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Abstract

Aumann has proved that common knowledge of substantive ratio-
nality implies the backwards induction solution in games of perfect
information. Stalnaker has proved that it does not. Roughly speak-
ing, a player is substantively rational if, for all vertices v, if the player
were to reach vertex v, then the player would be rational at vertex
v”. It is shown here that the key difference between Aumann and
Stalnaker lies in how they interpret this counterfactual. A formal
model is presented that lets us capture this difference, in which both
Aumann’s result and Stalnaker’s result are true (under appropriate
assumptions).

Starting with the work of Bicchieri [1988, 1989], Binmore [1987], and Reny
[1992], there has been intense scrutiny of the assumption of common knowl-
edge of rationality, the use of counterfactual reasoning in games, and the role
of common knowledge and counterfactuals in the arguments for backward
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induction in games of perfect information. Startlingly different conclusions
were reached by different authors.

These differences were clearly brought out during a 2.5 hour round table
discussion on “Common knowledge of rationality and the backward induction
solution for games of perfect information” at the recent TARK (Theoretical
Aspects of Rationality and Knowledge) conference. During the discussion,
Robert Aumann and Robert Stalnaker stated the following theorems:

Aumann’s Theorem (informal version): Common knowledge of sub-
stantive rationality implies the backwards induction solution in games of
perfect information.

Stalnaker’s Theorem (informal version): Common knowledge of sub-
stantive rationality does not imply the backwards induction solution in games
of perfect information.

The discussion during the round table was lively, but focused on more
philosophical, high-level issues. My goal in this short note is to explain the
technical differences between the framework of Aumann and Stalnaker that
lead to the different results. Aumann proves his theorem in [Aumann 1995].
I show here what changes need to be made to Aumann’s framework to get
Stalnaker’s result.! I believe that the points that I make here are well known
to some (and certainly were made informally during the discussion). Never-
theless, there does not appear to be a careful comparison of the differences
between the models in the literature. I hope this note will help to clarify a
few issues and put the debate on a more rational footing.

There are three terms in the theorems that need clarification:

e (common) knowledge
e rationality

e substantive rationality

'The model that I use to prove Stalnaker’s result is a variant of the model Stalnaker
uses in [Stalnaker 1996], designed to be as similar as possible to Aumann’s model, to bring
out the key differences. This, I believe, is essentially the model that Stalnaker had in mind
at the round table.



I claim that Stalnaker’s result can be obtained using exactly the same def-
inition of (common) knowledge and rationality as the one Aumann used in
[Aumann 1995]. The definition of knowledge is the standard one, given in
terms of partitions. (I stress this point because Stalnaker [1996] has argued
that probability-1 belief is more appropriate than knowledge when consider-
ing games.) The definition of rationality is that a player who uses strategy
s is rational at vertex v if there is no other strategy that he knows will give
him a better payoff, conditional on being at vertex v. Both Aumann and
Stalnaker give substantive rationality the same reading: “rationality at all
vertices v in the game tree”. They further agree that this involves a coun-
terfactual statement: “for all vertices v, if the player were to reach vertex v,
then the player would be rational at vertex v”. The key difference between
Aumann and Stalnaker lies in how they interpret this counterfactual. In the
rest of this note, I try to make this difference more precise.

The Detalils

I start by considering Aumann’s model. Fix a game I of perfect information
for n players. As usual, we think of I" as a tree. Because I' is a game of perfect
information, the players always know which vertex in the tree describes the
current situation in the game. The nonleaf vertices in I' are partitioned into
n sets, Gy, ..., G, one for each player. The vertices in G; are said to belong
to 7; these are the ones where player ¢ must move. A model of I' is a tuple
(Q,K1,...,K,,s), where Q of states of the world, K4, ..., K, are partitions,
one for each player i = 1,...,n (K; is ¢’s information partition), and s maps
each world w € Q to a strategy profile s(w) = (s1,...,8,); S is s strategy
in game [' at state w. As usual, a strategy for 7 in I' is just a mapping from
i's vertices in I" to actions. I write s;(w) for s;.

