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Abstract

The topology of a wireless multi-hop network can be controlled by varying the
transmission power at each node. In this paper, we give a detailed analysis of a
cone-based distributed topology control algorithm. This algorithm does not assume
that nodes have GPS information available; rather it depends only on directional
information. Roughly speaking, the basic idea of the algorithm is that a node u
transmits with the minimum power p, . required to ensure that in every cone of
degree o around wu, there is some node that u can reach with power p, .. We
show that taking o = 57/6 is a necessary and sufficient condition to guarantee
that network connectivity is preserved. More precisely, if there is a path from s
to t when every node communicates at maximum power then, if a < 57/6, there
is still a path in the smallest symmetric graph G, containing all edges (u,v) such
that u can communicate with v using power p, . On the other hand, if a > 57/6,
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connectivity is not necessarily preserved. We also propose a set of optimizations
that further reduce power consumption and prove that they retain network con-
nectivity. Dynamic reconfiguration in the presence of failures and mobility is also
discussed. Simulation results are presented to demonstrate the effectiveness of the
algorithm and the optimizations.

1 Introduction

Multi-hop wireless networks, such as radio networks [11], ad-hoc networks [16], and
sensor networks [4, 18|, are networks where communication between two nodes may go
through multiple consecutive wireless links. Unlike wired networks, which typically have
a fixed network topology (except in case of failures), each node in a wireless network can
potentially change the network topology by adjusting its transmission power to control
its set of neighbors. The primary goal of topology control is to design power-efficient
algorithms that maintain network connectivity and optimize performance metrics such
as network lifetime and throughput. As pointed out by Chandrakasan et. al [2], network
protocols that minimize energy consumption are key to the successful usage of wireless
sensor networks. To simplify deployment and reconfiguration in the presence of failures
and mobility, distributed topology control algorithms that utilize only local information
and allow asynchronous operations are particularly attractive.

The topology control problem can be formalized as follows. We are given a set V'
of possibly mobile nodes located in the plane. Each node u € V is specified by its
coordinates, (z(u),y(u)), at any given point in time. Each node u has a power function
p where p(d) gives the minimum power needed to establish a communication link to a
node v at distance d away from u. Assume that the maximum transmission power P is
the same for every node, and the maximum distance for any two nodes to communicate
directly is R, i.e. p(R) = P. If every node transmits with power P, then we have
an induced graph Gg = (V, F) where £ = {(u,v)|d(u,v) < R} (where d(u,v) is the
Euclidean distance between u and v).

It is undesirable to have nodes transmit with maximum power for two reasons. First,
since the power required to transmit between nodes increases as the nth power of the
distance between them, for some n > 2 [21], it may require less power for a node u to
relay messages through a series of intermediate nodes to v than to transmit directly to
v. Second, the greater the power with which a node transmits, the greater the likelihood
of the transmission interfering with other transmissions.

Our goal in performing topology control is to find a subgraph G of G'g such that (1)
(G consists of all the nodes in Gg but has fewer edges, (2) if v and v are connected in
G'r, they are still connected in G, and (3) a node u can transmit to all its neighbors in G
using less power than is required to transmit to all its neighbors in G'». Since minimizing
power consumption is so important, it is desirable to find a graph G satisfying these three
properties that minimizes the amount of power that a node needs to use to communicate



with all its neighbors. Furthermore, for a topology control algorithm to be useful in
practice, it must be possible for each node u in the network to construct its neighbor
set N(u) = {v|(u,v) € G} in a distributed fashion. Finally, if G changes to G'; due
to node failures or mobility, it must be possible to reconstruct a connected G’ without
global coordination.

In this paper we consider a cone-based topology-control algorithm, and show that
it satisfies all these desiderata. Most previous papers on topology control have utilized
position information, which usually requires the availability of GPS at each node. There
are a number of disadvantages with using GPS. In particular, the acquisition of GPS
location information incurs a high delay, and GPS does not work in indoor environments
or cities. By way of contrast, the cone-based algorithm requires only the availability of
directional information. That is, it must be possible to estimate the direction from which
another node is transmitting. Techniques for estimating direction without requiring
position information are available, and discussed in the IEEE antenna and propagation
community as the Angle-of-Arrival problem. The standard way of doing this is by using
more than one directional antenna (see [13]). Specifically, the direction of incoming
signals is determined from the difference in their arrival times at different elements of the
antenna.’

The cone-based algorithm takes as a parameter an angle a. A node u then tries
to find the minimum power p,, o such that transmitting with p, , ensures that in every
cone of degree o around u, there is some node that u can reach. We show that taking
a = 57 /6 is necessary and sufficient to preserve connectivity. That is, we show that if
a < 57/6, then there is a path from u to v in G iff there is such a path in G, (for
all possible node locations) and that if a > 57/6, then there exists a graph Gg that is
connected while GG, is not. Moreover, we propose several optimizations and show that
they preserve connectivity. Finally, we discuss how the algorithm can be extended to
deal with dynamic reconfiguration and asynchronous operations.

There are a number of other papers in the literature on topology control; as we
said earlier, all assume that position information is available. Hu [9] describes an al-
gorithm that does topology control using heuristics based on a Delauney triangulation
of the graph. There seems to be no guarantee that the heuristics preserve connectivity.
Ramanathan and Rosales-Hain [20] describe a centralized spanning tree algorithm for
achieving connected and biconnected static networks, while minimizing the maximum
transmission power. (They also describe distributed algorithms that are based on heuris-
tics and are not guaranteed to preserve connectivity.) Rodoplu and Meng [22] propose a
distributed position-based topology control algorithm that preserves connectivity; their
algorithm is improved by Li and Halpern [14]. Other researchers working in the field of
packet radio networks, wireless ad hoc networks, and sensor networks have also considered
the issue of power efficiency and network lifetime, but have taken different approaches.

LOf course, if GPS information is available, a node can simply piggyback its location to its message
and the required directional information can be calculated from that.



For example, Hou and Li [8] analyze the effect of adjusting transmission power to reduce
interference and hence achieve higher throughput as compared to schemes that use fixed
transmission power [23]. Heinzelman et al. [7] describe an adaptive clustering-based
routing protocol that maximizes network lifetime by randomly rotating the role of per-
cluster local base stations (cluster-head) among nodes with higher energy reserves. Chen
et al. [3] and Xu et al. [27] propose methods to conserve energy and increase network
lifetime by turning off redundant nodes. Finally, Wu et al. [26] and Monks et al. [26, 15]
describe their power controlled MAC protocols to reduce energy consumptions and in-
crease throughput. They do this through power control of unicast packets, but make no
attempt at reducing the power consumption of broadcast packets. In a different vein is
the work described in [6, 12]; although it does not deal directly with topology control,
the notion of f-graph used in these papers bears some resemblance to the cone-based
idea described in this paper. Relative neighborhood graphs [24] and their relatives (such
as Gabriel graphs, or G5 graphs [10]) are similar in spirit to the graphs produced by the
cone-based algorithm.

The rest of the paper is organized as follows. Section 2 presents the basic cone-based
algorithm and shows that o = 57 /6 is necessary and sufficient for connectivity. Section 3
describes several optimizations to the basic algorithm and proves their correctness. Sec-
tion 4 extends the basic algorithm so that it can handle the reconfiguration necessary to
deal with failures and mobility. Section 5 describes network simulation results that show
the effectiveness of the basic approach and the optimizations. Section 6 summarizes this

paper.

