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Abstract

We consider a setting where an decision maker’s uncertainty is rep-
resented by a set of probability measures, rather than a single measure.
Measure-by-measure updating of such a set of measures upon acquir-
ing new information is well-known to suffer from problems. To deal
with these problems, we propose using weighted sets of probabilities: a
representation where each measure is associated with a weight, which
denotes its significance. We describe a natural approach to updating
in such a situation and a natural approach to determining the weights.
We then show how this representation can be used in decision-making,
by modifying a standard approach to decision making—minimizing ex-
pected regret—to obtain minimax weighted expected regret (MWER).
We provide an axiomatization that characterizes preferences induced
by MWER both in the static and dynamic case.
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1 defect 10 defect

deliver 10,000 -10,000

cancel 0 0

check 5,001 -4,999

Table 1: Payoffs for the quality-control problem. Acts are in the leftmost
column. The remaining two columns describe the outcome for the two sets
of states that matter.

1 Introduction

From deciding between crispy fries and a bland salad, to forming an invest-
ment portfolio, to military planning, our decisions can significantly impact
our lives and those of others. These problems can often be abstracted as
decision problems with uncertainty. For decisions based on the outcome of
the toss of a fair coin, the uncertainty can be well characterized by prob-
ability. However, what is the probability of you gaining weight if you eat
fries at every meal? What if you have salads instead? Even experts would
not agree on a single probability.

Representing uncertainty by a single probability measure and making
decisions by maximizing expected utility leads to further problems. Consider
the following stylized quality control-problem, which serves as a running
example in this paper. A business owner (the decision maker) is contracted
to produce 1, 000 items, and will be rewarded when she delivers the items,
but punished if she delivers a batch with too many defective items. She
has recently switched a raw material supplier, and does not know whether
the supplier is reliable, and provides good quality materials, or unreliable,
and provides bad quality materials. For simplicity, assume that using good
quality raw materials results in one defective item in the batch of 1, 000,
while using bad quality raw materials results in ten defective items.1

The owner’s choices and their consequences are summarized in Table 1.
Decision theorists typically model decision problems with states, acts, and
outcomes: the world is in one of many possible states, and the decision maker
chooses an act, a function mapping states to outcomes. For now, we use
the simplest possible state space for this problem: {one defect, ten defects}.
These two possible states are sufficient to capture the owner’s uncertainty
in the quality-control problem. (However, we later consider a more refined

1It is more natural to assume that the quality of the raw materials affects the distri-
bution of the number of defects, rather than directly affecting the final number; we make
the latter assumption here for simplicity.
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state space.)
The owner can choose among three acts: deliver : deliver the products;

cancel : cancel the contract; or check : inspect enough items to determine the
number of defects, then decide to deliver or cancel the contract. The client
will tolerate at most one defect in the lot of 1, 000. Therefore, if the owner
chooses deliver , and if there is only one defect, then the client is happy,
and the owner obtains a utility of 10, 000; if there are ten defects, then the
outcome then the client will penalize the owner, resulting in a utility of
−10, 000. If the owner chooses to cancel , then the contract is canceled, and
the owner gets a utility of 0. Finally, checking the items costs 4, 999 units
of utility but is reliable, so if the owner chooses check , and if there is one
defect, then the products will be delivered after the check, and the client
will be happy; the owner nets a utility of 5, 001. On the other hand, if there
are ten defects, then after the check, the contract will be canceled, and the
owner nets a utility of −4, 999.

To maximize expected utility, we must assume some probability over
states. What measure should be used? There are two hypotheses that
the owner entertains: (1) the raw material is of high quality and (2) the
raw material is of low quality. Each of these hypotheses places a different
probability on states.

If the raw material is of high quality, then with probability 1 there will
only be one defect; if the raw material is of low quality, then with probability
1 there will be ten defects. One way to model the owner’s uncertainty about
the quality of the material is to take each hypothesis to be equally likely.
However, not having any idea about which hypothesis holds is very different
from believing that all hypotheses are equally likely. It is easy to check
that taking each hypothesis to be equally likely makes check the act that
maximizes utility, but taking the probability that the raw material has low
quality .51 makes cancel the act that maximizes expected utility, and taking
the probability that the raw material has high quality to be .51 makes deliver
the act that maximizes expected utility. What makes any of these choices
the “right” choice?

It is easy to construct many other examples where a single probability
measure does not capture uncertainty, and does not result in what seem to
be reasonable decisions, when combined with expected utility maximization.
A natural alternative, which has often been considered in the literature, is
to represent the decision maker’s uncertainty by a set of probability mea-
sures. For example, in the quality-control problem, the owner’s beliefs could
be represented by two probability measures, Pr1 and Pr10, one for each hy-
pothesis. Thus, Pr1 assigns uniform probability to all states with exactly
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one defective items, and Pr10 assigns uniform probability to all states with
exactly ten defective items.

But this representation also has problems. Consider the quality-control
problem again. Why should the owner be sure that there is exactly either one
or ten defective items? Of course, we can replace these two hypotheses by
hypotheses that say that the probability of an item being defective is either
.001 or .01, but this doesn’t solve the problem. Why should the decision
maker be sure that the probability is either exactly .001 or exactly .01?
Couldn’t it also be .0999? Representing uncertainty by a set of measures
still places a sharp boundary on what measures are considered possible and
impossible.

A second problem involves updating beliefs. How should beliefs be up-
dated if they are represented by a set of probability measures? The standard
approach for updating a single measure is by conditioning. The natural ex-
tension of conditioning to sets of measure is measure-by-measure updating:
conditioning each measure on the information (and also removing measures
that give the information probability 0).

However, measure-by-measure updating can produce some rather coun-
terintuitive outcomes. In the quality-control problem, suppose that the
owner knows that the first 100 items that came off the assembly line are
good. We denote this piece of information by E. Intuition tells us that
there is now more reason to believe that there is only one defective item.
The simple two-state state space we used is not sufficient to capture this new
information, so we now expand the state space from {one defect, ten defects}
to {good, defective}1000. That is, each item that gets produced is numbered
from 1 to 1, 000, and each one can be either defective, or good. We can
adapt the two hypotheses in the obvious way to this new state space, and
the hypotheses can be conditioned on the new information.

However, Pr1 | E places uniform probability on all states where the first
100 items are good, and there is exactly one defective item among the last
900 items. Similarly, Pr10 | E places uniform probability on all states where
the first 100 items are good, and there are exactly ten defective items among
the last 900. Pr1 | E still places probability 1 on there being one defective
product, just like Pr1, and Pr10 | E still places probability 1 on there being
ten defective products. There is no way to capture the fact that the owner
now views the hypothesis Pr10 as less likely, even if the owner was told that
the first 990 items are all good!

Of course, both of these problems would be alleviated if we placed a prob-
ability on hypotheses, but, as we have already observed, simply maximizing
expected utility with respect to this second-order probability distribution
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has its problems. In this paper, we propose an intermediate approach: rep-
resenting uncertainty using weighted sets of probabilities. That is, each prob-
ability measure is associated with a weight. These weights can be viewed
as probabilities; indeed, if the set of probabilities is finite, we can normalize
them so that they are effectively probabilities. Moreover, in one important
setting, we update them in the same way that we would update probabili-
ties, using likelihood (see below). On the other hand, these weights do not
act like probabilities if the set of probabilities is infinite. For example, if
we had a countable set of hypotheses, we could assign them all weight 1
(so that, intuitively, they are all viewed as equally likely), but there is no
uniform measure on a countable set. To avoid complications about mea-
surability, we think of our representation as a weighted set of probabilities.
However, one can equally well think of the representation as a probability
on probabilities.

More importantly, when it comes to decision making, we use the weights
quite differently from how we would use second-order probabilities on prob-
abilities. Second-order probabilities would let us define a probability on
events (by taking expectation) and maximize expected utility, in the usual
way. Using the weights, we instead define a novel decision rule, minimax
weighted expected regret (MWER), that has some rather nice properties. If
all the weights are 1, then MWER is just the standard minimax expected re-
gret (MER) rule (described below). If the set of probabilities is a singleton,
then MWER agrees with (subjective) expected utility maximization (SEU).
More interestingly perhaps, if, through updating, the weights converge to
a single hypothesis/probability measure (which happens in one important
special case, discussed below), MWER converges to SEU. Thus, the weights
give us a smooth, natural way of interpolating between MER and SEU.

In summary, weighted sets of probabilities allow us to represent ambigu-
ity (uncertainty about the correct probability distribution). Real individuals
are sensitive to this ambiguity when making decisions, and the MWER deci-
sion rule takes this into account. Updating the weighted sets of probabilities
using likelihood allows the initial ambiguity to be resolved as more informa-
tion about the true distribution is obtained.

We now briefly explain MWER, by first discussing MER. MER is a
probabilistic variant of the minimax regret decision rule proposed by Niehans
[21] and Savage [25].2 Most likely, at some point, we’ve second-guessed

2Note that our definition of regret minimization, while standard, differs from that used
by Loomes and Sugden [18], where probabilities are given, and where the decision maker
not only feels regret but also “rejoice” if the chosen alternative is better than the unchosen
ones.
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ourselves and thought “had I known this, I would have done that instead”.
That is, in hindsight, we regret not choosing the act that turned out to be
optimal for the realized state, called the ex post optimal act. The regret of
an act a in a state s is the difference (in utility) between the ex post optimal
act in s and a. Of course, typically one does not know the true state at
the time of decision. Therefore the regret of an act is the worst-case regret,
taken over all states. The minimax regret rule orders acts by their regret.

The definition of regret can be used if there is no probability on states.
If an decision maker’s uncertainty is represented by a single probability
measure, then we can compute the expected regret of an act a: just multiply
the regret of an act a at a state s by the probability of s, and then sum.
It is well known that the order on acts induced by minimizing expected
regret is identical to that induced by maximizing expected utility (see [13]
for a proof). If an decision maker’s uncertainty is represented by a set
P of probabilities, then we can compute the expected regret of an act a
with respect to each probability measure Pr ∈ P, and then take the worst-
case expected regret. The MER (Minimax Expected Regret) rule orders
acts according to their worst-case expected regret, preferring the act that
minimizes the worst-case regret. If the set of measures is the set of all
probability measures on states, then it is not hard to show that MER induces
the same order on acts as (probability-free) minimax regret. Thus, MER
generalizes both minimax regret (if P consists of all measures) and expected
utility maximization (if P consists of a single measure).

MWER further generalizes MER. If we start with a weighted set of mea-
sures, then we can compute the weighted expected regret for each one (just
multiply the expected regret with respect to Pr by the weight of Pr) and
compare acts by their worst-case weighted expected regret.

Sarver [24] also proves a representation theorem that involves putting
a multiplicative weight on a regret quantity. However, his representation
is fundamentally different from MWER. In his representation, regret is a
factor only when comparing two sets of acts; the ranking of individual acts
is given by expected utility maximization. By way of contrast, we do not
compare sets of acts.

It is standard in decision theory to axiomatize a decision rule by means
of a representation theorem. For example, Savage [26] showed that if an
decision maker’s preferences � satisfied several axioms, such as completeness
and transitivity, then the decision maker is behaving as if she is maximizing
expected utility with respect to some utility function and probabilistic belief.

If uncertainty is represented by a set of probability measures, then we
can generalize expected utility maximization to maxmin expected utility
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(MMEU). MMEU compares acts by their worst-case expected utility, taken
over all measures. MMEU has been axiomatized by Gilboa and Schmeidler
[11]. MER was axiomatized by Hayashi [13] and Stoye [28]. We provide an
axiomatization of MWER. We make use of ideas introduced by Stoye [28]
in his axiomatization of MER, but the extension seems quite nontrivial.

We also consider a dynamic setting, where beliefs are updated by new
information. If observations are generated according to a probability mea-
sure that is stable over time, then, as we suggested above, there is a nat-
ural way of updating the weights given observations, using ideas of likeli-
hood. The idea is straightforward. After receiving some information E,
we update each probability Pr ∈ P to Pr | E, and take its weight to be
αPr = Pr(E)/ supPr′∈P Pr′(E). If more than one Pr ∈ P gets updated to
the same Pr | E, the sup of all such weights is used. Thus, the weight of Pr
after observing E is modified by taking into account the likelihood of ob-
serving E assuming that Pr is the true probability. We refer to this method
of updating weights as likelihood updating.

