
Causality, Responsibility, and Blame: A Structural-Model Approach

Joseph Y. Halpern
Computer Science Department

Cornell University, Ithaca, NY 14853, USA
halpern@cs.cornell.edu

www.cs.cornell.edu/home/halpern

Abstract

This talk will provide an overview of work that I have
done with Hana Chockler, Orna Kupferman, and Judea
Pearl [1, 2, 10, 9] on defining notions such ascausality,
explanation, responsibility, and blame. I first review the
Halpern-Pearl definition of causality—what it means thatA
is a cause ofB—and show how it handles well some stan-
dard problems of causality. This definition of causality (like
most in the literature), views causality as an all-or-nothing
concept. EitherA is a cause ofB or it is not. I show how it
can be extended to take into account the degree of responsi-
bility of A for B. For example, if someone wins an election
11–0, each person is less responsible for his victory than if
he had won 6–5. Finally, I show how this notion of degree
of responsibility can be used to provide insight into model
checking notions such ascoverage.

This talk will provide an overview of work that I have
done with Hana Chockler, Orna Kupferman, and Judea
Pearl [1, 2, 10, 9] on defining notions such ascausality,
explanation, responsibility, andblame, showing how they
can be applied in a number of contexts, of which perhaps
the most relevant here is model checking. I briefly review
the issues here. The interested reader is encouraged to con-
sult the papers on which the talk is based for more intuition,
details, and examples.

Causalityis a topic that has long been discussed in the
philosophy literature. It is a surprisingly subtle notion.
There have been many attempts to define what it means
for an eventA to be anactual causeof an eventB, going
back to [13], and continuing to the present (see, for exam-
ple, [6, 15] for some recent work). The problem of defining
actual causality is important far beyond philosophy. For ex-
ample, it is highly relevant in legal reasoning [11]. If some-
one sues an automobile manufacturer if a car flips over, the
court must establish whether the car design was a cause of
the car flipping over, as opposed to bad driving or slick road
conditions. Perhaps less obviously, the notion of causality

has also arisen in formal verification. For example, Groce et
al. [7] introduce a notion oferror explanation, which tries
to make precise whether a line of code is a cause of an error.

My talk will start by a discussion of the problem of defin-
ing the notion of actual cause, and introduce a definition
of actual cause due Judea Pearl and me [10]. Like many
other definitions of causality going back to Hume [13], this
definition is based on counterfactual dependence. Roughly
speaking,A is a cause ofB if, hadA not happened (this
is the counterfactual condition, sinceA did in fact happen)
thenB would not have happened. As is well known, this
naive definition does not capture all the subtleties involved
with causality. Consider the following example (due to Hall
[8]): Suzy and Billy both pick up rocks and throw them
at a bottle. Suzy’s rock gets there first, shattering the bottle.
Since both throws are perfectly accurate, Billy’s would have
shattered the bottle had Suzy not thrown. Thus, according
to the naive counterfactual definition, Suzy’s throw is not a
cause of the bottle shattering. This certainly seems counter
to intuition.

The Halpern and Pearl (HP from now on) definition deals
with this problem by idea is thatA is a cause ofB if B coun-
terfactually depends onC under some contingency. For
example, Suzy’s throw is the cause of the bottle shatter-
ing because the bottle shattering counterfactually depends
on Suzy’s throw, under the contingency that Billy doesn’t
throw. (There are further subtleties in the definition that
guarantee that, if things are modeled appropriately, Billy’s
throw is not a cause.)

I will show how the HP definition deals well with many
of the standard problematic examples in the philosophy lit-
erature. The HP definition also has another significant ad-
vantage. All the standard definitions of causality (including
the HP definition) treat causality as an all-or-nothing con-
cept. While there may be more than one cause for an event
B, an eventA is either a cause ofB or it is not. As a conse-
quence, thinking only in terms of causality does not at times
allow us to make distinctions that we may want to make. For
example, suppose that Mr. B wins an election against Mr. G



by a vote of 11–0. Each of the people who voted for Mr. B
is a cause of him winning. However, it seems that their de-
gree of responsibility should not be as great as in the case
when Mr. B wins 6–5.

