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Abstract

The original Halpern-Pearl definition of causality
[Halpern and Pearl, 2001] was updated in the jour-
nal version of the paper [Halpern and Pearl, 2005]
to deal with some problems pointed out by Hopkins
and Pearl [2003]. Here the definition is modified
yet again, in a way that (a) leads to a simpler defini-
tion, (b) handles the problems pointed out by Hop-
kins and Pearl, and many others, (c) gives reason-
able answers (that agree with those of the original
and updated definition) in the standard problematic
examples of causality, and (d) has lower complexity
than either the original or updated definitions.

1 Introduction

Causality plays a central role in the way people structure
the world. People constantly seek causal explanations for
their observations. Philosophers have typically distinguished
two notions of causality, which they have called type causal-
ity (sometimes called general causality) and actual causality
(sometimes called token causality or specific causality). Type
causality is perhaps what scientists are most concerned with.
These are general statements, such as “smoking causes lung
cancer” and “printing money causes inflation”. By way of
contrast, actual causality focuses on particular events: “the
fact that David smoked like a chimney for 30 years caused
him to get cancer last year”; “the car’s faulty brakes caused
the accident (not the pouring rain or the driver’s drunken-
ness)”. Here I focus on actual causality.

Despite the fact that the use of causality is ubiquitous, and
that it plays a key role in science and in the determination of
legal cases (among many other things), finding a good defini-
tion of actual causality has proved notoriously difficult. Most
recent definitions of actual causality, going back to the work
of Lewis [1973], involve counterfactuals. The idea is that A
is a cause of B if, had A not happened, B would not have
happened. This is the standard “but-for” test used in the law:
but for A, B would not have occurred.
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However, as is well known, the but-for test is not always
sufficient to determine causality. Consider the following
well-known example, taken from [Paul and Hall, 2013]:

Suzy and Billy both pick up rocks and throw them
at a bottle. Suzy’s rock gets there first, shattering
the bottle. Since both throws are perfectly accurate,
Billy’s would have shattered the bottle had it not
been preempted by Suzy’s throw.

Here the but-for test fails. Even if Suzy hadn’t thrown, the
bottle would have shattered. Nevertheless, we want to call
Suzy’s throw a cause of the bottle shattering.

Halpern and Pearl [2001] introduced a definition using
structural equations that has proved quite influential. In the
structural-equations approach, the world is assumed to be
characterized by the values of a collection of variables. In this
example, we can use binary variable ST for “Suzy throws”
(ST = 1 if Suzy throws; ST = 0 if she doesn’t), BT for “Billy
throws”, and BS for “bottle shatters”. To show that ST = 1
is a cause of BS = 1, the Halpern-Pearl (henceforth HP) def-
inition allows us to consider a situation where Billy does not
throw (i.e., BT is set to 0). Under that contingency, the but-for
definition works just right: if Suzy doesn’t throw, the bottle
doesn’t shatter, and if Suzy throws, the bottle does shatter.

There is an obvious problem with this approach: it can also
be used to show that Billy’s throw is a cause of the bottle
shattering, which we do not want. Halpern and Pearl deal
with this problem by adding extra variables to the story; this
is needed to make it clear that Suzy and Billy play asymmet-
ric roles. Specifically, they add variables SH (for “Suzy hits
the bottle”) and BH (for “Billy hits the bottle”); in the ac-
tual situation, SH = 1 and BH = 0. By putting appropriate
restrictions on which contingencies can be considered, they
show that the HP definition does indeed allow us to conclude
that ST = 1 is a cause of BS = 1, and BT = 1 is not. (See
Section 3 for details.)

However, the question of which contingencies can be con-
sidered turns out to be subtle. Hopkins and Pearl [2003]
gave an example where the original HP definition gave ar-
guably inappropriate results; it was updated in the journal
version of the paper [Halpern and Pearl, 2005] in a way
that deals with this example. Further counterexamples were
given to the updated definition (see, for example, [Hall, 2007;
Hiddleston, 2005; Weslake, 2015]). By and large, these ex-
amples can be dealt with by taking into account considera-



tions of normality and defaults [Halpern, 2008; Halpern and
Hitchcock, 2015] or by adding extra variables to the model
(see [Halpern, 2014]). But these approaches do not always
seem so satisfactory.