If observations are generated by a stable measure (e.g., we observe the
outcomes of repeated flips of a biased coin) then, as the decision maker
makes more and more observations, the weighted set of probabilities of the
decision maker will, almost surely, look more and more like a single mea-
sure. The weight of the measures in P closest to the measure generating
the observations converges to 1, and the weight of all other measures con-
verges to 0. This would not be the case if uncertainty were represented by
a set of probability measures and we did measure-by-measure updating, as
is standard. As we mentioned above, this means that MWER converges to
SEU.

We provide an axiomatization for dynamic MWER with likelihood up-
dating. We remark that a dynamic version of MMEU with measure-by-
measure updating has been axiomatized by Jaffray [15], Pires [22], and
Siniscalchi [27]. Likelihood updating is somewhat similar in spirit to an
updating method implicitly proposed by Epstein and Schneider [8]. They
also represented uncertainty by using (unweighted) sets of probability mea-
sures. They choose a threshold α with 0 < α < 1, update by conditioning,
and eliminate all measures whose relative likelihood does not exceed the
threshold. This approach also has the property that, over time, all that is
left in P are the measures closest to the measure generating the observa-
tions; all other measures are eliminated. However, it has the drawback that
it introduces a new, somewhat arbitrary, parameter α.

Chateauneuf and Faro [4] also consider weighted sets of probabilities
(they model the weights using what they call confidence functions). They
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then define and provide a representation of a generalization of MMEU us-
ing weighted sets of probabilities that parallels our generalization of MER.
Chateauneuf and Faro do not discuss the dynamic situation; specifically,
they do not consider how weights should be updated in light of new infor-
mation. We discuss the relationship of our work that of Chateauneuf and
Faro in more detail in Section B.

Klibanoff et al. [16] propose a model of decision making that asso-
ciates weights with probability measures, but makes decisions based on a
“weighted” expected utility function. Maccheroni et al. [19] study a model
of decision making where additive, instead of multiplicative, weights are
associated with probability measures. Hayashi [13] considers a model of
expected-regret-minimization where regrets computed with respect to each
state are taken to a positive power before expectations are taken. Others
have also proposed and studied approaches of representing uncertainty that
are similar to weighted probabilities (see, e.g. [1, 6, 20, 31]).

The rest of this paper is organized as follows. Section 2 introduces the
weighted sets of probabilities representation, and Section 3 introduces the
MWER decision rule. Axiomatic characterizations of static and dynamic
MWER are provided in Sections 4 and 5, respectively. We conclude in
Section 6.

2 Weighted Sets of Probabilities

A set P+ of weighted probability measures on a set S consists of pairs
(Pr, αPr), where αPr ∈ [0, 1] and Pr is a probability measure on S.3 Let
P = {Pr : ∃α((Pr, α) ∈ P+)}. We assume that, for each Pr ∈ P, there is
exactly one α such that (Pr, α) ∈ P+. We denote this number by αPr, and
view it as the weight of Pr. We further assume for convenience that weights
have been normalized so that there is at least one measure Pr ∈ P such that
αPr = 1.4

As we observed in the introduction, one way of updating weighted sets of
probabilities is by using likelihood updating. We use P+ | E to denote the re-

sult of applying likelihood updating to P+. Define P+
(E) = sup{αPr Pr(E) :

3In this paper, for ease of exposition, we take the state space S to be finite, and assume
that all sets are measurable. We can easily generalize to arbitrary measure spaces.

4While we could take weights to be probabilities, and normalize them so that they sum
to 1, if P is finite, this runs into difficulties if we have an infinite number of measures in P.
For example, if we are tossing a coin, and P includes all probabilities on heads from 1/3 to
2/3, using a uniform probability, we would be forced to assign each individual probability
measure a weight of 0, which would not work well in the definition of MWER.
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Pr ∈ P}; if P+
(E) > 0, set αPr,E = sup{Pr′∈P:Pr′|E=Pr|E}

αPr′ Pr′(E)

P+
(E)

. Note

that given a measure Pr ∈ P, there may be several distinct measures Pr′

in P such that Pr′ | E = Pr | E. Thus, we take the weight of Pr | E
to be the sup of the possible candidate values of αPr,E . By dividing by

P+
(E), we guarantee that αPr,E ∈ [0, 1], and that there is some measure Pr

such that αPr,E = 1, as long as there is some pair (αPr,Pr) ∈ P such that

αPr Pr(E) = P+
(E). If P+

(E) > 0, we take P+ | E to be

{(Pr | E,αPr,E) : Pr ∈ P}.

If P+
(E) = 0, then P+ | E is undefined.

In computing P+ | E, we update not just the probability measures in
P, but also their weights. The new weight combines the old weight with
the likelihood. Clearly, if all measures in P assign the same probability to
the event E, then likelihood updating and measure-by-measure updating
coincide. This is not surprising, since such an observation E does not give
us information about the relative likelihood of measures. We stress that
using likelihood updating is appropriate only if the measure generating the
observations is assumed to be stable. For example, if observations of heads
and tails are generated by coin tosses, and a coin of possibly different bias
is tossed in each round, then likelihood updating would not be appropriate.

It is well known that, when conditioning on a single probability measure,
the order that information is acquired is irrelevant; the same observation
easily extends to sets of probability measures. As we now show, it can be
further extended to weighted sets of probability measures.

Proposition 1. Likelihood updating is consistent in the sense that for all
E1, E2 ⊆ S, (P+ | E1) | E2 = (P+ | E2) | E1 = P+ | (E1 ∩ E2), provided
that P+ | (E1 ∩ E2) is defined.

Proof. By standard results, (Pr | E1) | E2 = (Pr | E2) | E1 = Pr | (E1 ∩
E2). Since the weight of the measure Pr | E1 is proportional to αPr Pr(E1),
the weight of (Pr | E1) | E2 is proportional to αPr Pr(E1) Pr(E2 | E1) =
αPr Pr(E1 ∩ E2). Likewise, the weight of (Pr | E2) | E1 is proportional to
αPr Pr(E2) Pr(E1 | E2) = αPr Pr(E1 ∩E2). Since, in all these cases, the sup
of the weights is normalized to 1, the weights of corresonding measures in
P+ | (E1 ∩ E2), (P+ | E1) | E2 and (P+ | E2) | E1 must be equal.
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3 MWER

We now define MWER formally. Given a set S of states and a set X of
outcomes, an act f (over S and X) is a function mapping S to X. For
simplicity in this paper, we take S to be finite. Associated with each outcome
x ∈ X is its utility u(x). We call a tuple (S,X, u) a (non-probabilistic)
decision problem. To define regret, we need to assume that we are also
given a set M ⊆ XS of feasible acts, called the menu. The reason for the
menu is that, as is well known (and we will demonstrate by example shortly),
regret can depend on the menu. Moreover, we assume that every menu M
has utilities bounded from above. That is, we assume that for all menus
M , supg∈M u(g(s)) is finite. This ensures that the regret of each act is well
defined.5 For a menu M and act f ∈M , the regret of f with respect to M
and decision problem (S,X, u) in state s is

regM (f, s) =

(
sup
g∈M

u(g(s))

)
− u(f(s)).

That is, the regret of f in state s (relative to menu M) is the difference
between u(f(s)) and the highest utility possible in state s (among all the
acts in M). The regret of f with respect to M and decision problem (S,X, u)
is the worst-case regret over all states:

max
s∈S

regM (f, s).

We denote this as reg
(S,X,u)
M (f), and usually omit the superscript (S,X, u) if

it is clear from context. If there is a probability measure Pr over the states,
then we can consider the probabilistic decision problem (S,X, u,Pr). The
expected regret of f with respect to M is

regM,Pr(f) =
∑
s∈S

Pr(s)regM (f, s).

If there is a set P of probability measures over the states, then we consider
the P-decision problem (S,X, u,P). The maximum expected regret of f ∈

5Stoye [29] assumes that, for each menu M , there is a finite set AM of acts such that
M consists of all the convex combinations of the acts in AM . We clearly allow a larger set
of menus than Stoye. We return to the issue of what menus to consider after we discuss
the representation theorem in Section B, and again when we discuss choice functions in
Section 4.
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M with respect to M and (S,X, u,P) is

regM,P(f) = sup
Pr∈P

(∑
s∈S

Pr(s)regM (f, s)

)
.

Finally, if beliefs are modeled by weighted probabilities P+, then we consider
the P+-decision problem (S,X, u,P+). The maximum weighted expected
regret of f ∈M with respect to M and (S,X, u,P+) is

regM,P+(f) = sup
Pr∈P

(
αPr

∑
s∈S

Pr(s)regM (f, s)

)
.

The MER decision rule is thus defined for all f, g ∈ XS as

f �S,X,uM,P g iff reg
(S,X,u)
M,P (f) ≤ reg

(S,X,u)
M,P (g).

That is, f is preferred to g if the maximum expected regret of f is less than
that of g. We can similarly define �M,reg , �S,X,uM,Pr , and �S,X,u

M,P+ by replacing

reg
(S,X,u)
M,P by reg

(S,X,u)
M , reg

(S,X,u)
M,Pr , and reg

(S,X,u)
M,P+ , respectively. Again, we

usually omit the superscript (S,X, u) and subscript Pr or P+, and just
write �M , if it is clear from context.

To see how these definitions work, consider the quality-control problem
from the introduction, there are 1, 000 states with one defective item, and
C(1000, 10) states with ten defective items, where C(m,n) is the number of
combinations of n items from a collection of 1000 unique items. The regret
of each action in a state depends only on the number of defective items,
and is given in Table 2. It is easy to see that the action that minimizes
regret is check , with deliver and cancel having equal regret. If we represent
uncertainty using the two probability measures Pr1 and Pr10, the expected
regret of each of the acts with respect to Pr1 (resp., Pr10) is just its regret
with respect to states with one (resp. ten) defective items. Thus, the action
that minimizes maximum expected regret is again check .

As we said above, the ranking of acts based on MER or MWER can
change if the menu of possible choices changes. For example, suppose that
we introduce a new choice in the quality-control problem, whose gains and
losses are twice those of deliver , resulting in the payoffs and regrets described
in Table 3. In this new setting, deliver has a lower maximum expected regret
(10, 000) than check (14, 999), so MER prefers deliver over check . Thus, the
introduction of a new choice can affect the relative order of acts according
to MER (and MWER), even though other acts are preferred to the new
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1 defect 10 defects

Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 10,000

cancel 0 10,000 0 0

check 5,001 4,999 -4,999 4,999

Table 2: Payoffs and regrets for the quality-control problem.

1 defect 10 defects

Payoff Regret Payoff Regret

deliver 10,000 10,000 -10,000 10,000

cancel 0 20,000 0 0

check 5,001 14,999 -4,999 4,999

new 20,000 0 -20,000 20,000

Table 3: Payoffs and regrets for the quality-control problem with a new
choice added.

choice. By way of contrast, the decision rules MMEU and SEU are menu-
independent ; the relative order of acts according to MMEU and SEU is not
affected by the addition of new acts.

We next consider a dynamic situation, where the decision maker ac-
quires information about a stable randomizing mechanism (i.e., a stationary
probability distribution). Specifically, in the context of the quality-control
problem,

suppose that The owner learns E—the first 100 items are good. Initially,
suppose that The owner has no reason to believe that one hypothesis is
more likely than the other, so assigns both hypotheses weight 1. Note that
P1(E) = 0.9 and Pr10(E) = C(900, 10)/C(1000, 10) ≈ 0.35. Thus,

P+ | E = {(Pr1 | E, 1), (Pr10 | E,C(900, 10)/(.9C(1000, 10))}.

