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Abstract

We examine four approaches for dealing with the logical omniscience problem
and their potential applicability: the syntactic approach, awareness, algorithmic
knowledge, and impossible possible worlds. Although in some settings these ap-
proaches are equi-expressive and can capture all epistemic states, in other settings
of interest they are not. In particular, adding probabilities to the language allows
for finer distinctions between different approaches.

1 Introduction

Logics of knowledge based on possible-world semantics are useful in many areas of
knowledge representation and reasoning, ranging from security to distributed comput-
ing to game theory. In these models, an agent is said to know afdcty is true

in all the worlds she considers possible. While reasoning about knowledge with this
semantics has proved useful, as is well known, it suffers from what is known in the
literatureas théogical omniscienceroblem: under possible-world semantics, agents
know all tautologies and know the logical consequences of their knowledge.

While logical omniscience is certainly not always an issue, in many applications it
is. For example, in the context of distributed computing, we are interested in polynomial-
time algorithms, although in some cases the knowledge needed to perform optimally
may require calculations that cannot be performed in polynomial time (unless P=NP)
[Moses and Tuttle 1988]; in the context of security, we may want to reason about com-
putationally bounded adversaries who cannot factor a large composite number, and thus
cannot be logically omniscient; in game theory, we may be interested in the impact of
computational resources on solution concepts (e.g., what will agents do if computing a
Nash equilibrium is difficult).

Not surprisingly, many approaches for dealing with the logical omniscience prob-
lem have been suggested (see [Fagin, Halpern, Moses, and Vardi 1995, Chapter 9] and
[Moreno 1998]). A far from exhaustive list of approaches includes:

e syntactic approachefEberle 1974; Moore and Hendrix 1979; Konolige 1986],
where an agent’s knowledge is represented by a set of formulas (intuitively, the
set of formulas she knows);



e awarenes$Fagin and Halpern 1988], where an agent kngwishe is aware of
@ ande is true in all the worlds she considers possible;

¢ algorithmic knowledgHalpern, Moses, and Vardi 1994] where, roughly speak-
ing, an agent knows if her knowledge algorithm returns “Yes” on a query of
p; and

e impossible world§Rantala 1982], where the agent may consider possible worlds
that are logically inconsistent (for example, wherand—p are both true).

Which approach is best to use, of course, depends on the application. Our goal
is to elucidate the aspects of the application that make a logic more or less appropri-
ate. We focus here on the expressive power of these approaches. It may seem that
there is not much to say with regard to expressiveness, since it has been shown that all
these approaches are equi-expressive and, indeed, can capture all epistemic states (see
[Wansing 1990; Fagin, Halpern, Moses, and Vardi 1995] and Section 2). However, this
result holds only if we allow an agent to consider no worlds possible. As we show,
this equivalence no longer holds in contexts where agents must consider some worlds
possible. This is particularly relevant with probability in the picture.

Expressive power is only part of the story. In the full version of this paper [Halpern
and Pucella 2007], we consider (mainly by example)gregmaticsof dealing with
logical omniscience—an issue that has largely been ignored: how to choose an ap-
proach and construct an appropriate model. Also for reasons of space, proofs of our
technical results have been omitted, and can be found in the full paper.

2 The Four Approaches: A Review

We now review the standard possible-worlds approach and the four approaches to deal-
ing logical omniscience discussed in the introduction. For ease of exposition we focus
on the single-agent propositional case. While in many applications it is important to
consider more than one agent and to allow first-order features (indeed, this is true
in some of our examples), the issues that arise in dealing with multiple agents and
first-order features are largely orthogonal to those involved in dealing with logical om-
niscience. Thus, we do not discuss these extensions here.

2.1 The Standard Approach

Starting with a sef® of propositional formulas, we close off under conjunction, nega-
tion, and thek operator. Call the resulting languagé. We give semantics to these
formulas using Kripke structures. For simplicity, we focus on approaches that satisfy
the K45 axioms (as well as KD45 and S5). In this cas&4& Kripke structureis

a triple (W, W’ ), whereW is a nonempty set gbossible worldor worlds for
short), W’ C W is the set of worlds that the agent considers possible,rargdan
interpretationthat associates with each world a truth assignmént) to the primitive
propositions in®. Note that the agent need not consider every possible world (that is,
each world ini¥) possible. Then we have
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This semantics suffers from the logical omniscience problem. In particular, one
sound axiom i K¢ A K(p = 1)) = K1, which says that an agent’s knowledge
is closed under implication. In addition, th@owledge generalizatioimference rule
is sound: Fromp infer K. Thus, agents know all tautologies. As is well known, two
other axioms are sound in K45 Kripke structuréSy = K Ky and—-Ky = K-Ko.
These are known respectively as the positive and negative introspection axioms. (These
properties characterize K45.)

In the structures we consider, we alldW’ to be empty, in which case the agent
does not consider any worlds possible. In such structures, the fofifidse) is true.
A KD45 Kripke structurds a K45 Kripke structuréW, W’ =) whereW’ # &. Thus,
in a KD45 Kripke structure, the agent always considers at least one world possible. In
KD45 Kripke structures, the axiomK (false) is sound, which implies that the agent
cannot know inconsistent facts. The logic KD45 results when we add this axiom to
K45. S5 Kripke structuresire KD45 Kripke structures whedd@ = W’; that is, the
agent considers all worlds iV possible. In S5 Kripke structures, the axidfip = ¢,
which says that the agent can know only true facts, is sound. Adding this axiom to the
KD45 axioms gives us the logic S5.

2.2 The Syntactic Approach

The intuition behind the syntactic approach for dealing with logical omniscience is
simply to explicitly list, at every possible worla@, the set of formulas that the agent
knows atw. A syntactic structurdas the form\/ = (W, W’ «,C), where(W, W’ x)

is a K45 Kripke structure and associates a set of formulé$w) with every world

w € W. The semantics of primitive propositions, conjunction, and negation is just the
same as for Kripke structures. For knowledge, we have

(M,w) E Kyiff ¢ € C(w).