In this paper, I further modify the HP definition, by plac-
ing more stringent restrictions on the contingencies that can
be considered. Roughly speaking, when we consider vari-
ous contingencies, [ do not allow the values of variables other
than that of the putative cause(s) to be changed; I simply al-
low values to be frozen at their actual values. Thus, for exam-
ple, in the Suzy-Billy example, I do not consider the contin-
gency where Billy does not throw (since that would involve
change the value of BT from its actual value). But I do al-
low BH to be frozen at its actual value of O when considering
the possibility that Suzy does not throw. This results in a
definition that is significantly simpler than the HP definition,
deals well with all the standard examples in the literature, and
deals with some of the problem cases better than the HP def-
inition. In addition, the complexity of computing causality is
AP, simpler than that of either the original HP definition or
the modification proposed by HP (cf. [Aleksandrowicz er al.,
2014; Eiter and Lukasiewicz, 2002].

The rest of this paper is organized as follows. In the next
section, I review the original and updated HP definitions, and
introduce the modification. In Section 3, I compare the defi-
nitions in various examples, and show that the modified defi-
nition gives more reasonable results than the original and up-
dated definitions. In Section 4, I compare the modified defini-
tion with definitions given by Hitchcock [2001], Hall [2007],
and Pearl [2000]. In Section 5, I consider the complexity of
computing causality under the modified definition. I conclude
in Section 6.

2 The HP definition(s) and the modified
definition

In this section, I review the HP definition of causality and
introduce the modified definition. The reader is encouraged
to consult [Halpern and Pearl, 2005] for further details and
intuition regarding the HP definition. The exposition of the
review material is largely taken from [Halpern, 2008].

2.1 Causal structures

The HP approach assumes that the world is described in terms
of variables and their values. Some variables may have a
causal influence on others. This influence is modeled by a set
of structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose values
are determined by factors outside the model, and the endoge-
nous variables, whose values are ultimately determined by the
exogenous variables. For example, in a voting scenario, we
could have endogenous variables that describe what the vot-
ers actually do (i.e., which candidate they vote for), exoge-
nous variables that describe the factors that determine how
the voters vote, and a variable describing the outcome (who
wins). The structural equations describe how the outcome is
determined (majority rules; a candidate wins if A and at least
two of B, C, D, and E vote for him; etc.).

Formally, a causal model M is a pair (S, F), where S is
a signature, which explicitly lists the endogenous and exoge-
nous variables and characterizes their possible values, and F
defines a set of modifiable structural equations, relating the
values of the variables. A signature S is a tuple (U, V,R),
where U is a set of exogenous variables, V is a set of en-
dogenous variables, and R associates with every variable
Y € U UV anonempty set R(Y") of possible values for Y
(that is, the set of values over which Y ranges). For sim-
plicity, I assume here that V is finite, as is R(Y") for every
endogenous variable Y € V. F associates with each en-
dogenous variable X € V a function denoted F'x such that
Fx : (XUEMR(U)) X (XYEV,{X}R(Y)) — R(X) This
mathematical notation just makes precise the fact that F'x de-
termines the value of X, given the values of all the other vari-
ables in U/ UV. If there is one exogenous variable U and three
endogenous variables, X, Y, and Z, then F'x defines the val-
ues of X in terms of the values of Y, Z, and U. For example,
we might have Fx (u,y, z) = u + y, which is usually written
as X =U+Y. Thus,if Y = 3and U = 2, then X = 5,
regardless of how Z is set.!

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some vari-
able X to x in a causal model M = (S, F) results in a new
causal model, denoted Mx .., which is identical to M, ex-
cept that the equation for X in F is replaced by X = z.

Following [Halpern and Pearl, 2005], I restrict attention
here to what are called recursive (or acyclic) models. This
is the special case where there is some total ordering < of
the endogenous variables (the ones in V) such that if X <
Y, then X is independent of Y, that is, Fx(...,y,...) =
Fx(...,y,...) forall y,y € R(Y). Intuitively, if a theory
is recursive, there is no feedback. If X < Y, then the value of
X may affect the value of Y, but the value of Y cannot affect
the value of X. It should be clear that if M is an acyclic
causal model, then given a context, that is, a setting « for the
exogenous variables in U/, there is a unique solution for all
the equations. We simply solve for the variables in the order
given by <. The value of the variables that come first in the
order, that is, the variables X such that there is no variable Y
such that Y < X, depend only on the exogenous variables,
so their value is immediately determined by the values of the
exogenous variables. The values of variables later in the order
can be determined once we have determined the values of all
the variables earlier in the order.