2 The Basic Cone-Based Topology Control Algorithm

We consider three communication primitives: broadcast, send, and receive, defined as
follows:

e bcast(u,p, m) is invoked by node u to send message m with power p; it results in
all nodes in the set {v|p(d(u,v)) < p} receiving m.

e send(u,p,m,v) is invoked by node u to sent message m to v with power p. This
primitive is used to send unicast messages, i.e. point-to-point messages.

e recv(u,m,v) is used by u to receive message m from v.

We assume that when v receives a message m from wu, it knows the reception power
p’ of message m. This is, in general, less than the power p with which u sent the
message, because of radio signal attenuation in space. Moreover, we assume that, given
the transmission power p and the reception power p', u can estimate p(d(u,v)). This
assumption is reasonable in practice.



For ease of presentation, we first assume a synchronous model; that is, we assume
that communication proceeds in rounds, governed by a global clock, with each round
taking one time unit. (We deal with asynchrony in Section 4.) In each round each node
u can examine the messages sent to it, compute, and send messages using the bcast and
send communication primitives. The communication channel is reliable. We later relax
this assumption, and show that the algorithm is correct even in an asynchronous setting.

The basic Cone-Based Topology-Control (CBTC) algorithm is easy to explain. The
algorithm takes as a parameter an angle a. Each node u tries to find at least one
neighbor in every cone of degree a centered at u. Node u starts running the algorithm by
broadcasting a “Hello” message using low transmission power, and collecting Ack replies.
It gradually increases the transmission power to discover more neighbors. It keeps a list of
the nodes that it has discovered and the direction in which they are located. (As we said
in the introduction, we assume that each node can estimate directional information.)
It then checks whether each cone of degree o contains a node. This check is easily
performed: the nodes are sorted according to their angles relative to some reference node
(say, the first node from which u received a reply). It is immediate that there is a gap
of more than a between the angles of two consecutive nodes iff there is a cone of degree
a centered at u which contains no nodes. If there is such a gap, then u broadcasts
with greater power. This continues until either u finds no a-gap or u broadcasts with
maximum power.

Figure 1 gives the basic CBTC algorithm. In the algorithm, a “Hello” message is
originally broadcasted using some minimal power pg. In addition, the power used to
broadcast the message is included in the message. The power is then increased at each
step using some function Increase. As in [14] (where a similar function is used, in the
context of a different algorithm), in this paper, we do not investigate how to choose the
initial power py, nor do we investigate how to increase the power at each step. We simply
assume some function Increase such that Increase®(py) = P for sufficiently large k. As
observed in [14], an obvious choice is to take Increase(p) = 2p. If the initial choice of py
is less than the total power actually needed, then it is easy to see that this guarantees
that u’s estimate of the transmission power needed to reach a node v will be within a
factor of 2 of the minimum transmission power actually needed to reach v.

Upon receiving a “Hello” message from u, node v responds with an Ack message.
(Recall that we have assumed that v can compute the power required to respond.) Upon
receiving the Ack from v, node u adds v to its set N,, of neighbors and adds v’s direction
dir,(v) (measured as an angle relative to some fixed angle) to its set D,, of directions.
(Recall that we have assumed that u can compute this angle.) The test gap-a(D,,) tests
if there is a gap greater than « in the angles in D,.

Let N, (u) be the final set of discovered neighbors computed by node u at the end of
running CBTC(a); let p, o be the corresponding final power. Let N, = {(u,v) € V xV :
v € Ny(u)}. Note that the N, relation is not symmetric. As the following example
shows, it is possible that (v,u) € N, but (u,v) ¢ N,.



CBTC(a)

N, < 0; //the set of discovered neighbors of u
D, < 0; //the directions from which the Acks have come

Pu < Do;

while p, < pmas and gap-a(D,,) do
pu — Increase(p,);
beast(u, py, (“Hello”, p,)) and gather Acks;
N, < N, U{v : v discovered};
D, < D, U {dir,(v) : v discovered}

Figure 1: The basic cone-based algorithm running at each node u.

Example 2.1 Suppose that V' = {ug, uy, us, us,v}. (See Figure 2.) Further suppose
that d(ug,v) = R. Choose € with 0 < € < 7/12 and place uy, us, us so that (1) Lvugu; =
Lougug = /3 4+ € = /2, (2) Lugvug = Lugvug = 7/3 — € (so that Lvujuy = Lvuguy =
©/3), (3) Lvugus = 7 (so that Lujupus = Lugugus = 2m/3 — €) and (4) d(ug, u3) = R/2.
Note that, given € and the positions of ug and v, the positions of uy, us, and us are
determined. Since /ujugv > Zuguiv > /uyvug, it follows that d(uy,v) > d(ug,v) = R >
d(ug, up); similarly d(ug, v) > R > d(ug,us). (Here and elsewhere we use the fact that,
in a triangle, larger sides are opposite larger angles.) It easily follows that N, (ug) =
{uy, uz, u3} while N,(v) = {up}, as long as 27/3 < a < 57/6. Thus, (v,uy) € N,, but
(ug,v) & Ny.

Figure 2: N, may not be symmetric.



Let G, = (V, E,), where V consists of all nodes in the network and F,, is the symmet-
ric closure of N,; that is, (u,v) € E, iff either (u,v) € N, or (v,u) € N,. We now prove
the two main results of this paper: (1) if a < 57/6, then G, preserves the connectivity
of Gg and (2) if @ > 57/6, then G, may not preserve the connectivity of Gg. Note
that Example 2.1 shows the need for taking the symmetric closure in computing G,.
Although (ug,v) € Gg, there would be no path from ug to v if we considered just the
edges determined by N,, without taking the symmetric closure. (The fact that o > 27/3
in this example is necessary. As we shall see in Section 3.2, taking the symmetric closure
is not necessary if a < 27/3.) As we have already observed, each node u knows the
power required to reach all nodes v such that (u,v) € E,: it is just the max of p, , and
the power required by u to reach each of the nodes v from which it received a “Hello”
message. (As we said earlier, if u receives a “Hello” from v, since it includes the power
used to transmit it, u can determine the power required for u to reach v.)

Theorem 2.1 If a < 57/6, then G, preserves the connectivity of Ggr; u and v are
connected in G, iff they are connected in Gg.

Proof: Since (G, is a subgraph of G, it is clear that if u and v are connected in G,
they must be connected in GGr. To prove the converse, we start with the following key
lemma.

Lemma 2.2 [f a < 57/6, and u and v are nodes in V such that (u,v) € Eg (that is,
(u,v) is an edge in the graph Gg, so that d(u,v) < R), then either (u,v) € E, or there
exist u',v" € V' such that (a) d(v',v") < d(u,v), (b) either v’ =u or (u,u’) € E,, and (c)
either v/ = v or (v,v') € E,.

Proof: A few definitions will be helpful in this and the following proof. Given two nodes
u' and v,

e Let cone(u’,a,v’) be the cone of degree a which is bisected by the line u/v/, as in
Figure 3;

o Let circ(u,r) be the circle centered at u with radius 7;

e Let rad, , be the distance d(u,v) of the neighbor v farthest from u in N, (u); that
Is, p(md;a) = Pu,a;

e Let rad, , be the distance d(u,v) of the neighbor v farthest from w in E,.