2.3 Awareness

Awareness is based on the intuition that an agent should be aware of a concept before
she can know it. The formulas that an agent is aware of are represented syntactically;
we associate with every world the setA(w) of formulas that the agent is aware of.

For an agent to know a formula, not only doesp have to be true at all the worlds she
considers possible, but she has to be aware s well. AK45 awareness structuis
atupleM = (W, W' x, A), where(W, W’ r) is a K45 Kripke structure and maps

worlds to sets of formulas. We now define



(M,w) = Ky iff (M,w') = ¢forallw € W andy € A(w).

We can define KD45 and S5 awareness structures in the obviousWvay (W, W', rr, A)
is a KD45 awareness structure whé#, W', r) is a KD45 structure, and an S5 aware-
ness structure whefW, W', ) is an S5 structure.

2.4 Algorithmic Knowledge

In some applications, there is a computational intuition underlying what an agent
knows; that is, an agent computes what she knows using an algorafgorithmic
knowledgeds one way of formalizing this intuition. Aalgorithmic knowledge struc-
tureis a tupleM = (W, W’ x,A), where(W, W', ) is a K45 Kripke structure and

A is aknowledge algorithnthat returns “Yes”, “No”, or “?” given a formula.? In-
tuitively, A(p) returns “Yes” if the agent can compute thats true, “No” if the agent

can compute thap is false, and “?” otherwise. In algorithmic knowledge structures,

(M,w) E Kpiff A(p) ="“Yes”.

An important class of knowledge algorithms consists ofdgtxendknowledge algo-
rithms. When a sound knowledge algorithm returns “Yes” to a queithen the agent
knows (in the standard sensg)and when it returns “No” to a query, then the agent
does not know (again, in the standard serse)hus, ifA is a sound knowledge algo-
rithm, thenA(yp) = “Yes” implies (M, w) | ¢ for all w € W/, and andi(¢) = “No”
implies there existey € W’ such that M, w) = —¢. (WhenA(p) = “?”, nothing is
prescribed.)

Algorithmic knowledge can be seen as a generalization of a number of approaches
in the literature, although they are not generally cast as algorithmic knowledge. Ra-
manujam [1999] defines an agent to kngvin a model if she can determine thats
true in the submodel generated by the visible states (the part of the model that the agent
sees, such as immediate neighbors in a distributed system), using the model-checking
procedure for a standard logic of knowledge. In this case, the knowledge algorithm is
simply the model-checking procedure. Another example is recent work on justification
logics [Fitting 2005; Artemov and Nogina 2005], based on the intuition that an agent
knows if she can prove thap holds in some underlying constructive logic of proofs.

The knowledge algorithm in this case consists of searching for a praef of

2.5 Impossible Worlds

The impossible-worlds approach relies on relaxing the notion of possible world. Take
the special case of logical omniscience that says that an agent knows all tautologies.
This is a consequence of the fact that a tautology must be true at every possible world.

1In [Fagin and Halpern 1988], the symbal is reserved for the standard definition of knowledge; the
definition we have just given is denoted &s», where X stands forexplicit knowledge. A similar remark
applies to the algorithmic knowledge approach below. WeKigaroughout for ease of exposition.

2|n [Halpern, Moses, and Vardi 1994], the knowledge algorithm is also given an argument that describes
the agent’s local state, which, roughly speaking, captures the relevant information that the agent has. How-
ever, in our single-agent static setting, there is only one local state, so this argument is unneeded.



Thus, one way to eliminate this problem is to allow tautologies to be false at some
worlds. Clearly, those worlds do not obey the usual laws of logic—theingvessible
possible worldgor impossible worldsfor short).

A K45(resp. KD45, S5 impossible-worlds structuiis a tupleM = (W, W' x,C),
where(W, W' N W, ) is a K45 (resp., KD45, S5) Kripke structurd’ is the set of
worlds that the agent considers possible, @rasociates with each world " — W
a set of formulas. W', the set of worlds the agent considers possible, is not re-
quired to be a subset d’'—the agent may well include impossible worldsTi’.

The worlds inW' — W are the impossible worlds. We can also consider a class of
impossible-worlds structures intermediate between K45 and KD45 impossible-worlds
structures. AKD45~ impossible-worlds structuiis a K45 impossible-worlds structure

(W, W', m,C) whereW’ is nonempty. In a KD45 impossible-worlds structure, we do

not require that?V’ N W be nonempty.

A formula ¢ is true at a worldw € W’ — W if and only if ¢ € C(w); for worlds
w € W, the truth assignment is like that in Kripke structures. Thus,

o if we W,then(M,w) |= piff 7(w)(p) = true;
o if we W,then(M,w) = K;piff (M,w') = ¢forallw’ € W’;
o if we W' —W,then(M,w)  ¢iff ¢ € C(w).

We remark that when we speak of validity in impossible-worlds structures, we mean
truth at all possible worlds il in all impossible-worlds structure® = (W, .. .).

3 Expressive Power

There is a sense in which all four approaches are equi-expressive, and can capture all
states of knowledge.

Theorem 3.1: [Wansing 1990; Fagin, Halpern, Moses, and Vardi 198&] every
finite setF" of formulas and every propositionally consistent &etf formulas, there
exists a syntactic structure (resp., K45 awareness structure, KD@possible-worlds
structure, algorithmic knowledge structurd) = (W,...) and a worldw € W such
that (M, w) = Ky ifand only if € F, and(M,w) = ¢ forall ¢ € G. 3

Despite the name, the introspective axioms of K45 are not valid in K45 awareness
structures or K45 impossible-worlds structures. Indeed, it follows from Theorem 3.1
that no axioms of knowledge are valid in these structures. (Falebe the empty set.)