2.2 A language for reasoning about causality

To define causality carefully, it is useful to have a language
to reason about causality. Given a signature S = (U, V, R),
a primitive event is a formula of the form X = z, for X € V
and z € R(X). A causal formula (over S) is one of the form
[Y1 < y1,..., Y < yi]p, where

e ( is a Boolean combination of primitive events,

e Yi,...,Y} are distinct variables in V, and

'The fact that X is assigned U + Y (i.e., the value of X is the
sum of the values of U and Y') does not imply that Y is assigned
X — Usthatis, Fy (U, X, Z) = X — U does not necessarily hold.



e y; € R(Y;).

Such a formula is abbreviated as [Y <« . The special
case where k = 0 is abbreviated as . Intuitively, [Y; «+
Y1, .-, Y < yrlp says that ¢ would hold if Y; were set to
yi, fore =1,... k.

A causal formula v is true or false in a causal model, given
a context. As usual, I write (M, @) |= v if the causal formula
1 is true in causal model M given context @. The = relation
is defined inductively. (M, %) = X = xz if the variable X
has value z in the unique (since we are dealing with acyclic
models) solution to the equations in M in context 4 (that is,
the unique vector of values for the exogenous variables that
simultaneously satisfies all equations in M with the variables
in U set to w). The truth of conjunctions and negations is
defined in the standard way. Finally, (M, @) = [Y «+ )¢ if

(My_g. 1) = .

2.3 The definition of causality

The original HP definition, the updated HP definition, and the
modification I introduce here all have three clauses, denoted
ACI1, AC2, and AC3. The definitions differ only in AC2. AC1
and AC3 are simple and straightforward; all the “heavy lift-
ing” is done by AC2. In all cases, the definition of causality,
like the definition of truth discussed in Section 2.2, is relative
to a model and a context.

—

Definition 2.1: X = Z is an actual cause of p in (M, @) if
the following three conditions hold:

ACL. (M,7) = (X = &) and (M, @) = .
AC2. Discussed below.

AC3. X is minimal; no subset of X satisfies conditions AC1
and AC2.

ACI just says that X = Z cannot be considered a cause of
 unless both X = Fand  actually happen. AC3 is a min-
imality condition, which ensures that only those elements of
the conjunction X = 7 that are essential are considered part
of a cause; inessential elements are pruned. Without AC3, if
dropping a lit cigarette is a cause of a fire then so is dropping
the cigarette and sneezing.

AC2 is the core of the definition. I start by presenting the
original definition of AC2, taken from [Halpern and Pearl,
2001]. In this definition, AC2 consists of two parts, AC2(a)
and AC2(b). AC2(a) is a necessity condition. It says that for
X = xto be a cause of ¢, there must be a setting =’ such that
if X is set to 2, ¢ would not have occurred. This is the but-
for clause; but for the fact that X = x occurred, ¢ would not
have occurred. As we saw in the Billy-Suzy rock-throwing
example, the naive but-for clause will not suffice. The origi-
nal HP definition allows us to apply the but-for definition to
contingencies where some variables are set to values other
than those that they take in the actual situation. For exam-
ple, in the case of Suzy and Billy, we consider a contingency
where Billy does not throw.

AC2(a). There is a partition of V' (the set of endogenous
variables) into two disjoint subsets Z and W (so that

ZNW = 0) with X C Z and a setting &’ and 7 of the
variables in X and W, respectively, such that

(M, @) = [X &, W « @]-.

So AC2(a) says that the but-for condition holds under the con-
tingency W = 1.

Unfortunately, AC1, AC2(a), and AC3 do not suffice for a
good definition of causality. In the rock-throwing example,
with just AC1, AC2(a), and AC3, Billy would be a cause of
the bottle shattering. We need a sufficiency condition to block
Billy. Roughly speaking, the sufficiency condition requires
that if X is set to Z, then ¢ holds even if W is set to 17 and
all the variables in an arbitrary subset Z' of Z are set to their
values in the actual context (where the value of a variable Y in
the actual context is the value y such that (M, u) £ Y = y).
Formally, using the notation of AC2(a), we have

AC2(b). If 7 is such that (M,%) = Z = Z, then, for all
subsets Z’ of Z, we have

(M, @) = [X < ZW « @, Z' + Z|p2

The updated HP definition [Halpern and Pearl, 2005]
strengthens AC2(b) further. Sufficiency is required to hold
if the variables in any subset W' of W are set to the values in
0 (in addition to allowing the variables in any subset 7' of Z
to be set to their values in the actual context). Formally, the
following condition AC2(b*) must hold (the “u” stands for
“updated”):

AC2(b%). If 7 is such that (M, %) = Z = Z, then, for all
subsets W’ of W and Z' of Z, we have

(M, @) = [X < Z,W @, Z' + Zp.

