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Abstract

We examine four approaches for dealing with the logical omniscience problem
and their potential applicability: the syntactic approach, awareness, algorithmic
knowledge, and impossible possible worlds. Although in some settings these ap-
proaches are equi-expressive and can capture all epistemic states, in other settings
of interest they are not. In particular, adding probabilities to the language allows
for finer distinctions between different approaches.

1 Introduction

Logics of knowledge based on possible-world semantics are useful in many areas of
knowledge representation and reasoning, ranging from security to distributed comput-
ing to game theory. In these models, an agent is said to know a factϕ if ϕ is true
in all the worlds she considers possible. While reasoning about knowledge with this
semantics has proved useful, as is well known, it suffers from what is known in the
literatureas thelogical omniscienceproblem: under possible-world semantics, agents
know all tautologies and know the logical consequences of their knowledge.

While logical omniscience is certainly not always an issue, in many applications it
is. For example, in the context of distributed computing, we are interested in polynomial-
time algorithms, although in some cases the knowledge needed to perform optimally
may require calculations that cannot be performed in polynomial time (unless P=NP)
[Moses and Tuttle 1988]; in the context of security, we may want to reason about com-
putationally bounded adversaries who cannot factor a large composite number, and thus
cannot be logically omniscient; in game theory, we may be interested in the impact of
computational resources on solution concepts (e.g., what will agents do if computing a
Nash equilibrium is difficult).

Not surprisingly, many approaches for dealing with the logical omniscience prob-
lem have been suggested (see [Fagin, Halpern, Moses, and Vardi 1995, Chapter 9] and
[Moreno 1998]). A far from exhaustive list of approaches includes:

• syntactic approaches[Eberle 1974; Moore and Hendrix 1979; Konolige 1986],
where an agent’s knowledge is represented by a set of formulas (intuitively, the
set of formulas she knows);



• awareness[Fagin and Halpern 1988], where an agent knowsϕ if she is aware of
ϕ andϕ is true in all the worlds she considers possible;

• algorithmic knowledge[Halpern, Moses, and Vardi 1994] where, roughly speak-
ing, an agent knowsϕ if her knowledge algorithm returns “Yes” on a query of
ϕ; and

• impossible worlds[Rantala 1982], where the agent may consider possible worlds
that are logically inconsistent (for example, wherep and¬p are both true).

Which approach is best to use, of course, depends on the application. Our goal
is to elucidate the aspects of the application that make a logic more or less appropri-
ate. We focus here on the expressive power of these approaches. It may seem that
there is not much to say with regard to expressiveness, since it has been shown that all
these approaches are equi-expressive and, indeed, can capture all epistemic states (see
[Wansing 1990; Fagin, Halpern, Moses, and Vardi 1995] and Section 2). However, this
result holds only if we allow an agent to consider no worlds possible. As we show,
this equivalence no longer holds in contexts where agents must consider some worlds
possible. This is particularly relevant with probability in the picture.

Expressive power is only part of the story. In the full version of this paper [Halpern
and Pucella 2007], we consider (mainly by example) thepragmaticsof dealing with
logical omniscience—an issue that has largely been ignored: how to choose an ap-
proach and construct an appropriate model. Also for reasons of space, proofs of our
technical results have been omitted, and can be found in the full paper.

2 The Four Approaches: A Review

We now review the standard possible-worlds approach and the four approaches to deal-
ing logical omniscience discussed in the introduction. For ease of exposition we focus
on the single-agent propositional case. While in many applications it is important to
consider more than one agent and to allow first-order features (indeed, this is true
in some of our examples), the issues that arise in dealing with multiple agents and
first-order features are largely orthogonal to those involved in dealing with logical om-
niscience. Thus, we do not discuss these extensions here.

2.1 The Standard Approach

Starting with a setΦ of propositional formulas, we close off under conjunction, nega-
tion, and theK operator. Call the resulting languageLK . We give semantics to these
formulas using Kripke structures. For simplicity, we focus on approaches that satisfy
the K45 axioms (as well as KD45 and S5). In this case, aK45 Kripke structureis
a triple (W,W ′, π), whereW is a nonempty set ofpossible worlds(or worlds, for
short),W ′ ⊆ W is the set of worlds that the agent considers possible, andπ is an
interpretationthat associates with each world a truth assignmentπ(w) to the primitive
propositions inΦ. Note that the agent need not consider every possible world (that is,
each world inW ) possible. Then we have
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(M,w) |= p iff π(w)(p) = true if p ∈ Φ.

(M,w) |= ¬ϕ iff (M,w) 6|= ϕ.

(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and(M,w) |= ψ.

(M,w) |= Kϕ iff (M,w′) |= ϕ for all w′ ∈W ′.

This semantics suffers from the logical omniscience problem. In particular, one
sound axiom is(Kϕ ∧ K(ϕ ⇒ ψ)) ⇒ Kψ, which says that an agent’s knowledge
is closed under implication. In addition, theknowledge generalizationinference rule
is sound: Fromϕ inferKϕ. Thus, agents know all tautologies. As is well known, two
other axioms are sound in K45 Kripke structures:Kϕ⇒ KKϕ and¬Kϕ⇒ K¬Kϕ.
These are known respectively as the positive and negative introspection axioms. (These
properties characterize K45.)

In the structures we consider, we allowW ′ to be empty, in which case the agent
does not consider any worlds possible. In such structures, the formulaK(false) is true.
A KD45 Kripke structureis a K45 Kripke structure(W,W ′, π) whereW ′ 6= ∅. Thus,
in a KD45 Kripke structure, the agent always considers at least one world possible. In
KD45 Kripke structures, the axiom¬K(false) is sound, which implies that the agent
cannot know inconsistent facts. The logic KD45 results when we add this axiom to
K45. S5 Kripke structuresare KD45 Kripke structures whereW = W ′; that is, the
agent considers all worlds inW possible. In S5 Kripke structures, the axiomKϕ⇒ ϕ,
which says that the agent can know only true facts, is sound. Adding this axiom to the
KD45 axioms gives us the logic S5.