As we now show, these structures support only propositional reasoning, which we
can characterize by the following axiom:

All substitution instances of valid formulas of propositional logic.  Prdp)

3This result extends to infinite sefs of formulas for syntactic structure, K45 awareness structures, and
KD45~ impossible-worlds structures. For algorithmic knowledge structures, the result extends to recursive
setsF’ of formulas.



and the following inference rule:

Fromy = ¢ andy infer 1. (MP)

Theorem 3.2: {Prop, MP} is a sound and complete axiomatizationdf with re-
spect to K45 awareness structures (resp., K45 and KD#Bpossible-worlds struc-
tures, syntactic structures, algorithmic knowledge structures).

It follows from Theorem 3.2 that a formula is valid with respect to K45 awareness
structures (resp., K45 and KD45mpossible-worlds structures, syntactic structures,
algorithmic knowledge structures) if and only if it is propositionally valid, if we treat
formulas of the formi ¢ as primitive propositions. Thus, deciding if a formula is valid
is co-NP complete, just as it is for propositional logic.

Theorems 3.1 and 3.2 rely on the fact that we are considering K45 awareness struc-
tures and KD45 (or K45) impossible-worlds structures. (Whether we consider K45,
KD45, or S5 is irrelevant in the case of syntactic structures and algorithmic knowledge
structures, since the truth of a formula does not depend on what worlds an agent con-
siders possible.) As we now show, there are constraints on what can be known if we
consider KD45 and S5 awareness structures and impossible-worlds structures.

A set of formulasr” is downward closed the following conditions hold:

(@) if o A € F, then bothp andy are inF;
(b) if == € F, theny € F;
(c) if =(¢ A2) € F, then eitherp € F or —¢ € F (or both); and
(d) if Ko € F,theny € F.
We say thaff' is k-compatiblewith F” if K1 € F’ implies thaty € F.

Proposition 3.3: Suppose thall/ = (W, W’ ...) is a KD45 awareness structure
(resp., KD45 impossible-worlds structure), ¢ W, andw’ € W’ (resp.,w’ € W N
W'). LetF = {p | (M,w) = Ky} andletF’ = {¢ | (M,w’) = ¢}. Then

(a) F' is propositionally consistent downward-closed set of formulas that contains
F;

(b) if M is a KD45 impossible-worlds structure théhis k-compatible withf”.

The next result show that the constraintsionlescribed in Proposition 3.3 are the
only constraints or¥'.

Theorem 3.4: If F and F’ are such thatF” is propositionally consistent downward-
closed set of formulas that contai§ then there exists a KD45 awareness structure
M = ({w,w'},{w'}, 7, A) such that(M,w) | Ky iff o € Fand (M,w’) = ¥

for all y» € F’. If, in addition, F' is k-compatible withF’, then there exists a KD45
impossible-worlds structurd/ = ({w, w’}, {w’,w"}, 7, C) such that(M, w) = K¢

iff o € Fand(M,w') = ¢ forall ¢ € F’. Finally, if F = F’, then we can take
w = w', so thatM is an S5 awareness (resp., S5 impossible-worlds) structure.



We can characterize these properties axiomatically(Vet:) (for Veridicality) be
the standard axiom that says that everything known must be true:

Ko = . (Ver)

Let AX v, be the axiom system consisting oProp, MP, Ver}. The fact that the set
of formulas known must be a subset of a downward closed set is characterized by the
following axiom:

(K@ Ao NK o) iEAX ver - =(01 A .. A ). (DC)

The key point here is that, as we shall show, a propositionally consistent set of formulas
that is downward closed must be consistent with;AX

The fact that the set of formulas that is known is k-compatible with a downward
closed set of formulas is characterized by the following axiom:

ifAX ver F o1 Ao Ao = (K1 V.oV Ktby,).

(KC)
Axiom DC is just the special case of axioMiC wherem = 0. It is also easy to see
that KC (and thereforeD () follow from Ver. Let AXpe = {Prop, MP, DC'} and
let AX k¢ = {Prop, MP, KC'}.

Theorem 3.5:

(@) AXpc is a sound and complete axiomatization &f with respect to KD45
awareness structures;

(b) AXxc is a sound and complete axiomatization ®f with respect to KD45
impossible-worlds structures;

(c) AXye, is a sound and complete axiomatizationddf with respect to S5 aware-
ness structures and S5 impossible-worlds structures.

Corollary 3.6:  The satisfiability problem for the language with respect to KD45
awareness structures (resp., KD45 impossible-worlds structures, S5 awareness struc-
tures) is NP-complete.

4 Adding Probability

While the differences between K45, KD45and KD45 impossible-worlds structures
may appear minor, they turn out to be important when we add probability to the picture.
As pointed out by Cozic [2005], standard models for reasoning about probability suffer
from the same logical omniscience problem as models for knowledge. In the language
considered by Fagin, Halpern, and Megiddo [1990] (FHM from now on), there are
formulas that talk explicitly about probability. A formula such&®rime,,) = 1/3

says that the probability thatis prime is1/3. In the FHM semantics, a probability is

put on the set of worlds that the agent considers possible. The probability of a formula



p is then the probability of the set of worlds whegeis true. Clearly, ife andy
are logically equivalent, thef() = ¢(¢) will be true. However, the agent may not
recognize thatp andt are equivalent, and so may not recognize tat) = ¢(v).
Problems of logical omniscience with probability can to some extent be reduced to
problems of logical omniscience with knowledge in a logic that combines knowledge
and probability [Fagin and Halpern 1994]. For example, the fact that an agent may
not recognizé(yp) = £(1)) wheny andy are equivalent just amounts to saying that if
© < 1 is valid, then we do not necessarily wakit¢(¢) = ¢(1)) to hold. However,
adding knowledge and awareness does not preé\ent= ¢(¢) from holding. This is
not really a problem if we interpréf) as the objective probability af; if ¢ andy are
equivalent, it is an objective fact about the world that their probabilities are equal, so
£(p) = £(¢)) should hold. On the other hand,/fy) represents the agent’s subjective
view of the probability ofp, then we do not want to requitéy) = £(¢) to hold. This
cannot be captured in all approaches.

