psychologists have ob-
served many systematic biases in the way that individuals update their beliefs
as new information is received (see [14] for a survey). In particular, a first-
impressions bias has been observed: individuals put too much weight on
initial signals and less weight on later signals. As they become more con-
vinced that their beliefs are correct, many individuals even seem to simply
ignore all information once they reach a confidence threshold. Several pa-
pers in behavioral economics have focused on identifying and modeling some
of these biases (see, e.g., [14] and the references therein, [12], and [15]). In
particular, Mullainathan [12] makes a potential connection between memory
and biased information processing, using a model that makes several ex-
plicit (psychology-based) assumptions on the memory process (e.g., that the
agent’s ability to recall a past event depends on how often he has recalled the
event in the past). More recently, Wilson [24] demonstrated a similar con-
nection when modeling agents as finite automata, but her analysis is complex
(and holds only in the limit).

As we now show, the first-impression-matters bias can be easily explained
if we assume that there is a small cost for “absorbing” new information. Con-
sider the following simple game (which is very similar to the one studied by
Mullainathan [12] and Wilson [24]). The state of nature is a bit b that is 1

3Thus, we are allowing “impossible” states, where ¢ is viewed as prime even if it is not.

with probability 1/2. For simplicity, we assume that the agent has no uncer-
tainty about the “goodness” or output of a TM; the only uncertainty involves
whether b is 0 or 1). An agent receives as his type a sequence of independent
samples $1, Sg, ..., 8, where s; = b with probability p > 1/2. The samples
corresponds to signals the agents receive about b. An agent is supposed to
output a guess b’ for the bit b. If the guess is correct, he receives 1 — mc
as utility, and —mc otherwise, where m is the number of bits of the type he
read, and c is the cost of reading a single bit (¢ should be thought of the
cost of absorbing/interpreting information). It seems reasonable to assume
that ¢ > 0; signals usually require some effort to decode (such as reading
a newspaper article, or attentively watching a movie). If ¢ > 0, it easily
follows by the Chernoff bound (see [2]) that after reading a certain (fixed)
number of signals sq,...,s;, the agents will have a sufficiently good estimate
of b that the marginal cost of reading one extra signal s;,; is higher than
the expected gain of finding out the value of s;,;. That is, after processing
a certain number of signals, agents will eventually disregard all future sig-
nals and base their output guess only on the initial sequence. We omit the
straightforward details. Essentially the same approach allows us to capture
belief polarization.

Suppose for simplicity that two agents start out with slightly different
beliefs regarding the value of some random variable X (think of X as repre-
senting something like “O.J. Simpson is guilty”), and get the same sequence
S1, 82, . .., S, of evidence regarding the value of X. (Thus, now the type con-
sists of the initial belief, which can for example be modeled as a probability
or a sequence of evidence received earlier, and the new sequence of evidence.)
Both agents update their beliefs by conditioning. As before, there is a cost
of processing a piece of evidence, so once an agent gets sufficient evidence
for either X = 0 or X = 1, he will stop processing any further evidence. If
the initial evidence supports X = 0, but the later evidence supports X =1
even more strongly, the agent that was initially inclined towards X = 0 may
raise his beliefs to be above threshold, and thus stop processing, believing
that X = 0, while the agent initially inclined towards X = 1 will continue
processing and eventually believe that X = 1. 11

As shown in [7], we can also use this approach to explain the status quo bias
(people are much more likely to stick with what they already have) [20].

Value of computational information and value of conversation: Hav-
ing a computational model of decision making also allows us to reconsider a
standard notion from decision theory, value of information, and extend it in
a natural way so as to take computation into account. Value of information
is meant to be a measure of how much an agent should be willing to pay to
receive new information. The idea is that, before receiving the information,
the agent has a probability on a set of relevant events and chooses the action
that maximizes his expected utility, given that probability. If he receives
new information, he can update his probabilities (by conditioning on the in-
formation) and again choose the action that maximizes his expected utility.
The difference between the expected utility before and after receiving the
information is the value of the information.

In many cases, an agent seems to be receiving valuable information that
is not about what seem to be the relevant events. This means that we cannot
do a value of information calculation, at least not in the obvious way.