2.2 The Syntactic Approach

The intuition behind the syntactic approach for dealing with logical omniscience is
simply to explicitly list, at every possible worldw, the set of formulas that the agent
knows atw. A syntactic structurehas the formM = (W,W ′, π, C), where(W,W ′, π)
is a K45 Kripke structure andC associates a set of formulasC(w) with every world
w ∈ W . The semantics of primitive propositions, conjunction, and negation is just the
same as for Kripke structures. For knowledge, we have

(M,w) |= Kϕ iff ϕ ∈ C(w).

2.3 Awareness

Awareness is based on the intuition that an agent should be aware of a concept before
she can know it. The formulas that an agent is aware of are represented syntactically;
we associate with every worldw the setA(w) of formulas that the agent is aware of.
For an agent to know a formulaϕ, not only doesϕ have to be true at all the worlds she
considers possible, but she has to be aware ofϕ as well. AK45 awareness structureis
a tupleM = (W,W ′, π,A), where(W,W ′, π) is a K45 Kripke structure andA maps
worlds to sets of formulas. We now define
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(M,w) |= Kϕ iff (M,w′) |= ϕ for all w′ ∈W ′ andϕ ∈ A(w).1

We can define KD45 and S5 awareness structures in the obvious way:M = (W,W ′, π,A)
is a KD45 awareness structure when(W,W ′, π) is a KD45 structure, and an S5 aware-
ness structure when(W,W ′, π) is an S5 structure.

2.4 Algorithmic Knowledge

In some applications, there is a computational intuition underlying what an agent
knows; that is, an agent computes what she knows using an algorithm.Algorithmic
knowledgeis one way of formalizing this intuition. Analgorithmic knowledge struc-
ture is a tupleM = (W,W ′, π, A), where(W,W ′, π) is a K45 Kripke structure and
A is a knowledge algorithmthat returns “Yes”, “No”, or “?” given a formulaϕ.2 In-
tuitively, A(ϕ) returns “Yes” if the agent can compute thatϕ is true, “No” if the agent
can compute thatϕ is false, and “?” otherwise. In algorithmic knowledge structures,

(M,w) |= Kϕ iff A(ϕ) = “Yes”.

An important class of knowledge algorithms consists of thesoundknowledge algo-
rithms. When a sound knowledge algorithm returns “Yes” to a queryϕ, then the agent
knows (in the standard sense)ϕ, and when it returns “No” to a queryϕ, then the agent
does not know (again, in the standard sense)ϕ. Thus, ifA is a sound knowledge algo-
rithm, thenA(ϕ) = “Yes” implies (M,w) |= ϕ for all w ∈ W ′, and andA(ϕ) = “No”
implies there existsw ∈ W ′ such that(M,w) |= ¬ϕ. (WhenA(ϕ) = “?”, nothing is
prescribed.)

Algorithmic knowledge can be seen as a generalization of a number of approaches
in the literature, although they are not generally cast as algorithmic knowledge. Ra-
manujam [1999] defines an agent to knowϕ in a model if she can determine thatϕ is
true in the submodel generated by the visible states (the part of the model that the agent
sees, such as immediate neighbors in a distributed system), using the model-checking
procedure for a standard logic of knowledge. In this case, the knowledge algorithm is
simply the model-checking procedure. Another example is recent work on justification
logics [Fitting 2005; Artemov and Nogina 2005], based on the intuition that an agent
knowsϕ if she can prove thatϕ holds in some underlying constructive logic of proofs.
The knowledge algorithm in this case consists of searching for a proof ofϕ.

2.5 Impossible Worlds

The impossible-worlds approach relies on relaxing the notion of possible world. Take
the special case of logical omniscience that says that an agent knows all tautologies.
This is a consequence of the fact that a tautology must be true at every possible world.

1In [Fagin and Halpern 1988], the symbolK is reserved for the standard definition of knowledge; the
definition we have just given is denoted asXϕ, whereX stands forexplicit knowledge. A similar remark
applies to the algorithmic knowledge approach below. We useK throughout for ease of exposition.

2In [Halpern, Moses, and Vardi 1994], the knowledge algorithm is also given an argument that describes
the agent’s local state, which, roughly speaking, captures the relevant information that the agent has. How-
ever, in our single-agent static setting, there is only one local state, so this argument is unneeded.
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Thus, one way to eliminate this problem is to allow tautologies to be false at some
worlds. Clearly, those worlds do not obey the usual laws of logic—they areimpossible
possible worlds(or impossible worlds, for short).

A K45(resp.,KD45, S5) impossible-worlds structureis a tupleM = (W,W ′, π, C),
where(W,W ′ ∩W,π) is a K45 (resp., KD45, S5) Kripke structure,W ′ is the set of
worlds that the agent considers possible, andC associates with each world inW ′ −W
a set of formulas.W ′, the set of worlds the agent considers possible, is not re-
quired to be a subset ofW—the agent may well include impossible worlds inW ′.
The worlds inW ′ − W are the impossible worlds. We can also consider a class of
impossible-worlds structures intermediate between K45 and KD45 impossible-worlds
structures. AKD45− impossible-worlds structureis a K45 impossible-worlds structure
(W,W ′, π, C) whereW ′ is nonempty. In a KD45− impossible-worlds structure, we do
not require thatW ′ ∩W be nonempty.

A formulaϕ is true at a worldw ∈ W ′ −W if and only if ϕ ∈ C(w); for worlds
w ∈W , the truth assignment is like that in Kripke structures. Thus,

• if w ∈W , then(M,w) |= p iff π(w)(p) = true;

• if w ∈W , then(M,w) |= Kiϕ iff (M,w′) |= ϕ for all w′ ∈W ′;

• if w ∈W ′ −W , then(M,w) |= ϕ iff ϕ ∈ C(w).

We remark that when we speak of validity in impossible-worlds structures, we mean
truth at all possible worlds inW in all impossible-worlds structuresM = (W, . . .).

3 Expressive Power

There is a sense in which all four approaches are equi-expressive, and can capture all
states of knowledge.