Requiring sufficiency to hold for all subsets W' of W is anal-
ogous to requirement in AC2(b) that it hold for all subsets A
of Z. Some motivation for these requirements is given in the
examples in Section 3.

The modified definition is motivated by the observation
that when we want to argue that Suzy is the cause of the
bottle shattering, and not Billy, we point out that what actu-
ally happened is that Suzy’s throw hit the bottle, while Billy’s
rock didn’t. That is, what matters is what happened in the
actual situation. Thus, the only settings of variables allowed
are ones that occurred in the actual situation. Specifically, the
modified definition simplifies AC2(a) by requiring that the
only setting «w of the variables in W that can be considered is
the value of these variables in the actual context. Here is the
modified AC2(a), which I denote AC2(a™) (the m stands for
“modified”):

“There is a slight abuse of notation here. Suppose that 7 =
(Z1,Z5), Z = (1,0), and Z' = (Z1). Then Z' < Zis intended
to be an abbreviation for Z; < 1; that is, I am ignoring the second
component of 2 here. More generally, when I write 7'+ Z lam
picking out the values in Z'that correspond to the variables in 7', and
ignoring those that correspond to the variables in Z-7'1 similarly
write W’ « 1 if W’ is a subset of W. Also note that although I
use the vector notation Z , I sometimes view 7 as a set of variables.



AC2(a™). There is a set W of variables in VV and a setting &/

of the variables in X such that if (M, @) = W = i,
then

(M, @) = [X « Z W « @]-e.

Because 4 is the value of the variables in T in the actual con-
text, AC2(b") follows immediately from AC1 and AC2(a™);
so does AC2(b). Thus, there is no need for an analogue to
AC2(b) in the modified definition. Moreover, the modified
definition does not need to mention Z (although Z can be
taken to be the complement of W).

-,

For future reference, the tuple (W, @, Z’) in AC2 is said to
be a witness to the fact that X = Z is a cause of . (I take
the witness to be ((}, #, £') in the special case that W =0)
Each conjunct in X = Zis called part of a cause of ¢ in
context (M, @). As we shall see, what we think of as causes
in natural language often correspond to parts of causes with
the modified HP definition.

The differences between these definitions will become
clearer when I consider a number of examples in the next
section. For ease of reference, I call the definition satisfying
AC2(a) and AC2(b) the original HP definition, the definition
satisfying AC2(a) and AC2(b") the updated HP definition,
and the definition satisfying AC2(a™) the modified definition.
Note that just as there are three versions of AC2, technically,
there are three corresponding versions of AC3. For example,
in the case of the modified definition, AC3 should really say
“there is no subset of X satisfying AC1 and AC2(a™)”. I will
not bother writing out these versions of AC3; I hope that the
intent is clear whenever I refer to AC3.

At this point, ideally, I would prove a theorem showing
that some variant of the HP definition of actual causality is
is the “right” definition of actual causality. But I know of no
way to argue convincingly that a definition is the “right” one;
the best we can hope to do is to show that it is useful. As a
first step, I show that all definitions agree in the simplest, and
arguably most common case: but-for causes. Formally, say
that X = x is a but-for cause of ¢ in (M, @) if AC1 holds (so
that (M, @) = X = x A ¢) and there exists some z’ such that
(M,d) E [X + 2']=p. Note here I am assuming that the
cause is a single conjunct.

Proposition 2.2: If X = =z is a but-for cause of Y = y in
(M, 4), then X = x is a cause of Y = y according to all
three variants of the HP definition.