Let K;(w) denote the cell in partition K; that includes w. Define the
operator K; on events as usual:

K;(E)={w: K;(w) C E}.

K;(F) is the event that ¢ knows E. Let A(F) = Ky(E)N...NK,(F). A(E)
is the event that everyone (all the players) know E. Let

CK(E) = A(E) N A(A(E)) N A(A(A(E)N...
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CK(E) is the event that £ is common knowledge.

Aumann and Stalnaker (and everyone else who has written on this subject
that I am aware of) assume that the players know their strategies. Formally,
that means that if W’ € K;(w), then s;(w) = s;(w’); that is, 7 uses the same
strategy at all the states in a cell of K;.

Next we need to define rationality. Note that a strategy profile s and ver-
tex v uniquely determine a path in I' that would be followed if s were played
starting at v. Let hY(s) denote i’s payoff if this path is followed. Informally,
1 is rational at vertex v if there is no strategy that ¢ could have used that
1 knows would net him a higher payoff than the strategy he actually uses.
More precisely, i is rational at vertez v in w if, for all strategies s' # s;(w),
hY(s(w')) > hY((s_;(w'), s*) for some w' € K;(w). That is, i cannot do better
by using s* than s;(w) against all the strategy profiles of the other players
that he considers possible at w. This is a weak notion of rationality (which is
certainly satisfied by expected utility maximization). By taking such a weak
notion, Aumann’s Theorem becomes stronger. As will be clear from the ex-
ample, Stalnaker’s Theorem holds even if we strengthen the requirements of
rationality (to require strict inequality, for example).

Aumann then defines substantive rationality to mean rationality at all
vertices in the game tree. That is, ¢ is substantively rational in state w if 7 is
rational at vertex v in w for every vertex v € GG;. For future reference, I call
Aumann’s notion of substantive rationality A-rationality.

Using these definitions, Aumann can and does prove his theorem (using
a straightforward backward induction argument).

Stalnaker’s definition of substantive rationality is different from Aumann’s
although, as I indicated above, he is trying to capture the same intuition.
His definition tries to enforce the intuition that, for every vertex v € G;, if
1 were to actually reach v, then what he would do in that case would be
rational. The key point is that, according to Stalnaker’s definition, in order
to evaluate, at state w, whether 7 is being rational at vertex v by performing
the action dictated by his strategy at w, we must consider ¢’s beliefs in the
state “closest” to w according to ¢ where v is actually reached.

To formalize this, we must add one more component to Aumann’s model:
for each player i, we must have a selection function f mapping states and
i’s vertices to states. An extended model of I' is a tuple (2, K1,...,K,,s, f),
where (Q,Kq,...,K,,s) is a model of I" and f : Q2 x G; — Q. Intuitively, if



f(w,v) = &', then state ' is the state closest to w where vertex v is reached.?
Given this intuition, we may want to assume that f satisfies some con-
straints such as the following:

F1. visreached in f(w,v) (thatis, v is on the path determined by s(f(w, v))).
F2. If v is reached in w, then f(w,v) = w.

F3. s(f(w,v)) and s(w) agree on the subtree of I' below v.

F1 guarantees that v is actually reached in f(w,v), while F2 says that if
v is actually reached in w, then w is the closest state to itself where v is
reached. F3 is intended to capture the intuitive meaning of a strategy. If,
according to s;(w), player ¢ performs action a at vertex v, it seems reasonable
to expect that at the closest world where v is actually reached, player 7 does
in fact perform a. This follows from F3. However, F'3 says more than this. It
says that at all the vertices below v, all the players also perform the actions
dictated by s(w). This extra requirement arguably makes F3 too strong.
However, as I shall show, Stalnaker’s Theorem continues to hold even with
this strong assumption.?

