Levesque’s Axiomatization of Only Knowing is

Incomplete®
Joseph Y. Halpern' Gerhard Lakemeyer
IBM Research Division Institute of Computer Science
Almaden Research Center, Dept. K53/802 University of Bonn
650 Harry Road Romerstr. 164
San Jose, CA 95120-6099 D-53117 Bonn, Germany
halpern@almaden.ibm.com gerhard@cs.uni-bonn.de
Abstract

We show that the axiomatization given by Levesque for his logic of “only knowing”
(Levesque 1990), which he showed to be sound and complete for the unquantified version of
the logic and conjectured to be complete for the full logic, is in fact incomplete.

1 Introduction

Levesque (1990) introduced a first-order modal logic OL with a modal operator for “only
knowing”, which was taken to be the conjunction of “knowing at least” and “knowing at most”.!
He provided a collection of axioms for this logic which he showed were sound and complete in
the unquantified case. He conjectured that the axiomatization was complete for the full logic.
As we show here, it is not.

In the next section of this note we review the syntax and semantics of OL, and Levesque’s
axiomatization of it. In Section 3, we show that Levesque’s axiomatization is incomplete. We
conclude in Section 4 with some further discussion of the problem of axiomatizing OL.

2 A review of OL

We briefly review enough of OL here to make this paper self-contained. The reader is encouraged
to consult (Levesque 1990) for further details and intuition.

*This paper is essentially identical to one that appears in Artificial Intelligence 74:2, 1995, pp. 381-387.
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! Although we have used the word “knowledge” here, we actually allow the agent’s knowledge to be false, so
that “belief” may be more appropriate. Since the distinction between knowledge and belief is irrelevant in this
paper, following Levesque we use the words “knowledge” and “belief” interchangeably in this paper to denote

belief.



The non-modal part of OL consists of a standard first-order logic with = and a countably
infinite set of standard names, which are treated syntactically like constants, but have a special
semantics (see below). There are neither regular constants nor function symbols. This base
language is extended by two modal operators, B and N, where Ba can be read as “the agent
believes (at least) a” and Na can be read as “the agent believes at most that a is false.” Oa
is taken to be an abbreviation of La A N-a. An atomic formula is a predicate other than
= applied to standard names. The formula a[z/n] denotes @ with all occurrences of the free
variable z replaced by n. A formula is said to be basic if it does not involve the N (or O)
operator, objective if it does not involve any modal operators, and subjective if all predicate
symbols occur within the scope of a modal operator.

The semantics is based on the notion of possible worlds, where a world is an interpretation
of the predicate symbols over the domain consisting of the standard names. Thus, the standard
names are rigid designators, denoting the same element of the domain, namely themselves, in
every world. A world w can be identified with the set of atomic formulas that are true at w
(using the standard semantics of first-order logic). We call the set of all worlds Wy. Belief (B)
is modeled in a standard possible-world fashion in terms of a set W of worlds. The beliefs of
the agent are those sentences that are true in all worlds of W. It is well known that this simple
model of belief yields the modal logic K44, that is, beliefs are closed under logical consequence
and positive as well as negative introspection. As we said, given a set W of worlds, B denotes
truth in all the worlds of W. N, on the other hand, denotes truth in all worlds not in W,
that is, all the worlds in Wy — W. By itself, N is just another ordinary belief operator like B.
However, as we shall see later, the interaction between B and N turns out to be surprisingly
subtle.

Given a pair W, w, which we call a situation, an arbitrary sentence of OL is interpreted
according to the following recursive rules.

W, wl=p if p € w, where p is an atomic formula

W, wl=(n = m) if n and m are identical standard names
W, wl=-a if W, wia

W,wl=a Vv g if W,wEa or W, wE=p

W, wi=3za if W, wEa[z/n] for some standard name n
W, wl=Ba if for all w’ € W, W, w'l=a

W, wENa if for all w' ¢ W, W, w'Fa

Since the semantics of a subjective sentence o for a given situation W, w does not depend on
w, we often write Wi=o instead of W, wl=c in this case. Analogously, we write wj=a instead
of W, wl=a for objective a.

Actually, the semantics we have just described is not quite Levesque’s semantics. Rather
than allowing W to be an arbitrary set of worlds, Levesque requires that W be mazimal in a
sense we now describe.

Two sets of worlds are said to be equivalent if they represent the same set of basic beliefs.
More precisely, we say that sets W and W' are equivalent if for every basic formula o, we have
W = Ba iff W' |= Ba. Levesque shows that there is a unique way to extend each set of worlds
to a largest set which is equivalent to it. These largest sets of worlds are called mazimal sets.
For technical reasons, Levesque uses only maximal sets in his semantics for OL. Thus, Levesque



defines a formula a to be valid if W, w |= « for all situations such that W is maximal.

We also use Levesque’s version of validity, but notice that his definitions make perfect sense
even if we do not restrict to maximal sets. We define a formula a to be strongly valid if
W, w = a for all situations W, w (including ones where W is non-maximal). Clearly a formula
that is strongly valid must be valid. It follows immediately from the definition of maximality
that validity and strong validity coincide if we restrict to basic formulas. On the other hand,
there may be non-basic formulas that are valid but not strongly valid.