Proof: Suppose that X = z is a but-for cause of Y = y and
' is such that (M, 4) | [X < 2']=p. Then (0,0,2) is a
witness for X = 2’ being a cause of ¢ for all three variants
of the definition. Thus, AC2(a) and AC2(a™) hold if we take
W = 0. Since (M, @) = X = x,if (M, @) = Z = Z, where
7Z =V — {X}, then it is easy to see that (M, @) = [X «
2](Z — Z): setting X to its actual value does not affect the
actual value of any other variable, since Mx, , = M. Sim-
ilarly, My, 7. = M,so (M, u) |= (X « 7,7 « Zo
for all subsets Z’ of V — { X }. Thus, AC2(b°) holds. Because
W = 0, AC2(b%) follows immediately from AC2(b°). Il

Of course, the definitions do not always agree. As the fol-
lowing theorem shows, the modified definition is more strin-
gent than the original or updated definitions; if X = =z is
part of a cause of ¢ according to the modified definition, then
it is also a cause according to both the original and updated
definitions.

Theorem 2.3: If X = x is part of a cause of v in (M, @) ac-
cording to the modified HP definition, then X = x is a cause
of p in (M, @) according to both the original and updated HP
definitions.

Proof: See the appendix. il

3 Examples

In this section, I consider how the definitions play out in
a number of examples. The first example is taken from
[Halpern and Pearl, 20011, with minor variations.

Example 3.1: An arsonist drops a lit match in a dry forest
and lightning strikes a tree, setting it on fire. Eventually the
forest burns down. We are interested in the cause of the fire.
We can describe the world using three endogenous variables:

e ['F for forest fire, where F'IF' = 1 if there is a forest fire
and F'F' = 0 otherwise;

e [ for lightning, where L = 1 if lightning occurred and
L = 0 otherwise;

e MD for match dropped (by arsonist), where MD = 1 if
the arsonist dropped a lit match, and MD = 0 otherwise.

We also have an exogenous variable U that determines
whether the arsonist drops the match and whether there is
lightning. Take R(U) = {(i,j) : i,5 € {0,1}}, where the
arsonist drops the match if 7 = 1 and the lightning strikes if
j = 1. We are interested in the context (1, 1).

Consider two scenarios. In the first, called the disjunctive
scenario, either the match or the lightning suffice to cause the
fire. In the second, called the conjunctive scenario, both are
needed for the forest to burn down. The scenarios differ in the
equations for F'F'. In the model M for the conjunctive sce-
nario, we have the equation FF' = min(L, MD) (or FF =
LAMD, if we identify binary variables with primitive propo-
sitions, where 1 denotes “true”); in the model M p for the dis-
junctive scenario, we have the equation FF' = max(L, MD)
(or FFF = LV MD).

In the conjunctive scenario, all the definitions agree that
both the lightning and the arsonist are causes, since each
of L = 1and MD = 1 is a but-for cause of FF' = 1 in
(Mc, (1,1)). This example also shows that all three defini-
tions allow for more than one cause of an effect.

In the disjunctive scenario, the original and updated HP
definitions again would call each of L = 1 and MD =1
causes. I give the argument here for L = 1. Again, the
fact that AC1 and AC3 hold is immediate. For AC2, let
Z = {L,FF} and W = {MD}. If we set MD = 0, then
if L = 0, FF = 0 (so AC2(a) holds) and if L = 1, then
FF =1 (even if MD = 0), so AC2(b) and AC2(b") hold.
However, this argument required setting MD to 0, which is



not its actual value. This is not allowed in the modified defi-
nition. According to the modified definition L = 1AMD =1
is a cause of F'F' = 1. Intuitively, the values of both L and
MD have to change in order to change the value of FF, so
they are both part of a cause, but not causes. This is but one
instance of how parts of causes in the modified HP definition
play a role analogous to causes in the original and updated
HP definitions. il

It is arguably a feature of the original and modified HP defi-
nitions that they call L = 1 and MD = 1 causes of FF' =1,
not just parts of causes. (But see Example 3.6 for more on
this issue.) On the other hand, it is arguably a feature of the
modified definition that it can distinguish the causal structure
of the conjunctive and disjunctive cases.

Example 3.2: Now I consider the rock-throwing example
from the introduction. The naive causal model would just
have endogenous variables BT, ST, and BS, with the equa-
tion BS = ST V BT: the bottle shatters if either Suzy or Billy
throw. As observed in the introduction (and in [Halpern and
Pearl, 2001]), this naive model does not distinguish Suzy and
Billy, and is isomorphic to the disjunctive model for the for-
est fire. To show that Suzy is the cause, we need a model
that takes into account the reason that we think that Suzy is a
cause, namely, it was her rock that hit the bottle.

