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ABSTRACT
An intelligent agent will often be uncertain about various
properties of its environment, and when acting in that envi-
ronment it will frequently need to quantify its uncertainty.
For example, if the agent wishes to employ the expected-
utility paradigm of decision theory to guide its actions, she
will need to assign degrees of belief (subjective probabili-
ties) to various assertions. Of course, these degrees of belief
should not be arbitrary, but rather should be based on the
information available to the agent. This paper provides a
brief overview of one approach for inducing degrees of be-
lief from very rich knowledge bases that can include infor-
mation about particular individuals, statistical correlations,
physical laws, and default rules. The approach is called the
random-worlds method. The method is based on the princi-
ple of indifference: it treats all of the worlds the agent con-
siders possible as being equally likely. It is able to integrate
qualitative default reasoning with quantitative probabilistic
reasoning by providing a language in which both types of in-
formation can be easily expressed. A number of desiderata
that arise in direct inference (reasoning from statistical in-
formation to conclusions about individuals) and default rea-
soning follow directly from the semantics of random worlds.
For example, random worlds captures important patterns
of reasoning such as specificity, inheritance, indifference to
irrelevant information, and default assumptions of indepen-
dence. Furthermore, the expressive power of the language
used and the intuitive semantics of random worlds allow the
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method to deal with problems that are beyond the scope
of many other non-deductive reasoning systems. The rele-
vance of the random-worlds method to database systems is
also discussed.
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edge Representation Formalisms and Methods—Representa-
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1. INTRODUCTION
Consider an agent with a knowledge base, KB , who has

to make decisions about its actions in the world. For ex-
ample, a doctor may need to decide on a treatment for a
particular patient, say Eric. The doctor’s knowledge base
might contain information of different types, including sta-
tistical information, e.g., “80% of patients with jaundice
have hepatitis”; first-order information, e.g., “all patients
with hepatitis have jaundice”; default information, e.g., “pa-
tients with hepatitis typically have a fever”; and information
about the particular patient at hand, e.g., “Eric has jaun-
dice”. In most cases, the knowledge base will not contain
complete information about a particular individual. For ex-
ample, the doctor may be uncertain about the exact disease
that Eric has. Since the efficacy of a treatment will almost
certainly depend on the disease, it is important for the doc-
tor to be able to quantify the relative likelihood of various
possibilities. More generally, to apply standard tools for de-
cision making such as decision theory (see, e.g., [21, 26]), an
agent must assign probabilities, or degrees of belief, to var-
ious events. For example, the doctor may wish to assign a
degree of belief to an event such as “Eric has hepatitis”.

Fahiem Bacchus, Adam Grove, Daphne Koller and I [4]
gave one particular method that allows such an agent to use
its knowledge base to assign degrees of belief in a principled



manner; we call this method the random-worlds method. My
talk will focus on this work because, although it is not so
recent, it does seem quite relevant to recent work in the
database community. Here I briefly review the approach
(almost all the discussion is taken from [4], with very little
change) and discuss the connection to database work.

There has been a great deal of work addressing aspects
of this general problem. Two large bodies of work that are
particularly relevant are the work on direct inference, go-
ing back to Reichenbach [25], and the various approaches
to nonmonotonic reasoning. Direct inference deals with the
problem of deriving degrees of belief from statistical infor-
mation, typically by attempting to find a suitable reference
class whose statistics can be used to determine the degree
of belief. For instance, a suitable reference class for the pa-
tient Eric might be the class of all patients with jaundice.
While direct inference is concerned with statistical knowl-
edge, nonmonotonic reasoning deals mostly with knowledge
bases that contain default rules. None of the systems pro-
posed for either reference-class reasoning or nonmonotonic
reasoning can deal adequately with the large and complex
knowledge bases that we are interested in. In particular,
none can handle rich knowledge bases that may contain a
combination of first-order, default, and statistical informa-
tion.

We assume that the information in the knowledge base is
expressed in a variant of the language introduced by Bac-
chus [1]. Bacchus’s language augments first-order logic by
allowing statements of the form ‖Hep(x)|Jaun(x)‖x = 0.8,
which says that 80% of patients with jaundice have hepati-
tis. Notice, however, that in finite models this statement has
the (probably unintended) consequence that the number of
patients with jaundice is a multiple of 5. To avoid this prob-
lem, we use approximate equality rather than equality, writ-
ing ‖Hep(x)|Jaun(x)‖x ≈ 0.8, read “approximately 80% of
patients with jaundice have hepatitis”. Intuitively, this says
that the proportion of jaundiced patients with hepatitis is
close to 80%: i.e., within some tolerance τ of 0.8. This inter-
pretation seems quite appropriate for database applications,
where it is unlikely that we will be completely confident in
the statistics that we have. The use of approximate equal-
ity has the further advantage of letting us express default
information. We interpret a statement as “Birds typically
fly” as expressing the statistical assertion “Almost all birds
fly”. Using approximate equality, we can represent this as
‖Fly(x)|Bird(x)‖x ≈ 1. (This interpretation is closely re-
lated to various approaches applying probabilistic semantics
to nonmonotonic logic; see Pearl [24] for an overview.)