We next review Levesque’s axiomatization.

The axiom system AX

Let I stand for both B and N.
Axioms:

A1: All instances of theorems of first-order logic.

A2: La, where a is an instance of a theorem of first-order logic.

A3: (n; = n;) A (n; # nj), where n; and n; are distinct standard names.
A4: L(a = () = (La = LB).

A5: Vela = LVza.

A6: 0 = Lo, if o is a subjective sentence.

AT: Na = - Ba, if a is a falsifiable objective sentence.

Inference rules:

MP: From a and o = 3 infer j.
UG: From a[z/nq],...,a[z/ng] infer Yza, where the n; range over all standard names in
a and one not in a.

Levesque showed that AX is sound with respect to his notion of validity, where only maximal
sets of worlds are considered, and complete with respect to unquantified sentences, so that any
valid sentence without quantifiers is provable from these axioms. It is easy to see that AX is
also sound with respect to strong validity, where we allow arbitrary sets of worlds.

3 Incompleteness of the axiom system

In this section we prove that Levesque’s axiom system is incomplete with respect to the full
language. In fact, we show that there is a formula that is strongly valid that is not provable in
his system.

Consider the two sets Wy and W, defined in the proof of Theorem 3.6 of (Levesque 1990).
Wy consists of all worlds in which at least the odd-numbered standard names satisfy P, and let
Wy = Wy — {wp}, where wq is the world where the standard names that satisfy P are precisely
the odd-numbered standard names. It is easy to check that the only standard names believed
to satisfy P in both W; and W5 are the odd-numbered names, that is,

W, = B(P(n;)) iff ¢ is odd, for j = 1,2.

Levesque shows



Lemma 3.1: (Levesque 1990, Lemma 3.6.2) For any objective formula o, we have W; = Ba
iff Wy = Ba.

We next define a slightly nonstandard notion of satisfaction |=nxg. Actually, |=ng agrees
with |= except on situations of the form Wy, w. Formally, all clauses in the definition of =xns
are identical to the corresponding clause in the definition of |=, except for formulas of the form
Na if we are considering the set Wy. In this case, we define:

Wa,w Ens Na iff Wy, w' |E=ns a for all w' ¢ Wy.

Notice that for |=, the corresponding definition would have as its last clause “for all w’ ¢ Wy”.
In particular this means we do not consider the world wy when evaluating the truth of Na in
W, according to |=ns.

Lemma 3.2: For all objective formulas o, we have Wy |=ns Na iff Wy Ens Na.

Proof: This is immediate from the definitions, since in both cases, to evaluate the truth of
Na, we consider the worlds not in Wi. 11

Lemma 3.3: Fverything provable from AX is strongly valid with respect to =ns.

Proof: We must check that all the axioms of AX are strongly valid with respect to |=xng and
that all the rules of inference preserve strong validity with respect to |=ng. The result then
follows by a straightforward induction on the length of the proof. All the cases are completely
straightforward except possibly the axiom A7. Since |= and |=xg agree on all sets of worlds
except possibly Wy, we must only check what that this axiom holds in Wj.

Suppose that for some falsifiable objective formula a, we have Wy Enys Na A Ba. By
Lemma 3.2, we have that Wy =ns Na. Since |Eng and |= agree with respect to Wy, we must
have Wi = Na. Since Eyg and |= agree with respect to formulas of the form Ba where
a is objective, we must also have W3 = Ba. By Lemma 3.1, we have W; = Ba. Thus,
Wi = Ba A Na. But this contradicts the strong validity of axiom A7 with respect to |=. 1

Our goal is now to construct a formula that is strongly valid with respect to = but not with
respect to =ns. By Lemma 3.3, such a formula cannot be provable from AX, thus showing
that AX is incomplete.

Let 11 be the sentence 3z( P(z) A= BP(z)) and let ¥ be the sentence 3z(=P(z)A BP(z)).?
Thus, 1 is true if there is a standard name satisfying P that is not one of the standard names
believed to satisfy P; 1, is true if there is a standard name satisfying =P which is one of the
standard names believed to satisfy P. Let ¥ = 11 V ¢5. Notice that v is true at every world
with respect to Wy or Wy except wg, the world where the standard names that satisfy P are
precisely those believed to satisfy P. Thus,

Wi, w = v for i = 1,2, unless w = wy. (1)

Since 3 does not mention N, it is easy to see that (1) also holds if we replace |= by Ens.

“These sentences were used (for a different purpose) in (Levesque 1984).



Lemma 3.4: N = — B is strongly valid (with respect to |=).