We can also see from this example that MWER interpolates between
MER and expected utility maximization. Suppose that a passer-by tells
The owner that the first N cupcakes are good. If N = 0, MWER with
initial weights 1 is the same as MER. On the other hand, if N ≥ 991,
then the likelihood of Pr10 is 0, and the only measure that has effect is
Pr1, which means minimizing maximum weighted expected regret is just
maximizing expected utility with respect to Pr1. If 0 < N < 991, then the
likelihoods (hence weights) of Pr1 and Pr10 are 1 and C(1000−N,10)

C(1000,10) ×
1000

1000−N <
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((999−N)/999)9. Thus, as N increases, the weight of Pr10 goes to 0, while
the weight of Pr1 stays at 1.

4 A Characterization of MWER

We now provide a representation theorem for MWER. That is, we provide
a collection of properties (i.e., axioms) that hold of MWER such that a
preference order on acts that satisfies these properties can be viewed as
arising from MWER. To get such an axiomatic characterization, we restrict
to what is known in the literature as the Anscombe-Aumann (AA) framework
[2], where outcomes are lotteries on prizes. This framework is standard in the
decision theory literature; axiomatic characterizations of SEU [2], MMEU
[11], and MER [13, 28] have already been obtained in the AA framework.
We draw on these results to obtain our axiomatization.

In this section, we provide a characterization of MWER using choice
functions as the primitives. In Appendix B, we provide a characterization of
MWER with menu-indexed preference orders as the primitives, which allows
us to compare our axioms to axioms that have been used to characterize
other decision rules.

A choice function maps every finite set M of acts to a subset M ′ of M .
Intuitively, the set M ′ consists of the “best” acts in M . Thus, a choice
function gives less information than a preference order; it gives only the top
elements of the preference order. Stoye [29] provides a representation theo-
rem for MER where the axioms are described in terms of choice functions.

As usual, a choice function C is a function from menus to menus, where
C(M) ⊆ M .6 We start by taking the domain of a choice to be the set
MB of all bounded menus. As we now show, we can get a representation
theorem for MWER by using all the axioms given by Stoye [28], except
for the “betweenness” axiom that restricts the representation to consist of
probability distributions (of weight one). For completeness, we reproduce
the axioms below.

Given a set Y (which we view as consisting of prizes), a lottery over
Y is just a probability with finite support on Y . Let ∆(Y ) consist of all
finite probabilities over Y . In the AA framework, the set of outcomes has
the form ∆(Y ). So now acts are functions from S to ∆(Y ). (Such acts
are sometimes called Anscombe-Aumann acts.) We can think of a lottery
as modeling objective uncertainty, while a probability on states models sub-
jective uncertainty; thus, in the AA framework we have both objective and

6We use ⊆ to denote subset, and ⊂ to denote strict subset.
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subjective uncertainty. The technical advantage of considering such a set of
outcomes is that we can consider convex combinations of acts. If f and g
are acts, define the act αf + (1 − α)g to be the act that maps a state s to
the lottery αf(s) + (1− α)g(s).

In this setting, we assume that there is a utility function U on prizes
in Y . The utility of a lottery l is just the expected utility of the prizes
obtained, that is,

u(l) =
∑

{y∈Y : l(y)>0}

l(y)U(y).

This makes sense since l(y) is the probability of getting prize y if lottery
l is played. The expected utility of an act f with respect to a probability
Pr is then just u(f) =

∑
s∈S Pr(s)u(f(s)), as usual. We also assume that

there are at least two prizes y1 and y2 in Y , with different utilities U(y1)
and U(y2).

Given a set Y of prizes, a utility U on prizes, a state space S, and a set P+

of weighted probabilities on S, we can define a family �S,∆(Y ),u
M,P+ of preference

orders on Anscombe-Aumann acts determined by weighted regret, one per
menu M , as discussed above, where u is the utility function on lotteries
determined by U . For ease of exposition, we usually write �S,Y,U

M,P+ rather

than �S,∆(Y ),u
M,P+ .

Axiom 1 (Nontriviality). C(M) ⊂M for some menu M.

Let g(s)∗ denote the constant act that maps all states to the outcome
g(s). Given a state s, define the choice function Cs by taking f ∈ Cs(M) if
and only if f(s)∗ ∈ C({g(s)∗ : g ∈ M}). Thus, Cs is a choice function that
is concerned only with state s.

Axiom 2 (Monotonicity). If f ∈ M and f ∈ Cs(M) for all s, then f ∈
C(M).

Intuitively, this axioms says that if, for each state s, f is a best choice
in M when restricted to s, then f is a best choice in M overall.

Given a menu M and an act f , let λM + (1 − λ)f be the menu {λh +
(1− λ)f : h ∈M}.

Axiom 3 (Independence). C(λM + (1− λ)f) = λC(M) + (1− λ)f.

Axiom 4 (Independence of Irrelevant Alternatives (IIA) for Constant Acts).
If M and N consist of constant acts, then

C(M ∪N) ∩M ∈ {C(M), ∅}.
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Axiom 5 (Independence of Never Strictly Optimal Alternatives (INA)). If
Cs(M ∪N) ∩M 6= ∅ for all s, then

C(M ∪N) ∩M ∈ {C(M), ∅}.

Axiom 6 (Mixture Continuity). If f /∈M and C(M ∪ {f}) = {f}, g ∈M ,
and h is an act, then there exists λ ∈ (0, 1) such that C(M ∪ {λf + (1 −
λ)h}) = {λf + (1− λ)h}, and λg + (1− λ)h /∈ C(M ∪ {f, λg + (1− λ)h}).

Axiom 7 (Ambiguity Aversion). If λ ∈ [0, 1], and M ⊇ {f, g, λf+(1−λ)g},
and {f, g} ⊆ C(M), then λf + (1− λ)g ∈ C(M).

The MWER choice function is defined as

CS,Y,UP+ (M) = argmin
f∈M

reg
(S,X,u)
M,P+ (f).

We now state and prove a representation theorem for MWER. Roughly,
the representation theorem states that a choice function satisfies Axioms 1–5
if and only if it has a MWER representation with respect to some utility
function and weighted probabilities. In the representation theorem for SEU
[2], not only is the utility function unique (up to affine transformations, so
that we can replace U by aU + b, where a > 0 and b are constants), but
the probability is unique as well. Similarly, in the MMEU representation
theorem of Gilboa and Schmeidler [11], the utility function is unique, and
the set of probabilities is also unique, as long as one assume that the set is
convex and closed.

To get uniqueness in the representation theorem for MWER, we need to
consider a different representation of weighted probabilities. Define a sub-
probability measure p on S to be like a probability measure (i.e., a function
mapping measurable subsets of S to [0, 1] such that p(T ∪T ′) = p(T )+p(T ′)
for disjoint sets T and T ′), without the requirement that p = 1. We can
identify a weighted probability distribution (Pr, α) with the sub-probability
measure αPr. (Note that given a sub-probability measure p, there is a
unique pair (α,Pr) such that P = αPr: we simply take α = p(S) and
Pr = p/α.) A set B of sub-probability measures is downward-closed if,
whenever p ∈ B and q ≤ p, then q ∈ B. We get a unique set of sub-
probability measures in our representation theorem if we restrict to sets
that are convex, downward-closed, closed, and contain at least one (proper)
probability measure. (The latter requirement corresponds to having αPr = 1
for some Pr ∈ P+.) For convenience, we will call a set regular if it is convex,
downward-closed, and closed.
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We identify each set of weighted probabilities P+ with the set of sub-
probability measures

C(P+) = {α Pr : (Pr, αPr) ∈ P+, 0 ≤ α ≤ αPr}.

Note that if (α,Pr) ∈ P+, then C(P+) includes all the sub-probability
measures between the all-zero measure and αPr Pr.

We need to restrict to closed and convex sets of sub-probability mea-
sures to get uniqueness in the representation of MWER for much the same
reason that we need to restrict to closed and convex sets to get unique-
ness in the representation of MMEU. Convexity is needed because a set
B of sub-probability measures always induce the same MWER preferences
as its convex hull. For example, consider the quality-control problem and
the expected regrets in Table 2, and the distribution aPr1 +(1 − a) Pr10,
for some a ∈ (0, 1). The weighted expected regret of any act with re-
spect to aPr1 +(1 − a) Pr10 is bounded above by the maximum weighted
expected regret of that act with respect to Pr1 and Pr10. Therefore, adding
aPr1 +(1 − a) Pr10 to P+ for some weight a ∈ (0, 1) does not change the
resulting family of preferences. Similarly, we need to restrict to closed sets
for uniqueness, since if we start with a set B of sub-probability measures
that is not closed, taking the closure of B would result in the same family
of preferences.

While convexity is easy to define for a set of sub-probability measures,
there seems to be no natural notion of convexity for a set P+ of weighted
probabilities. Moreover, the requirement that P+ is closed is different from
the requirement that C(P+) is closed. The latter requirement seems more
reasonable. For example, fix a probability measure Pr, and let P+ =
{(1,Pr)} ∪ {(0,Pr′) : Pr′ 6= Pr}. Thus, P+ essentially consists of a single
probability measure, namely Pr, with weight 1; all the weighted probabil-
ity measures (0,Pr′) have no impact. This represents the uncertainty of an
decision maker who is sure that that Pr is true probability. Clearly P+ is
not closed, since we can find a sequence Prn such that (0,Prn) → (0,Pr),
although (0,Pr) /∈ P+. But C(Pr+) is closed.

Restricting to closed, convex sets of sub-probability measures does not
suffice to get uniqueness; we also need to require downward-closedness. This
is so because if p is in B, then adding any q ≤ p to the set leaves all regrets
unchanged. Finally, the presence of a proper probability measure is also
required, since for all a ∈ (0, 1], scaling each element in the set B by a
leaves the family of preferences unchanged.

In summary, if we consider arbitrary sets of sub-probability measures,
then the set of sub-probability measures that represent a given family of
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MWER preferences is unique if we require it to be regular and contain a
probability measure.

Although we have assumed that the set of menus isMB, other sets have
been considered in the literature. In particular, Stoye considers the setMC

of menus that are convex hulls of a finite number of acts, and the setMF of
finite menus [28, 29]. As we now show, the representation theorem holds for
bothMF andMB. In Appendix B, we show that if we consider preference
orders as opposed to choice functions, then the corresponding representation
theorem holds for MC as well as MF and MB.

Theorem 1. For all Y , U , S, and P+, the choice function CS,Y,UP+ satisfies
Axioms 1–7 for all M ∈MB (resp., MF ). Conversely, if a choice function
C satisfies Axioms 1–7 for all M ∈ MB (resp., MF ), then there exists a
utility U on Y and a weighted set P+ of probabilities on S such that C(P+) is
regular and C = CS,Y,UP+ . Moreover, U is unique up to affine transformations,
and C(P+) is unique in the sense that if Q+ represents C, and C(Q+) is
regular, then C(Q+) = C(P+).

Proof. Showing that �S,Y,U
M,P+ satisfies Axioms 1–7 is fairly straightforward;

we leave details to the reader. Essentially the same proof works forMB and
MF . For the proof of the converse, we rely heavily on parts of the proof by
Stoye [28]. Although Stoye considers MF , the arguments also work if we
consider MB.

Stoye [28] shows that Axioms 1–7 imply that a menu-independent, re-
vealed preference order �C can be constructed based on the behavior of the
choice function C on the setM0 of menus with nonpositive acts and utility
frontier 0 (i.e., for every state, some act has a utility of 0). The preference
order �C can be thought of as the revealed preference order corresponding
to the choice function C. Its definition is as follows:

f �C g ⇔ ∃M ∈M0 : f ∈ C(M), g ∈M\C(M),

f ∼C g ⇔ ∃M ∈M0 : f ∈ C(M), g ∈ C(M).

The arguments given by Stoye [28] to establish that �C satisfies com-
pleteness, transitivity, nontriviality, monotonicity, mixture continuity, inde-
pendence, INA, and ambiguity aversion apply verbatim to our setting here.
We do not repeat Stoye’s arguments here, but from here on we assume
without further comment that �C satisfies all these properties.