Theorem 3.1: [Wansing 1990; Fagin, Halpern, Moses, and Vardi 1995]For every
finite setF of formulas and every propositionally consistent setG of formulas, there
exists a syntactic structure (resp., K45 awareness structure, KD45− impossible-worlds
structure, algorithmic knowledge structure)M = (W, . . .) and a worldw ∈ W such
that (M,w) |= Kϕ if and only ifϕ ∈ F , and(M,w) |= ψ for all ψ ∈ G. 3

Despite the name, the introspective axioms of K45 are not valid in K45 awareness
structures or K45 impossible-worlds structures. Indeed, it follows from Theorem 3.1
that no axioms of knowledge are valid in these structures. (TakeF to be the empty set.)

As we now show, these structures support only propositional reasoning, which we
can characterize by the following axiom:

All substitution instances of valid formulas of propositional logic. (Prop)

3This result extends to infinite setsF of formulas for syntactic structure, K45 awareness structures, and
KD45− impossible-worlds structures. For algorithmic knowledge structures, the result extends to recursive
setsF of formulas.

5



and the following inference rule:

Fromϕ⇒ ψ andϕ inferψ. (MP)

Theorem 3.2: {Prop,MP} is a sound and complete axiomatization ofLK with re-
spect to K45 awareness structures (resp., K45 and KD45− impossible-worlds struc-
tures, syntactic structures, algorithmic knowledge structures).

It follows from Theorem 3.2 that a formula is valid with respect to K45 awareness
structures (resp., K45 and KD45− impossible-worlds structures, syntactic structures,
algorithmic knowledge structures) if and only if it is propositionally valid, if we treat
formulas of the formKϕ as primitive propositions. Thus, deciding if a formula is valid
is co-NP complete, just as it is for propositional logic.

Theorems 3.1 and 3.2 rely on the fact that we are considering K45 awareness struc-
tures and KD45− (or K45) impossible-worlds structures. (Whether we consider K45,
KD45, or S5 is irrelevant in the case of syntactic structures and algorithmic knowledge
structures, since the truth of a formula does not depend on what worlds an agent con-
siders possible.) As we now show, there are constraints on what can be known if we
consider KD45 and S5 awareness structures and impossible-worlds structures.

A set of formulasF is downward closedif the following conditions hold:

(a) if ϕ ∧ ψ ∈ F , then bothϕ andψ are inF ;

(b) if ¬¬ϕ ∈ F , thenϕ ∈ F ;

(c) if ¬(ϕ ∧ ψ) ∈ F , then either¬ϕ ∈ F or¬ψ ∈ F (or both); and

(d) if Kϕ ∈ F , thenϕ ∈ F .

We say thatF is k-compatiblewith F ′ if Kψ ∈ F ′ implies thatψ ∈ F .

Proposition 3.3: Suppose thatM = (W,W ′, . . .) is a KD45 awareness structure
(resp., KD45 impossible-worlds structure),w ∈ W , andw′ ∈ W ′ (resp.,w′ ∈ W ∩
W ′). LetF = {ϕ | (M,w) |= Kϕ} and letF ′ = {ψ | (M,w′) |= ψ}. Then

(a) F ′ is propositionally consistent downward-closed set of formulas that contains
F ;

(b) if M is a KD45 impossible-worlds structure thenF is k-compatible withF ′.

The next result show that the constraints onF described in Proposition 3.3 are the
only constraints onF .

Theorem 3.4: If F andF ′ are such thatF ′ is propositionally consistent downward-
closed set of formulas that containsF , then there exists a KD45 awareness structure
M = ({w,w′}, {w′}, π,A) such that(M,w) |= Kϕ iff ϕ ∈ F and (M,w′) |= ψ
for all ψ ∈ F ′. If, in addition,F is k-compatible withF ′, then there exists a KD45
impossible-worlds structureM = ({w,w′}, {w′, w′′}, π, C) such that(M,w) |= Kϕ
iff ϕ ∈ F and (M,w′) |= ψ for all ψ ∈ F ′. Finally, if F = F ′, then we can take
w = w′, so thatM is an S5 awareness (resp., S5 impossible-worlds) structure.
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We can characterize these properties axiomatically. Let(V er) (for Veridicality) be
the standard axiom that says that everything known must be true:

Kϕ⇒ ϕ. (Ver)

Let AXVer be the axiom system consisting of{Prop,MP ,Ver}. The fact that the set
of formulas known must be a subset of a downward closed set is characterized by the
following axiom:

¬(Kϕ1 ∧ . . . ∧Kϕm) if AX Ver ` ¬(ϕ1 ∧ . . . ∧ ϕn). (DC)

The key point here is that, as we shall show, a propositionally consistent set of formulas
that is downward closed must be consistent with AXVer .

The fact that the set of formulas that is known is k-compatible with a downward
closed set of formulas is characterized by the following axiom:

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (Kψ1 ∨ . . . ∨Kψm)
if AX Ver ` ϕ1 ∧ . . . ∧ ϕn ⇒ (Kψ1 ∨ . . . ∨Kψm).

(KC)
Axiom DC is just the special case of axiomKC wherem = 0. It is also easy to see
thatKC (and thereforeDC ) follow from Ver . Let AXDC = {Prop,MP ,DC} and
let AXKC = {Prop,MP ,KC}.

Theorem 3.5:

(a) AXDC is a sound and complete axiomatization ofLK with respect to KD45
awareness structures;

(b) AXKC is a sound and complete axiomatization ofLK with respect to KD45
impossible-worlds structures;

(c) AXVer is a sound and complete axiomatization ofLK with respect to S5 aware-
ness structures and S5 impossible-worlds structures.

Corollary 3.6: The satisfiability problem for the languageLK with respect to KD45
awareness structures (resp., KD45 impossible-worlds structures, S5 awareness struc-
tures) is NP-complete.