For example, suppose that the agent is interested in learning a secret,
which we assume for simplicity is a number between 1 and 1000. A priori,
suppose that the agent takes each number to be equally likely, and so has
probability .001. Learning the secret has utility, say, $1,000,000; not learn-
ing it has utility 0. The number is locked in a safe, whose combination is a
40-digit binary number. Intuitively, learning the first 20 digits of the safe’s
combination gives the agent some valuable information. But this is not cap-
tured when we do a standard value-of-information calculation; learning this
information has no impact at all on the agent’s beliefs regarding the secret.

Although this example is clearly contrived, there are many far more re-
alistic situations where people are clearly willing to pay for information to
improve computation. For example, companies pay to learn about a manufac-
turing process that will speed up production; people buy books on speedread-
ing; and faster algorithms for search are clearly considered valuable.

Once we bring computation into decision making, the standard definition
of value of information can be applied to show that there is indeed a value to
learning the first 20 digits of the combination, and to buying a more powerful
computer; expected utility can increase. (See [6] for details.)

But now we can define a new notion: wvalue of conversation. The value of
information considers the impact of learning the value of a random variable;
by taking computation into account, we can extend this to consider the
impact of learning a better algorithm. We can further extend to consider
the impact of having a conversation. The point of a conversation is that it

9

allows the agent to ask questions based on history. For example, if the agent
is trying to guess a number chosen uniformly at random between 1 and
100, and receives utility of 100 if he guesses it right, having a conversation
with a helpful TM that will correctly answer seven yes/no questions is quite
valuable: as is well known, with seven questions, the agent can completely
determine the number using binary search. The computational framework
allows us to make this intuition precise. Again, we encourage the reader to
consult [6] for further details.

3 Modeling people as rational finite automata

We now consider the second approach discussed in the introduction, that of
modeling the fact that an agent can do only bounded computation. Perhaps
the first to do this in the context of decision theory was Wilson [24], whose
work we briefly mentioned earlier. Recall that Wilson considers a decision
problem where an agent needs to make a single decision. Nature is in one of
two possible states, G (good) and B (bad), which does not change over time;
the agent’s payoff depends on the action she chooses and the state of nature.
The agent gets one of k signals, which are correlated with nature’s state;
signal i has probability p{’ of appearing when the state of nature is G, and
probability p? of appearing when the state is B. We assume that the agent
gets exactly one signal at each time step, so that Zle Py = Zle pP =1
This is a quite standard situation. For example, an agent may be on a jury,
trying to decide guilt or innocence, or a scientist trying to determine the
truth of a theory.

Clearly, the agent should try to learn nature’s state, so as to make an
optimal decision. With no computational bounds, an agent should just keep
track of all the evidence it has seen (i.e., the number of signals of each type),
in order to make the best possible decision. However, a finite automaton can-
not do this. Wilson characterizes the optimal /N-state automaton for making
a decision in this setting, under the assumption that 7 (the probability that
the agent has to make the decision in any given round) is small. Specifically,
she shows that an optimal N-state automaton ignores all but two signals (the
“best” signal for each of nature’s states). The automaton’s states can be laid
out “linearly”, as states 0, ..., N — 1, and the automaton moves left (with
some probability) only if it gets a strong signal for state G (and it is not
in state 0), and moves right (with some probability) only if it gets a strong

10

signal for state B (and is not in state N — 1). Roughly speaking, the lower
the current state of the automaton, the more likely from the automaton’s
viewpoint that nature’s state is G.

The probability of moving left of right, conditional on receiving the appro-
priate signal, may vary from state to state. In particular, if the automaton
is in state 0, the probability that it moves right is very low. Intuitively, in
state 0, the automaton is “convinced” that nature’s state is G, and it is very
reluctant to give up on that belief. Similarly, if the automaton is in state
N — 1, the probability that it will move left is very low.

Wilson argues that these results can be used to explain observed biases in
information processing, such as belief polarization. For suppose that the true
state of nature is B. Consider two 5-state automata, A; and As. Suppose
that automaton A; starts in state 1, while automaton A, starts in state
2. (We can think of the starting state as reflecting some initial bias, for
example.) They both receive the same information. Initially, the information
is biased towards GG, so both automata move left; A; moves to state 0, and
A, moves to state 1. Now the evidence starts to shift towards the true state
of the world, B. But since it is harder to “escape” from state 0, A; stays
in state 0, while A moves to state 4. Thus, when the automata are called
upon to decide, A; makes the decision appropriate for B, while A, makes the
decision appropriate for G. A similar argument shows how this approach can
be used to explain the first-impression bias. The key point is that the order
in which evidence is received can make a big difference to an optimal finite
automaton, although it should make no difference to an unbounded agent.