Theorem 1 can be completed by finding a MWER representation for �C .
This follows from the following lemma. Let M0 denote the set of all acts
with nonpositive utilities.
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Lemma 1. If a preference order � on acts with nonpositive utilities satisfies
completeness, transitivity, nontriviality, monotonicity, mixture continuity,
independence, INA, and ambiguity aversion, then there exists a utility U on
Y and a weighted set P+ of probabilities on S such that C(P+) is regular
and �=�S,Y,U

M0,P+. Moreover, U is unique up to affine transformations, and

C(P+) is unique in the sense that if Q+ represents �, and C(Q+) is regular,
then C(Q+) = C(P+).

The proof of Lemma 1 is given in Appendix A. We use techniques
in the spirit of those used by by Gilboa and Schmeidler [10] to represent
(unweighted) MMEU. However, there are technical difficulties that arise
from the fact that we do not have a key axiom that is satisfied by MMEU:
C-independence (discussed below). The heart of the proof involves dealing
with the lack of C-independence. With Lemma 1, the proof of Theorem 1
is complete.

The axioms used in Theorem 1 can be adapted to describe choice func-
tions over MC , the set of finitely generated convex menus. However, we
do not know whether the equivalent of Theorem 1 holds if we restrict the
domain of the choice function to beMC . However, in Appendix B we show
that if we consider preference orders instead of a choice function, then there
is a collection of axioms that provide a representation theorem forMF ,MB,
and MC . The result extends to MC because the set of preference orders
�M with respect to the set MC of all convex menus also determines the
preference orders with respect to the setMF of all finite menus. This is not
the case when we take choice functions as the primitives. As Stoye [28, 30]
points out, the main subtlety lies in the fact that the choice functions over
convex menus can always return an interior point of the convex set, thus
not providing observations of choice between the vertices of the set. Stoye
believes that this is a technicality that can be overcome, so that Theorem 1
should hold even if we restrict the domain of the choice function to beMC .
However, this conjecture has yet to be verified. In the case of preference
orders, the preference orders with respect to the setMB also determine the
preference orders �M with respect to the set MC , so once we have a proof
for MB, it readily extends to MF and MC .

As we observed, in general, we have ambiguity aversion (Axiom 7) for
regret. Betweenness [5] is a stronger notion than ambiguity aversion, which
states that if an decision maker is indifferent between two acts, then he
must also be indifferent among all convex combinations of these acts. While
betweenness does not hold for regret, Stoye [28] gives a weaker version that
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1 defect 10 defects

Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 10,000
1
2deliver + 1

2cancel 5,000 5,000 -5,000 5,000

cancel 0 10,000 0 0

check 5,001 4,999 -4,999 4,999

Table 4: Payoffs and regrets for the quality-control problem, with deliver
mixed with the constant act cancel .

does hold. A menu M has state-independent outcome distributions if the set
L(s) = {y ∈ ∆(Y ) : ∃f ∈M(f(s) = y(} is the same for all states s.

Axiom 8 ([28]). For all acts f , constant acts p, scalars λ ∈ (0, 1), and
menus M ⊇ {p, f, λf + (1 − λ)p} with state independent outcome distribu-
tions, if p /∈ C(M) and f /∈ C(M), then λf + (1− λ)p /∈ C(M).

The assumption that the menu has state-independent outcome distri-
butions is critical in Axiom 8. Stoye [28] shows that Axioms 1–5 together
with Axiom 8 characterize MER. Non-probabilistic regret (which we denote
REG) can be viewed as a special case of MER, where P consists of all distri-
butions. This means that it satisfies all the axioms that MER satisfies. As
Stoye [29] shows, REG is characterized by Axioms 1–5 and one additional
axiom, which he calls Symmetry. We omit the details here.

To see why Axiom 8 is needed, suppose that we change the payoffs in
the quality-control problem so that deliver has the same maximum expected
regret as cancel (10, 000). However, as seen in Table 4, 1

2deliver+ 1
2cancel has

lower maximum expected regret (5, 000) than deliver (10, 000), showing that
the variant of Axiom 8 without the state-independent outcome distribution
requirement does not hold.

Although Axiom 8 is sound for unweighted minimax expected regret,
it is no longer sound once we add weights. For example, suppose that we
modified the quality-control problem so that all states we care about have
the same outcome distributions, as required by Axiom 8. Then the payoffs
and regrets will be those shown in Table 5. Suppose that the weights on Pr1

and Pr10 are 1 and 0.5, respectively. Then deliver has the same maximum
weighted expected regret as cancel (10, 000). However, 1

2deliver + 1
2cancel

has lower maximum weighted expected regret (7, 500) than deliver , showing
that Axiom 8 with weighted probabilities does not hold.

As mentioned in the introduction, Chateauneuf and Faro [4] axiomatize
a weighted version of maxmin expected utility, when utilities are restricted
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1 defect 10 defects

Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 20,000
1
2deliver + 1

2cancel 5,000 5,000 -5,000 15,000

cancel 0 10,000 0 10,000

check1 -5,000 15,000 5,000 5,000

check2 -10,000 20,000 10,000 0

Table 5: Payoffs and regrets for the quality-control problem, with state-
independent outcome distributions.

to be nonnegative. The expected utilities are multiplied by the reciprocal
of the weights, instead of the weights themselves. Preferences are then de-
fined by using the maxmin expected utility rule with the weighted expected
utilities. To obtain uniqueness of the representation, while we require (1)
a measure with weight 1, (2) downward-closedness, (3) closedness, and (4)
convexity of the sub-probability measures to get uniqueness, Chateauneuf
and Faro [4] require slightly different properties. In particular, weights are
represented by a function φ : ∆(S) → [0, 1], and Chateauneuf and Faro
require that there be (1) a measure with weight 1, (2) upper semiconti-
nuity of the function φ (i.e., the set {p ∈ ∆ : φ(p) ≥ α} is closed in
the weak∗ topology, for all α ∈ [0, 1]), and (3) quasi-concavity of φ (i.e.,
φ(βp1 + (1− β)p2) ≥ min{φ(p1), φ(p2)} for all β ∈ [0, 1]). It is not hard to
show that convexity of the sub-probability measures imply quasi-concavity
of the weights, and closedness of the sub-probability measures implies weak∗

upper semicontinuity of the weights. However, the converse does not hold:
weak∗ upper semicontinuity and quasi-concavity of the weights do not im-
ply convexity of the sub-probability measures. Therefore, our conditions
to obtain uniqueness of the representation are more stringent than those of
Chateauneuf and Faro.

5 Characterizing likelihood updating for MWER

We next consider a more dynamic setting, where decision makers learn in-
formation. For simplicity, we assume that the information is always a subset
E of the state space. If the decision maker is representing her uncertainty
using a set P+ of weighted probability measures, then we would expect her
to update P+ to some new set Q+ of weighted probability measures, and
then apply MWER with uncertainty represented byQ+. In this section, we
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characterize what happens in the special case that the decision maker uses
likelihood updating, so that Q+ = (P+ | E).

For this characterization, we assume that the decision maker has a fam-
ily of choice functions CE indexed by the information E. Each choice func-
tion CE satisfies Axioms 1–7, since the decision maker makes decisions after
learning E using MWER. Somewhat surprisingly, all we need is one extra ax-
iom for the characterization; we call this axiom MDC, for “menu-dependent
dynamic consistency”.

To explain the axiom, we need some notation. As usual, we take fEh
to be the act that agrees with f on E and with h off of E; that is

fEh(s) =

{
f(s) if s ∈ E
h(s) if s /∈ E.

In the quality-control problem, the act check can be thought of as (deliver)E(cancel),
where E is the set of states where there is only one defective item.

Roughly speaking, MDC says that you prefer f to g once you learn E
if and only if, for all acts h, you also prefer fEh to gEh before you learn
anything. This seems reasonable, since learning that the true state was in
E is conceptually similar to knowing that none of your choices matter off of
E.

To state MDC formally, we need to be careful about the menus involved.
Let MEh = {fEh : f ∈ M}. We can identify unconditional preferences
with preferences conditional on S; that is, we identify C with CS . We also
need to restrict the sets E to which MDC applies. Recall that conditioning
using likelihood updating is undefined for an event such that P+

(E) = 0.
That is, αPr Pr(E) = 0 for all Pr ∈ P. As is commonly done, we capture
the idea that conditioning on E is possible using the notion of a non-null
event.

Definition 1 (Null event). An event E is null if, for all f, g ∈ ∆(Y )S and
menus M with fEg, g ∈M , we have fEg ∈ C(M)⇔ g ∈ C(M).

Axiom 9 (MDC). Let MEg denote the menu {hEg : h ∈ M}. For all
M ⊆ L, f ∈M ,

f ∈ CE(M)⇔ ∃g(fEg ∈ C(MEg)).

Theorem 2. For all Y , U , S, and P+, the choice function CS,Y,UP+|E for events

E such that P+
(E) > 0 satisfies Axioms 1–7 and Axiom 9. Conversely, if a

choice function CE on the acts in ∆(Y )S satisfies Axioms 1–7 and Axiom 9,
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then there exists a utility U on Y and a weighted set P+ of probabilities on S
such that C(P+) is regular, and for all non-null E, CE = CS,Y,UP+|E . Moreover,

U is unique up to affine transformations, and C(P+) is unique in the sense
that if Q+ represents CE, and C(Q+) is regular, then C(Q+) = C(P+).

Proof. Since C = CS satisfies Axioms 1–7, there must exist a weighted set
P+ of probabilities on S and a utility function U such that f ∈ C(M) iff

f ∈ CS,Y,U (M). We now show that if E is non-null, then P+
(E) > 0, and

f ∈ CE(M) iff f ∈ CS,Y,uP+|E(M).

For the first part, it clearly is equivalent to show that if P+
(E) = 0, then

E is null. So suppose that P+
(E) = 0. Then αPr Pr(E) = 0 for all Pr ∈ P.

This means that αPr Pr(s) = 0 for all Pr ∈ P and s ∈ E. Thus, for all acts
f and g,

regM,P+(fEg)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regM (fEg, s)

)
= supPr∈P

(
αPr

(∑
s∈E Pr(s)regM (f, s)

)
+
∑

s∈Ec Pr(s)regM (g, s)
)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regM (g, s)

)
= regM,P+(g).

Thus, fEg ∈ C(M)⇔ g ∈ C(M) for all acts f, g and menus M containing
fEg and g, which means that E is null.

For the second part, we first show that if P+
(E) > 0, then for all f, h ∈

M , we have that

regMEh,P+(fEh) = P+
(E)regM,P+|E(f).

We proceed as follows:

regMEh,P+(fEh)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regMEh(fEH, s)

)
= supPr∈P

(
αPr Pr(E)

∑
s∈E Pr(s | E)regM (f, s) +αPr

∑
s∈Ec Pr(s)reg{h}(h, s)

)
= supPr∈P

(
αPr Pr(E)

∑
s∈E Pr(s|E)regM (s, f)

)
= supPr∈P

(
P+

(E)αPr,E
∑

s∈E Pr(s|E)regM (f, s)
)

[since αPr,E = sup{Pr′∈P:Pr′|E=Pr|E}
αPr′ Pr′(E)

P+
(E)

]

= P+
(E) · regM,P+|E(f).
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Thus, for all h ∈M ,

regMEh,P+(fEh) ≤ regMEh,P+(gEh)

iff P+
(E) · regM,P+|E(f) ≤ P+

(E) · regM,P+|E(g)

iff regM,P+|E(f) ≤ regM,P+|E(g).

It follows that the choice function induced by P+ satisfies MDC. Moreover,
if Axioms 1–7 and MDC hold, then for a weighted set P+ that represents
C, we have

f ∈ CE(M)
iff for some h, fEh ∈ C(MEh)
iff regM,P+|E(f) ≤ regM,P+|E(g) for all g,

as desired.
Finally, the uniqueness of C(P+) follows from Theorem 1, which says

that C is already sufficient to guarantee the uniqueness of C(P+).