As suggested by Halpern and Pearl [2001], we can capture
this by adding two new variables to the model:

e BH for “Billy’s rock hits the (intact) bottle”, with values
0 (it doesn’t) and 1 (it does); and

e SH for “Suzy’s rock hits the bottle”, again with values 0
and 1.

We now modify the equations as follows:
e BSis 1 iff one of SH and BH is 1;
e SHis 1if STis 1;
e BH=1if BT =1and SH = 0.

Thus, Billy’s throw hits if Billy throws and Suzy’s rock
doesn’t hit. The last equation implicitly assumes that Suzy
throws slightly ahead of Billy, or slightly harder. Call this
model M RT-

Taking u to be the context where Billy and Suzy both
throw, ST = 1 of BS = 1 in (Mgp,u), but BT = 1 is not,
according to all the definitions. But the arguments are some-
what different. I start with the argument for the original and
updated HP definitions. To see that ST = 1 is a cause accord-
ing to these definitions, note that, as usual, it is immediate that
AC1 and AC3 hold. For AC2, choose Z = {ST,SH, BH,BS},

W = {BT}, and w = 0. When BT is set to 0, BS tracks ST: if
Suzy throws, the bottle shatters and if she doesn’t throw, the
bottle does not shatter. To see that BT = 1 is not a cause of
BS = 1, we must check that there is no partition Z U W of
the endogenous variables that satisfies AC2. Attempting the
symmetric choice with Z = {BT, BH,SHBS}, W = {ST},
and w = 0 violates AC2(b) and AC2(b*). To see this, take
7' = {BH}. In the context where Suzy and Billy both throw,
BH = 0. If BH is set to 0, the bottle does not shatter if
Billy throws and Suzy does not. It is precisely because, in

this context, Suzy’s throw hits the bottle and Billy’s does not
that the original and updated HP definitions declare Suzy’s
throw to be the cause of the bottle shattering. AC2(b) and
AC2(b") capture that intuition by forcing us to consider the
contingency where BH = 0 (i.e., where BH takes on its ac-
tual value), despite the fact that Billy throws. (To show that
Billy’s throw is not a cause, we also have to check all the
other partitions of the variables; this is left to the reader.)
The modified definition works differently. First, to show

that ST = 1 is cause, we take W = {BH} and w = 0; that
is, we hold BH at its actual value of 0. Now if ST = 0, then
BS = 0, showing that AC2(a™) holds; even if BT = 1, the
fact that BH = 0 means that the bottle does not shatter. (Note
that we could have also taken W = {BH} in the original and
updated definitions to show that ST = 1 is a cause of BS = 1.)
Showing that Billy’s throw is not a cause is much easier under
the modified definition: there are no variables that can be held
at their current value such that if BT = 0 we would have
BS = 0. Since, in the actual situation, ST = SH = 1, the
bottle shatters no matter what Billy does.> ll

I next consider the Hopkins and Pearl [2003] example that
resulted in the change from the original definition to the up-
dated definition.

Example 3.3: Suppose that a prisoner dies either if A loads
B’s gun and B shoots, or if C loads and shoots his gun. Tak-
ing D to represent the prisoner’s death and making the obvi-
ous assumptions about the meaning of the variables, we have
that D = (A A B) V C. Suppose that in the actual con-
text u, A loads B’s gun, B does not shoot, but C' does load
and shoot his gun, so that the prisoner dies. Thatis, A = 1,
B =0,and C = 1. Clearly C = lisacause of D = 1. We
would not want to say that A = 1 is a cause of D = 1, given
that B did not shoot (i.e., given that B = 0). However, the

original HP definition does exactly that. Let W = {B,C}
and consider the contingency where B = 1 and C = 0. It
is easy to check that AC2(a) and AC2(b) hold for this con-
tingency, so under the original HP definition, A = 1 is a
cause of D = 1. However, AC2(b"“) fails in this case, since
(M,u) = [A < 1,C + 0](D = 0). The key point is that
AC2(b") says that for A = 1 to be a cause of D = 1, it must

be the case that D = 1 even if only some of the values in w
are set to their values in <. In this case, by setting only A to
1 and leaving B unset, B takes on its original value of 0, in
which case D = 0. AC2(b) does not consider this case.