Wilson’s model assumes that the state of nature never changes. In recent
work, we consider what happens if we allow nature’s state to change [9]. We
consider a model that is intended to capture the most significant features of
such a dynamic situation. As in Wilson’s model, we allow nature to be in
one of a number of different states, and assume that the agent gets signals
correlated with nature’s state. But now we allow nature’s state to change,
although we assume that the probability of a change is low. (Without this
assumption, the signals are not of great interest.)

For definiteness, assume that nature is in one of two states, which we
again denote G and B. Let m be the probability of transitioning from B
to G or from G to B in any given round. Thus, we assume for simplicity
that these probabilities are history-independent, and the same for each of
the two transitions. (Allowing different probabilities in each direction does
not impact the results.) The agent has two possible actions S (safe) and R

11

(risky). If he plays S, he gets a payoff of 0; if he plays R he gets a payoff
ra > 0 when nature’s state is GG, and a payoff xp < 0 when nature’s state is
B. The agent does not learn his payoff, but, as in Wilson’s model, gets one of
k signals, whose probability is correlated with nature’s state. However, unlike
Wilson’s model, the agent gets a signal only if he plays the risky action R;
he does not get a signal if he plays the safe action S. We denote this setting
S[p¢, pE, ... ¢, pE, xa, xp]. A setting is nontrivial if there exists some signal
i such that p? # p{. If a setting is trivial, then no signal enables the agent
to distinguish whether nature is in state G or B; the agent does not learn
anything from the signals. For a given setting S[p¥,p?, ..., 0¥, p2, 2q, x5],
we are interested in finding an automaton A that has high average utility
when we let the number of rounds go to infinity.

Unlike Wilson, we were not able to find a characterization of the optimal
N-state automaton. However, we were able to find a family of quite simple
automata that do very well in practice and, in the limit, approach the optimal
payoff. We denote a typical member of this family A[N, pexp, Pos, Neg, 1, T4).
The automaton A[N, pexp, Pos, Neg,r,,rq) has N + 1 states, again denoted
0,...,N. State 0 is dedicated to playing S. In all other states R is played. As
in Wilson’s optimal automaton, only “strong” signals are considered; the rest
are ignored. More precisely, the k signals are partitioned into three sets, Pos
(for “positive”), Neg (for “negative”), and I (for “ignore” or “indifferent”),
with Pos and Neg nonempty. The signals in Pos make it likely that nature’s
state is (G, and the signals in Neg make it likely that the state of nature
is B. The agent chooses to ignore the signals in [; they are viewed as not
being sufficiently informative as to the true state of nature. (Note that I is
determined by Pos and Neg.)

In each round while in state 0, the agent moves to state 1 with probability
Dexp- 1N a state ¢ > 0, if the agent receives a signal in Pos, the agent moves
to i + 1 with probability 7, (unless he is already in state N, in which case he
stays in state N if he receives a signal in Pos); thus, we can think of r,, as the
probability that the agent moves up if he gets a positive signal. If the agent
receives a signal in Neg, the agent moves to state i — 1 with probability r4 (so
74 is the probability of moving down if he gets a signal in Neg); if he receives
a signal in 7, the agent does not change states. Clearly, this automaton is
easy for a human to implement (at least, if it does not have too many states).
Because the state of nature can change, it is clearly not optimal to make the
states 0 and N “sticky”. In particular, an optimal agent has to be able to
react reasonably quickly to a change from G to B, so as to recognize that he

12

should play S.

Erev, Ert, and Roth [4] describe contests that attempt to test various
models of human decision making under uncertain conditions. In their sce-
narios, people were given a choice between making a safe move (that had a
guaranteed constant payoff) and a “risky” move (which had a payoff that
changed according to an unobserved action of other players), in the spirit of
our S and R moves. They challenged researchers to present models that
would predict behavior in these settings. The model that did best was
called BI-Saw (bounded memory, inertia, sampling and weighting) model,
suggested by Chen et al. [3], itself a refinement of a model called I-Saw sug-
gested by Erev, Ert, and Roth [4]. This model has three types of response
mode: exploration, exploitation, and inertia. An I-Saw agent proceeds as
follows. The agent tosses a coin. If it lands heads, the agent plays the action
other than the one he played in the previous step (exploration); if it lands
tails, he continues to do what he did in the previous step (inertia), unless
the signal received in the previous round crosses a probabilistic “surprise”
trigger (the lower the probability of the signal to be observed in the current
state, the more likely the trigger is to be crossed); if the surprise trigger is
crossed, then the agent plays the action with the best estimated subjective
value, based on some sampling of the observations seen so far (exploitation).
The major refinement suggested by BI-Saw involves adding a bounded mem-
ory assumption, whose main effect is a greater reliance on a small sample of
past observations.