To make this precise, we first clarify the logic we have in mind. L&t %Y be
LK extended with linear inequality formulas involving probability (called likelihood
formulas), in the style of FHM. A likelihood formula is of the form¢(p1) + -+ - +
anf(en) > ¢, Whereay, ..., a, andc are integers. (For ease of exposition, we restrict
©®1,...,9n to be propositional formulas in likelihood formulas; however, the tech-
nigues presented here can be extended to deal with formulas that allow arbitrary nesting
of £ and K). We give semantics to these formulas by extending Kripke structures with
a probability distribution over the worlds that the agent considers possibjgol#a-
bilistic KD45 (resp., S5) Kripke structuiis a tuple(W, W', =, 1), where(W, W’ )
is KD45 (resp., S5) Kripke structure, apdis a probability distribution oveW’. To
interpret likelihood formulas, we first defife] s = {w € W | 7(w)(y) = true},
for a propositional formula. We then extend the semantics®f with the following
rule for interpreting likelihood formulas:

(M,w) = a1l(p1) + -+ + anl(en) > ciff aip(Jei]lae "W + - +
anpt([en]pr NW') > c.

Note that the truth of a likelihood formula at a world does not depend on that world; if
a likelihood formula is true at some world of structuvg thenit is true at every world
of M.

FHM give an axiomatization for likelihood formulas in probabilistic structures.
Aside from propositional reasoning axioms, one axiom captures reasoning with linear
inequalities. Abasic inequality formulas a formula of the forna,z; + - - - + apxy +
ap+1 < bryr+- -+ bmYm + bmy1, Wherezry, ..., g, y1, - - ., ym are (not necessarily
distinct) variables. Ainear inequality formulds a Boolean combination of basic linear
inequality formulas. A linear inequality formula is valid if the resulting inequality holds
under every possible assignment of real numbers to variables. For example, the formula
(2x +3y < 52)A(z —y < 122) = 3z + 2y < 17z) is a valid linear inequality
formula. To get an instance @fieq, we replace each variablg that occurs in a valid
formula about linear inequalities by a likelihood term of the fdif) (naturally, each
occurrence of the variable, must be replaced by the same primitive expectation term
£(x))). (We can replacdneq by a sound and complete axiomatization for Boolean
combinations of linear inequalities; one such axiomatization is given in FHM.)



The other axioms of FHM are specific to probabilistic reasoning, and capture the
defining properties of probability distributions:

L(true) =1
U(~p) =1~ L(p)
Lo ANY) +Lp A=) = L(p).

It is straightforward to extend all the approaches in Section 2 to the probabilistic
setting. In this section, we only consider probabilistic awareness structures and prob-
abilistic impossible-worlds structures, because the interpretation of both algorithmic
knowledge and knowledge in syntactic structures does not depend on the set of worlds
or any probability distribution over the set of worlds.

A KD45 (resp., S5) probabilistic awareness structige tuple(W, W' r, A, 1)
where(W, W’ =, A) is a KD45 (resp., S5) awareness structure arigla probability
distribution over the worlds iW/’. Similarly, aKD45~ (resp., KD45, S5) probabilis-
tic impossible-worlds structures a tuple(W, W’ «,C, u) where (W, W’ =,C) is a
KD45~ (resp., KD45, S5) impossible-worlds structure ands a probability distri-
bution over the worlds if¥’. Since the set of worlds that are assigned probability
must be nonempty, when dealing with probability, we must restrict to KD45 awareness
structures and KD45 impossible-worlds structures, extended with a probability dis-
tribution over the set of worlds the agent considers possible. As we now show, adding
probability to the language allows finer distinctions between awareness structures and
impossible-worlds structures.

In probabilistic awareness structures, the axioms of probability described by FHM
are all valid. For examplée,(¢) = ¢(¢) is valid in probabilistic awareness structures
if © andy are equivalent formulas. Using arguments similar to those in Theorem 3.4,
we can show that K (—=(¢(p) = £(1)))) is valid in probabilistic awareness structures.
Similarly, sincel(yp) + ¢(—¢) = 1 is valid in probability structuresmK (—=(¢(¢) +
£(—p) = 1)) is valid in probabilistic awareness structures.

We can characterize properties of knowledge and likelihood in probabilistic aware-
ness structures axiomatically. L€tob denote a substitution instance of a valid for-
mula in probabilistic logic (using the FHM axiomatization). By the observation above,
Prob is sound in probabilistic awareness structures. Our reasoning has to take this into
account. There is also an axioffi, that connects knowledge and likelihood:

Ko = l(p)>0. (KL)
Let AX?denote the axiom system consisting{dfrop, MP, Prob, KL, Ver}.
Let DCT be the following strengthening d#C', somewhat in the spirit ok C:
(K1 Ao .NKop) = (P01 V... Vahy)
FAXEY o1 A Apn = (Y1 V...V ay,)
and, ..., 1, are likelihood formulas.
(DC™)
Finally, even thoughVer is not sound in KD45 probabilistic awareness structures, a

weaker version, restricted to likelihood formulas, is sound, since there is a single prob-
ability distribution in probabilistic awareness structures. UéVer be the following



axiom:
K¢ = ¢if pis alikelihood formula (WVen

Let AX5 - = {Prop, MP, Prob, DC?, WVer, KL} be the axiom system obtained by
replacingDC in AX p¢ by DC* and addingProb, WVer, andKL.