The modified definition also gives the appropriate answer
here, but the argument is simpler. Clearly C' = 1 is a but-
for cause; it is a cause under the modified definition taking

3The model My, seems to “bake in” the temporal ordering of
events, in particular, that Suzy’s rock hits before Billy’s rock. It is
not necessary to do this. We can allow who hits first to be determined
by the context, so that there may be a context u’ where Billy hits
first. This does not affect the analysis at all. An alternative approach
to incorporating temporal information is to have time-indexed vari-
ables (e.g., to have a family of variables BSj, for “bottle shatters at
time k). In addition to the model used above, Halpern and Pearl
[2005] consider a model with time-indexed variables. Nothing es-
sential changes in the analysis if we consider such a model.



W = (0. A = 1 is not a cause, since there are no variables
whose values we can hold fixed such that then setting A = 0
resultsin D = 0. i

Next, consider “bogus prevention” example due to Hitch-
cock [2007] (based on an example due to Hiddleston [2005]),
which motivated the addition of normality considerations to
the HP definition [Halpern, 2008; Halpern and Hitchcock,
2015].

Example 3.4: Assassin is in possession of a lethal poison, but
has a last-minute change of heart and refrains from putting it
in Victim’s coffee. Bodyguard puts antidote in the coffee,
which would have neutralized the poison had there been any.
Victim drinks the coffee and survives. Is Bodyguard’s putting
in the antidote a cause of Victim surviving? Most people
would say no, but according to the original and updated HP
definition, it is. For in the contingency where Assassin puts
in the poison, Victim survives iff Bodyguard puts in the an-
tidote. However, according to the modified definition, it is
not. Even if Bodyguard doesn’t put in the antidote, Victim
survives, as long as we hold any subset of the other variables
at their actual values.

Bodyguard putting in the antidote is part of a cause under
the modified definition. Bodyguard putting in antidote and
Assassin not putting in poison together form a cause. This
does not seem so unreasonable. If Assassin had poisoned the
coffee and Bodyguard hadn’t put in antidote, the king would
have died. However, intuitions may differ here. We might
argue that we don’t need a cause for an event that was ex-
pected all along. Here normality considerations can help. If
we use the extension of the HP definitions to deal with nor-
mality proposed by Hitchcock and Halpern [2015] (which ap-
plies without change to the modified definition), then under
reasonable assumptions, the witness to Bodyguard putting in
antidote being a cause of Victim surviving is the world where
Bodyguard doesn’t put in antidote and Assassin puts in poi-
son. This world is not at least as normal as the actual world
(arguably, it is incomparable in normality to the actual world),
so the Halpern and Hitchcock approach would not declare
Bodyguard (part of) a cause, according to any variant of the
HP definition. il

Arguments similar to those used in Example 3.4 also show
that the modified definition gives the appropriate answer in
the case of Hall’s [2007] nonexistent threat. Here C = 1
would have prevented £ = 1 had B been 1, but in the actual
context, B = 0 (so we can view B as a potential threat which
is nonexistent in the actual context, since B = 0). The origi-
nal and updated HP definitions declare C' = 1 to be a cause,
contrary to intuition (by considering the contingency where
B = 1); the modified HP definition does not.

Halpern [2014] discussed a number of examples from the
literature purportedly showing problems with the updated
definition, and shows that they can be dealt with by using
what is arguably a better model of the situation, with extra
variables. These problems can be dealt with by the modified
definition, without introducing extra variables. I illustrate
this with the following example, due to Weslake [2015].

Example 3.5: A lamp L is controlled by three switches, A,
B, and C, each of which has three possible positions, —1, 0,

and 1. The lamp switches on iff two or more of the switches
are in same position. Thus, L = 1iff (A = B) V (B =
C) Vv (A = C). Suppose that, in the actual context, A = 1,
B = —1, and C = —1. Intuition suggests that while B = —1
and C = —1 should be causes of L = 1, A = 1 should not
be; since the setting of A does not match that of either B or
C, it has no causal impact on the outcome. The original and
updated HP definitions indeed declare B = —1 and C' = —1
to be causes; unfortunately, they also declare A = 1 to be a

cause. For in the contingency where B = 1 and C' = —1, if
A = 1then L = 1, while if A = 0 then L = 0. The modified
definition declares B = —1 and C' = —1 to be causes (again,

these are but-for causes, so all the definitions agree), but it
does not declare A = 1 to be a cause. The contingency where
B = 1and C = —1 cannot be considered by the modified
definition.

Example 3.5 is dealt with in [Halpern, 2014] by consider-
ing two stories for why the lamp goes on: the first is Wes-
lake’s story (it switches on if at least two of A, B, and C
have the same