4 Adding Probability

While the differences between K45, KD45−, and KD45 impossible-worlds structures
may appear minor, they turn out to be important when we add probability to the picture.
As pointed out by Cozic [2005], standard models for reasoning about probability suffer
from the same logical omniscience problem as models for knowledge. In the language
considered by Fagin, Halpern, and Megiddo [1990] (FHM from now on), there are
formulas that talk explicitly about probability. A formula such as`(Primen) = 1/3
says that the probability thatn is prime is1/3. In the FHM semantics, a probability is
put on the set of worlds that the agent considers possible. The probability of a formula
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ϕ is then the probability of the set of worlds whereϕ is true. Clearly, ifϕ andψ
are logically equivalent, theǹ(ϕ) = `(ψ) will be true. However, the agent may not
recognize thatϕ andψ are equivalent, and so may not recognize that`(ϕ) = `(ψ).
Problems of logical omniscience with probability can to some extent be reduced to
problems of logical omniscience with knowledge in a logic that combines knowledge
and probability [Fagin and Halpern 1994]. For example, the fact that an agent may
not recognizè(ϕ) = `(ψ) whenϕ andψ are equivalent just amounts to saying that if
ϕ ⇔ ψ is valid, then we do not necessarily wantK(`(ϕ) = `(ψ)) to hold. However,
adding knowledge and awareness does not prevent`(ϕ) = `(ψ) from holding. This is
not really a problem if we interpret`(ϕ) as the objective probability ofϕ; if ϕ andψ are
equivalent, it is an objective fact about the world that their probabilities are equal, so
`(ϕ) = `(ψ) should hold. On the other hand, if`(ϕ) represents the agent’s subjective
view of the probability ofϕ, then we do not want to requirè(ϕ) = `(ψ) to hold. This
cannot be captured in all approaches.

To make this precise, we first clarify the logic we have in mind. LetLK,QU be
LK extended with linear inequality formulas involving probability (called likelihood
formulas), in the style of FHM. A likelihood formula is of the forma1`(ϕ1) + · · · +
an`(ϕn) ≥ c, wherea1, . . . , an andc are integers. (For ease of exposition, we restrict
ϕ1, . . . , ϕn to be propositional formulas in likelihood formulas; however, the tech-
niques presented here can be extended to deal with formulas that allow arbitrary nesting
of ` andK). We give semantics to these formulas by extending Kripke structures with
a probability distribution over the worlds that the agent considers possible. Aproba-
bilistic KD45 (resp., S5) Kripke structureis a tuple(W,W ′, π, µ), where(W,W ′, π)
is KD45 (resp., S5) Kripke structure, andµ is a probability distribution overW ′. To
interpret likelihood formulas, we first define[[ϕ]]M = {w ∈ W | π(w)(ϕ) = true},
for a propositional formulaϕ. We then extend the semantics ofLK with the following
rule for interpreting likelihood formulas:

(M,w) |= a1`(ϕ1) + · · · + an`(ϕn) ≥ c iff a1µ([[ϕ1]]M ∩ W ′) + · · · +
anµ([[ϕn]]M ∩W ′) ≥ c.

Note that the truth of a likelihood formula at a world does not depend on that world; if
a likelihood formula is true at some world of structureM , thenit is true at every world
of M .

FHM give an axiomatization for likelihood formulas in probabilistic structures.
Aside from propositional reasoning axioms, one axiom captures reasoning with linear
inequalities. Abasic inequality formulais a formula of the forma1x1 + · · ·+ akxk +
ak+1 ≤ b1y1 + · · ·+ bmym + bm+1, wherex1, . . . , xk, y1, . . . , ym are (not necessarily
distinct) variables. Alinear inequality formulais a Boolean combination of basic linear
inequality formulas. A linear inequality formula is valid if the resulting inequality holds
under every possible assignment of real numbers to variables. For example, the formula
(2x + 3y ≤ 5z) ∧ (x − y ≤ 12z) ⇒ (3x + 2y ≤ 17z) is a valid linear inequality
formula. To get an instance ofIneq , we replace each variablexi that occurs in a valid
formula about linear inequalities by a likelihood term of the form`(ψ) (naturally, each
occurrence of the variablexi must be replaced by the same primitive expectation term
`(ψ)). (We can replaceIneq by a sound and complete axiomatization for Boolean
combinations of linear inequalities; one such axiomatization is given in FHM.)
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The other axioms of FHM are specific to probabilistic reasoning, and capture the
defining properties of probability distributions:

`(true) = 1
`(¬ϕ) = 1− `(ϕ)
`(ϕ ∧ ψ) + `(ϕ ∧ ¬ψ) = `(ϕ).

It is straightforward to extend all the approaches in Section 2 to the probabilistic
setting. In this section, we only consider probabilistic awareness structures and prob-
abilistic impossible-worlds structures, because the interpretation of both algorithmic
knowledge and knowledge in syntactic structures does not depend on the set of worlds
or any probability distribution over the set of worlds.

A KD45 (resp., S5) probabilistic awareness structureis a tuple(W,W ′, π,A, µ)
where(W,W ′, π,A) is a KD45 (resp., S5) awareness structure andµ is a probability
distribution over the worlds inW ′. Similarly, aKD45− (resp., KD45, S5) probabilis-
tic impossible-worlds structureis a tuple(W,W ′, π, C, µ) where(W,W ′, π, C) is a
KD45− (resp., KD45, S5) impossible-worlds structure andµ is a probability distri-
bution over the worlds inW ′. Since the set of worlds that are assigned probability
must be nonempty, when dealing with probability, we must restrict to KD45 awareness
structures and KD45− impossible-worlds structures, extended with a probability dis-
tribution over the set of worlds the agent considers possible. As we now show, adding
probability to the language allows finer distinctions between awareness structures and
impossible-worlds structures.

In probabilistic awareness structures, the axioms of probability described by FHM
are all valid. For example,̀(ϕ) = `(ψ) is valid in probabilistic awareness structures
if ϕ andψ are equivalent formulas. Using arguments similar to those in Theorem 3.4,
we can show that¬K(¬(`(ϕ) = `(ψ))) is valid in probabilistic awareness structures.
Similarly, since`(ϕ) + `(¬ϕ) = 1 is valid in probability structures,¬K(¬(`(ϕ) +
`(¬ϕ) = 1)) is valid in probabilistic awareness structures.

We can characterize properties of knowledge and likelihood in probabilistic aware-
ness structures axiomatically. LetProb denote a substitution instance of a valid for-
mula in probabilistic logic (using the FHM axiomatization). By the observation above,
Prob is sound in probabilistic awareness structures. Our reasoning has to take this into
account. There is also an axiomKL that connects knowledge and likelihood:

Kϕ⇒ `(ϕ) > 0. (KL)

Let AXP
Ver denote the axiom system consisting of{Prop,MP ,Prob,KL,Ver}.