Theorem 4.1:

(@) AX’EC is a sound and complete axiomatizationdf- @Y with respect to KD45
probabilistic awareness structures.

(b) AX{}@T is a sound and complete axiomatization®f ?Y with respect to S5
probabilistic awareness structures.

Things change significantly when we move to probabilistic impossible-worlds struc-
tures. In particularProb is no longer sound. For example, evenpifs 4 is valid,
() = £(v) is not valid, because we can have an impossible possible world with
positive probability where botly and -« are true. Similarlyf(¢) + ¢(—p) = 1 is
not valid. Indeed, botl(y) + ¢(—p) > 1 and{(p) + ¢(—p) < 1 are both satisfi-
able in impossible-worlds structures: the former requires that there be an impossible
possible world that gets positive probability where betand - are true, while the
latter requires an impossible possible world with positive probability where neither
is true. As a consequence, it is not hard to show that BotH{¢(¢) = ¢(v)) and
K (=(£(p)+£(—p) = 1)) are satisfiable in such impossible-worlds structdresfact,
the only constraint on probability in probabilistic impossible-worlds structures is that it
must be between 0 and 1. This constraint is expressed by the following &dam:

lp) 20N L(p) < 1. (Boung

We can characterize properties of knowledge and likelihood in probabilistic impossible-
worlds structures axiomatically. Let AX, = { Prop, MP, Ineq, Bound, KL, W Ver}.

We can think of A)ggmp as being the core of probabilistic reasoning in impossible-

worlds structures. Let A&T denote the axiom systefProp, MP, Ineq, Bound, Ver, KL}.
Let KCT denote the following extension &fC":

(K1t Ao . ANKpp) = (W1 VooV iby)
FAX D, Foi A Aoy = (D1 V... Vi)
andy; is either a likelihood formula or of the ford{v’, forj = 1,...,m.
(KCT)
Here againDC” is a special case dtC'”. Let AXE , = { Prop, MP, Bound, KC*, WVer, KL}
obtained by replacing C in AX ¢ by KC* and addingBound, WVer, andKL.

Theorem 4.2:

“We remark that Cozic [2005], who considers the logical omniscience problem in the context of prob-
abilistic reasoning, makes somewhat similar points. Although he does not formalize things quite the way
we do, he observes that, in his setting, impossible-worlds structures seem more expressive than awareness
structures.
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@ Axﬁw is a sound and complete axiomatizationtdf: @V with respect to KD45
probabilistic impossible-worlds structures.

(b) AXE . is a sound and complete axiomatizationf- @V with respect to KD45
probabilistic impossible-worlds structures.

(c) AXZ._, is a sound and complete axiomatization®f U with respect to S5
probabilistic impossible-worlds structures with probabilities.

Observe that Theorem 4.2 is true even though probabilities are standard in impos-
sible worlds: the probabilities of worlds still sum to 1. It is just the truth assignment
to formulas that behaves in a nonstandard way in impossible worlds. Intuitively, while
the awareness approach is modeling certain consequences of resource-boundedness in
the context of knowledge, it does not do so for probability. On the other hand, the
impossible-worlds approach seems to extend more naturally to accommodate the con-
sequences of resource-boundedness in probabilistic reasoning.

Corollary 4.3: The satisfiability problem for the languag&-?Y with respect to
KD45 probabilistic awareness structures (resp., S5 probabilistic awareness structures,
KD45~ probabilistic impossible-worlds structures, KD45 probabilistic impossible worlds
structures, S5 probabilistic impossible-worlds structures) is NP-complete.

5 Pragmatic Issues

Even in settings where the four approaches are equi-expressive, they model lack of
logical omniscience quite differently. We thus have to deal with different issues when
attempting to use one of them in practice. For example, if we are using a syntactic struc-
ture to represent a given situation, we need to explain where the furitt®oooming

from; with an awareness structure, we must explain where the awareness function is
coming from; with an algorithmic knowledge structure, we must explain where the
algorithm is coming from; and with an impossible-worlds structure, we must explain
what the impossible worlds are.

There seem to be three quite distinct intuitions underlying the lack of logical om-
niscience As we now discuss, these intuitions can guide the choice of approach, and
match closely the solutions described above. We discuss, for each intuition, the extent
to which each of the approaches to dealing with logical omniscience can capture that
intuition. While the discussion in this section is somewhat informal, we believe that
these observations will prove important when actually trying to decide how to model
lack of logical omniscience in practice.

5.1 Lack of Awareness

The first intuition is lack of awareness of some primitive notions: for example, when

trying to consider possible outcomes of an attack on Iraqg, the worlds can be taken
to represent the outcomes. An agent simply may be unable to contemplate some of
the outcomes of an attack, so cannot consider them possible, let alone know that they

11



will happen or not happen. This can be modeled reasonably well using an aware-
ness structure where the awareness functiogeiserated by primitive propositions

We assume that the agent is unaware of certain primitive propositions, and is unaware
of exactly those formulas that contain a primitive proposition of which the agent is
unaware. This intuition is quite prevalent in the economics community, and all the
standard approaches to modeling lack of logical omniscience in the economics litera-
ture [Modica and Rustichini 1994; Modica and Rustichini 1999; Dekel, Lipman, and
Rustichini 1998; Heifetz, Meier, and Schipper 2003] can essentially be understood in
terms of awareness structures where awareness is generated by primitive propositions
[Halpern 2001; Halpern andégo 2005].