6 Conclusion

We proposed an alternative belief representation using weighted sets of prob-
abilities, and described a natural approach to updating in such a situation
and a natural approach to determining the weights. We also showed how
weighted sets of probabilities can be combined with regret to obtain a deci-
sion rule, MWER, and provided an axiomatization that characterizes static
and dynamic preferences induced by MWER.

One issue that must be dealt with when MWER is combined with like-
lihood updating is dynamic inconsistency. It is not hard to construct ex-
amples where a decision maker decides on a plan that says that if he learns
E, he should perform act f , but then when he actually learns E, he per-
forms f ′ instead. Such dynamic inconsistency arises with MMEU when using
measure-by-measure updating as well. Siniscalchi [27] proposes an approach
to dealing with dynamic consistency in the context of MMEU combined with
measure-by-measure updating by using backward induction to decide which
action to take. We believe that these ideas can be applied to MWER com-
bined with likelihood updating as well. We hope to return to these issues in
future work.
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A Proof of Lemma 1

A.1 Defining a functional on utility acts

Stoye [28] also started his proof of a representation theorem for MER by
reducing to a single preference order �M∗ . He then noted that, the expected
regret of an act f with respect to a probability Pr and menu M∗ is just the
negative of the expected utility of f . Thus, the worst-case expected regret
of f with respect to a set P of probability measures is the negative of the
worst-case expected utility of f with respect to P. Thus, it sufficed for Stoye
to show that �M∗ had an MMEU representation, which he did by showing
that �M∗ satisfied Gilboa and Schmeidler’s [10] axioms for MMEU, and
then appealing to their representation theorem.

This argument does not quite work for us, because now � does not sat-
isfy the C-independence axiom. (This is because our preference order is
based on weighted regret, not regret.) However, we can get a representation
theorem for weighted regret by using some of the techniques used by Gilboa
and Schmeidler to get a representation theorem for MMEU, appropriately
modified to deal with lack of C-independence. Specifically, like Gilboa and
Schmeidler, we define a functional I on utility acts such that the prefer-
ence order on utility acts is determined by their value according to I (see
Lemma 3). Using I, we can then determine the weight of each probability
in ∆(S), and prove the desired representation theorem.

By standard results, u represents � on constant acts, and � depends only
on the utility achieved in each state (as opposed to the actual outcomes) of
the acts. The space of all utility acts is the Banach space B of real-valued
functions on S. Let B− be the set of nonpositive functions in B, where the
function b is nonpositive if b(s) ≤ 0 for all s ∈ S.

We now define a functional I on utility acts in B− such that for all f, g
with bf , bg ∈ B−, we have I(bf ) ≥ I(bg) iff f � g. Let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≥ b ≥ (−1)∗, then fb exists, and we define

I(b) = inf(Rfb).

For the remaining b ∈ B−, we extend I by homogeneity. Let ||b|| =
|mins∈S b(s)|. Note that if b ∈ B−, then 0∗ ≥ b/||b|| ≥ (−1)∗, so we de-
fine

I(b) = ||b||I(b/||b||).
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Lemma 2. If bf ∈ B−, then f ∼ l∗I(bf ).

Proof. Suppose that bf ∈ B− and, by way of contradiction, that l∗I(bf ) ≺ f .

If f ∼ l∗0, then it must be the case that I(bf ) = 0, since I(bf ) ≤ 0 by
definition of inf, and f ∼ l∗0 � l∗ε for all ε < 0 by Lemma 9, so I(bf ) > ε for
all ε < 0. Therefore, f ∼ l∗I(bf ). Otherwise, since bf ∈ B−, by monotonicity,

we must have l∗0 � f , and thus l∗0 � f � l∗I(bf ). By mixture continuity,

there is some q ∈ (0, 1) such that q · l∗0 + (1 − q) · l∗I(bf ) ∼ l(1−q)I(bf ) ≺ f ,

contradicting the fact that I(b) is the greatest lower bound of Rf .
If, on the other hand, l∗I(bf ) � f , then l∗I(bf ) � f � l∗c for some c ∈ R. If

f ∼ l∗c then it must be the case that I(bf ) = c. I(bf ) ≤ c since l∗c � l∗c , and
I(bf ) ≥ c since for all c′ < c, l∗c′ ≺ f ∼ l∗c .

Otherwise, l∗I(bf ) � f � l∗c , and by mixture continuity, there is some

q ∈ (0, 1) such that q · l∗I(bf ) + (1− q)l∗c � f . Since qI(bf ) + (1− q)c < I(bf ),

this contradicts the fact that I(bf ) is a lower bound of Rf . Therefore, it
must be the case that l∗I(bf ) ∼ f .

We can now show that I has the required property.

Lemma 3. For all acts f, g such that bf , bg ∈ B−, f � g iff I(bf ) ≥ I(bg).

Proof. Suppose that bf , bg ∈ B−. By Lemma 2, l∗I(bf ) ∼ f and g ∼ l∗I(bg).

Thus, f � g iff l∗I(bf ) � l∗I(bg), and by Lemma 9, l∗I(bf ) � l∗I(bg) iff I(bf ) ≥
I(bg).

In order to invoke a standard separation result for Banach spaces, we
extend the definition of I to the Banach space B. We extend I to B by
taking I(b) = I(b−) for b ∈ B − B−, where for all b ∈ B, b− is defined as

b−(s) =

{
b(s), if b(s) ≤ 0,

0, if b(s) > 0.

Clearly b− ∈ B− and b = b− if b ∈ B−.
We show that the axioms guarantee that I has a number of standard

properties. Since we have artificially extended I to B, our arguments require
more cases than those in [10]. (We remark that such an “artificial” extension
seem unavoidable in our setting.) Moreover, we must work harder to get
the result that we want. We need different arguments from that for MMEU
[10], since the preference order induced by MMEU satisfies C-independence,
while our preference order does not.
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Lemma 4. (a) If c ≤ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B and c > 0, then I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B, and bn → b, then I(bn)→ I(b).

(e) I is superadditive: if b, b′ ∈ B, then I(b+ b′) ≥ I(b) + I(b′).

Proof. For part (a), If c is in the range of u, then it is immediate from the
definition of I and Lemma 9 that I(c∗) = c. If c is not in the range of u,
then since [−1, 0] is a subset of the range of u, we must have c < −1, and
by definition of I, we have I(c∗) = |c|I(c∗/|c|) = c.

For part (b), first suppose that ||b|| ≤ 1 and b ∈ B− (i.e., 0∗ ≥ b ≥ (−1)∗).
Then there exists an act f such that bf = b. By Lemma 2, f ∼ l∗I(b).
We now need to consider the case that c ≤ 1 and c > 1 separately. If
c ≤ 1, by Independence, cfb + (1 − c)l∗0 ∼ cl∗I(b) + (1 − c)l∗0. By Lemma 3,

I(bcfb+(1−c)l∗0) = I(bcl∗
I(b)

+(1−c)l∗0). It is easy to check that bcfb+(1−c)l∗0 = cb,

and bcl∗
I(b)

+ (1 − c)l∗0 = cI(b)∗. Thus, I(cb) = I(cI(b)∗). By part (a),

I(cI(b)∗) = cI(b). Thus, I(cb) = cI(b), as desired.
If c > 1, there are two subcases. If ||cb|| ≤ 1, since 1/c < 1, by what

we have just shown I(b) = I(1
c (cb)) = 1

c I(cb). Crossmultiplying, we have
that I(cb) = cI(b), as desired. And if ||cb|| > 1, by definition, I(cb) =
||cb||I(bc/||cb||) = c||b||I(b/||b||) (since bc/||cb|| = b/||b||). Since ||b|| ≤ 1,
by what we have shows I(b) = I(||b||(b/||b||) = ||b||I(b/||b||), so I(b/||b||) =

1
||b||I(b). Again, it follows that I(cb) = cI(b).

Now suppose that ||b|| > 1. Then I(b) = ||b||I(b/||b||). Again, we have
two subcases. If ||cb|| > 1, then

I(cb) = ||cb||I(cb/||cb||) = c||b||I(b/||b||) = cI(b).

And if ||cb|| ≤ 1, by what we have shown for the case ||b|| ≤ 1,

I(b) = I(
1

c
(cb)) =

1

c
I(cb),

so again I(cb) = cI(b).
For part (c), first note that if b, b′ ∈ B−. If ||b|| ≤ 1 and ||b′|| ≤ 1, then

the acts fb and fb′ exist. Moreover, since b ≥ b′, we must have (fb(s))
∗ �

(fb′)
∗(s) for all states s ∈ S. Thus, by Monotonicity, fb � fb′ . If either

||b|| > 1 or ||b′|| > 1, let n = max(||b||, ||b′||). Then ||b/n|| ≤ 1 and ||b′/n|| ≤
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1. Thus, I(b/n) ≥ I(b′/n), by what we have just shown. By part (b),
I(b) ≥ I(b′). Finally, if either b ∈ B−B− or b′ ∈ B−B−, note that if b ≥ b′,
then b− ≥ (b′)−. By definition, I(b) = I(b−) and I(b′) = I(b′)−; moreover,
b−, (b′)− ∈ B−. Thus, by the argument above, I(b) ≥ I(b−).

For part (d), note that if bn → b, then for all k, there exists nk such that
bn−(1/k)∗ ≤ bn ≤ bn+(1/k)∗ for all n ≥ nk. Moreover, by the monotonicity
of I (part (c)), we have that I(b− (1/k)∗) ≤ I(bn) ≤ I(b+ (1/k)∗). Thus, it
suffices to show that I(b− (1/k)∗)→ I(b) and that I(b+ (1/k)∗)→ I(b).

To show that I(b−(1/k)∗)→ I(b), we must show that for all ε > 0, there
exists k such that I(b − (1/k)∗) ≥ I(b) − ε. By positive homogeneity (part
(b)), we can assume without loss of generality that ||b − (1/2)∗|| ≤ 1 and
that ||b|| ≤ 1. Fix ε > 0. If I(b−(1/2)∗) ≥ I(b)−ε, then we are done. If not,
then I(b) > I(b) − ε > I(b − (1/2)∗). Since ||b|| ≤ 1 and ||b − (1/2)∗|| ≤ 1,
fb and fb−(1/2)∗ exist. Moreover, by Lemma 3, fb � f(I(b)−ε)∗ � fb−(1/2)∗ .
By mixture continuity, for some p ∈ (0, 1), we have pfb + (1− p)f(b−(1/2)∗ �
f(I(b)−ε)∗ . It is easy to check that bpfb+(1−p)fb−(1/2)∗ = b−(1−p)(1/2)∗. Thus,

by Lemma 3, fb−(1−p)(1/2)∗ � f(I(b)−ε)∗ , and I(b − (1 − p)1/2)∗) > I(b) − ε.
Choose k such that 1/k < (1− p)(1/2). Then

I(b− (1/k)∗) ≥ I(b− (1− p)1/2)∗) > I(b)− ε,

as desired.
The argument that I(b+(1/k)∗)→ I(b) is similar and left to the reader.
For part (e), first suppose that b, b′ ∈ B−. If ||b||, ||b−|| ≤ 1, and

I(b), I(b′) 6= 0, consider b
−I(b) and b′

−I(b′) . Since I( b
−I(b)) = I( b′

−I(b′)) = −1, it
follows from Lemma 2 that f b

−I(b)
∼ f b′

−I(b′)
. By ambiguity aversion, for all

p ∈ (0, 1], pf b
−I(b)

+(1−p)f b′
−I(b′)

� f b
−I(b)

. Taking p = I(b)/(I(b)+I(b′)), we

have that (I(b)/(I(b) + I(b′))fb/I(b) + (I(b′)/(I(b) + I(b′))fb′/I(b′) � fb/I(b).
Therefore, we have

I

(
−I(b)

−I(b)− I(b′)

b

−I(b)
+

−I(b′)

−I(b)− I(b′)

b′

−I(b′)

)
≥ I(

b

−I(b)
) = −1.