Proof: Suppose W |= N¢. Let A = {n : nis a standard name and W |= BP(n)} and let w
be a world such that w |= P(n) iff n € A. It is easy to see that W, w |= 3. Since W = N, it
must be the case that w € W. Thus, W |= = B. This proves the strong validity of N¢ = = B.
(Notice that this does not follow from axiom A7, since % is not an objective formula, although
the proof of its validity follows along the same general lines as the corresponding proof for
objective formulas.) I

The following lemma shows that, although it is valid with respect to |5, N¢» = =B is not
valid with respect to |=pns:

Lemma 3.5: Wy |=ng N A B,

Proof: This follows from observation (1) above, which says that i is satisfied (with respect
to |= or [Ens) by every world except wg. However, we do not consider wq for either B (since
wo ¢ W3) or N (because of our nonstandard semantics). Il

Thus, there is a formula that is strongly valid (with respect to |=) that is not provable,
namely N1 = Bi. We conclude, as desired, that:

Theorem 3.6: AX is not a complete axiomatization for OL.

4 Discussion

Having shown that Levesque’s axiomatization is incomplete, the question remains what a com-
plete axiomatization would look like.

Typically, we expect an axiomatization to be recursive. As Levesque already noted, his
axiom system is not recursive. In particular, A7 is not recursive, since it involves checking
whether a formula is first-order formula is falsifiable, which is known to be a co-r.e. problem
(see (Rogers 1967)). This is not an artifact of Levesque’s framework. It is easy to show that
there cannot be a recursive complete axiomatization of OL, since the validity problem for the
language is not r.e.

Lemma 4.1: FEvery complete axiomatization of OL is non-recursive.

Proof: Suppose there were a recursive complete axiomatization AX’ of OL. Then the set of
falsifiable objective formulas would be r.e., since we could generate them by generating all the
objective formulas a such that Na = - Ba is provable from AX’. Since the set of falsifiable
objective formulas is co-r.e., this is a contradiction. i

If we are willing give up recursiveness, then finding a non-recursive axiomatization is, in a
sense, trivial: simply declare every valid sentence an axiom. Of course, for an axiomatization
to be instructive, it should not have to appeal to the very notion which it tries to capture. We
would hope that the axioms would be “natural”, and give insight into the logic.



We do not know whether there is a “natural” proof-theoretic account of the logic (whatever
that may mean), but, as the following results suggest, if there is one, it will be hard to find.

Recall that our incompleteness proof proceeds by showing that, for a particular basic formula
¥, the formula N = =B is strongly valid yet not provable from the axioms. The latter
formula almost looks like an instance of axiom A7. It is not, of course, since A7 would apply
only if the formula 1 were objective. The obvious idea, namely to strengthen axiom schema A7
by allowing it to range over all falsifiable basic sentences, can easily be dismissed. For example,
consider the subjective sentence BP(n) for some predicate P and standard name n. BP(n) is
obviously falsifiable, yet NBP(n) = -BBP(n) is not valid. In fact, NBP(n) = BBP(n) is
easily derivable from the axioms (using A6) and is therefore valid.

But what about basic sentences that are not subjective like the sentence % used in the
previous section? In other words, do we obtain a complete axiomatization if we replace axiom
A7 by the following axiom A7'?

AT7': Na = -Ba, if ais a falsifiable basic non-subjective sentence.

Since % is basic, non-subjective, and falsifiable, the offending sentence N = -~ B would now
come out trivially as a theorem. Unfortunately, A7" does not solve the problem either, since
restricting the axiom schema to non-subjective basic sentences is still unsound. To see this,
consider the formula

¢ = Va(P(2) > BP(2),

which is obviously falsifiable. However,
Lemma 4.2: Ny = By is not valid.

Proof: Let Wp consist of all worlds w such that w = V2 P(z). Clearly Wp is maximal. For
suppose W and Wp are equivalent. Then, in particular, W = B(Vz(P(z)), so we must have
W C Wp. We next show that Wp |= Bo A Ne. It is easy to see that Wp, w |= B(VzP(z)) = ¢
for all worlds w. Since Wp |= B(VzP(z)), it follows that Wp,w |= ¢ for all worlds w. This
means that Wp = Byp A Ny. Hence Ny = =By is not valid (and, a fortiori, not strongly
valid). 11

Although, as we just showed, Ny = =By is not valid, there is a sense in which it just misses
being valid. As we now show, the only time it fails to be valid is when every standard name is
known not to satisfy P (as was the case for the set Wp of worlds considered in Lemma 4.2).

Lemma 4.3: -B(VzP(z)) = (N¢ = ~By) is strongly valid.

Proof: Let W be any set of worlds such that Wl==B(VzP(z)) A N¢. Since W==B(VzP(z)),
there is a standard name n* such that Wl=-=BP(n*). Since W=Ng, it follows that for all
w' ¢ W, we have W, w'=Vz(P(z) = BP(z)). In particular, this means that for all w’ ¢ W,
we must have w'[==P(n*). Thus, there must be some w € W such that wE=P(n*). Clearly
W, wl=-¢, so Wi== By, as desired. 1

These lemmas show that finding a relatively natural extension of axiom A7 that would
cover the counterexample is a subtle matter. Nor is there any guarantee that such an extension



would give us a complete axiomatization. For example, notice that all the sound axioms we
have considered so far are not only valid, but strongly valid. It may well be that there are
formulas that are valid but not strongly valid. If so, we need to find an axiom that is valid
but not strongly valid. The formulas that we have considered in this paper do not have this
property. We leave further exploration of these issues to future work.
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