If awareness is generated by primitive propositions, constructing an awareness
structure corresponding to a particular situation is no more (or less!) complicated that
constructing a Kripke structure to capture knowledge without awareness. Determining
the awareness sets for notions of awareness that are not generated by primitive propo-
sitions may be more complicated. It is also worth stressing that an awareness structure
must be understood as the modeler’s view of the situation. For example, if awareness is
generated by primitive propositions and agent 1 is not aware of a primitive proposition
p, then agent 1 cannot contemplate a world wheisetrue (or false); in the model from
agent 1's point of view, there is no propositipn

How do the other approaches fare in modeling lack of awareness? To construct a
syntactic structure, we need to know all sentences that an agent knows before construct-
ing the model. This may or may not be reasonable. But it does not help one discover
properties of knowledge in a given situation. As observed in [Fagin, Halpern, Moses,
and Vardi 1995], the syntactic approach is really only a representation of knowledge.
Algorithmic knowledge can deal with lack of awareness reasonably well, provided that
there is an algorithm,, for determining what the agent is aware of and an algorithm
for determining whether a formula is true in every worldiifl, the set of worlds that
the agent considers possible. If so, given a queryhe algorithmic approach would
simply invokeA,, to check whether the agent is awarexfif so, then the agent invokes
Aj. For example, if awareness is generated by primitive propositions Athisrthe al-
gorithm that, given query, checks whether all the primitive propositionsdrare ones
the agent is aware of; and we can takeo be the algorithm that does model checking
to see ify is true in every world of¥’. (This can be done in time polynomial ii”’;
see [Fagin, Halpern, Moses, and Vardi 1995].) In impossible-worlds structures, we can
interpret lack of awareness gfas meaning that neithernor —y is true at all worlds
the agent considers possible. Thus, if there is any nontrivial lack of awareness, then all
the worlds that the agent considers possible will be impossible worlds. However, these
impossible worlds have a great deal of structure: we can require that for all the formu-
las that the agent is aware of, exactly onexdind— is true at each world the agent
considers possible. As we observed earlier, an awareness structure must be viewed as
the modeler’'sview of the situation. Arguably, the impossible-worlds structure better
captures the agent’s view.
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5.2 Lack of Computational Ability

The second intuition is computational: an agent simply might not have the resources
to compute the required answer. But then the question is how to model this lack of
computational ability. There are two cases of interest, depending on whether we have
an explicit algorithm in mind. If we have an explicit algorithm, then it is relatively
straightforward. For example, Konolige [1986] uses a syntactic approach and gives an
explicit characterization of by taking it to be the set of formulas that can be derived
from a fixed initial set of formulas by using a sound but possibly incomplete set of
inference rules. Note that Konolige’s approach makes syntactic knowledge an instance
of algorithmic knowledge. (See also Pucella [2006] for more details on knowledge
algorithms given by inference rules.)

Algorithmic knowledge can be viewed as a generalization of Konolige's approach
in this setting, since it allows for the possibility that the algorithm used by the agent to
compute what he knows may not be easily expressible as a set of inference rules over
formulas. For example, Berman, Garay, and Perry [1989] implicitly use a particular
form of algorithmic knowledge in their analysis Byzantine agreemeithis is the
problem of getting all nonfaulty processes in a system to coordinate, despite the pres-
ence of failures). Roughly speaking, they allow agents to perform limited tests based
on the information they have; agents know only what follows from these limited tests.
But these tests are not characterized axiomatically. As shown by Halpern and Pucella
[2002], algorithmic knowledge is also a natural way to capture adversaries in security
protocols.

Example 5.1: Security protocols are generally analyzed in the presence of an adver-
sary that has certain capabilities for decoding the messages he intercepts. There are
of course restrictions on the capabilities of a reasonable adversary. For instance, the
adversary may not explicitly know that he has a given message if that message is en-
crypted using a key that the adversary does not know. To capture these restrictions,
Dolev and Yao [1983] gave a now-standard description of the capabilities of adver-
saries. Roughly speaking, a Dolev-Yao adversary can decompose messages, or deci-
pher them if he knows the right keys, but cannot otherwise “crack” encrypted messages.
The adversary can also construct new messages by concatenating known messages, or
encrypting them with a known encryption key.

Algorithmic knowledge is a natural way to capture the knowledge of a Dolev-Yao
adversary [Halpern and Pucella 2002]. We can use a knowledge algarithno
compute whether the adversary cextracta messagen from a setH of messages
that he has intercepted, where the extraction relatidn,, m is defined by following
inference rules:

meH Hbpy {m}r Hbpy k HbFpy my-mo HbEF,y my-me
HbFEpym HbF,y m HbELy my HbEpLy mo

wherem, -ms is the concatenation of messagesandmz, and{m} is the encryption
of messagen with key k.

The knowledge algorithm®¥ simply implements a search for the derivation of a
messagen from the messages that the adversary has received and the initial set of keys,
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using the inference rules above. More precisely, we assume the language has formulas
has(m), interpreted as “the agent possesses messdg@&/hen queried for a formula
has(m), the knowledge algorithm®> simply checks ifH I, m, whereH is the set

of messages intercepted by the adversary. Thus, the fofi(ilas(m)), which is true

if and only if A®Y says “Yes” to queryias(m), that is, if and only ifH +,, m, says

that the adversary can extraatfrom the messages he has interceplied.

However, even when our intuition is computational, at times the details of the al-
gorithm do not matter (and, indeed, may not be known to the modeler). In this case,
awareness may be more useful than algorithmic knowledge.

Example 5.2: Suppose that Alice is trying to reason about whether or not an eaves-
dropper Eve has managed to decrypt a certain message. The intuition behind Eve's
inability to decrypt is computational, but Alice does not know which algorithm Eve

is using. An algorithmic knowledge structure is typically appropriate if there are only

a few algorithms that Eve might be using, and her ability to decrypt depends on the
algorithm® On the other hand, Alice might have no idea of what Eve’s algorithm is,
and might not care. All that matters to her analysis is whether Eve has managed to
decrypt. In this case, using a syntactic structure or an awareness structure seems more
appropriate. Suppose that Alice wants to model her uncertainty regarding whether Eva
has decrypted the message. She could then use an awareness structure with some pos-
sible worlds where Eve is aware of the message, and others where she is not, with the
appropriate probability on each set. Alice can then reason about the likelihood that Eve
has decrypted the message without worrying about how she decryied it.