If (u,v) € E,, we are done. Otherwise, it must be the case that d(u,v) > max(rad, ,, rad, ).
Thus, both v and v terminate CBTC(a) with no a-gap. It follows that cone(u, o, v) N
N, (u) # 0 and cone(v, a, u) N Ny(v) # 0. Choose z € cone(v, a,u) N N,(v) such that

/zvu is minimal. (See Figure 4.) Suppose without loss of generality that z is in the



N\

N
NN
N

Figure 3: cone(u’, a,v’)

halfplane above @w. If z is actually in cone(v, 27/3, u), since d(v, z) < rad, , < d(u,v),
it follows that d(z,u) < d(u,v). For otherwise, the side zu would be at least as long as
any other side in the triangle vzu, so that /zvu would have to be at least as large as
any other angle in the triangle. But since /zvu < 7/3, this is impossible. Thus, taking
u' = u and v = z, the lemma holds in this case. So we can assume without loss of
generality that z ¢ cone(v,27/3,u) (and, thus, that cone(v,27/3,u) N N,(v) = (). Let
y be the first node in N,(v) that a ray that starts at vz would hit as it sweeps past vu
going counterclockwise. By construction, y is in the half-plane below wv and /zvy < a.

Similar considerations show that, without loss of generality, we can assume that
cone(u, 2w /3,v) N N, (u) = 0, and that there exist two points w, x € N,(u) such that (a)
w is in the halfplane above ww, (b) x is in the halfplane below @o, (¢) at least one of w
and zx is in cone(u, a,v), and (d) Zwux < a. See Figure 4.

If d(w,v) < d(u,v), then the lemma holds with ' = w and v = v, so we can
assume that d(w,v) > d(u,v). Similarly, we can assume without loss of generality that
d(z,u) > d. We now prove that d(w, z) and d(z,y) cannot both be greater than or equal
to d. This will complete the proof since, for example, if d(w, z) < d, then we can take
v’ = w and v' = z in the lemma.

Suppose, by way of contradiction, that d(w,z) > d and d(x,y) > d. Let t be the
intersection point of cire(z,d) and circ(v, d) that is closest to u. Recall that at least one
of w and z is in cone(u, a,v). As we show in Appendix A, since node w must be outside
(or on) both circles cire(z,d) and circ(v, d), we have /wuv > /tuv (see the closeup on
the far right side of Figure 4).

Since d(t,z) = d(t,v) = d(u,v) = d, and d(z,v) < d, it follows that /zvt > 7/3.
Thus,

/tvu = /zvu — /zvt < /zvu — /3 and
/tvu =1 — 2 X /tuv,
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Figure 4: Illustration for the proof of Lemma 2.2.

and so
[zou — /3 > T —2 X /tuv and,

/tuv > 2w /3 — /zvu/2.

Since Zwuv > /tuv, we have that
/wuv > 213 — /zvu/2. (1)

By definition of z, Zzvu < /2 < 5 /12, so Lwuv > 27/3 — b /24 = 11n/24 > a/2.
Thus, it must be the case that w ¢ cone(u, a, v), so x € cone(u, a, v).

Arguments identical to those used to derive (1) (replacing the role of w and z by y
and z, respectively) can be used to show that

Lyvu > 21 /3 — Lauv/2. (2)
From (1) and (2), we have

Lwuv + Lzuv
> (21/3 — Lzvu/2) + (47 /3 — 2 X Lyvu)
= 2w — /zvu/2 — 2 X /yvu.

Since Zwuv + Lzuv < a < 57/6, we have that 57/6 > 27 — Zzvu/2 — 2 X Lyvu. Thus,
[zouf2 + 2 X [yvu = ((Lzvu + Lyvu) + 3 X Lyvu)/2 > Tr/6.

Since /zvu + /yvu < a < 5m/6, it easily follows that /yvu > 7/2. As we showed earlier,
/zvu > /zvt > w /3. Therefore, /zvu + /yvu > 57 /6. This is a contradiction. I
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The proof of Theorem 2.1 now follows easily. Order the edges in Er by length.
We proceed by induction on the the rank of the edge in the ordering to show that if
(u,v) € Eg, then there is a path from v to v in G,. For the base case, if (u,v) is the
shortest edge in Eg, then it is immediate from Lemma 2.2 that (u,v) € F,. For note
that, by construction, if (u,v) € Er and d(u',v") < d(u,v), then (u/,v") € Er and is a
shorter edge than (u,v). For the inductive step, suppose that (u,v) is the kth shortest
edge in Fr and, by way of contradiction, that (u,v) is not in E,. By Lemma 2.2, there
exist v/, v € V such that (a) d(v/,v") < d(u,v), (b) either u = ' or d(u,v’) € E,, and
(c) either v = v' or d(v,v") € E,. As we observed, it follows that (u’,v") € Eg. Since
d(u',v") < d(u,v), by the inductive hypothesis, it follows that there is an path from '
to v’ in G,. Since L, is symmetric, it is immediate that there is also a path from u to v
in G,. It immediately follows that if © and v are connected in Gg, then there is a path
from v to v in G,. 1

The proof of Theorem 2.1 gives some extra information, which we cull out as a separate
corollary:

Corollary 2.3 If a < 57/6, and u and v are nodes in V such that (u,v) € Eg, then
either (u,v) € E, or there exists a path ug . . . ug such that ug = u, up = v, (u;, uip1) € Fa,
and d(u;, uip1) < d(u,v), fori=0,...,k— 1.

Next we prove that degree 57/6 is a tight upper bound; if a > 57/6, then CBTC(«)
does not necessarily preserve connectivity.

Theorem 2.4 If a > 57 /6, then CBTC(a) does not necessarily preserve connectivity.

Proof: Suppose a = 57/6 + € for some € > 0. We construct a graph G = (V, ER)
such that CBTC(a) does not preserve the connectivity of this graph. V has eight
nodes: ug, uy, us, Uz, Vg, V1, Ve, v3. (See Figure 5.) We call ug, uq, ug, ug the u-cluster, and
Vo, V1, U2, v3 the v-cluster. The construction has the property that d(ug,vy) = R and for
i, =0,1,2,3, we have d(ugp, w;) < R, d(vo,v;) < R, and d(u;,v;) > Rif i+ j > 1. That
is, the only edge between the u-cluster and the v-cluster in Gg is (ug,vy). However, in
G, the (ug, vy) edge disappears, so that the u-cluster and the v-cluster are disconnected.

In Figure 5, s and s’ are the intersection points of the circles of radius R centered at
ug and vy, respectively. Node u; is chosen so that Zujugvg = 7/2. Similarly, v; is chosen
so that Zvjvpug = 7/2 and u; and vy are on opposite sides of the line wgvg. Because of the
right angle, it is clear that, whatever d(ug, u1) is, we must have d(vy, u1) > d(vo, uo) = R;
similarly, d(ug, v1) > R whatever d(vg, v1) is. Next, choose us so that /ujuyus = min(a, 7)
and ugug comes after ugu, as a ray sweeps around counterclockwise from wugvg. It is easy
to see that d(vg,uz) > R, whatever d(ug, ug) is, since Zvgugus > /2. For definiteness,
choose us so that d(ug,us) = R/2. Node vy is chosen similarly. The key step in the
construction is the choice of uz and v3. Note that /s'ugu; = 57/6. Let us be a point
on the line through s’ parallel to wyvg slightly to the left of s’ such that /usuqu; < a.