Having described the language in which our knowledge
base is expressed, we now need to decide how to assign de-
grees of belief given a knowledge base. Perhaps the most
widely used framework for assigning degrees of belief (which
are essentially subjective probabilities) is the Bayesian paradigm.
There, one assumes a space of possibilities and a probabil-
ity distribution over this space (the prior distribution), and
calculates posterior probabilities by conditioning on what is
known (in our case, the knowledge base). To use this ap-
proach, we must specify the space of possibilities and the
distribution over it. In Bayesian reasoning, there is rela-
tively little consensus as to how this should be done in gen-
eral. Indeed, the usual philosophy is that these decisions are
subjective.

Our approach is different. We assume that the KB con-

tains all the knowledge the agent has, and we allow a very
expressive language so as to make this assumption reason-
able. This assumption means that any knowledge the agent
has that could influence the prior distribution is already
included in the KB . As a consequence, we give a single
uniform construction of a space of possibilities and a dis-
tribution over it. Once we have this probability space, we
can use the Bayesian approach: To compute the probability
of an assertion φ given KB , we condition on KB , and then
compute the probability of φ using the resulting posterior
distribution.

So how do we choose the probability space? One general
strategy, discussed by Halpern [18], is to give semantics to
degrees of belief in terms of a probability distribution over a
set of possible worlds, or first-order models. This semantics
clarifies the distinction between statistical assertions and de-
grees of belief. As suggested above, a statistical assertion
such as ‖Hep(x)|Jaun(x)‖x ≈ 0.8 is true or false in a partic-
ular world, depending on how many jaundiced patients have
hepatitis in that world. On the other hand, a degree of belief
is neither true nor false in a particular world—it has seman-
tics only with respect to the entire set of possible worlds and
a probability distribution over them. There is no necessary
connection between the information in the agent’s KB and
the distribution over worlds that determines her degrees of
belief. However, we clearly want there to be some connec-
tion. In particular, we want the agent to base her degrees
of beliefs on her information about the world, including her
statistical information. The random-worlds method turns
out to be a powerful technique for accomplishing this.

To define our probability space, we have to choose an
appropriate set of possible worlds. Given some domain of
individuals, we stipulate that the set of worlds is simply the
set of all first-order models over this domain. That is, a pos-
sible world corresponds to a particular way of interpreting
the symbols in the agent’s vocabulary over the domain. In
our context, we can assume that the “true world” has a finite
domain, say of size N . In fact, without loss of generality, we
assume that the domain is {1, . . . , N}.

Having defined the probability space (the set of possible
worlds), we must construct a probability distribution over
this set. For this, we give perhaps the simplest possible def-
inition: we assume that all the possible worlds are equally
likely (that is, each world has the same probability). This
can be viewed as an application of the principle of indif-
ference. Since we are assuming that all the agent knows is
incorporated in her knowledge base, the agent has no a pri-
ori reason to prefer one world over the other. It is therefore
reasonable to view all worlds as equally likely. Interestingly,
the principle of indifference (sometimes also called the prin-
ciple of insufficient reason) was originally promoted as part
of the very definition of probability when the field was origi-
nally formalized by Jacob Bernoulli and others; the principle
was later popularized further and applied with considerable
success by Laplace. (See [17] for a historical discussion.) It
later fell into disrepute as a general definition of probabil-
ity, largely because of the existence of paradoxes that arise
when the principle is applied to infinite or continuous prob-
ability spaces. However, the principle of indifference can be
a natural and effective way of assigning degrees of belief in
certain contexts, and in particular, in the context where we
restrict attention to a finite collection of worlds.

In any case, combining the choice of possible worlds with



the principle of indifference, we obtain a prior distribution.
We can now induce a degree of belief in φ given KB by
conditioning on KB to obtain a posterior distribution and
then computing the probability of φ according to this new
distribution. It is easy to see that, since each world is equally
likely, the degree of belief in φ given KB is the fraction of
possible worlds satisfying KB that also satisfy φ.

One problem with the approach as stated so far is that, in
general, we do not know the domain size N . Typically, how-
ever, N is known to be large. We therefore approximate the
degree of belief for the true but unknown N by computing
the limiting value of this degree of belief as N grows large.
The result is the random-worlds method. (Of course, if a
database includes information about the domain size, then
we can just use it.)

The key ideas in the approach are not new. Many of
them can be found in the work of Johnson [19] and Car-
nap [6, 7], although these authors focus on knowledge bases
that contain only first-order information, and for the most
part restrict their attention to unary predicates. Related
approaches have been used in the more recent works of Shas-
tri [28] and of Paris and Vencovska [23], in the context of
a unary statistical language. Chuaqui [10] shares the idea
of basing a theory of probabilistic reasoning upon notions
of indifference and symmetry, although the details of his
approach are quite different from ours.