Let DCP be the following strengthening ofDC , somewhat in the spirit ofKC :

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (ψ1 ∨ . . . ∨ ψm)

if AX P
Ver ` ϕ1 ∧ . . . ∧ ϕn ⇒ (ψ1 ∨ . . . ∨ ψm)

andψ1, . . . , ψm are likelihood formulas.
(DCP )

Finally, even thoughVer is not sound in KD45 probabilistic awareness structures, a
weaker version, restricted to likelihood formulas, is sound, since there is a single prob-
ability distribution in probabilistic awareness structures. LetWVer be the following
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axiom:
Kϕ⇒ ϕ if ϕ is a likelihood formula. (WVer)

Let AXP
DC = {Prop,MP ,Prob,DCP ,WVer ,KL} be the axiom system obtained by

replacingDC in AXDC by DCP and addingProb, WVer , andKL.

Theorem 4.1:

(a) AXP
DC is a sound and complete axiomatization ofLK,QU with respect to KD45

probabilistic awareness structures.

(b) AXP
Ver is a sound and complete axiomatization ofLK,QU with respect to S5

probabilistic awareness structures.

Things change significantly when we move to probabilistic impossible-worlds struc-
tures. In particular,Prob is no longer sound. For example, even ifϕ ⇔ ψ is valid,
`(ϕ) = `(ψ) is not valid, because we can have an impossible possible world with
positive probability where bothϕ and¬ψ are true. Similarly,̀ (ϕ) + `(¬ϕ) = 1 is
not valid. Indeed, both̀(ϕ) + `(¬ϕ) > 1 and`(ϕ) + `(¬ϕ) < 1 are both satisfi-
able in impossible-worlds structures: the former requires that there be an impossible
possible world that gets positive probability where bothϕ and¬ϕ are true, while the
latter requires an impossible possible world with positive probability where neither
is true. As a consequence, it is not hard to show that bothK¬(`(ϕ) = `(ψ)) and
K(¬(`(ϕ)+`(¬ϕ) = 1)) are satisfiable in such impossible-worlds structures.4 In fact,
the only constraint on probability in probabilistic impossible-worlds structures is that it
must be between 0 and 1. This constraint is expressed by the following axiomBound :

`(ϕ) ≥ 0 ∧ `(ϕ) ≤ 1. (Bound)

We can characterize properties of knowledge and likelihood in probabilistic impossible-
worlds structures axiomatically. Let AXBimp = {Prop,MP , Ineq ,Bound ,KL,WVer}.
We can think of AXB

imp as being the core of probabilistic reasoning in impossible-
worlds structures. Let AXBVer denote the axiom system{Prop,MP , Ineq ,Bound ,Ver ,KL}.
Let KCP denote the following extension ofKC :

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (ψ1 ∨ . . . ∨ ψm)

if AX P
Ver ` ϕ1 ∧ . . . ∧ ϕn ⇒ (ψ1 ∨ . . . ∨ ψm)

andψj is either a likelihood formula or of the formKψ′, for j = 1, . . . ,m.
(KCP )

Here again,DCP is a special case ofKCP . Let AXB
KC = {Prop,MP ,Bound ,KCP ,WVer ,KL}

obtained by replacingKC in AXKC by KCP and addingBound , WVer , andKL.

Theorem 4.2:
4We remark that Cozic [2005], who considers the logical omniscience problem in the context of prob-

abilistic reasoning, makes somewhat similar points. Although he does not formalize things quite the way
we do, he observes that, in his setting, impossible-worlds structures seem more expressive than awareness
structures.
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(a) AXB
imp is a sound and complete axiomatization ofLK,QU with respect to KD45−

probabilistic impossible-worlds structures.

(b) AXB
KC is a sound and complete axiomatization ofLK,QU with respect to KD45

probabilistic impossible-worlds structures.

(c) AXB
Ver is a sound and complete axiomatization ofLK,QU with respect to S5

probabilistic impossible-worlds structures with probabilities.

Observe that Theorem 4.2 is true even though probabilities are standard in impos-
sible worlds: the probabilities of worlds still sum to 1. It is just the truth assignment
to formulas that behaves in a nonstandard way in impossible worlds. Intuitively, while
the awareness approach is modeling certain consequences of resource-boundedness in
the context of knowledge, it does not do so for probability. On the other hand, the
impossible-worlds approach seems to extend more naturally to accommodate the con-
sequences of resource-boundedness in probabilistic reasoning.

Corollary 4.3: The satisfiability problem for the languageLK,QU with respect to
KD45 probabilistic awareness structures (resp., S5 probabilistic awareness structures,
KD45− probabilistic impossible-worlds structures, KD45 probabilistic impossible worlds
structures, S5 probabilistic impossible-worlds structures) is NP-complete.

5 Pragmatic Issues

Even in settings where the four approaches are equi-expressive, they model lack of
logical omniscience quite differently. We thus have to deal with different issues when
attempting to use one of them in practice. For example, if we are using a syntactic struc-
ture to represent a given situation, we need to explain where the functionC is coming
from; with an awareness structure, we must explain where the awareness function is
coming from; with an algorithmic knowledge structure, we must explain where the
algorithm is coming from; and with an impossible-worlds structure, we must explain
what the impossible worlds are.

There seem to be three quite distinct intuitions underlying the lack of logical om-
niscience As we now discuss, these intuitions can guide the choice of approach, and
match closely the solutions described above. We discuss, for each intuition, the extent
to which each of the approaches to dealing with logical omniscience can capture that
intuition. While the discussion in this section is somewhat informal, we believe that
these observations will prove important when actually trying to decide how to model
lack of logical omniscience in practice.

5.1 Lack of Awareness

The first intuition is lack of awareness of some primitive notions: for example, when
trying to consider possible outcomes of an attack on Iraq, the worlds can be taken
to represent the outcomes. An agent simply may be unable to contemplate some of
the outcomes of an attack, so cannot consider them possible, let alone know that they
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will happen or not happen. This can be modeled reasonably well using an aware-
ness structure where the awareness function isgenerated by primitive propositions.
We assume that the agent is unaware of certain primitive propositions, and is unaware
of exactly those formulas that contain a primitive proposition of which the agent is
unaware. This intuition is quite prevalent in the economics community, and all the
standard approaches to modeling lack of logical omniscience in the economics litera-
ture [Modica and Rustichini 1994; Modica and Rustichini 1999; Dekel, Lipman, and
Rustichini 1998; Heifetz, Meier, and Schipper 2003] can essentially be understood in
terms of awareness structures where awareness is generated by primitive propositions
[Halpern 2001; Halpern and Rêgo 2005].