10
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Figure 5: A disconnected graph if a = 57/6 + €.

Since o = 57 /6 + €, it is possible to find such a node ugz. Since d(uy, s') = d(vy, s') = R
by construction, it follows that d(ug, us3) < R and d(vg, u3) > R. It is clearly possible to
choose d(vy, v1) sufficiently small so that d(us,v;) > R. The choice of v3 is similar.

It is now easy to check that when uy runs CBTC(a), it will terminate with p,, . =
max(d(u, u3), R/2) < R; similarly for vy. Thus, this construction has all the required
properties. 1

3 Optimizations

In this section, we describe three optimizations to the basic algorithm. We prove that
these optimizations allow some of the edges to be removed while still preserving connec-
tivity.

3.1 The shrink-back operation

In the basic CBTC(a) algorithm, u is said to be a boundary node if, at the end of the
algorithm, v still has an a-gap. Note that this means that, at the end of the algorithm,
a boundary node broadcasts with maximum power. An optimization would be to add a
shrinking phase at the end of the growing phase to allow each boundary node to broadcast
with less power, if it can do so without reducing its cone coverage. To make this precise,
given a set dir of directions (angles) and an angle a, define cover,(dir) = {60 : for some

11



0" € dir, |0 — ') mod 2m < a/2}. We modify CBTC(«) so that, at each iteration, a node
in N, is tagged with the power used the first time it was discovered. Suppose that the
power levels used by node u during the algorithm were pq, ..., pg. If u is a boundary node,
i is the maximum power p,,... A boundary node successively removes nodes tagged with
power pg, then pg_1, and so on, as long as their removal does not change the coverage.
That is, let dir;, i = 1, ..., k, be the set of directions found with all power levels p; or less,
then the minimum ¢ such that cover,(dir;) = cover,(diry) is found. Let NJ(u) consist of
all the nodes in N, (u) tagged with power p; or less. Let Nf = {(u,v) : v € N:(u)}, and
let £ be the symmetric closure of NZ. Finally, let G5 = (V, E3).

Theorem 3.1 If a < 57/6, then G?, preserves the connectivity of G .

Proof: It is easy to check that the proof of Theorem 2.1 depended only on the cone
coverage of each node, so it goes through without change. In more detail, given any two
nodes u and v in G2, if d(u,v) = d < R and and (u,v) ¢ E?, then either both v and
v did not use power sufficient to reach distance d in the basic CBTC algorithm or one
or both of them used enough power to reach distance d but then shrank back. In either
case, nodes u and v must still have neighbors in N?(u) and N?(v) fully covering the
cones cone(u, a, v) and cone(v, a,u), respectively, since any shrink-back operation can
only remove those neighbors that provide redundant cone coverage. Thus, the proof of
Lemma 2.2 goes through with no change. The remainder of the argument follows exactly
the same lines as that of the proof of Theorem 2.1. 1

Note that this argument actually shows that we can remove any nodes from N, that
do not contribute to the cone coverage. However, our interest here lies in minimizing the
power needed for broadcast, not in minimizing the number of nodes in N,. There may
be some applications where it helps to reduce the degree of a node; in this case, removing
further nodes may be a useful optimization.

3.2 Asymmetric edge removal

As shown by Example 2.1, in order to preserve connectivity, it is necessary to add an
edge (u,v) to E, if (v,u) € N,, even if (u,v) ¢ N,. In Example 2.1, o > 27 /3. This is
not an accident. As we now show, if a < 27/3, not only don’t we have to add an edge
(u,v) if (v,u) € N, we can remove an edge (v,u) if (v,u) € N, but (u,v) ¢ N,. Let

E; ={(u,v) : (u,v) € N, and (v,u) € N,}. Thus, while E, is the smallest symmetric
set containing N,,, E7 is the largest symmetric set contained in N,. Let G, = (V, E).

Theorem 3.2 [f a < 27/3, then G, preserves the connectivity of Gg.

Proof: We start by proving the following lemma, which strengthens Corollary 2.3.
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Lemma 3.3 If a < 27/3, and u and v are nodes in' V' such that (u,v) € Eg, then either
(u,v) € N, or there exists a path ug . .. uy such that ug = u, up = v, (u;, uir1) € Ny, and
d(ug, uipq) < d(u,v), fori=0,...,k—1.

Proof: Order the edges in Er by length. We proceed by strong induction on the rank
of an edge in the ordering. Given an edge (u,v) € Eg of rank k in the ordering, if
(u,v) € N,, we are done. If not, as argued in the proof of Lemma 2.2, there must be a
node w € cone(u, o, v) NNy (u). Since a < 27/3, the argument in the proof of Lemma 2.2
also shows that d(w,v) < d(u,v). Thus, (w,v) € Ex and has lower rank in the ordering
of edges. Applying the induction hypothesis, the lemma holds for (u,v). This completes
the proof. 11

Lemma 3.3 shows that if (u,v) € Efg, then there is a path consisting of edges in N,
from u to v. This is not good enough for our purposes; we need a path consisting of
edges in £/, . The next lemma shows that this is also possible.

Lemma 3.4 If o < 27/3, and u and v are nodes in V' such that (u,v) € N,, then there
exists a path ug ... uy such that uy = u, ux, = v, (u;,uiy1) € E, fori=0,...,k—1.

Proof: Order the edges in N, by length. We proceed by strong induction on the rank
of an edge in the ordering. Given an edge (u,v) € N, of rank k in the ordering, if
(u,v) € E., we are done. If not, we must have (v,u) ¢ N,. Since (v,u) € Eg, by
Lemma 3.3, there is a path from v to u consisting of edges in NV, all of which have length
smaller than d(v,u). If any of these edges is in N, — E,, we can apply the inductive
hypothesis to replace the edge by a path consisting only of edges in ;. By the symmetry
of £, such a path from v to u implies a path from u to v. This completes the inductive

step. 1
The proof of Theorem 3.2 is now immediate from Lemmas 3.3 and 3.4. 1

To implement asymmetric edge removal, the basic CBTC needs to be enhanced
slightly. After finishing CBTC(«), a node u must send a message to each node v to
which it sent an Ack message that is not in N,(u), telling v to remove u from N,(v)
when constructing £. It is easy to see that the shrink-back optimization discussed in
Section 3.1 can be applied together with the removal of these asymmetric edges.

There is a tradeoff between using CBTC(57/6) and using CBTC(27/3) with asym-
metric edge removal. In general, p, s/ (i.e., p(md;&r /6)) will be smaller than pyax/3.
However, the power p(rad,s./s) with which u needs to transmit may be greater than
Pusx/6 since u may need to reach nodes v such that u € Ny, /s(v) but v ¢ Ns.6(u). In
contrast, if o = 27/3, then asymmetric edge removal allows u to still use py 2.3 and
may allow v to use power less than p,2./3. Our experimental results confirm this. See
Section 5.
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3.3 Pairwise edge removal

The final optimization aims at further reducing the transmission power of each node.
In addition to the directional information, this optimization requires two other pieces of
information. First, each node u is assigned a unique integer ID denoted ID,, and that
ID,, is included in all of u’s messages. Second, although a node u does not need to know
its exact distance from its neighbors, given any pair of neighbors v and w, node u needs
to know which of them is closer. This can be achieved as follows. Recall that a node
grows its radius in discrete steps. It includes its transmission power level in each of the
“Hello” messages. Fach discovered neighbor node also includes its transmission power
level in the Ack. When u receives messages from nodes v; and vy, it can deduce which
of v1 and vy is closer based on the transmission and reception powers of the messages.