Simplifying, we have

I

(
−1

I(b) + I(b′)
b+

−1

I(b) + I(b′)
b′
)
≥ −1,

which, together with positive homogeneity of I (part (b)), implies I(b+b′) ≥
I(b) + I(b′), as required.
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If b, b− ∈ B− and either ||b|| > 1 or ||b′|| > 1, and both I(b) 6= 0 and
I(b′) 6= 0, then the result easily follows by positive homogeneity (property
(b)).

If b, b− ∈ B− and either I(b) = 0 or I(b′) = 0, let bn = b − 1
n

∗
and

b′n = b′ − 1
n

∗
. Clearly ||bn|| > 0, ||b′n|| > 0, bn → b, and b′n → b′n. By our

argument above, I(bn + b′n) ≥ I(bn) + I(b′n) for all n ≥ 1. The result now
follows from continuity.

Finally, if either b ∈ B − B− or b′ ∈ B − B−, observe that

(b+ b′)−(s)


= b−(s) + b′−(s), if b(s) ≤ 0, b′(s) ≤ 0

= b−(s) + b′−(s), if b(s) ≥ 0, b′(s) ≥ 0

≥ b−(s) + b′−(s), if b(s) > 0, b′(s) ≤ 0

≥ b−(s) + b′−(s), if b(s) ≤ 0, b′(s) > 0.

Therefore, (b+b′)− ≥ b−+b′−. Thus, I(b+b′) = I((b+b′)−) ≥ I(b−+b′−) by
the monotonicity of I, and I(b− + b′−) ≥ I(b−) + I(b′−) by superadditivity
of I on B−. Therefore, I(b+ b′) ≥ I(b) + I(b′).

A.2 Defining the weights

In this section, we use I to define a weight αPr for each probability Pr ∈
∆(S). The heart of the proof involves showing that the resulting set P+ so
determined gives us the desired representation.

Given a set P+ of weighted probability measures, for b ∈ B−, define

NWREG(b) = inf
Pr∈P

αPr(
∑
s∈S

b(s) Pr(s)).

Note that NWREG is the negative of the weighted regret when the menu is
B−. Define

NREG(b) = inf
Pr∈P

∑
s∈S

b(s) Pr(s).

and
NREGPr(b) =

∑
s∈S

b(s) Pr(s) = EPrb.

For each probability Pr ∈ ∆(S), define

αPr = sup{α ∈ R : αNREGPr(b) ≥ I(b) for all b ∈ B−}. (1)

Note that αPr ≥ 0 for all distributions Pr ∈ ∆(S), since 0 ≥ I(b) for b ∈ B−
(by monotonicity); and αPr ≤ 1, since NREGPr((−1)∗) = I((−1)∗) = −1
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for all distributions Pr. Thus, αPr ∈ [0, 1]. Moreover, it is immediate from
the definition of αPr that αPrNREGPr(b) ≥ I(b) for all b ∈ B−. The next
lemma shows that there exists a probability Pr where we have equality.

Lemma 5. (a) For some distribution Pr, we have αPr = 1.

(b) For all b ∈ B−, there exists Pr such that αPrNREGPr(b) = I(b).

Proof. The proofs of both part (a) and (b) use a standard separation result:
If U is an open convex subset of B, and b /∈ U , then there is a linear functional
λ that separates U from b, that is, λ(b′) > λ(b) for all b′ ∈ U . We proceed
as follows

For part (a), we must show that for some Pr, for all b ∈ B−, NREGPr(b) ≥
I(b). Since NREGPr(b) = EPrb, it suffices to show that EPr(b) ≥ I(b) for all
b ∈ B−.

Let U = {b′ ∈ B : I(b′) > −1}. U is open (by continuity of I), and
convex (by positive homogeneity and superadditivity of I), and (−1)∗ /∈ U .
Thus, there exists a linear functional λ such that λ(b′) > λ((−1)∗) for b′ ∈ U .
We want to show that λ is a positive linear functional, that is, that λ(b) ≥ 0
if b ≥ 0∗. Since 0∗ ∈ U , and λ(0∗) = 0, it follows that λ((−1)∗) < 0. Since
λ is linear, we can assume without loss of generality that λ((−1)∗) = −1.
Thus, for all b′ ∈ B−, I(b′) > −1 implies λ(b′) > −1. Suppose that c > 0 and
b′ ≥ 0∗. From the definition of I, it follows that I(cb′) = I(0∗) = 0 > −1. So
cλ(b′) = λ(cb′) > −1, so λ(b′) > −1/c. (The fact that I(cb′) = I(0∗) follows
from the definition of I on elements in B − B−.) Since this is true for all
c > 0, it must be the case that λ(b′) ≥ 0. Thus, λ is a positive functional.

Define the probability distribution Pr on S by taking Pr(s) = λ(1s). To
see that Pr is indeed a probability distribution, note that since 1s ≥ 0 and
λ is positive, we must have λ(1s) ≥ 0. Moreover,

∑
s∈S Pr(s) = λ(1∗) = 1.

In addition, for all b′ ∈ B, we have

λ(b′) =
∑
s∈S

λ(1s)b
′(s) =

∑
s∈S

Pr(s)b′(s) = EPr(b
′).

Next note that, for b ∈ B−,

for all c < 0, if I(b) > c, then λ(b) > c. (2)

For if I(b) > c, then I(b/|c|) > −1 by positive homogeneity, so λ(b/|c|) > −1
and λ(b) > c. The result now follows. For if b ∈ B−, then I(b) ≤ I(0∗) = 0
by monotonicity. Thus, if c < I(b), then c < 0, so, by (2), λ(b) > c. Since
λ(b) > c whenever I(b) > c, it follows that EPr(b) = λ(b) ≥ I(b), as desired.
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The proof of part (b) is similar to that of part (a). We want to show
that, given b ∈ B−, there exists Pr such that αPrNREGPr(b) = I(b). First
suppose that ||b|| ≤ 1. If I(b) = 0, then there must exist some s such that
b(s) = 0, for otherwise there exists c < 0 such that b ≤ c∗, so I(b) ≤ c. If
b(s) = 0, let Prs be such that Prs(s) = 1. Then NREGPrs(b) = 0, so (b)
holds in this case.

If ||b|| ≤ 1 and I(b) < 0, let U = {b′ : I(b′) > I(b)}. Again, U is
open and convex, and b /∈ U , so there exists a linear functional λ such that
λ(b′) > λ(b) for b′ ∈ U . Since 0∗ ∈ U and λ(0∗) = 0, we must have λ(b) < 0.
Since (−1)∗ ≤ b, (−1)∗ is not in U , and therefore we also have λ((−1)∗) < 0.
Thus, we can assume without loss of generality that λ((−1)∗) = −1, and
hence λ((1)∗) = 1. The same argument as above shows that λ is positive:
for all c > 0 and b′ ≥ 0∗, I(cb′) = 0 as before. Since I(b) < 0, it follows
that I(cb′) > I(b), so cb′ ∈ U and λ(cb′) > λ(b) ≥ λ((−1)∗) = −1. Thus, as
before, for all c > 0, b′ ≥ 0∗, λ(b′) > −1

c , so λ is a positive functional.
Therefore, λ determines a probability distribution Pr such that, for

all b′ ∈ B−, we have λ(b′) = EPr(b
′). This, of course, will turn out to

be the desired distribution. To show this, we need to show that αPr =
I(b)/NREGPr(b). Clearly αPr ≤ I(b)/NREGPr(b), since if α > I(b)/NREGPr(b),
then αNREGPr(b) < I(b) (since NREGPr(b) = λ(b) < 0). To show that
αPr ≥ I(b)/NREGPrb, we must show that (I(b)/NREGPr(b))NREGPr(b

′) ≥
I(b′) for all b′ ∈ B−. Equivalently, we must show that I(b)λ(b′)/λ(b) ≥ I(b′)
for all b′ ∈ B−.

Essentially the same argument used to prove (2) also shows

for all c > 0, if I(b′) > cI(b), then λ(b′) > cλ(b).

In particular, if I(b′) > cI(b), then by positive homogeneity, I(b′)
c > I(b), so

b′

c ∈ U , and λ( b
′

c ) > λ(b) and hence λ(b′) > cλ(b).
Thus, if I(b′)/(−I(b)) > c and c < 0, then I(b′) > −cI(b), and hence

λ(b′)/(−λ(b)) > c. It follows that λ(b′)/(−λ(b)) ≥ I(b′)/(−I(b)) for all
b′ ∈ B−. Thus, I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B−, as required.

Finally, if ||b|| > 1, let b′ = b/||b||. By the argument above, there exists
a probability measure Pr such that αPrNREGPr(b/||b||) = I(b/||b||). Since
NREGPr(b/||b||) = NREGPr(b)/||b||, and I(b/||b||) = I(b)/||b||, we must
have that αPrNREGPr(b) = I(b).

We can now complete the proof of Lemma 1. By Lemma 5 and the
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definition of αPr, for all b ∈ B−,

I(b) = inf
Pr∈∆(S)

αPrNREG(b) (3)

= inf
Pr∈∆(S)

(
αPr

∑
s∈S

b(s) Pr(s)

)

= sup
Pr∈∆(S)

(
−αPr

∑
s∈S

b(s) Pr(s)

)
.

Recall that, by Lemma 3, for all acts f, g such that bf , bg ∈ B−, f � g iff
I(bf ) ≥ I(bg). Thus, f � g iff

sup
Pr∈∆(S)

(
−αPr

∑
s∈S

u(f(s)) Pr(s)

)
≤ sup

Pr∈∆(S)

(
−αPr

∑
s∈S

u(g(s)) Pr(s)

)
.

Note that, for f ∈ M∗ = B−, we have regM∗,Pr(f) = sup(−u(f(s)) Pr(s),

since 0∗ dominates all acts inM∗. Thus, �=�S,Y,U
M∗,P+ , where P+ = {(Pr, αPr :

Pr ∈ ∆(S)}.
We have already observed that U is unique up to affine transformations,

so it remains to show that P+ is maximal. This follows from the defini-
tion of αPr. If �M=�S,Y,U

M,(P ′)+ , and (α′,Pr) ∈ (P ′)+, then we claim that

α′ ∈ {α ∈ R : αNREGPr(b) ≥ I(b) for all b ∈ B−}. If not, there would
be some b ∈ B− with ||b|| ≤ 1

2 , such that α′NREGPr(b) < I(b), which,

by the definition of ≺S,Y,UM∗,(P ′)∗ , means that l∗−1 ≺
S,Y,U
M∗,(P ′)+ fb ≺S,Y,UM∗,(P ′)+ l∗I(b).

Recall that I(bf ) = inf{γ : l∗γ �M∗ f}. Moreover, since ≺S,Y,U
M∗,(P ′)+ satis-

fies mixture continuity, there exists some p ∈ (0, 1) such that fb ≺S,Y,UM∗,(P ′)+

pl∗−1 + (1 − p)l∗I(b) ≺
S,Y,U
M∗,(P ′)+≺

S,Y,U
M∗,(P ′)+ l∗I(b). This contradicts the definition

of I(b). Therefore, α′ ∈ {α ∈ R : αNREGPr(b) ≥ I(b) for all b ∈ B−}, and
hence α′ ≤ αPr.

A.3 Uniqueness of Representation

In this section, we show that the canonical set of weighted probabilities
we constructed, when viewed as a set of subnormal probability measures,
is regular and includes at least one proper probability measure. Moreover,
this set of sub-probability measures is the only regular set that induces the
preference order � on nonpositive acts. Our uniqueness result is analogous
to the uniqueness results of Gilboa and Schmeidler [11], who show that the
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convex, closed, and non-empty set of probability measures in their represen-
tation theorem for MMEU is unique. The argument is based on two lemmas:
Lemma 6 says that the canonical set of sub-probability measures is regular;
and Lemma 7 says that a set of sub-probability measures representing �
over nonpositive acts that is regular and contains at least one proper prob-
ability measure is unique. The proof of this second lemma, like the proof
of uniqueness in Gilboa and Schmeidler [11], uses a separating hyperplane
theorem to show the existence of acts on which two different representations
must ‘disagree’. However, a slightly different argument is required in our
case, since our acts must have utilities corresponding to nonpositive vectors
in R|S|.