According to Stalnaker, 7 is substantively rational in state w if ¢ is ratio-
nal at vertex v in f(w,v) for every vertex v € G;. Let us call this notion
S-rationality. Thus, the crucial (and, in fact, only) difference between Au-
mann’s approach and Stalnaker’s approach is that A-rationality requires 2
to be rational at vertex v in w and S-rationality requires ¢ to be rational at
vertex v in f(w,v).

The difference can perhaps be best understood by considering the game
described in Figure 1, which is a variant of a game introduced by Aumann
[1995].

2Again, I should stress that this is not exactly the model that Stalnaker uses in [Stal-
naker 1996], but it suffices for my purposes. I remark that in [Halpern 1998], I use selection
functions indexed by the agents, so that agent 1 may have a different selection function
than agent 2. I do not need this greater generality here, so I consider the simpler model
where all agents use the same selection function.

3There are certainly other reasonable properties we could require of the selection func-
tion. For example, we might want to require that if v is reached in some state in &;(w),
then f(w,v) € K;(w). I believe that it is worth trying to characterize the properties we
expect the selection function should have, but this issue would take us too far afield here.
Note that F1-F3 are properties that seem reasonable for arbitrary games, not just games
of perfect information.
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(2,2) (1,1) (0.0)
Figure 1: A variant of Aumann’s Ann-Bob game.

Consider the following five strategy profiles:

e s' is the strategy profile (da,d) (i.e., Ann goes down at v; and across
at vz and Bob goes down at vy);

e s’ is the strategy profile (aa, d);

(aa, d);
e s3 is the strategy profile (ad, d);
e s* is the strategy profile (aa, a);
e 55 is the strategy profile (ad, a).

Note that s* is the backward induction solution.
Now consider the extended model (w, K 4nn, Kpob, S, f) of this game, where

o O ={wi,ws,ws,wy,ws};

o Kann(wi) ={w;}, fori=1,...,5;

o Kpop(wi) = {wi} for i =1,4,5; Kpop(ws) = Kpop(ws) = {wa, ws};
e s(w;))=s" fori=1,...,5;

e f is the unique selection function satisfying F1-F3.

It is easy to check that, at wy, it is common knowledge that strategy profile
s’ is being used, for 7 = 1,2. It is also common knowledge at w; that, if
vertex vy were reached, Bob would play down.
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In this extended model, clearly Bob is not rational at vertex v, in wy,
since he plays down. This means that we do not have A-rationality at w;
(and, a fortiori, we do not have common knowledge of A-rationality at w;).
On the other hand, Bob is rational at vertex v, in w9, since Bob considers it
possible that Alice may go down at vs (since Kgop(wa) = {wa, w3}). Similarly,
Alice is rational at vertex vs in wy. Since f(wi,v2) = wy and f(wq,v3) = wa,
it follows that we have S-rationality at w;, and hence common knowledge of
S-rationality at w;.

This example is an instance of Stalnaker’s Theorem: we have common
knowledge of substantive rationality in the sense of S-rationality at wq, yet
the backward induction solution is not played at w;. Nevertheless, it does
not contradict Aumann’s Theorem, since we do not have common knowledge
of A-rationality.

With this machinery, we can now state Aumann’s Theorem and Stal-
naker’s Theorem more formally. Let S-RAT consist of all states where all
the players are S-rational; let A-RAT consist of all states where all the play-
ers are A-rational; let BI consist of all states where the backward induction
solution is played.

Aumann’s Theorem: If I is a nondegenerate! game of perfect information,
then in all models of ', we have CK(A-RAT) C BI.

Stalnaker’s Theorem: There exists a nondegenerate game I' of perfect
information and an extended model of T' in which the selection function
satisfies F1-F3 such that CK(S-RAT) ¢ BI.