Even after the shrink-back operation and possibly asymmetric edge removal, there
are many edges that can be removed while still preserving connectivity. For example, if
three edges form a triangle, we can clearly remove any one of them while still maintaining
connectivity. In this section, we improve on this result by showing that if there is an edge
from u to v; and from u to vy, then we can remove the longer edge even if there is no
edge from v; to vy, as long as d(vy,v2) < max(d(u,v),d(u,v9)). Note that a condition
sufficient to guarantee that d(vy, v2) < max(d(u,vy),d(u,vs)) is that Zvjuvy < 7/3 (since
the longest edge will be opposite the largest angle).

To make this precise, we use the notion of an edge ID. Each edge (u,v) is assigned
an edge ID eid(u,v) = (i, ia, i3), where iy = d(u,v), ia = max(ID,, ID,), and i3 =
min(ID,, 1D,). Edge IDs are compared lexicographically, so that (i, 7, k) < (¢, 7/, k) iff
either (a) i <, (b)i=4dand j<j,or(c)i=17,j=j, and k < k.

Definition 3.5 If v and w are neighbors of u, /vuw < 7/3, and eid(u,v) > eid(u,w),
then (u,v) is a redundant edge.

As the name suggests, redundant edges are redundant, in that it is possible to remove
them while still preserving connectivity. The following theorem proves this.

Theorem 3.6 For a < 57/6, all redundant edges can be removed while still preserving
connectivity.

Proof: Let E!" counsist of all the non-redundant edges in £,. We show that if (u,v) €
E, — E?", then there is a path from u to v consisting only of edges in E'". Clearly, this
suffices to prove the theorem.

Let ej,eq, -+, e, be a listing of the redundant edges (i.e, those in E, — E7") in
increasing lexicographic order of edge ID. We prove, by induction on k, that for every
redundant edge e, = (uy,vx) there is a path from uy to vy consisting of edges in E"".
For the base case, consider e; = (uq,v1). By definition, there must exist an edge (uy, wq)
such that /viujw; < 7/3 and eid(uq,v1) > eid(uy, wy). Since ey is the redundant edge
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with the smallest edge ID, (uq,w;) cannot be a redundant edge. Since /viujw; < /3, it
follows that d(wy,v1) < d(uy,vy). If (wy,v1) € E,, then (wy,v1) € BN (since (ug,vy) is
the shortest redundant edge) and (uy,w;), (wy,v1) is the desired path of non-redundant
edges. On the other hand, if (wy,v;) ¢ FE, then, since d(wy,v1) < d(uj,v1) < R and
a < 57/6, by Corollary 2.3, there exists a path from w; to vy consisting of edges in F,
all shorter than d(wq, v1). Since none of these edges can be redundant edge, this gives us
the desired path.

For the inductive step, suppose that for every e; = (u;,v;), 1 < j <i—1, we have
found a path H} between u; and v, which contains no redundant edges. Now consider
e; = (u;,v;). Again, by definition, there exists another edge (u;, w;) with eid(u;,v;) >
etd(u;, w;) and Zv;uw; < w/3. If (u;, w;) is a redundant edge, it must be one of e;’s, where
j < i—1. Moreover, if the path H; (from Corollary 2.3) between v; and w; contains a
redundant edge e;, we must have |e;| < |e;| and so j < i — 1. By connecting (u;, w;)
with H; and replacing every redundant edge e; on the path with H ]’-, we obtain a path
H! between u; and v; that contains no redundant edges. This completes the proof. 1

Although Theorem 3.6 shows that all redundant edges can be removed, this doesn’t
mean that all of them should necessarily be removed. For example, if we remove some
edges, the paths between nodes become longer, in general. Since some overhead is added
for each link a message traverses, having fewer edges can affect network throughput. In
addition, if routes are known and many messages are being sent using point-to-point
communication between different senders and receivers, having fewer edges is more likely
to cause congestion. Since we would like to reduce the transmission power of each node,
we remove only redundant edges with length greater than the longest non-redundant
edges. We call this optimization the pairwise edge removal optimization.

4 Dealing with reconfiguration, asynchrony, and fail-
ures

In a multi-hop wireless network, nodes can be mobile. Even if nodes do not move,
nodes may die if they run out of energy. In addition, new nodes may be added to the
network. We need a mechanism to detect such changes in the network. This is done by
the Neighbor Discovery Protocol (NDP). A NDP is usually a simple beaconing protocol
for each node to tell its neighbor that it is still alive. The beacon includes the sending
node’s ID and the transmission power of the beacon. A neighbor is considered failed if
a pre-defined number of beacons are not received for a certain time interval 7. A node
v is considered a new neighbor of u if a beacon is received from v and no beacon was
received from v during the previous 7 interval.

The question is what power a node should use for beaconing. Certainly a node
u should broadcast with sufficient power to reach all of its neighbors in £, (or E, if
a < 27/3). As we will show, if u uses a beacon with power p(rad, o) (recall that p(rad, )
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is the power that u must use to reach all its neighbors in FE,), then this is sufficient for
reconfiguration to work with the basic cone-based algorithm (possibly combined with
asymmetric edge removal if a < 27/3, in which case we can use power p(rad, ,)).

We define three basic events:

e A join,(v) event happens when node u detects a beacon from node v for the first
time;

e A leave,(v) event happens when node w misses some predetermined number of
beacons from node v;

e An aChange,(v) event happens when u detects that v’s angle with respect to u has
changed. (Note this could be due to movement by either u or v.)

Our reconfiguration algorithm is very simple. It is convenient to assume that each
node is tagged with the power used when it was first discovered, as in the shrink-back
operation. (This is not necessary, but it minimizes the number of times that CBTC needs
to be rerun.)

e If a leave,(v) event happens, and if there is an a-gap after dropping dir,(v) from
D,, node u reruns CBTC(a) (as in Figure 1), starting with power p(rad, ,) (i.e.,

taking py = p(md;a)).

e If a join,(v) event happens, u computes dir,(v) and the power needed to reach v.
As in the shrink-back operation, u then removes nodes, starting with the farthest
neighbor nodes and working back, as long as their removal does not change the
coverage.

e If an aChange,(v) event happens, node u modifies the set D, of directions appro-
priately. If an a-gap is then detected, then CBTC(a) is rerun, again starting with
power p(rad, ). Otherwise, nodes are removed, as in the shrink-back operation, to
see if less power can be used.

In general, there may be more than one change event that is detected at a given time
by a node u. (For example, if u moves, then there will be in general several leave, join
and aChange events detected by wu.) If more than one change event is detected by u, we
perform the changes suggested above as if the events are observed in some order, as long
as there is no need to rerun CBTC. If CBTC needs to be rerun, it deals with all changes
simultaneously.