What about the impossible-worlds approach? It cannot directly represent an algo-
rithm, of course. However, if there is algorithirthat characterizes an agent’s compu-
tational process, then we can simply také = {w’} and defin& (w') = {p | A(p) =
“Yes”}. Indeed, we can give a general computational interpretation of the impossible-
worlds approach. The worlds such thatC(w) are precisely those worlds where the
algorithm answers “Yes” when asked abgutlf neithery nor - is in C(w), that just
means that the algorithm was not able to determine whetlvess true or false. If the
algorithm answers “Yes” to both and—¢, then clearly the algorithm is not sound, but
it may nevertheless describe how a resource-bounded agent works.

This intuition also suggests how we can model the lack of computational ability
illustrated by Example 5.2 using impossible worldscdhit(m) = ¢ is the statement
that the content of the messageis ¢, then in a world where Alice cannot decrypt
neithercont(m) = ¢ and—(cont(m) = ) would be true.

5.3 Imperfect Understanding of the Model

Sometimes an agent’s lack of logical omniscience is best thought of as stemming from
“mistakes” in constructing the model (which perhaps are due to lack of computational
ability).

SWhat is required here is an algorithmic knowledge structure with two agents. There will then be different
algorithms for Eve associated with different states. We omit here the straightforward details of how this can
be done; see [Halpern, Moses, and Vardi 1994].
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Example 5.3: Suppose that Alice does not know whether a numbaés prime.
Although her ignorance regardings primality can be viewed as computationally
based—given enough time and energy, she could in principle figure out whether

is prime—she is not using a particular algorithm to compute her knowledge (at least,
not one that can be easily described). Nor can her state of mind be modeled in a natu-
ral way using an awareness structure or a syntactic structure. Intuitively, there should
at least two worlds she considers possible, one wheseprime, and one where is

not. Howevern is either prime or it is not. If2 is actually prime, then there cannot

be a possible world where is not prime; similarly, ifn is composite, there cannot

be a possible world where is prime. This problem can be modeled naturally using
impossible worlds. Now there is no problem having a world where prime (which

is an impossible world if: is actually composite) and a world whetes composite
(which is an impossible world if is actually prime). In this structure, it is also seems
reasonable to assume that Alice knows that she does not know tharime (so that

the formula— K Prime,, is true even in the impossible worlds).

It is instructive to compare this with the awareness approach. Suppose ihat
indeed prime and an external modeler knows this. Then he can describe Alice’s state
of mind with one world, where: is prime, but Alice is not aware that is prime.

Thus, ~K Prime,, holds at this one world. But note that this is not because Alice
considers it possible that is not prime; rather, it is because Alice cannot compute
whethern is prime. If Alice is aware of the formula K Prime,, at this one world,
then K- K Prime,, also holds. Again, we should interpret this as saying that Alice
knows that she cannot compute whethés prime.ll

The impossible-worlds approach seems like a natural one in Example 5.3 and many
other settings. As we saw, awareness in this situation does not quite capture what is
going on here. Algorithmic knowledge fares somewhat better, but it would require
us to have a specific algorithm in mind; in Example 5.3, this would force us to inter-
pret “knows that a number is prime” as “knows that a number is prime as tested by a
particular factorization algorithm”.

The impossible-worlds approach can sometimes be difficult to apply, however, be-
cause itis not always clear what impossible worlds to take. While there has been a great
deal of discussion (particularly in the philosophy literature) concerning the “metaphys-
ical status” of impossible worlds (cf. [Stalnaker 1996]), the pragmatics of generating
impossible worlds has received comparatively little attention. Hintikka [1975] argues
that Rantala’s [1975] urn models are suitable candidates for impossible worlds. In de-
cision theory, Lipman [1999] uses impossible-worlds structures to represent the prefer-
ences of an agent who may not be able to distinguish logically equivalent outcomes; the
impossible worlds are determined by the preference order. None of these approaches
address the problem of generating the impossible worlds even in a simple example such
as Example 5.3, especially if the worlds have some structure.

We view impossible worlds as describing the agent’s subjective view of a situation.
The modeler may know that these impossible worlds are truly impossible, but the agent
does not. In many cases, the intuitive reason that the agent does not realize that the
impossible worlds are in fact impossible is that the agent does not look carefully at the
worlds. Consider Example 5.3. Létime,,, for various choices of,, be a primitive
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proposition saying that the numberis prime. Suppose that the worlds are models of
arithmetic, which include as domain elements the natural numbers with multiplication
defined on them. IPrime,, is interpreted as being true in a world when there do not
exist numbers:; andnsy in that world such that; x ny = n, then how does the
agent conceive of the impossible worlds? If the agent were to look carefully at a world
where Prime,, holds, he might realize that there are in fact two numhbagrandn,

such thatn; x ny = n. But if n is not prime, how do we capture the fact that the
agent “mistakenly” constructed a world where there are numbgendn, such that

ny X ng = n if we also assume that the agent understands basic multiplication?

We now sketch a new approach to constructing an impossible-worlds structure that
seems appropriate for such examples. The approach is motivated by the observation
that the set of worlds in a Kripke structure is explicitly specified, as is the truth as-
signment on these worlds. Introspectively, this is not the way in which we model
situations. Instead, the set of possible worlds is described implicitly, as is the inter-
pretationr, as the set of worlds satisfying some conditfoithis set of worlds may
well include some impossible worlds. The impossible-worlds structure corresponding
to a situation, therefore, is made up of all worlds satisfying the implicit description,
perhaps refined so that “clearly impossible” worlds are not considered. What makes
a world clearly impossible should be determined by a simple test; for example, such
a simple test might determine that 3 is prime, but would not be able to determine that
224036583 _ 1 js prime.