If awareness is generated by primitive propositions, constructing an awareness
structure corresponding to a particular situation is no more (or less!) complicated that
constructing a Kripke structure to capture knowledge without awareness. Determining
the awareness sets for notions of awareness that are not generated by primitive propo-
sitions may be more complicated. It is also worth stressing that an awareness structure
must be understood as the modeler’s view of the situation. For example, if awareness is
generated by primitive propositions and agent 1 is not aware of a primitive proposition
p, then agent 1 cannot contemplate a world wherep is true (or false); in the model from
agent 1’s point of view, there is no propositionp.

How do the other approaches fare in modeling lack of awareness? To construct a
syntactic structure, we need to know all sentences that an agent knows before construct-
ing the model. This may or may not be reasonable. But it does not help one discover
properties of knowledge in a given situation. As observed in [Fagin, Halpern, Moses,
and Vardi 1995], the syntactic approach is really only a representation of knowledge.
Algorithmic knowledge can deal with lack of awareness reasonably well, provided that
there is an algorithmAa for determining what the agent is aware of and an algorithmAk

for determining whether a formula is true in every world inW ′, the set of worlds that
the agent considers possible. If so, given a queryϕ, the algorithmic approach would
simply invokeAa to check whether the agent is aware ofϕ; if so, then the agent invokes
Ak. For example, if awareness is generated by primitive propositions, thenAa is the al-
gorithm that, given queryϕ, checks whether all the primitive propositions inϕ are ones
the agent is aware of; and we can takeAk to be the algorithm that does model checking
to see ifϕ is true in every world ofW ′. (This can be done in time polynomial inW ′;
see [Fagin, Halpern, Moses, and Vardi 1995].) In impossible-worlds structures, we can
interpret lack of awareness ofϕ as meaning that neitherϕ nor¬ϕ is true at all worlds
the agent considers possible. Thus, if there is any nontrivial lack of awareness, then all
the worlds that the agent considers possible will be impossible worlds. However, these
impossible worlds have a great deal of structure: we can require that for all the formu-
lasϕ that the agent is aware of, exactly one ofϕ and¬ϕ is true at each world the agent
considers possible. As we observed earlier, an awareness structure must be viewed as
the modeler’sview of the situation. Arguably, the impossible-worlds structure better
captures the agent’s view.
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5.2 Lack of Computational Ability

The second intuition is computational: an agent simply might not have the resources
to compute the required answer. But then the question is how to model this lack of
computational ability. There are two cases of interest, depending on whether we have
an explicit algorithm in mind. If we have an explicit algorithm, then it is relatively
straightforward. For example, Konolige [1986] uses a syntactic approach and gives an
explicit characterization ofC by taking it to be the set of formulas that can be derived
from a fixed initial set of formulas by using a sound but possibly incomplete set of
inference rules. Note that Konolige’s approach makes syntactic knowledge an instance
of algorithmic knowledge. (See also Pucella [2006] for more details on knowledge
algorithms given by inference rules.)

Algorithmic knowledge can be viewed as a generalization of Konolige’s approach
in this setting, since it allows for the possibility that the algorithm used by the agent to
compute what he knows may not be easily expressible as a set of inference rules over
formulas. For example, Berman, Garay, and Perry [1989] implicitly use a particular
form of algorithmic knowledge in their analysis ofByzantine agreement(this is the
problem of getting all nonfaulty processes in a system to coordinate, despite the pres-
ence of failures). Roughly speaking, they allow agents to perform limited tests based
on the information they have; agents know only what follows from these limited tests.
But these tests are not characterized axiomatically. As shown by Halpern and Pucella
[2002], algorithmic knowledge is also a natural way to capture adversaries in security
protocols.

Example 5.1: Security protocols are generally analyzed in the presence of an adver-
sary that has certain capabilities for decoding the messages he intercepts. There are
of course restrictions on the capabilities of a reasonable adversary. For instance, the
adversary may not explicitly know that he has a given message if that message is en-
crypted using a key that the adversary does not know. To capture these restrictions,
Dolev and Yao [1983] gave a now-standard description of the capabilities of adver-
saries. Roughly speaking, a Dolev-Yao adversary can decompose messages, or deci-
pher them if he knows the right keys, but cannot otherwise “crack” encrypted messages.
The adversary can also construct new messages by concatenating known messages, or
encrypting them with a known encryption key.

Algorithmic knowledge is a natural way to capture the knowledge of a Dolev-Yao
adversary [Halpern and Pucella 2002]. We can use a knowledge algorithmADY to
compute whether the adversary canextract a messagem from a setH of messages
that he has intercepted, where the extraction relationH `DY m is defined by following
inference rules:

m ∈ H
H `DY m

H `DY {m}k H `DY k
H `DY m

H `DY m1 ·m2

H `DY m1

H `DY m1 ·m2

H `DY m2
,

wherem1·m2 is the concatenation of messagesm1 andm2, and{m}k is the encryption
of messagem with keyk.

The knowledge algorithmADY simply implements a search for the derivation of a
messagem from the messages that the adversary has received and the initial set of keys,
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using the inference rules above. More precisely, we assume the language has formulas
has(m), interpreted as “the agent possesses messagem”. When queried for a formula
has(m), the knowledge algorithmADY simply checks ifH `DY m, whereH is the set
of messages intercepted by the adversary. Thus, the formulaK(has(m)), which is true
if and only if ADY says “Yes” to queryhas(m), that is, if and only ifH `DY m, says
that the adversary can extractm from the messages he has intercepted.

However, even when our intuition is computational, at times the details of the al-
gorithm do not matter (and, indeed, may not be known to the modeler). In this case,
awareness may be more useful than algorithmic knowledge.