Intuitively, this reconfiguration algorithm preserves connectivity. We need to be a
little careful in making this precise, since if the topology changes frequently enough,
the reconfiguration algorithm may not ever catch up with the changes, so there may be
no point at which the connectivity of the network is actually preserved. Thus, what
we want to show is that if the topology ever stabilizes, so that there are no further
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changes, then the reconfiguration algorithm eventually results in a graph that preserves
the connectivity of the final network, as long as there are periodic beacons. It should be
clear that the reconfiguration algorithm guarantees that each cone of degree a around a
node u is covered (except for boundary nodes), just as the basic algorithm does. Thus,
the proof that the reconfiguration algorithm preserves connectivity follows immediately
from the proof of Theorem 2.1.

While this reconfiguration algorithm works in combination with the basic algorithm
CBTC(a) and in combination with the asymmetric edge removal optimization, we must
be careful in combining it with the other optimizations discussed in Section 3. In par-
ticular, we must be very careful about what power a node should use for its beacon.
For example, if the shrink-back operation is performed, using the power to reach all the
neighbors in G¢ does not suffice. For suppose that the network is temporarily parti-
tioned into two subnetworks (G; and Gs; for every pair of nodes u; € GG7 and uy € G,
the distance d(uy, ug) > R. Suppose that u; is a boundary node in Gy and us is a bound-
ary node in G, and that, as a result of the shrink-back operation, both u; and wuy use
power P’ < pa.. Further suppose that later nodes u; and u, move closer together so
that d(u;,us) < R. If P’ is not sufficient power for u; to communicate with uy, then
they will never be aware of each other’s presence, since their beacons will not reach each
other, so they will not detect that the network has become reconnected. Thus, network
connectivity is not preserved.

This problem can be solved by having the boundary nodes broadcast with the power
computed by the basic CBTC(a) algorithm, namely py,q, in this case. Similarly, with
the pairwise edge removal optimization, it is necessary for u’s beacon to broadcast with
p(rady.q), i.e., the power needed to reach all of u’s neighbors in E,, not just the power
needed to reach all of u’s neighbors in E". It is easy to see that this choice of beacon
power guarantees that the reconfiguration algorithm works.

It is worth noting that a reconfiguration protocol works perfectly well in an asyn-
chronous setting. In particular, the synchronous model with reliable channels that has
been assumed up to now can be relaxed to allow asynchrony and both communication
and node failures. Now nodes are assumed to communicate asynchronously, messages
may get lost or duplicated, and nodes may fail (although we consider only crash failures:
either a node crashes and stops sending messages, or it follows its algorithm correctly).
We assume that messages have unique identifiers and that mechanisms to discard dupli-
cate messages are present. Node failures result in leave events, as do lost messages. If
node u gets a message after many messages having been lost, there will be a join event
corresponding to the earlier leave event.

5 Experimental Results

How effective is our algorithm and its optimizations as compared to other approaches?
Before we answer this question, let us briefly review existing approaches. To our knowl-
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edge, among the topology-control algorithms in the literature [23, 8, 9, 20, 22|, only
Rodoplu and Meng’s algorithm [22] attempts to optimize for energy efficiency while
maintaining network connectivity. Following [14], we refer to Rodoplu and Meng'’s al-
gorithm as the MECN algorithm (for minimum-energy communication network) in [14].
The work in [23, 8, 9] tries to maximize network throughput. Their algorithms do not
guarantee network connectivity. Ramanathan and Rosales-Hain [20] have considered
minimizing the maximum transmission power of all nodes by using centralized MST
algorithms. However, their distributed heuristic algorithms do not guarantee network
connectivity. Since we are only interested in algorithms that preserve connectivity and
are energy efficient, it seems that the only relevant algorithm in the literature is the
MECN algorithm. However, since the SMECN algorithm discussed in [14] outperforms
MECN, we will compare our algorithm with SMECN only.

We refer to the basic algorithm as CBTC, and to our complete algorithm with all
applicable optimizations as OPT-CBTC.? Furthermore, we also make the comparison
with the no-topology-control case, where each node always uses the maximum transmis-
sion power to send a packet (we refer to this approach as MaxPower). In the case of
no-topology-control, the reason that we choose maximum power is that it guarantees
that there will be no network partitions due to insufficient transmission power.

5.1 Simulation Environment

The topology-control algorithms—CBTC, SMECN and MaxPower—are implemented in
the ns-2 network simulator [19], using the wireless extension developed at Carnegie Mellon
[5]. We generated 20 random networks, each with 200 nodes. Each node has a maximum
transmission range of 500 meters and initial energy of 0.5 Joule. The nodes are placed
uniformly at random in a rectangular region of 1500 by 1500 meters. There has been
some work on realistic topology generation [28,; 1]. However, this work has the Internet
in mind. Although there have been some papers on realistic topology generation [28, 1],
most of them have focused on the Internet setting. Since large multihop wireless networks
such as sensor networks are often deployed in a somewhat random fashion (for example,
an airplane may drop sensors over some geographical region), we believe that assuming
nodes are placed uniformly at random is not an unreasonable assumption.

We assume the two-ray propagation model for terrestrial communications [21]. A
transmission between node u and v takes power p(u,v) = td(u,v)" for some appropriate
constant ¢, where n > 2 is the path-loss exponent of outdoor radio propagation models,
and d(u,v) is the distance between u and v. The model has been shown to be close to
reality in many environment settings [21]. We assume the power required to receive a
transmission at the receiver is constant. This power is refered to as the receiver power and
is denoted by c. The carrier frequency is 914MHz, and the transmission raw bandwidth
2MHz. We assume omni-directional antennas with 0dB gain ,and the antenna is placed

2For brevity, we will omit the parameter o in our presentation when it is clear from the context.
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1.5 meter above a node. The receive threshold is —94dBW. The carrier sense threshold
is —108dBW and the capture threshold is 10dB. These parameters simulate the 914MHz
Lucent WaveLAN DSSS radio interface.

In order to simulate the effect of power control in the neighbor-discovery process, we
made changes to the physical layer of the ns-2 simulation code. In particular, although
ns-2 does not support power control, and uses only one power level, we use eight discrete
power levels. This seems to be more in keeping with current practice. For example,
currently the Aironet PC4800 supports five transmission-power levels. Eight power levels
seems sufficient to provide a realistic simulation of the kind of scenarios that arise in
practice. In our simulation, power level 8 gives the maximum transmission range of
250 meters. The Increase function in Figure 1 moves from one power level to the next
higher level. For the“Hello” packet in the CBTC algorithm, the transmission power level
is controlled by the algorithm itself. Specifically, as we discussed in Section 4, node u
broadcasts using the final power p, (as determined by the Increase function in Figure 1).
For point-to-point transmissions from a node u, the minimum power level needed to reach
all of u’s neighbors is used. We do not use different power levels for different neighbors
because there is a delay associated with changing power levels in practice, which some
applications may not be able to tolerate.

To simulate interference and collision, we choose the WaveLAN-I [25] CSMA/CA
MAC protocol. Topology control does not by itself provide a routing; a routing protocol
is nededed. We choose AODV [17] in our simulation.