Note that, in an extended model of the Ann-Bob game, it is consistent
for Ann to say “Although it is common knowledge that I would play across if
v3 were reached, if I were to play across at v;, Bob would consider it possible
that I would play down at v3.” This is not possible in Aumann’s framework
because, without selection functions, Aumann has no way of allowing the
agents to revise their beliefs. (This point is essentially made by Samet [1996].)
In the definition of A-rationality, for any vertex v, player i’s beliefs in state
w about the possible strategies player 7 may be using if vertex v is reached
are the same (and are determined by K;(w)). It is crucial for Aumann’s
result (and, I believe, a weakness in his model) that players do not (and

1A game is nondegenerate if the payoffs are different at all the leaves.
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cannot) revise their beliefs about other player’s strategies when doing such
hypothetical reasoning.

It is not hard to place a condition on selection functions that guarantees
that players beliefs about other player’s strategies do not change whatever
vertex they may be in.

F4. For all players ¢ and vertices v, if ' € K;(f(w,v)) then there exists a
state w” € K;(w) such that s(w') and s(w”) agree on the subtree of T’
below v.5

Combined with F1-F3, F4 this gives us the properties we want. In fact, we
have the following result.

Theorem 1: If I is a nondegenerate game of perfect information, then for
every extended model of I in which the selection function satisfies F1-F4,
we have CK(S-RAT) C BI. Moreover, there is an extended model of T in
which the selection function satisfies F1-F}.

Proof: For the first half of the theorem, suppose (2,K4,...,K,,s, f) is an
extended model of I" in which the selection function satisfies F1-F4. Further
suppose that w € CK(S-RAT). We want to show w € BI. The proof
basically mimics Aumann’s proof of his theorem, since F1-F4 essentially
gives us his framework.

I first recall a standard characterization of common knowledge. Define
the notion of omega” being reachable from ' in k steps inductively: w” is
reachable from ' in 1 step iff W" € K;(w') for some i € {1,...,n}; " is
reachable from W' in k + 1 steps iff there exists a state w' that is reachable
from w’ in 1 step such that w” is reachable from w" in k steps. We say that
w" is reachable from ' if w" is reachable from «’ in k steps for some k. It is
well known [Aumann 1976] that ' € CK(E) iff w” € E for all w” reachable
from w'.

I show by induction on & that for all states w’ reachable from w, if v is a
vertex which is at height & in the game tree (i.e., k moves away from a leaf),

5Actually, F4 says that in f(w,v), player i considers at least as many strategies possible
as at w. To capture the fact that player 4’s beliefs about other player’s possible strategies
does not change, we would need the opposite direction of F4 as well: if ' € K;(w) then
there exists a state w” € K;(f(w,v)) such that s(w’) and s(w”) agree on the subtree of
T below v. I do not impose this requirement here simply because it turns out to be
unnecessary for Aumann’s Theorem.



the move dictated by the backward induction solution (for the subgame of I'
rooted at v) is played at v in state w'.

For the base case, suppose v is at height 1 and w’ is reachable from w.
Since w € CK(S-RAT), we must have w’' € S-RAT. Suppose player i moves
at w’. Since ' € S-RAT, player i must make the move dictated by the
backwards induction solution at f(w’,v). By F3, he must do so at w’ as well.

For the inductive step, suppose that v is at height £ + 1, player ¢ moves
at v, and w' is reachable from w. Suppose, by way of contradiction, that a is
the action indicated by the backward induction solution at v but s;(w’)(v) =
a’ # a. Note that by the induction hypothesis, at every vertex below v, all
the players play according to the backward induction solution in state w’'.
Since w' € S-RAT, we must have that 7 is rational at v in f(w’,v). By F3, it
follows that ¢ plays @' at vertex v in f(w’,v) and at every vertex below v, the
players play according to the backward induction solution. Thus, there must
be a state w” € K;(f(w',v)) such that by using s;(f(w',v)), player i does at
least as well in w” as by using the backward induction strategy starting from
v. By F4, there must exist some w” € K;(w’) such that s(w”) and s(w™) agree
on the subtree of I' below v. Since w" is reachable from w, by the induction
hypothesis, all players use the backward induction solution at vertices below
v. By F3, this is true at w” as well. However, this means that player 7 does
better at w” playing a at v than o', giving us the desired contradiction.