Example 5.2: Suppose that Alice is trying to reason about whether or not an eaves-
dropper Eve has managed to decrypt a certain message. The intuition behind Eve’s
inability to decrypt is computational, but Alice does not know which algorithm Eve
is using. An algorithmic knowledge structure is typically appropriate if there are only
a few algorithms that Eve might be using, and her ability to decrypt depends on the
algorithm.5 On the other hand, Alice might have no idea of what Eve’s algorithm is,
and might not care. All that matters to her analysis is whether Eve has managed to
decrypt. In this case, using a syntactic structure or an awareness structure seems more
appropriate. Suppose that Alice wants to model her uncertainty regarding whether Eva
has decrypted the message. She could then use an awareness structure with some pos-
sible worlds where Eve is aware of the message, and others where she is not, with the
appropriate probability on each set. Alice can then reason about the likelihood that Eve
has decrypted the message without worrying about how she decrypted it.

What about the impossible-worlds approach? It cannot directly represent an algo-
rithm, of course. However, if there is algorithmA that characterizes an agent’s compu-
tational process, then we can simply takeW ′ = {w′} and defineC(w′) = {ϕ | A(ϕ) =
“Yes”}. Indeed, we can give a general computational interpretation of the impossible-
worlds approach. The worldsw such thatC(w) are precisely those worlds where the
algorithm answers “Yes” when asked aboutϕ. If neitherϕ nor¬ϕ is in C(w), that just
means that the algorithm was not able to determine whetherϕ was true or false. If the
algorithm answers “Yes” to bothϕ and¬ϕ, then clearly the algorithm is not sound, but
it may nevertheless describe how a resource-bounded agent works.

This intuition also suggests how we can model the lack of computational ability
illustrated by Example 5.2 using impossible worlds. Ifcont(m) = ϕ is the statement
that the content of the messagem is ϕ, then in a world where Alice cannot decryptϕ,
neithercont(m) = ϕ and¬(cont(m) = ϕ) would be true.

5.3 Imperfect Understanding of the Model

Sometimes an agent’s lack of logical omniscience is best thought of as stemming from
“mistakes” in constructing the model (which perhaps are due to lack of computational
ability).

5What is required here is an algorithmic knowledge structure with two agents. There will then be different
algorithms for Eve associated with different states. We omit here the straightforward details of how this can
be done; see [Halpern, Moses, and Vardi 1994].
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Example 5.3: Suppose that Alice does not know whether a numbern is prime.
Although her ignorance regardingn’s primality can be viewed as computationally
based—given enough time and energy, she could in principle figure out whethern
is prime—she is not using a particular algorithm to compute her knowledge (at least,
not one that can be easily described). Nor can her state of mind be modeled in a natu-
ral way using an awareness structure or a syntactic structure. Intuitively, there should
at least two worlds she considers possible, one wheren is prime, and one wheren is
not. However,n is either prime or it is not. Ifn is actually prime, then there cannot
be a possible world wheren is not prime; similarly, ifn is composite, there cannot
be a possible world wheren is prime. This problem can be modeled naturally using
impossible worlds. Now there is no problem having a world wheren is prime (which
is an impossible world ifn is actually composite) and a world wheren is composite
(which is an impossible world ifn is actually prime). In this structure, it is also seems
reasonable to assume that Alice knows that she does not know thatn is prime (so that
the formula¬KPrimen is true even in the impossible worlds).

It is instructive to compare this with the awareness approach. Suppose thatn is
indeed prime and an external modeler knows this. Then he can describe Alice’s state
of mind with one world, wheren is prime, but Alice is not aware thatn is prime.
Thus,¬KPrimen holds at this one world. But note that this is not because Alice
considers it possible thatn is not prime; rather, it is because Alice cannot compute
whethern is prime. If Alice is aware of the formula¬KPrimen at this one world,
thenK¬KPrimen also holds. Again, we should interpret this as saying that Alice
knows that she cannot compute whethern is prime.

The impossible-worlds approach seems like a natural one in Example 5.3 and many
other settings. As we saw, awareness in this situation does not quite capture what is
going on here. Algorithmic knowledge fares somewhat better, but it would require
us to have a specific algorithm in mind; in Example 5.3, this would force us to inter-
pret “knows that a number is prime” as “knows that a number is prime as tested by a
particular factorization algorithm”.

The impossible-worlds approach can sometimes be difficult to apply, however, be-
cause it is not always clear what impossible worlds to take. While there has been a great
deal of discussion (particularly in the philosophy literature) concerning the “metaphys-
ical status” of impossible worlds (cf. [Stalnaker 1996]), the pragmatics of generating
impossible worlds has received comparatively little attention. Hintikka [1975] argues
that Rantala’s [1975] urn models are suitable candidates for impossible worlds. In de-
cision theory, Lipman [1999] uses impossible-worlds structures to represent the prefer-
ences of an agent who may not be able to distinguish logically equivalent outcomes; the
impossible worlds are determined by the preference order. None of these approaches
address the problem of generating the impossible worlds even in a simple example such
as Example 5.3, especially if the worlds have some structure.

We view impossible worlds as describing the agent’s subjective view of a situation.
The modeler may know that these impossible worlds are truly impossible, but the agent
does not. In many cases, the intuitive reason that the agent does not realize that the
impossible worlds are in fact impossible is that the agent does not look carefully at the
worlds. Consider Example 5.3. LetPrimen, for various choices ofn, be a primitive
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proposition saying that the numbern is prime. Suppose that the worlds are models of
arithmetic, which include as domain elements the natural numbers with multiplication
defined on them. IfPrimen is interpreted as being true in a world when there do not
exist numbersn1 andn2 in that world such thatn1 × n2 = n, then how does the
agent conceive of the impossible worlds? If the agent were to look carefully at a world
wherePrimen holds, he might realize that there are in fact two numbersn1 andn2

such thatn1 × n2 = n. But if n is not prime, how do we capture the fact that the
agent “mistakenly” constructed a world where there are numbersn1 andn2 such that
n1 × n2 = n if we also assume that the agent understands basic multiplication?