To simulate the network application traffic, we use the following application scenario.
We choose 60 connections, i.e. 60 source-destination pairs, at random (with replacement,
so that the sources and destinations are not necessarily distinct). For each of these 60
connections in sequence, the source (if it is still alive) sends constant bit rate (CBR) traffic
to its destination. The sending rate is 2 packets/sec and the packet size is 512 bytes. This
traffic pattern seems to generate sufficient load in the network for our evaluation. We do
not expect that the results would be qualitatively different if fewer or more connections
were used.

5.2 Network Topology Characteristics

Before comparing CBTC with SMECN and MaxPower through detailed network simu-
lation, we first examine the communication graphs that result from using each of these
approaches. To achieve this, we use the 20 random networks described in Section 5.1.

Figure 6 illustrates how CBTC and the various optimizations improve network topol-
ogy using the results from one of these random networks. Figure 6(a) shows a topology
graph produced by MaxPower. Figures 6(b) and (c) show the corresponding graphs pro-
duced by CBTC(27/3) and CBTC(57/6) respectively. We can see that both CBTC(27/3)
and CBTC(57/6) allow nodes in the dense areas to automatically reduce their transmis-
sion radius. Figures 6(d) and (e) illustrate the graphs after the shrink-back operation
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(h) CBTC(27/3)

Figure 6: The network graphs after different optimizations.
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is performed. Figure 6(f) shows the graph for a = 27/3 as a result of the shrink-back
operation and the asymmetric edge removal. Figures 6(g) and (h) show the topology
graphs after all applicable optimizations. We can see that the optimizations are very
effective in further reducing the transmission radius of nodes.

Table 1 compares the network graphs resulted from cone-based algorithm parameter-
ized by o = 27/3 and o = 57/6 in terms of average node degree and average radius. It
also shows the corresponding results for SMECN and MaxPower. The results are aver-
aged over the 20 random networks mentioned earlier. As expected, using a larger value
of a results in a smaller node degree and radius. However, as we discussed in Section 3.2,
there is a tradeoff between using CBTC(27/3) and CBTC(57/6). Using the basic algo-
rithm, rad, 5.6 = 205.4 < rad, 2.3 = 220.6. After applying asymmetric edge removal
with a = 27/3, the resulting radius is 176.6. Hence, asymmetric edge removal can re-
sult in significant savings. After applying all applicable optimizations, both a = 27/3
and a = 57/6 end up with very similar results in terms of both average node degree
and average radius. However, there are secondary advantages to setting a = 57/6. In
general, CBTC(57/6) will terminate sooner than CBTC(27/3) and so expend less power
during its execution (since p, 5. /6 < Pu2r /3). Thus, if reconfiguration happens frequently,
the advantage of using CBCT(57/6) over CBCT(27/3) in terms of reduction on power
consumption can be significant.

| Average Node Degree | Average radius ]

Basic a=57/6 8.8 205.4
a=2r/3 10.9 220.6
with op; a=57/6 8.3 194.3
a=2m/3 10.1 209.4
with opa a=2r/3 6.9 176.6
with op; and opsy a=2m/3 6.7 171.8
with all optimizations | a = 57/6 3.8 110.7
a=2r/3 3.7 113.1
SMECN with ¢ =0 N/A 2.7 115.8
SMECN with ¢ = 20 N/A 5.9 148.7
MaxPower N/A 15.0 250

Table 1: Average degree and radius of the cone-based topology control algorithm with dif-
ferent av and optimizations (op; shrink-back, opy asymmetric edge removal, ops pairwise
edge removal).

The sixth and seventh row shows the results for SMECN with ¢ = 0 and ¢ = 20. The
performance numbers of SMECN with ¢ = 0 in Table 1 are similar to those of OPT-
CBTC. performance of SMECN degrades as the receive power increases. Moreover,
SMECN requires GPS information, while CBTC requires only directional information.
The last row in Table 1 gives the performance numbers for the case when topology control
is absent under the assumption that each node uses the maximum transmission power

21



of p(250). We can see that using topology control cuts down the average degree by a
factor of more than 3 (3.8 vs. 15.0) and the average radius by a factor of more than
2 (113.1 or 110.7 vs. 250). Clearly, this is a significant improvement. Although OPT-
CBTC reduces the power demand of nodes (average radius 115.1) as much as SMECN
does (average radius 118.1), it is not necessarily always better to use OPT-CBTC, since
SMECN preserves the minimum-energy path while OPT-CBTC does not. If a different
power level can be used for each neighbor, and the amount of unicast traffic is significantly
greater than the amount of neighbor broadcast traffic, using SMECN can be beneficial.

5.3 Network Performance Analysis

As Table 1 shows, the network graphs resulting from using CBTC with a@ = 57/6 and
a = 2r/3 are quite similar in terms of average node degree and radius. Thus, we
consider only the case a = 27/3 in our experiments.®> To measure the performance of
CBTC, SMECN, and MaxPower, we simulate these approaches using the same traffic
pattern and random networks. Since the power available to a node is decreased after
each packet reception or transmission, nodes in the simulation die over time. After
a node dies, the network must be reconfigured. In our simulation, the NDP triggers
the reconfiguration protocol. The NDP beacon for SMECN and CBTC is sent with a
period of 1 second. The beacon uses power p(rad, 5, ) for CBTC and OPT-CBTC. For
SMECN, the beacon uses the appropriate power level as computed by SMECN’s neighbor
discovery process. For simplicity, we do not simulate node mobility, although some of the
effects of mobility—that is, the triggering of the reconfiguration protocol—can already
be observed when nodes run out of energy. The beacons are sent once per second. (The
beacon is jittered randomly before it is actually sent to avoid synchronization effects.)
Note that no beacon is required in the MaxPower approach. For the rest of this section,
we first compare the performance of CBTC, SMECN, and MaxPower when the radio
receiver power consumption is 0. Then we vary the receiver power to study its effect on
the relative performance of the three approaches. Note that, our results are averaged
over the 20 random networks described in Section 5.1.

5.3.1 Performance Comparison with Receiver Power ¢ =0

First, we investigate the performance of the three approaches assuming that the radio
receiver consumes zero power when receiving. As can be seen from Figure 7, OPT-CBTC
has the best performance. CBTC performs slightly worse than the SMECN algorithm,
but uses only directional information. MaxPower has signficantly worse performance
than the other algorithms. Figure 7(a) shows the number of traffic sources that remain
alive over time. We can see that when 72% of the traffic sources in MaxPower are dead
at time 300, about 60% of the traffic sources are still alive in both CBTC and SMECN,

3Since we use only a few discrete power levels, there is no significant benefit in using o = 57 /6.
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and more than 95% of the traffic sources are still alive in OPT-CBTC. The basic CBTC
algorithm does not perform as well as OPT-CBTC, but it still performs much better
than MaxPower and has about the same performance as SMECN. Next, consider how
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Figure 7: Performance comparison of different algorithms with ¢ = OmW.

the transmission power evolves over time as nodes die over time. Figure 7(b) shows
the average power level averaged over all nodes. The “average power level” at time ¢
is computed by considering, for each node u still alive at time ¢, the minimum power
currently needed to for u to reach all its neighbors (recall that this is the power that
u uses in the simulation to sending a point-to-point message), and then averaging this
quantity over all nodes stll alive at time ¢t. This gives a good indication of the power
level needed at time ¢. For MaxPower, the average power is constant over time, since
maximum power is always used. For the other algorithms, it increases over time. What
is perhaps most interesting is how little it increases in the case of OPT-CBTC. As we
can see, the average power level to reach all neighbors in the case of CBTC and SMECN
increases rapidly over time as more nodes die. The average power level needed to reach
all neighbors in the case of OPT-CBTC increases rather slowly and is much smaller than
that needed in the case of CBTC and SMECN.