We can formalize this construction as follows. An implicit structure is a tuple
I = (S,T,C), whereS is a set of possible worldg; is a filter on worlds (a test on
worlds that returns eithemue or false), andC associates with every world ifi a set
(possibly inconsistent) of propositional formulas. Té€steturnstrue for every world
in S that the agent considers possible. An implicit structliee (S, T,C) induces an
impossible-worlds structurg/; = (W, W', «, C) given by:

W ={w € S| C(w) is consistent
W' ={w e S| T(w) = true}
m(w) =C(w)le forwe W
C=Clw—-w)-

We can refine the induced impossible-worlds structure by alotting more resources to
testT. Intuitively, as an agent performs more introspection, she can recognize more
worlds as being impossible. (Manne [2005] investigates a related approach, using a
temporal structure at each world to capture the evolution of knowledge as the agent
introspects over time.)

Consider the primality example again. The agent is likely to care about the primal-
ity of only a few numbers, say,,...,n;. Let® = {Prime,,,..., Prime,,}. The
agent’s inability to compute whether, ..., n; are prime is described implicitly by
having worlds where any combination of them is prime. The details of how multipli-
cation works in a world is not specified in the implicit description. Thus, the implicit

61n multiagent settings, where the worlds that the agent considers possible are defined by an accessibility
relation, we expect the accessibility relation to be described implicitly as well.
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structurel = (S, T,C) corresponding to this description will haygeconsisting of2%
worlds, where each world is a standard model of arithmetic together with a truth as-
signment to the primitive propositions h. The set of formulag (w) consists of all
propositional formulas true under the truth assignment.afhe agent realizes that all
but one of these worlds is impossible, but cannot compute which one is the possible
world. Thus, we tak&(w) = true for all worldsw. Of course, after doing some com-
putation, the agent may realize that, say,is prime andn, is composite. The agent
would then refine the model by takiAgto consider possible only worlds in whieh
is prime andh, is composite.

The use of an implicit description as a recipe for constructing possible (and impos-
sible) worlds is quite general, as the following example illustrates.

Example 5.4: Suppose that we have a database of implications: rules of the form
C1 = Cs, whereCy and(C5 are conjunctions of literals—primitive propositions and
their negation. Suppose that the vocabulary of the conclusions of these rules is disjoint
from the vocabulary of the antecedents. This is a slight simplification of, for exam-
ple, digital rights management policies, where the conclusion typically has the form
Permitted(a,b)or —Permitted(a,bfor some agent and actiorh, andPermittedis not
allowed to appear in the antecedent of rules [Halpern and Weissman 2003]. Rather
than explicitly constructing the worlds compatible with the rules, a user might con-
struct a naive implicit description of them. More specifically, suppose that we have a
finite set of agents, say, . .., a,, and a finite set of actions, say, .. ., b,,. Consider

the implicit structurel = (S,T,C), where each worldv in S is a truth assignment

to the atomic formulas that appear in the antecedents of rules, augmented with all the
literals in the conclusions of rules whose antecedent is true; ifurthermore, take

T(w) = true for all w € S, andC(w) to be all propositional formulas true un-

der the truth assignment at world Thus, for example, if a rule say®udent(a) A
Female(a) = Permitted(a, Play-sports), then in a world whereStudent(a) and
Female(a) are true, then so iPermitted(a, Play-sports). Similarly, if we have

a rule that saydaculty(a) A Female(a) = —Permitted(a, Play-sports), then in

a world whereFaculty(a) and Female(a) are true,—Permitted(a, Play-sports) as

well. Of course, in a worldFaculty(a), Student(a), and Female(a) are all true, both
Permitted(a, Play-sports) and —Permitted(a, Play-sports) are true; this is an im-
possible world. This type of implicit description (and hence, impossible-worlds struc-
ture) should also be useful for characterizing large databases, when it is not possible to
list all the tables explicitlyll

6 Conclusion

Many solutions have been proposed to the logical omniscience problem, differing as to
the intuitions underlying the lack of logical omniscience. There has been comparatively
little work on comparing approaches. We have attempted to do so here, focussing
essentially on expressiveness for four popular approaches.

In comparing the expressive power of the approaches, we started with the well-
known observation that the approaches are equi-expressive in the propositional case.
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However, this observation is true only if we allow the agent not to consider any world
possible. If we require that at least one world be possible, then we get a difference
in expressive power. This is particularly relevant when we have probabilities, because
there has to be at least one world over which to assign probability. Indeed, when consid-
ering logical omniscience in the presence of probability, there can be quite significant
differences in expressive power between the approaches, particularly awareness and
impossible worlds.

As we said, in the full paper, we also consider the pragmatics of logical omni-
science. Even in settings where the four approaches are equi-expressive, they model
lack of logical omniscience quite differently. We thus have to deal with different issues
when attempting to use one of them in practice. For example, if we are using a syntactic
structure to represent a given situation, we need to explain where the fuficicom-
ing from; with an awareness structure, we must explain where the awareness function
is coming from; with an algorithmic knowledge structure, we must explain where the
algorithm is coming from; and with an impossible-worlds structure, we must explain
what the impossible worlds are. In some domains, there may be a natural interpretation
for the awareness function, but it finding a natural impossible-worlds interpretation
may be difficult; in other domains, the situation may be just the opposite. Given the
increasing understanding of the importance of awareness in game-theoretic applica-
tions (see, for example, [Heifetz, Meier, and Schipper 2003; Halpern agd R006a;
Halpern and Rgo 2006b]), these pragmatic issues assume more significance, and de-
serve further exploration.
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