Hana Chockler and I [1] show how the HP definition can
be extended to define a notion ofresponsibilitythat takes
this distinction into account. To understand the intuition
behind our definition, note that it is clear, using the standard
counterfactual definition that each voter how votes for Mr. B
is a cause of him winning in the cause of the 6–5 vote. Had
any of the voters for Mr. B (counterfactually) changed his
or her vote, then Mr. B would not have won. Under the
HP definition, each voter for Mr. B is also a cause of him
winning in the case of the 11–0 vote. For example, voter 1
is a cause of Mr. B winning even if the vote is 11–0 because,
under the contingency that 5 of the other voters had voted
for Mr. G instead, voter 1’s vote would have become critical;
if he had then changed his vote, Mr. B would not have won.

It is precisely this consideration of contingencies that lets
us define degree of responsibility. We take the degree of re-
sponsibility ofA for B to be1/(N + 1), whereN is the
minimal number of changes that have to be made to obtain
a contingency whereB counterfactually depends onA. (If
A is not a cause ofB, then the degree of responsibility is
0.) In particular, this means that in the case of the 11–0
vote, the degree of responsibility of any voter for the vic-
tory is 1/6, since 5 changes have to be made before a vote
is critical. If the vote were 1001–0, the degree of responsi-
bility of any voter would be1/501. On the other hand, if the
vote is 5–4, then the degree of responsibility of each voter
for Mr. B for Mr. B’s victory is 1; each voter is critical. As
we would expect, those voters who voted for Mr. G have
degree of responsibility 0 for Mr. B’s victory, since they are
not causes of the victory. Finally, in the case of Suzy and
Billy, even though Suzy is the only cause of the bottle shat-
tering, Suzy’s degree of responsibility is1/2, while Billy’s
is 0. Thus, the degree of responsibility measures to some
extent whether or not there are other potential causes.

Thus, the notion of responsibility gives us a more fine-
grained way of thinking about causality. IfA is not a cause
of B, thenA’s degree of responsibility forB is 0; if A is a
cause ofB, thenA’s degree of responsibility forB is strictly
greater than 0, and can be as high as 1. Degree of responsi-
bility does not work like probability. In the case of the 6–5
victory, each of the the six people who voted for Mr. B is a
cause of him winning, and each has degree of responsibility
1. In the case of the 11–0 victory, again, each of the eleven
people who voted for Mr. B is a cause of him winning, and
each has degree of responsibility 1/6.

In determining causality and responsibility, it is assumed
that everything relevant about the facts of the world and
how the world works (which we characterize in terms of
what are calledstructural equations) is known. For exam-

ple, when saying that voter 1 has degree of responsibility
1/6 for Mr. B’s win when the vote is 11–0, we assume that
the vote and the procedure for determining a winner (ma-
jority wins) is known. There is no uncertainty about this.
With both causality and responsibility, there is no difficulty
in talking about the probability that someone has a certain
degree of responsibility by putting a probability distribution
on the way the world could be and how it works. But this
misses out on important component of determining what
Chockler and I calledblame: the epistemic state.1 Consider
a doctor who treats a patient with a particular drug resulting
in the patient’s death. The doctor’s treatment is a cause of
the patient’s death; indeed, the doctor may well bear degree
of responsibility 1 for the death. However, if the doctor had
no idea that the treatment had adverse side effects for peo-
ple with high blood pressure, he should perhaps not be held
to blame for the death. Actually, in legal arguments, it may
not be so relevant what the doctor actually did or did not
know, but what heshould have known. Thus, rather than
considering the doctor’s actual epistemic state, it may be
more important to consider what his epistemic state should
have been. But, in any case, if we are trying to determine
whether the doctor is to blame for the patient’s death, we
must take into account the doctor’s epistemic state.

Chockler and I present a definition of blame that consid-
ers whether agenta performing actionb is to blame for an
outcomeϕ. The definition is relative to an epistemic state
for a, which is taken, roughly speaking, to be a set of situ-
ations before actionb is performed, together with a proba-
bility on them. The degree of blame is then essentially the
expected degree of responsibility of actionb for ϕ (except
that we ignore situations whereϕ was already true orb was
already performed). To understand the difference between
responsibility and blame, suppose that there is a firing squad
consisting of ten excellent marksmen. Only one of them has
live bullets in his rifle; the rest have blanks. The marksmen
do not know which of them has the live bullets. The marks-
men shoot at the prisoner and he dies. The only marksman
that is the cause of the prisoner’s death is the one with the
live bullets. That marksman has degree of responsibility
1 for the death; all the rest have degree of responsibility 0.
However, each of the marksmen has degree of blame1/10.2