For the second half, given a nondegenerate game I' of perfect information,
let s be the strategy where, at each vertex v, the players play the move
dictated the backward induction solution in the game defined by the subtree
below v. For each vertex v, let s, be the strategy where the players play the
actions required to reach vertex v, and then below v, they play according to
s. Note that if v is reached by s, then s, = s. In particular, if  is the root
of the tree, then s, = s. Consider the extended model (Q, Ky, ..., Kp,s, f)
where Q = {w, : v is a vertex of I'}, K;(w,) = {w,}, s(wy) = sy, and f(w,v)
is w if v is reached by s(w) and w, otherwise. I leave it to check that this
gives us an extended model where the selection function satisfies F1-4. 1

Theorem 1 and the earlier discussion suggests that one possible culprit
for the confusion in the literature regarding what is required to force the
backwards induction solution in games of perfect information is the notion
of a strategy. Exactly what should it mean to say that Alice’s strategy at
a state w is s? For example, consider the game in Figure 1. According to



strategy s, Alice plays across at vertex vz. But vs is a vertex that cannot be
reached if Alice uses s, since according to this strategy, Alice plays down at
v1. The standard reading of s%(v3) = a is that “if v3 is reached, then Alice
plays across”. But this reading leaves a number of questions unanswered.
How Alice plays (if she is rational) depends on her beliefs. Should we read
this as “no matter what Alice’s beliefs are, if v3 is reached, Alice will play a”?
Or perhaps it should be “given her current beliefs (regarding, for example,
what move Bob will make), if v is reached, Alice will play a”. Or perhaps
it should be “in the state ‘closest’ to the current state where vz is actually
reached, Alice plays a”. I have taken the last reading here (where ‘closest’ is
defined by the selection function); assumption F3 essentially forces it to be
equivalent to the second reading.

However, without F4, this equivalence is not maintained with regard to
Bob’s beliefs. That is, consider the following two statements:

e Bob currently believes that, given Alice’s current beliefs, Alice will play
a if vs is reached;

e in the state closest to the current state where v is reached, Bob believes
that Alice plays a at vs.

The first statement considers Bob’s beliefs at the current state; the second
considers Bob’s beliefs at a different state. Without F4, these beliefs might
be quite different. It is this possible difference that leads to Stalnaker’s
Theorem.

Strategies themselves clearly involve counterfactual reasoning. If we take
strategies as primitive objects (as both Aumann and Stalnaker do, and as
I have done for consistency), we have two sources of counterfactuals in ex-
tended models: selection functions and strategies. Stalnaker [1996, p. 135]
has argued that “To clarify the causal and epistemic concepts that interact
in strategic reasoning, it is useful to break them down into their component
parts.” This suggests that it would be useful to have a model where strategy
is mot a primitive, but rather is defined in terms of counterfactuals. This is
precisely what Samet [1996] does.®

6Samet does not use selection functions to capture counterfactual reasoning, but hy-
pothesis transformations, which map cells (in the information partition) to cells. However,
as I have shown [1998], we can capture what Samet is trying to do by using selection
functions.
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Not surprisingly, in Samet’s framework, Aumann’s Theorem does not
hold without further assumptions. Samet shows that what he calls a com-
mon hypothesis of rationality implies the backward induction solution in
nondegenerate games of perfect information. Although there are a number
of technical differences in the setup, this result is very much in the spirit of
Theorem 1.

Acknowledgment: I'd like to thank Robert Stalnaker for his many useful
comments and criticisms of this paper.
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