Lemma 6. Let P+ be the canonical set of weighted probability measures
representing �. The set C(P+) of sub-probability measures is regular.

Proof. It is useful to note that, by definition, p ∈ C(P+) if and only if

Ep(b) ≥ I(b) for all b ∈ B−

(where expectation with respect to a subnormal probability measure is de-
fined in the obvious way).

Recall that a set is regular if it is convex, closed, and downward-closed.
We first show that C(P+) is downward-closed. Suppose that p ∈ C(P+)
and q ≤ p (i.e., q(s) ≤ αPr(s) for all s ∈ S. Since p ∈ C(P+), Ep(b) ≥ I(b)
for all b ∈ B−. Since q ≤ p and, if b ∈ B−, we have b ≤ 0∗, it follows that
Eq(b) ≥ Ep(b) ≥ I(b) for all b ∈ B−, and thus q ∈ C(P+).

To see that C(P+) is closed, let p = limn→∞ pn, where each pn ∈
C(P+). Since pn ∈ C(P+) it must be the case that Epn(b) ≥ I(b) for all
b ∈ B−. By the continuity of expectation, it follows that Ep(b) ≥ I(b) for
all b ∈ B−. Thus, p ∈ C(P+).

To show that C(P+) is convex, suppose that p,q ∈ C(P+). Then
Ep(b) ≥ I(b) and Eq(b) ≥ I(b) for all b ∈ B−. It easily follows that for
all a ∈ (0, 1), Eap+(1−a)q(b) ≥ I(b) for all b ∈ B−. Thus, ap + (1 − a)q ∈
C(P+).

Lemma 7. A set of sub-probability measures representing � over nonpos-
itive acts that is regular, and has at least one proper probability measure is
unique.

Proof. Suppose for contradiction that there exists two regular sets of sub-
normal probability distributions, C1 and C2, that represent � and have at
least one proper probability measure.
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First, without loss of generality, let q ∈ C2\C1. We actually look at an
extension of C1 that is downward-closed in each component to −∞. Let
C1 = {p ∈ R|S| : p ≤ p′}. Note an element p of C1 may not be subnormal
probability measures; we do not require that p(s) ≥ 0 for all s ∈ S. Since C1

and {q} are closed, convex, and disjoint, and {q} is compact, the separating
hyperplane theorem [23] says that there exists θ ∈ R|S| and c ∈ R such that

θ · p > c for all p ∈ C1, and θ · q < c. (4)

By scaling c appropriately, we can assume that |θ(s)| ≤ 1 for all s ∈ S.
Now we argue that it must be the case that θ(s) ≤ 0 for all s ∈ S (so that
θ corresponds to the utility profile of some act with nonpositive utilities).
Suppose that θ(s′) > 0 for some s′ ∈ S. By (4), θ · p > c for all p ∈ C1.
However, consider p∗ ∈ C1 defined by

p∗(s) =

{
0, if s 6= s′

−|c|
θ(s) , if s = s′.

Clearly, θ ·p∗ ≤ c, contradicting (4). Thus it must be the case that θ(s) ≤ 0
for all s ∈ S.

Consider the θ given by the separating hyperplane theorem, and let f
be an act such that u ◦ f = θ. By continuity, f ∼ l∗d for some constant act
l∗d. Since C1 and C2 both represent �, and C1 and C2 both contain a proper
probability measure,

min
p∈C1

p · (u ◦ f) = min
p∈C1

p · (u ◦ l∗d) = d = min
p∈C2

p · (u ◦ f).

However, by (4),

min
p∈C1

p · (u ◦ f) > c > min
p∈C2

p · (u ◦ f),

which is a contradiction.

B An Axiomatic characterization of MWER with
Preference Relations

We consider an axiomatization based on primitive preference orders �M
indexed by menus. (Because regret is menu-dependent, we cannot consider
a single preference order �.) As Stoye [29] points out, one disadvantage
of considering such preference orders is that they are not observable. For
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example, suppose that f1 �M f2 �M f3. By presenting the menu M =
{f1, f2, f3} to the decision maker, we can observe that he prefers f1. But
there is no way to observe that f2 �M f3. The traditional approach (seeing
which of f2 and f3 the decision maker prefers when presented with the menu
M ′ = {f2, f3}) will not work, because the decision maker’s preferences with
menu M ′ may be different from those with menu M . (Bleichrodt [3] studies
a similar problem.)

In Section 4, we provided a characterization of MWER with choice func-
tions as the primitives. Despite the fact that a regret-based preference order
is not observable, an axiomatization using menu-dependent preference or-
ders allows us to compare the axioms for weighted regret to those for other
decision rules.

We state the axioms in a way that lets us clearly distinguish the axioms
for SEU, MMEU, MER, and MWER. The axioms are universally quantified
over acts f , g, and h, menus M and M ′, and p ∈ (0, 1). We assume that
f, g ∈ M when we write f �M g.7 We use l∗ to denote a constant act that
maps all states to l.

Axiom 10. (Transitivity) f �M g �M h⇒ f �M h.

Axiom 11. (Completeness) f �M g or g �M f .

Let MB denote the set of all menus that are bounded above; that is,
MB = {M : supg∈M u(g(s))is finite}.

Axiom 12. (Nontriviality) f �M g for some acts f and g and menu M ∈
MB.

Up to now, we have taken the set of menus to beMB. This assumption
is necessary (and sufficient) for regret to be well defined. Later, we use
Axiom 12 in the context of different classes of menus. In particular, we are
interested in the set of finite menus and the set of finitely generated convex
menus, that is, the menus M such such that there is a finite set AM of acts
such that M consists of all the convex combinations of acts in AM . We
denote these sets MF and MC , respectively. When we use Axiom 12 in

7Stoye [29] assumed that menus were convex, so that if f, g ∈M , then so is pf+(1−p)g.
We do not make this assumption, although our results would still hold if we did (with the
axioms slightly modified to ensure that menus are convex). While it may seem reasonable
to think that, if f and g are feasible for an decision maker, then so is pf + (1− p)g, this
not always the case. For example, it may be difficult for the decision maker to randomize,
or it may be infeasible for the decision maker to randomize with probability p for some
choices of p (e.g., for p irrational).
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such contexts, MB in Axiom 12 is understood to be replaced by MC and
MF , respectively. Observe that MC ⊆MB and MF ⊆MB.

Axiom 13. (Monotonicity) If (f(s))∗ �{(f(s))∗,(g(s))∗} (g(s))∗ for all s ∈ S,
then f �M g.

Axiom 14. (Mixture Continuity) If f �M g �M h, then there exist q, r ∈
(0, 1) such that

qf + (1− q)h �M∪{qf+(1−q)h} g �M∪{rf+(1−r)h} rf + (1− r)h.

Menu-independent versions of Axioms 10–14 are standard (for example,
(menu-independent versions of) these axioms are in [11]). Clearly (menu-
independent versions of) Axioms 10, 11, 13, and 14 hold for MMEU, and
SEU; Axiom 12 is assumed in all the standard axiomatizations, and is used
to get a unique representation.

Axiom 15. (Ambiguity Aversion)

f ∼M g ⇒ pf + (1− p)g �M∪{pf+(1−p)g} g.

Ambiguity aversion says that the decision maker weakly prefers to hedge
her bets. It also holds for MMEU, MER, and SEU, and is assumed in the
axiomatizations for MMEU and MER. It is not assumed for the axiomatiza-
tion of SEU, since it follows from the Independence axiom, discussed next.
Independence also holds for MWER, provided that we are careful about the
menus involved. Given a menu M and an act h, let pM + (1 − p)h be the
menu {pf + (1− p)h : p ∈M}.

Axiom 16. (Independence)

f �M g iff pf + (1− p)h �pM+(1−p)h pg + (1− p)h.

Independence holds in a strong sense for SEU, since we can ignore the
menus. The menu-independent version of Independence is easily seen to
imply ambiguity aversion. Independence does not hold for MMEU.

Although we have menu independence for SEU and MMEU, we do not
have it for MER or MWER. The following two axioms are weakened versions
of menu independence that do hold for MER and MWER.

Axiom 17. (Menu independence for constant acts) If l∗ and (l′)∗ are con-
stant acts, then l∗ �M (l′)∗ iff l∗ �M ′ (l′)∗.
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In light of this axiom, when comparing constant acts, we omit the menu.
An act h is never strictly optimal relative to M if, for all states s ∈ S,

there is some f ∈M such that (f(s))∗ � (h(s))∗.

Axiom 18. (Independence of Never Strictly Optimal Alternatives (INA))
If every act in M ′ is never strictly optimal relative to M , then f �M g iff
f �M∪M ′ g.

Theorem 3. For all Y , U , S, and P+, the family of preference orders
�S,Y,U
M,P+ for M ∈MB (resp.,MF ,MC) satisfies Axioms 10–18. Conversely,

if a family of preference orders �M on the acts in ∆(Y )S for M ∈ MB

(resp., MF , MC) satisfies Axioms 10–18, then there exist a utility U on Y
and a weighted set P+ of probabilities on S such that C(P+) is regular and
�M=�S,Y,U

M,P+ for all M ∈ MB (resp., MC , MF ). Moreover, U is unique

up to affine transformations, and C(P+) is unique in the sense that if Q+

represents �M , and C(Q+) is regular, then C(Q+) = C(P+).

Proof. Showing that �S,Y,U
M,P+ satisfies Axioms 10–18 is fairly straightforward;

we leave details to the reader. Essentially the same proof works for MB,
MC , and MF . The proof of the converse is quite nontrivial, although it
follows the lines of the proof of other representation theorems. We start by
considering MB.

Using standard techniques, we can show that the axioms guarantee the
existence of a utility function U on prizes that can be extended to lotteries in
the obvious way, so that l∗ � (l′)∗ iff U(l) ≥ U(l′). We then use techniques
of Stoye [29] to show that it suffices to get a representation theorem for a
single menu, rather than all menus: the menu consisting of all acts f such
that U(f(s)) ≤ 0 for all states s ∈ S. This allows us to use techniques
in the spirit of those used by by Gilboa and Schmeidler [10] to represent
(unweighted) MMEU.

We show here that if a family of menu-dependent preferences�M satisfies
Axioms 10–18, then �M can be represented as minimizing expected regret
with respect to a set of weighted probabilities and a utility function. Since
the proof is somewhat lengthy and complicated, we split it into several steps,
each in a separate subsection.

Simplifying the Problem. Our proof starts in much the same way
as the proof by Stoye [29] of a representation theorem for regret. Lemma
8 guarantees the existence of a utility function U on prizes that can be
extended to lotteries in the obvious way, so that l∗ � (l′)∗ iff U(l) ≥ U(l′).
In other words, preferences over all constant acts are represented by the
maximization of U on the corresponding lotteries that the constant acts
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map to. Lemma 8 is a consequence of standard results. Our menus are
arbitrary sets of acts, as opposed to convex hulls of a finite number of acts
in [29]; Lemma 10 shows that Stoye’s technique can be adapted to work when
menus are arbitrary sets of acts. Finally, following Stoye [29], we reduce the
proof of existence of a minimax weighted regret representation for the family
�M to the proof of existence of a minimax weighted regret representation
for a single menu-independent preference order � (Lemma 11).

Lemma 8. If Axioms 1-3, 5, 7, and 8 hold, then there exists a nonconstant
function U : X → R, unique up to positive affine transformations, such that
for all constant acts l∗ and (l′)∗ and menus M ,

l∗ �M (l′)∗ ⇔
∑

{y: l∗(y)>0}

l(y)U(y) ≥
∑

{y: l′(y)>0}

l′(y)U(y).

Proof. By menu independence for constant acts, the family of preferences
�M all agree when restricted to constant acts. The lemma then follows
from standard results (see, e.g., [17]), since menu-independence for constant
acts, combined with independence, gives the standard independence (sub-
stitution) axiom from expected utility theory.

As is commonly done, given U , we define u(l) =
∑
{y: l(y)>0} l(y)U(y).