We collected packet delivery and latency statistics at the end of our simulation.
SMECN, CBTC and OPT-CBTC are able to deliver 1.74, 1.91, and 3.32 times the
amount of packets delivered by MaxPower respectively, throughout the simulation. The
statistics for packet delivery and number of traffic sources still alive show that it is un-
desirable to transmit with large radius, since it increases energy consumption and causes
unnecessary interference, and consequently decreases throughput. It is interesting to note
that MaxPower and OPT-CBTC have similar latency (OPT-CBTC is about 8% higher),
as do CBTC and SMECN (CBTC is about 10% higher). However, the latency Max-
Power and OPT-CBTC is about three times that of CBTC and SMECN. OPT-CBTC
has higher latency because it typically take longer routes due to using lower transmission
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power. MaxPower has higher latency due to its low spatial reuse of the spectrum. That
is, a successful transmission by MaxPower reserves a large physical area. Any node that
hears the transmission within this area backs off and does not transmit itself. Therefore,
the larger the area reserved, the fewer nodes can transmit at any particular time. Since
a transmission by CBTC reserves a much smaller area, many nodes can transmit at the
same time.

5.3.2 Varying the Receiver Power
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Figure 8: Performance comparison of different algorithms with ¢ = 20mW.

We now consider what happens if the receiver consumes 20mW of power when re-
ceiving a message. As Figure 8(a) shows, in this case, the number of traffic sources alive
decrases much more quickly than in the case of ¢ = 0. For instance, at time 400 when
all the sources for MaxPower have just died in both cases, there are only 7, 7, and 18
sources alive for CBTC, SMECN and OPT-CBTC, respectively, if ¢ = 20, while if ¢ = 0,
there are 17, 19, and 38 sources alive, respectively. MaxPower is not affected by the
change in receiver power because it does not use periodic NDP beacons, while the other
algorithms do (and thus, nodes running one of the other algorithms must expend power
to receive these periodic beacons). Not surprisingly, the performance improvements of
the topology-control algorithms over MaxPower is smaller in the case of ¢ = 20 than in
the case of ¢ = 0. For instance, SMECN, CBTC and OPT-CBTC deliver only 1.30, 1.19,
and 1.78 times the number of packets delivered by MaxPower, respectively, throughout
the simulation. The latency of the topology-control algorithms is also relatively worse if
¢ = 20 than if ¢ = 0, since longer routes end up being used more earlier.

We remark that the assumption that MaxPower does not use NDP may not apply
in practice, since many protocols depend on it. Thus, the performance improvements of
topology control over MaxPower presented here represents rather conservative estimates.
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6 Conclusion

We have analyzed the distributed cone-based algorithm and proved that 57/6 is a tight
upper bound on the cone degree for the algorithm to preserve connectivity. We have
also presented three optimizations to the basic algorithm—the shrink-back operation,
asymmetric edge removal, and pairwise edge removal—and proved that they improve
performance while still preserving connectivity. Finally, we showed that there is a tradeoff
between using CBTC(a) with a = 57/6 and a = 27/3, since using o = 27/3 allows an
additional optimization, which can have a significant impact on reducing the transmission
radius. The algorithm extends easily to deal with reconfiguration and asynchrony. Most
importantly, simulation results show that it is very effective in reducing power demands
and increases the overall throughput.

Since the focus of this paper has been on reducing energy consumption, we conclude
with some discussion of this goal. Reducing energy consumption has been viewed as
perhaps the most important design metric for topology control. There are two stan-
dard approaches to doing this: (1) reducing the transmission power of each node as
much as possible; (2) reducing the total energy consumption through the preservation of
minimum-energy paths in the underlying network. These two approaches may conflict:
reducing the transmission power required by each node may not result in minimum-energy
paths or vice versa. Furthermore, there are other metrics to consider, such as network
throughput and network lifetime. Reducing energy consumption tends to increase net-
work lifetime. (This is particularly true if the main reason that nodes die is loss of battery
power.) However, there is no guarantee that it will. For example, using minimum-energy
paths for all communication may result in hot spots and congestion, which in turn may
drain battery power and lead to network partition. Using approach (1) in this case may
do better. If topology control is not done carefully, network throughput can be hurt. As
we have already pointed out, eliminating edges may result in more congestion and hence
worse throughput, even if it saves power in the short run. The right tradeoffs to make
are very much application dependent. We hope to explore these issues in more details in
future work.
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A  Proof for Theorem 2.1

Fact A.1 The distance d between any two points u,v in a f < w/3 sector of a circle is
no greater than the circle radius r. If both u and v are not the center of the circle, then
d<r.

Lemma A.2 In Figure 9, circ(z,d) intersects circ(v,d) on the arc from u clockwise to
q at point t.

Proof: For any two points ¢, t” on the arc from u clockwise to g, if /t'vz > /t"vz, then
d(t',z) > d(t",z). This follows from a simple geometry argument. Consider triangles
At'vz and At"vz. Since d(t',v) = d(t”,v) = d and the triangles have one side vz in
common, /t'vz > /t"vz implies d(t', z) > d(t", z). Since d(u, z) > d (by assumption) and
d(q,z) < d (by Fact A.1), there must be a point ¢ on the arc from u clockwise to ¢ such
that d(t,z) = d. 1
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Figure 9: Illustration for the proof of Lemma A.2 and Lemma A.3.

Lemma A.3 Let line ut intersect circ(u, d) at point f (ift is the same as u, then /fuv =
w/2) in Figure 9. To cover cone(u,a,v), in the case of d(w,v) > d of Lemma 2.2, u
must have at lease one neighbor in sector f?u\q of circ(u,d) and outside circ(v,d). Among
these neighbors, let w be the one such that /wuv is the smallest. w cannot lie within the
cone(u, / fuv,v).

Proof: For the case of d(w,v) > d of Lemma 2.2, we only need to show that w cannot lie
within the ftq region (the region inside sector fuq of circ(u, d) and outside of circ(v, d)).
We prove by contradiction. Suppose w lies in that region. By the previous lemma, ¢ lies
in the arc from u to ¢. So both t and w are in the sector hugq of circ(u,d). By Fact 1,
d(w,t) < d. Our assumption is that d(w, z) > d. Thus, d(w,z) > d(t,z) = d > d(w, ).
Therefore,

Lwtz > m/3 (3)
Since d(t,z) = d(t,v) = d (¢ is the intersection of circ(z,d) and circ(v, d)),
[ztv =T — 2% /zvt (4)
Since z is inside cone(v, a, u),
/2ot < af2 — /tvu < B /12 — /tou (5)

Draw a line tg parallel to wo. We have /wtg = /wtz + /ztv — /vtg. By Equation 3,
/wtg > /3 + /ztv — /tvu. By Equation 4 and 5, /wtg > w/2 + /tvu. Since /tuv =
(m— Ltvu) /2 = 7 /2 — [tvu/2, we have /wtg > /tuv. This contradicts our assumption of
w’s position. Thus, w must be outside cone(u, /fuv,v). I
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