Having defined the method, how do we judge its reason-
ableness? Fortunately, as we mentioned, there are two large
bodies of work on related problems from which we can draw
guidance: reference-class reasoning and default reasoning.
While none of the solutions suggested for these problems
seems entirely adequate, the years of research have resulted
in some strong intuitions regarding what answers are intu-
itively reasonable for certain types of queries. Interestingly,
these intuitions often lead to identical desiderata. In par-
ticular, most systems (of both types) espouse some form of
preference for more specific information and the ability to
ignore irrelevant information. We show that the random-
worlds approach satisfies these desiderata. Moreover, in the
absence of information, the random-world method makes
attributes independent. Rather than having to assume in-
dependence, as is done in many applications, it is a prov-
able consequence of the approach. In fact, all these prop-
erties follow from two general theorems. We prove that, in
those cases where there is a specific piece of statistical in-
formation that should “obviously” be used to determine a
degree of belief, random worlds does in fact use this infor-
mation. The different desiderata, such as a preference for
more specific information and an indifference to irrelevant
information follow as easy corollaries. We also show that
random worlds provides reasonable answers in many other
contexts, not covered by the standard specificity and irrele-
vance heuristics. Thus, the random-worlds method is indeed
a powerful one, that can deal with rich knowledge bases and
still produce the answers that people have identified as being
the most appropriate ones.

Of course, to the extent that we are going to use the
method, we have to calculate degrees of belief. In general,
the problem of deciding whether the degree of belief even
exists (that is, whether there is a limiting probability) is
undecidable [16, 20]. We can get decidability if we restrict
to unary knowledge bases, where there are no function sym-
bols and all predicates are unary [15, 20]. More importantly,

as shown in [14], there is a close connection between random
worlds and maximum entropy in the case of unary knowledge
bases. Based on this connection, we show that in many cases
of interest a maximum-entropy computation can be used to
calculate an agent’s degree of belief.

The connection between random worlds on maximum en-
tropy relies critically on the assumption that we are con-
ditioning on a unary formula. In fact, in almost all appli-
cations where maximum entropy has been used (and where
its application can be best justified in terms of the random-
worlds method) the knowledge base is described in terms
of unary predicates (or, equivalently, unary functions with
a finite range). For example, in physics applications we are
interested in such predicates as quantum state (see [13]). AI
applications and expert systems also often use only unary
predicates [9] such as symptoms and diseases. In general,
many properties of interest can be expressed using unary
predicates, since they express properties of individuals. In-
deed, a good case can be made that statisticians tend to
reformulate all problems in terms of unary predicates, since
an event in a sample space can be identified with a unary
predicate [27]. In fact, in most cases where statistics are
used, we have a basic unit in mind (an individual, a family,
a household, etc.), and the properties (predicates) we con-
sider are typically relative to a single unit (i.e., unary pred-
icates). Thus, results concerning computing the asymptotic
conditional probability if we condition on unary formulas
are significant in practice.

On the other hand, for database applications, it is quite
standard to see binary relation like “Manager-of”. Note that
the random-worlds method makes sense for predicates of
arbitrary arity; it is just the connection to maximum entropy
that is lost.

More generally, how does the random-worlds method re-
late to work in databases? I briefly discuss a few points of
contact:

• One application is obvious: There are many statis-
tical databases available, such as those derived from
census data and economic data. The random-worlds
method gives a principled method of deriving conclu-
sions about particular individuals based on the statis-
tical information.

• There has also been a great deal of work, especially re-
cently, on probabilistic and imprecise databases; see,
for example, [8] and the more recent [5] and [12] and
the references therein.1 Probabilistic databases allow
probabilities to be associated with tuples. Roughly
speaking, the probability represents the likelihood that
the tuple is in the database. In some settings, the prob-
ability is best interpreted as statistical information.
For example, Burdick et al. [5] give an example of an
automobile database that lists makes of cars and the
problem from which they are suffering (“brake prob-
lem”, “transmission problem”, etc.). The probabilistic
information could be interpreted as summarizing sta-
tistical information, in which case the techniques used
here apply immediately to draw conclusions. Alterna-
tively, it could be interpreted as representing a degree

1Interestingly, Cavallo and Pittarelli [8] suggest using maxi-
mum entropy approaches to handle probabilistic databases,
although they do not give independent motivation for doing
so.



of belief (an agent’s subjective belief that, say, the car
is suffering from a brake problem). The method as de-
scribed cannot deal with knowledge bases that include
degrees of belief; however, in [3], we discuss three ways
that the random-worlds method can be extended to
handle degrees of belief.

• Random-worlds style methods have been used to define
notions of privacy, where all instances of a database
consistent with what is known are considered equally
likely; cf. [22].

It seems that there is now a great deal of interest in
the database community in finding ways to draw inferences
from databases that include incomplete and imprecise in-
formation. The random-worlds method and other related
approaches (see [2]) may prove to be a useful tool for do-
ing this. Indeed, as I have mentioned, random-worlds style
methods have already been used in the context of privacy;
they have also been used in analyzing probabilistic databases
[11]. I suspect that more applications will be found as well.
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