The suggested family of automata incorporates all three behavior modes
described by the I-Saw model. When the automaton is in state 0, the agent
explores with constant probability by moving to state 1. In state ¢ > 0, the
agent continues to do what he did before (in particular, he stays in state
i) unless he gets a “meaningful” signal (one in Neg or Pos), and even then
he reacts only with some probability, so we have inertia-like behavior. If he
does react, then he ezploits the information that he has, which is carried by
his current state; that is, he performs the action most appropriate according
to his state. The state can be viewed as representing a sample of the last few
signals (each state represents remembering seeing one more “good” signal),
as in the BI-Saw model. Thus, our family of automata can be viewed as an
implementation of the BI-Saw model using small, simple finite automata.

These automata do quite well, both theoretically and in practice. Note
that even if the agent had an oracle that told him exactly what nature’s
state would be at every round, if he performs optimally, he can get only z¢

13

in the rounds when nature is in state G, and 0 when it is in state B. In
expectation, nature is in state GG only half the time, so the optimal expected
payoff is x¢ /2.

The following result shows that if 7 goes to 0 sufficiently quickly, then
the agent can achieve arbitrarily close to the theoretical optimum using an
automaton of the form A[N, pexp, Pos, Neg,r,, 4], even without the benefit
of an oracle, by choosing the parameters appropriately. Let E.[A] denote
the expected average utility of using the automaton A if the state of natures
changes with probability .

Theorem 3.1 [9] Let II and P be functions from IN to (0,1] such that

lim,, 00 nIl(n) = lim,, o0 [1(n)/ Pexp(n) = 0. Then for all settings S[p§, p?, . ..

there exists a partition Pos, Neg, I of the signals, and constants rq and r, such
that e
]\}1_1(){1)0 E-n)[A[N, Pezp(N), Pos, Neg, 1y, 74)] = -

While Theorem 3.1 gives theoretical support to the claim that automata
of the form A[N, pexp, Pos, Neg, r,,, 4] are reasonable choices for a resource-
bounded agent, it is also interesting to see how they do in practice, for
relatively small values of N. The experimental evidence [9] suggests they
will do well. For example, suppose for definiteness that = = 0.001, z¢ = 1,
xp = —1 and there are four signals, 1,...,4, which have probabilities 0.4,
0.3, 0.2, and 0.1, respectively, when the state of nature is GG, and probabilities
0.1, 0.2, 0.3, and 0.4, respectively, when the state of nature is bad. Further
suppose that we take signal 1 to be the “good” signal (i.e., we take Pos =
{1}), take signal 4 to be the “bad” signal (i.e., we take Neg = {4}), and
take r, = r4 = 1. Experiments showed that using the optimal value of pey),
(which is dependent on the number of states), an automaton with 5 states
already gets an expected payoff of more than 0.4; even with 2 states, it gets
an expected payoff of more than 0.15. Recall that even with access to an
oracle that reveals when nature changes state, the best the agent can hope to
get is 0.5. On the other hand, an agent that just plays randomly, or always
plays G or always plays B, will get 0. These results are quite robust. For
example, for N > 5 the payoff does not vary much if we just use the optimum
Dexp for N = 5, instead of choosing the optimum value of pe, for each value
of N. The bottom line here is that, by thinking in terms of the algorithms
used by bounded agents, actions that may seem irrational can be viewed as
quite rational responses, given resource limitations.

14

G B
» P » Pk ,I‘G,I’B],

4 Discussion and Conclusion

We have discussed two approaches for capturing resource-bounded agents.
The first allows them to choose a TM to play for them, but charges them for
the “complexity” of the choice; the second models agents as finite automata,
and captures resource-boundedness by restricting the number of states of the
automaton. In both cases, agents are assumed to maximize utility. Both ap-
proaches can be used to show that some systematic deviations from rational-
ity (e.g., belief polarization) can be viewed as the result of resource-bounded
agents making quite rational choices. We believe that the general idea of not
viewing behavior as “irrational”, but rather the outcome of resource-bounded
agents making rational choices, will turn out to be useful for explaining other
systematic biases in decision making and, more generally, behavior in deci-
sion problems. We would encourage work to find appropriate cost models,
and simple, easy-to-implement strategies with low computational cost that
perform well in real scenarios.