While the notions of degree of responsibility and blame
are crude, they do seem to capture some of our intuitions.
They can certainly be applied in legal settings such as the
car flipping example. Of most interest to us here is the ap-
plication of degree of responsibility in model checking. A
model checker verifies the correctness of a finite-state sys-

1In English we use both the terms “responsibility” and “blame” for
a number of related but distinct notions that we were trying to tease
apart. We used the term “responsibility” for the non-epistemic version
and “blame” for the epistemic version, just for definiteness. The key point
is that these are distinct notions.

2This example is due to Tim Williamson.
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tem with respect to a desired behavior by checking whether
a labeled state-transition graph that models the system satis-
fies a specification of this behavior [5]. If a system does not
satisfy a specification, model checkers typically provide a
counterexample showing why. These counterexamples can
be essential in detecting subtle errors in complex designs
[4]. On the other hand, when a system does satisfy the
specification, most model-checking tools terminate with no
further information to the user.

In the last few years, however, there has been growing
awareness that further analysis may be necessary in the lat-
ter case. One approach that has been used iscoverage es-
timation. Roughly speaking, a component or a state iscov-
eredby a specificationψ if changing this component falsi-
fiesψ (see [12, 3]). For example, if a specification requires
that AG(req → AFgrant) (every request is eventually fol-
lowed by a grant on every path) holds at an initial state,
and there is a path in whichreq holds only in one state,
followed by two states both satisfyinggrant, then neither
of these two states is covered by the specification (changing
the truth ofgrant in either one does not render the specifica-
tion untrue). On the other hand, if there is only one state on
the path in whichgrant holds, then that state is covered by
the specification. The intuition is that the presence of many
uncovered states suggests that either the specification the
user really desires has more requirements than those explic-
itly written (for example, perhaps the specification should
really require a correspondence between the number of re-
quests and grants), or that the system contains redundancies,
and can perhaps be simplified (for example, perhaps there
should be only a single grant on the path). This approach
has already proven to be effective in practice, detecting de-
sign errors that escape early verification efforts in industrial
settings [12].

Coverage considers can be viewed as trying to answer
the question ofwhat causes the system to satisfy the spec-
ification. Indeed, the main definitions of coverage in the
literature are inspired by counterfactual dependence: a state
s is p-covered by the specificationψ if, had the value of
the atomic propositionp been different in states, thenψ
would not have been true. Chocker, Kupferman, and I [2]
show that the initial definition of coverage [12] and its gen-
eralization [3] can be understood in terms of causality, as
can a number of interesting variants. Doing so gives signif-
icant insight into unresolved issues regarding the definition
of coverage, and leads to potentially useful extensions of
coverage. Moreover, thinking in terms of degree of respon-
sibility allows a finer-grained analysis of coverage that gives
even more insight.

Consider for example the specificationEXp (p holds at
the next state of some path starting from the initial state).
There seems to be a qualitative difference between a sys-
tem where the initial state has 100 successors satisfyingp

and one where there are only two successors satisfyingp.
Although, in both cases, no state isp-covered by the spec-
ification, intuitively, the states that satisfyp play a more
important role in the case where there are only two of them
than in the case where there are 100 of them. That is, each
of the two successors is more responsible for the satisfac-
tion ofEXp than each of the 100 successors.

Note that having a low degree of responsibility is not
necessarily a bad thing in the context of fault tolerance. A
state with a high degree of responsibility is intuitively a crit-
ical state. To ensure that a system can cope with unexpected
hardware or software faults, such as a power failure, a link
failure, or a Byzantine failure [14], we may want to ensure
that no state has a high degree of responsibility. To increase
fault tolerance, we want states to be uncovered. On the other
hand, while we may not want to have nodes with degree of
responsibility 1, since that implies a single point of failure,
a degree of responsibility of1/100 implies perhaps unnec-
essary redundancy.

As I hope this talk will make clear, the notions of causal-
ity, responsibility, and blame can be applied usefully in a
number of settings. While we have taken preliminary steps,
I believe that much more can be done.
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