We now sketch a new approach to constructing an impossible-worlds structure that
seems appropriate for such examples. The approach is motivated by the observation
that the set of worlds in a Kripke structure is explicitly specified, as is the truth as-
signment on these worlds. Introspectively, this is not the way in which we model
situations. Instead, the set of possible worlds is described implicitly, as is the inter-
pretationπ, as the set of worlds satisfying some condition.6 This set of worlds may
well include some impossible worlds. The impossible-worlds structure corresponding
to a situation, therefore, is made up of all worlds satisfying the implicit description,
perhaps refined so that “clearly impossible” worlds are not considered. What makes
a world clearly impossible should be determined by a simple test; for example, such
a simple test might determine that 3 is prime, but would not be able to determine that
224036583 − 1 is prime.

We can formalize this construction as follows. An implicit structure is a tuple
I = (S, T, C), whereS is a set of possible worlds,T is a filter on worlds (a test on
worlds that returns eithertrue or false), andC associates with every world inS a set
(possibly inconsistent) of propositional formulas. TestT returnstrue for every world
in S that the agent considers possible. An implicit structureI = (S, T, C) induces an
impossible-worlds structureMI = (W,W ′, π, C) given by:

W = {w ∈ S | C(w) is consistent}
W ′ = {w ∈ S | T (w) = true}

π(w) = C(w)|Φ for w ∈W
C = C|(W ′−W ).

We can refine the induced impossible-worlds structure by alotting more resources to
testT . Intuitively, as an agent performs more introspection, she can recognize more
worlds as being impossible. (Manne [2005] investigates a related approach, using a
temporal structure at each world to capture the evolution of knowledge as the agent
introspects over time.)

Consider the primality example again. The agent is likely to care about the primal-
ity of only a few numbers, sayn1, . . . , nk. Let Φ = {Primen1 , . . . ,Primenk

}. The
agent’s inability to compute whethern1, . . . , nk are prime is described implicitly by
having worlds where any combination of them is prime. The details of how multipli-
cation works in a world is not specified in the implicit description. Thus, the implicit

6In multiagent settings, where the worlds that the agent considers possible are defined by an accessibility
relation, we expect the accessibility relation to be described implicitly as well.
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structureI = (S, T, C) corresponding to this description will haveS consisting of2k

worlds, where each world is a standard model of arithmetic together with a truth as-
signment to the primitive propositions inΦ. The set of formulasC(w) consists of all
propositional formulas true under the truth assignment atw. The agent realizes that all
but one of these worlds is impossible, but cannot compute which one is the possible
world. Thus, we takeT (w) = true for all worldsw. Of course, after doing some com-
putation, the agent may realize that, say,n1 is prime andn2 is composite. The agent
would then refine the model by takingT to consider possible only worlds in whichn1

is prime andn2 is composite.
The use of an implicit description as a recipe for constructing possible (and impos-

sible) worlds is quite general, as the following example illustrates.

Example 5.4: Suppose that we have a database of implications: rules of the form
C1 ⇒ C2, whereC1 andC2 are conjunctions of literals—primitive propositions and
their negation. Suppose that the vocabulary of the conclusions of these rules is disjoint
from the vocabulary of the antecedents. This is a slight simplification of, for exam-
ple, digital rights management policies, where the conclusion typically has the form
Permitted(a,b)or ¬Permitted(a,b)for some agenta and actionb, andPermittedis not
allowed to appear in the antecedent of rules [Halpern and Weissman 2003]. Rather
than explicitly constructing the worlds compatible with the rules, a user might con-
struct a naive implicit description of them. More specifically, suppose that we have a
finite set of agents, saya1, . . . , an, and a finite set of actions, sayb1, . . . , bm. Consider
the implicit structureI = (S, T, C), where each worldw in S is a truth assignment
to the atomic formulas that appear in the antecedents of rules, augmented with all the
literals in the conclusions of rules whose antecedent is true inw; furthermore, take
T (w) = true for all w ∈ S, andC(w) to be all propositional formulas true un-
der the truth assignment at worldw. Thus, for example, if a rule saysStudent(a) ∧
Female(a) ⇒ Permitted(a,Play-sports), then in a world whereStudent(a) and
Female(a) are true, then so isPermitted(a,Play-sports). Similarly, if we have
a rule that saysFaculty(a) ∧ Female(a) ⇒ ¬Permitted(a,Play-sports), then in
a world whereFaculty(a) andFemale(a) are true,¬Permitted(a,Play-sports) as
well. Of course, in a worldFaculty(a), Student(a), andFemale(a) are all true, both
Permitted(a,Play-sports) and¬Permitted(a,Play-sports) are true; this is an im-
possible world. This type of implicit description (and hence, impossible-worlds struc-
ture) should also be useful for characterizing large databases, when it is not possible to
list all the tables explicitly.

6 Conclusion

Many solutions have been proposed to the logical omniscience problem, differing as to
the intuitions underlying the lack of logical omniscience. There has been comparatively
little work on comparing approaches. We have attempted to do so here, focussing
essentially on expressiveness for four popular approaches.

In comparing the expressive power of the approaches, we started with the well-
known observation that the approaches are equi-expressive in the propositional case.
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However, this observation is true only if we allow the agent not to consider any world
possible. If we require that at least one world be possible, then we get a difference
in expressive power. This is particularly relevant when we have probabilities, because
there has to be at least one world over which to assign probability. Indeed, when consid-
ering logical omniscience in the presence of probability, there can be quite significant
differences in expressive power between the approaches, particularly awareness and
impossible worlds.

As we said, in the full paper, we also consider the pragmatics of logical omni-
science. Even in settings where the four approaches are equi-expressive, they model
lack of logical omniscience quite differently. We thus have to deal with different issues
when attempting to use one of them in practice. For example, if we are using a syntactic
structure to represent a given situation, we need to explain where the functionC is com-
ing from; with an awareness structure, we must explain where the awareness function
is coming from; with an algorithmic knowledge structure, we must explain where the
algorithm is coming from; and with an impossible-worlds structure, we must explain
what the impossible worlds are. In some domains, there may be a natural interpretation
for the awareness function, but it finding a natural impossible-worlds interpretation
may be difficult; in other domains, the situation may be just the opposite. Given the
increasing understanding of the importance of awareness in game-theoretic applica-
tions (see, for example, [Heifetz, Meier, and Schipper 2003; Halpern and Rêgo 2006a;
Halpern and R̂ego 2006b]), these pragmatic issues assume more significance, and de-
serve further exploration.
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