Thus, u(l) is the expected utility of lottery l. We extend u to constant acts
by taking u(l∗) = u(l). Thus, Lemma 8 says that, for all menus M , l∗ � (l′)∗

iff u(l∗) ≥ u((l′)∗). If c is the utility of some lottery, let l∗c be a constant
lottery that u(l∗c ) = c. The following is now immediate. We state it as a
lemma so that we can refer to it later.

Lemma 9. u(l∗c ) ≥ u(l∗c′) iff l∗c � l∗c′; similarly, u(l∗c ) = u(l∗c′) iff l∗c ∼ l∗c′,
and u(l∗c ) > u(l∗c′) iff l∗c � l∗c′.

The key step in showing that we can reduce to a single menu is to
show that, roughly speaking, for each menu, there exists a menu-dependent
function gM such that u(gM (s)) = − supf∈M u(f(s)). Stoye [29] proved a
similar result, but he assumed that all menus were obtained by taking the
convex hull of a finite set of acts. Because we allow arbitrary bounded menus,
this result is not quite true for us. For example, suppose that the range of u
is (−1,∞]. Then there may be a menu M such that supf∈M u(f(s)) = 5, so
− supf∈M u(f(s)) = −5. But there is no act g such that u(g(s)) = −5, since
u is bounded below by −1. The following weakening of this result suffices
for our purpose.
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Lemma 10. There exists a utility function U such that for every menu
M , there exists ε ∈ (0, 1] and constant act l∗ such that for all f, g ∈ M ,
f �M g ⇔ t(f) �t(M) t(g), where t has the form t(f) = εf + (1 − ε)l∗

and t(M) = {t(f) : f ∈ M}. Moreover, there exists an act gt(M) such that
u(gt(M)(s)) = − supf∈t(M) u(f(s)) for all s ∈ S.

Proof. The nontriviality and monotonicity axioms imply there must exist
prizes x and y such that U(x) > U(y). We consider four cases.

Case 1: The range of U is bounded above and below. Then we can
rescale so that the range of U is [−1, 1]. Thus, there must be prizes x and
y such that U(x) = 1 and U(y) = −1. For all c ∈ [−1, 1], there must be
a prize x′ that is a convex combination of x and y such that u(x′) = c,
so we can clearly define a function gM such that, for all s ∈ S, we have
u(gM (s)) = − supf∈M u(f(s)). Furthermore, we know that such a gM exists
because it can be formed as an act which maps each state to an appropriate
lottery over the prizes x and y. More generally, we know that an act with a
certain utility profile exists if its utility for each state is within the range of
U . This fact will be used in the other cases as well. Thus, in this case we
can take t to be the identity (i.e., ε = 1).

Case 2: The range of U is (−∞,∞). Again, for all c ∈ (∞,∞), there
must exist a prize x such that u(x) = c. Since menus are assumed to be
bounded above, we can again define the required function g and take ε = 1.

Case 3: The range of U is bounded above and unbounded below. Then
we can assume without loss of generality that the range is (−∞, 1], and for
all c in the range, there is a prize x such that u(x) = c. For all menus M ,
ε > 0, and acts f, g ∈M , by Independence, we have that

f �M g ⇔ εf + (1− ε)l∗1 �εM+(1−ε)l∗1 εg + (1− ε)l∗1.

There exists an ε > 0 such that for all s ∈ S,

1 ≥ sup
f∈M

εu(f(s)) + (1− ε) ≥ −1.

Let t(f) = εf + (1 − ε)l∗1. Clearly there exists an act gt(M) such that
u(gt(M)(s)) = − supf∈t(M) u(f(s)) for all s ∈ S.

Case 4: The range of U is bounded below and unbounded above. By the
upper-boundedness axiom, every menu has an upper bound on its utility
range. Therefore, for every menu M , ε > 0, and all acts f and g in M , by
Independence,

f �M g ⇔ εf + (1− ε)l∗−1 �εM+(1−ε)l∗−1
εg + (1− ε)l∗−1.

38



There exists ε > 0 such that for all s ∈ S,

sup
f∈M

εu(f(s)) + (1− ε)u(l∗−1(s)) ≤ 1.

Let t(f) = εf + (1− ε)l∗−1. Again, it is easy to see that gt(M) exists.

In light of Lemma 10, we henceforth assume that the utility function u
derived from U is such that its range is either (−∞,∞), [−, 1, 1], (−∞, 1],
or [−1,∞). In any case, its range always includes [−1, 1].

Before proving the key lemma, we establish some useful notation for acts
and utility acts (real-valued functions on S). Given a utility act b, let fb,
the act corresponding to b, be the act such that fb(s) = lb(s), if such an
act exists. Conversely, let bf , the utility act corresponding to the act f , be
defined by taking bf (s) = u(f(s)). Note that monotonicity implies that if
fb = gb, then f ∼M g for all menus M . That is, only utility acts matter. If
c is a real, we take c∗ to be the constant utility act such that c∗(s) = c for
all s ∈ S.

Lemma 11. Let M∗ be the menu consisting of all acts f such that (−1)∗ ≤
bf ≤ 0∗. Then (U,P+) represents �M∗ (i.e., �M∗=�S,X,UM∗,P+) iff (U,P+)
represents �M for all menus M .

Proof. Our arguments are similar in spirit to those of Stoye [29].
By Lemma 10, there exists t such that t(f) = εf+(1−ε)h for a constant

function h such that

f �M g iff t(f) �t(M) t(g);

moreover, for this choice of t, the act gt(M) defined in Lemma 10 exists.
By Independence,

t(f) �t(M) t(g) iff
1

2
t(f) +

1

2
gt(M) � 1

2
t(M)+ 1

2
gt(M)

1

2
t(g) +

1

2
gt(M).

Let M∗ be the menu that contains all acts with utilities in [−1, 0]. By
INA, we know that for all acts f and g, and menus M for which gM is
defined, we have

f �M g iff
1

2
f +

1

2
gM �M∗

1

2
g +

1

2
gM .

This is because acts of the form 1
2f + 1

2gM are never strictly optimal with
respect to the menu 1

2M + 1
2gM . At every state s there must be some act in
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1
2M + 1

2gM that has utility 0 at s (namely, the mixture that involves an act
f ∈ M whose utility at s is maximal; that is, u(f(s)) ≥ maxf ′∈M u(f ′(s)).
Thus,

f �M g iff
1

2
t(f) +

1

2
gt(M) �M∗

1

2
t(g) +

1

2
gt(M).

Since the MWER representation also satisfies Independence and INA,
we know that for all menus M , and acts f and g in M ,

f �S,X,U
M,P+ g ⇔ t(f) �S,X,U

t(M),P+ t(g)⇔ 1

2
t(f) +

1

2
gt(M) �

S,X,U
M∗,P+

1

2
t(g) +

1

2
gt(M).

Therefore, to show that �M has a MWER representation with respect to
(U,P+), it suffices to show that �M∗ has a MWER representation with
respect to (U,P+).

In the sequel, we drop the menu subscript when we refer to the family
of preferences, and just write � (to denote �M∗); by Lemma 11, it suffices
to consider �M∗ .

It is straightforward to check that �M∗ satisfies completeness, transi-
tivity, nontriviality, monotonicity, mixture continuity, independence, INA,
and ambiguity aversion. Therefore, by Lemma 1, there exists some (U,P+)
representing �M∗ . By Lemma 11, (U,P+) represents �M for all menus M ,
as required.

Since the axioms hold for all menus in MB, they clearly continue to
hold if we restrict to MF and MC . To prove the converse in the case of
MF we first argue that if the preference orders �M for M ∈ MF satisfy
the axioms, then they uniquely determine preference orders �M for menus
M ∈MB that also satisfy the axioms. Clearly, it also then follows that the
set of preference orders �M for M ∈ MC determines �M for M ∈ MB.
The proof immediately follows from this observation and the proof in the
case of MB.

Consider a bounded menu M . The utility frontier of menu M is a
function mapping each state to the maximum utility achieved in that state
by any act in M . Since S is assumed to be finite, there exists a finite subset
M ′ ⊆M such that the utility frontier of M ′ is the same as the utility frontier
of M . Therefore, for all acts f, g ∈M ,

f �M g ⇔ f �M ′∪{f,g} g,

by Axiom 5. Since M ′ is finite, we have shown what we need.
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SEU REG MER MWER MMEU

Ax. 1-6,8-10 X X X X X
Ind X X X X
C-Ind X X
Ax. 12 X X X
Symmetry X X

Table 6: Characterizing axioms for several decision rules.

Finally, for MC , suppose that M is a convex set of acts generated by
the finite set AM . Then, for all f, g ∈ AM ,

f �AM
g ⇔ f �M g,

by Axiom 5, since no interior points in M can be strictly optimal; hence,
interior points can be removed from M without changing preferences. Thus,
the result for MC follows from the result for MF .

It is instructive to compare Theorem 3 to other representation results in
the literature. Anscombe and Aumann [2] showed that the menu-independent
versions of axioms 10–14 and 16 characterize SEU. The presence of Ax-
iom 16 (menu-independent Independence) greatly simplifies things. Gilboa
and Schmeidler [11] showed that axioms 10–15 together with one more ax-
iom that they call certainty-independence characterizes MMEU. Certainty-
independence, or C-independence for short, is a weakening of independence
(which, as we observed, does not hold for MMEU), where the act h is re-
quired to be a constant act. Since MMEU is menu-independent, we state it
in a menu-independent way.

Axiom 19. (C-Independence) If h is a constant act, then f � g iff pf +
(1− p)h � pg + (1− p)h.

Table 6 describes the relationship between the axioms characterizing the
decision rules.

C Characterizing MWER with Likelihood Updat-
ing

We can in fact directly translate the MDC axiom into a setting with prefer-
ence relations instead of choice functions.
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Definition 2 (Null event). An event E is null if, for all f, g ∈ ∆(Y )S and
menus M with fEg, g ∈M , we have fEg ∼M g.

MDC. For all non-null events E, f �E,M g iff fEh �MEh gEh for some
h ∈M .8

The key feature of MDC is that it allows us to reduce all the conditional
preference orders �E,M to the unconditional order �M , to which we can
apply Theorem 3.

Theorem 4. For all Y , U , S, P+, and M ∈MB, the family of preference
orders �S,Y,UP+|E,M for events E such that P+

(E) > 0 satisfies Axioms 10–18

and MDC. Conversely, if a family of preference orders �E,M on the acts in
∆(Y )S satisfies Axioms 10–18 and MDC for M ∈ MB (resp., MF , MC),
then there exists a utility U on Y and a weighted set P+ of probabilities
on S such that C(P+) is regular, and for all non-null E, �E,M=�S,Y,UP+|E,M .

Moreover, U is unique up to affine transformations, and C(P+) is unique in
the sense that if Q+ represents �E,M , and C(Q+) is regular, then C(Q+) =
C(P+).

Proof. Since �M=�S,M satisfies Axioms 10–18, there must exist a weighted
set P+ of probabilities on S and a utility function U such that f �M g iff
f �S,Y,U

M,P+ g. The rest of the proof is identical to that of Theorem 2; we do
not repeat it here.

Analogues of MDC have appeared in the literature before in the con-
text of updating preference orders. In particular, Epstein and Schneider [7]
discuss a menu-independent version of MDC, although they do not charac-
terize updating in their framework. Ghirardato [9] characterizes update for
a menu-independent version of DC. Sinischalchi [27] also uses an analogue
of MDC in his axiomatization of measure-by-measure updating of MMEU.
Like us, he starts with an axiomatization for unconditional preferences, and
adds an axiom called constant-act dynamic consistency (CDC), somewhat
analogous to MDC, to extend the axiomatization of MMEU to deal with
conditional preferences. CDC in the form in [27] was first proposed by Pires
[22], based on an observation of Jaffray [14].

8Although we do not need this fact, it is worth noting that the MWER decision rule
has the property that fEh �MEh gEh for some act h iff fEh �MEh gEh for all acts h.
Thus, this property follows from Axioms 10–18.
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