Note that the two approaches are closely related. For example, we can
easily come up with a cost model and class of TMs that result in agents
choosing a particular automaton with N states to play for them, simply by
charging appropriately for the number of states. Which approach is used in a
particular analysis depends on whether the interesting feature is the choice of
the complexity function (which can presumably be tested experimentally) or
specific details of the algorithm. We are currently exploring both approaches
in the context of the behavior of agents in financial markets. In particular, we
are looking for simple, easy-to-implement strategies that will explain human
behavior in this setting.

References

[1] M. Agrawal, N. Keyal, and N. Saxena. Primes is in P. Annals of
Mathematics, 160:781-793, 2004.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York,
2004.

[3] Wei Chen, Shu-Yu Liu, Chih-Han Chen, and Yi-Shan Lee. Bounded
memory, inertia, sampling and weighting model for market entry games.
Games, 2(1):187-199, 2011.

15

[4] 1. Erev, E. Ert, and A.E. Roth. A choice prediction competition for
market entry games: An introduction. Games, 1:117-136, 2010.

[5] 1. J. Good. Rational decisions. Journal of the Royal Statistical Society,
Series B, 14:107-114, 1952.

6] J. Y. Halpern and R. Pass. Game theory with
costly computation. In Proc. First Symposium on In-
novations in Computer Science, 2010. Available at

http://conference.itcs.tsinghua.edu.cn/ICS2010/content /paper/Paper_11.pdf.

[7] J. Y. Halpern and R. Pass. I don’t want to think about it now: Decision
theory with costly computation. In Principles of Knowledge Representa-
tion and Reasoning: Proc. Twelfth International Conference (KR ’10),
pages 182-190, 2010.

8] J. Y. Halpern and R. Pass. Algorithmic rationality: ~ Game
theory with costly computation. 2011. Available at
www.cs.cornell.edu/home/halpern /papers/algrationality.pdf; to ap-
pear, Journal of Economic Theory. A preliminary version with the
title “Game theory with costly computation” appears in Proc. First
Symposium on Innovations in Computer Science, 2010.

[9] J. Y. Halpern, R. Pass, and L. Seeman. I'm doing as well as i can: mod-
eling people as rational finite automata. In Proc. Twenty-Sizth National
Conference on Artificial Intelligence (AAAI °12), 2012.

[10] J. Hintikka. Impossible possible worlds vindicated. Journal of Philo-
sophical Logic, 4:475-484, 1975.

[11] E. Horvitz. Reasoning about beliefs and actions under computational
resource constraints. In Proc. Third Workshop on Uncertainty in Arti-
ficial Intelligence (UAI '87), pages 429-444, 1987.

[12] S. Mullainathan. A memory-based model of bounded rationality. Quar-
terly Journal of Economics, 117(3):735-774, 2002.

[13] A. Neyman. Bounded complexity justifies cooperation in finitely repated
prisoner’s dilemma. Economic Letters, 19:227-229, 1985.

16

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

M. Rabin. Psychology and economics. Journal of Economic Literature,
XXXVI:11-46, 1998.

M. Rabin and J. Schrag. First impressions matter: A model of confir-
matory bias. Quaterly Journal of Economics, 114(1):37-82, 1999.

M. O. Rabin. Probabilistic algorithm for testing primality. Journal of
Number Theory, 12:128-138, 1980.

V. Rantala. Impossible worlds semantics and logical omniscience. Acta
Philosophica Fennica, 35:18-24, 1982.

A. Rubinstein. Finite automata play the repeated prisoner’s dilemma.
Journal of Economic Theory, 39:83-96, 1986.

S.J. Russell and D. Subramanian. Provably bounded-optimal agents.
Journal of A.I. Research, 2:575-609, 1995.

W. Samuelson and R. Zeckhauser. Status quo bias in decision making.
Journal of Risk and Uncertainty, 1:7-59, 1998.

L. J. Savage. Foundations of Statistics. Wiley, New York, 1954.

H. A. Simon. A behavioral model of rational choice. Quarterly Journal
of Economics, 49:99-118, 1955.

R. Solovay and V. Strassen. A fast Monte Carlo test for primality. STAM
Journal on Computing, 6(1):84-85, 1977.

A. Wilson. Bounded memory and biases in information processing.
Manuscript, 2002.

17

