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Abstract— The allocation of scarce spectral resourcesto
support as many user applications as possiblewhile main-
taining reasonablequality of service is a fundamental prob-
lem in wir elesscommunication. We arguethat the problem
is best formulated in terms of decisiontheory. We propose
a schemethat takesdecision-theoretic concerns (lik e prefer-
ences)into accountand discussthe difficulties and subtleties
involved in applying standard techniquesfr om the theory of
Mark ov Decision Processes(MDPs) in constructing an al-
gorithm that is decision-theoretically optimal. As an exam-
ple of the proposedframework, we construct such an algo-
rithm under somesimplifying assumptions.Additionally , we
presentanalysisandsimulation resultsthat show that our al-
gorithm meetsits designgoals. Finally, we investigatehow
far fr om optimal onewell-known heuristic is. The main con-
trib ution of our resultsis in providing insight and guidance
for the designof near-optimal admission-control policies.

I . INTRODUCTION

Whenausermakesacall in awirelessnetwork, thesys-
tem must decidewhetherto admit the call or block it.1

Whatmakesthedecisiondifficult is that,to achieve some
senseof optimality, oneneedsto considerthefuturestatus
of the network resourcesandthepatternof the future ar-
rival requests.For example,even if thenetwork currently
hassufficient resourcesto handlethe call, admitting the
call may result in other, alreadyin-progresscalls being
droppedin the future. This problemis aggravatedby the
trend to decreasingcell sizescoupledwith an increased
demandfor multimediaservices. The reductionin cell
sizeleadsto increasedspectrum-utilizationefficiency, but
alsoincreasesthenumberof handoffs experiencedduring
a typical connection.This meansthat thecall requestsat
onecell will bemoreaffectedby decisionsmadein nearby�

In this paper, we usethe term “user” to refer to the actualuseror
theapplicationrunningontheuser’smobiledevice;weusethegeneric
term“call” to indicateanattemptto initiate a session,which couldbe
of any mediumtypeor types(e.g.,voice,data,video,hybrid); we use
theterm“block” to meanrejectingnew calls,theterm“drop” to mean
rejectingcallsalreadyin progress(e.g.,duringa handoff process),and
theterm“reject” to meaneitherblock or drop.

cells. Furthermore,as the numberof cells increases,the
amountof resourcesper cell decreases.Thus,the trunk-
ing efficiency is reduced,leading to more severe fluctu-
ations in the quality of service(QoS). The provision of
connection-level QoSraisesadistinctyetdependentsetof
issues.Guaranteesmadeby onecell placefutureburdens,
dueto handoffs, on theresourcesof othercells.

This particularproblemis but oneof many in thegen-
eral areaof admission-controlpolicies. The crafting of
admissionpolicies is generallyapproachedby focusing
on a subsetof the designissues,while ignoring others.
For example,several schemesfor wirelessnetworks [3],
[21], [18] have beenproposedto provide connection-level
QoSby basingthe call-admissiondecisionon a require-
mentthat thehandoff-droppingprobabilitybekeptbelow
a certain level. Clearly, however, lowering the handoff-
droppingprobabilitywill, in general,meanincreasingthe
probabilityof callsbeingblocked. A major issueremains
unaddressed:is it worth decreasingthehandoff-dropping
probabilityfrom, say, 2% to 1% if it meansincreasingthe
probabilityof blockingfrom 5% to 10%?In otherwords,
what is an acceptabletradeoff betweencall blocking and
call droppingprobabilities?

Toleranceto blockinganddroppingamongusersis also
notaddressedbyasimpleminimizationof handoff-dropping
probability. Forexample,compareatypicalvoicecallwith
a file transfer. A usermakinga voice call may be mildly
frustratedif shecannotconnectto the server, but would
be muchmoreannoyed if the call weredroppedhalfway
throughthe conversation. On the other hand,a userat-
temptingto do a numberof FTPfile transfersmayprefer
to be connectedimmediately, even if this meansa higher
probabilityof beingdropped,sincethis increasestheprob-
ability of at leastsomerapidfile transfers.Shouldthenet-
work treat voice and file transferconnectionsuniformly
andprovide asingledroppingprobabilityfor both?

Webelievethatsensibleadmissiondecisionsshouldtake
both utilities andprobabilitiesinto account,andarebest
formulatedin decision-theoreticterms. In this paper, we
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describea generaldecision-theoreticapproachto call ad-
mission. Although we usea specificexampleto demon-
strateour approach,our approachgivesa framework that
canaccommodatevariousQoSrequirementsin themulti-
mediaresource-allocationprocess.Our focusis on wire-
lessnetworks, but the generalizationto other contexts is
immediate.Weshow thatevenasimplisticdecision-theoretic
approachto wirelessnetwork admissionpoliciesproduces
substantialperformanceimprovementover several well-
known heuristics.

The key ingredientsin decisiontheoryareprobability
andutility. Probability is a measureof the likelihoodof
an event, while the utility (which can be interpretedas
thereward)measurestheevent’s perceivedimportance.A
decision-theoreticadmission-controlpolicy can take into
accountthe relative utility of blocking and dropping,as
well asotherconsiderations,suchasnetwork utilizationor
servicedifferentiationanddelayrequirements.

If we areto usea decision-theoreticapproach,we must
somehow determinetheprobabilitiesandutilities. We as-
sumethat theprobabilitiescanbeobtainedby takingsuf-
ficient statisticalmeasurements.Obtainingthe utilities is
somewhat moreproblematic. Utilities aresubjective and
differentusersmayhavedifferentutilities for thesameap-
plication.Moreover, thereis theproblemof whatis known
asinter-subjectiveutility: oneuser’s utility of 10 maynot
beequivalentto anotheruser’s 10.

Wesidesteptheseproblemsto someextentby assuming
thatwehaveonly oneuser, whichcanbethoughtof asthe
systemprovider. Of course,it is in thesystemprovider’s
interestto keepusersashappy aspossible.Sowe canas-
sumethat, to someextent, thesystemprovider’s utility is
representative of a typical user’s utilities. This is particu-
larly trueif, aswewouldexpect,thesystemprovidergives
higherutilities to callsfor whichusersarepreparedto pay
more.

To useour approach,the systemprovider mustdecide
whattherelativeutilities of blockingvs.droppingoughtto
be. Presumablythis will be doneby weighingtheprofits
lost from blockinga call, comparedto theprofits lost due
to customersswitchingto adifferentproviderasaresultof
having callsdroppedtoo frequently(andpossiblyrefunds
dueto droppedcalls). In thispaper, weassumethatweare
simply given the relevant utilities, while recognizingthat
obtainingthemmaybeanontrivial problem.

Once we have the relevant probabilitiesand utilities,
we canemploy Markov DecisionProcesses(MDPs) [24].
More specifically, we model the call-admissionproblem
asanMDP, allowing usto usewell-known techniquesfor
finding the optimal call-admissionpolicy. However, we
mustbecarefulin modelingthecall-admissionproblemas

an MDP. The standardtechniquesfor finding theoptimal
policy in an MDP run in time polynomial in the sizeof
the statespaceandthe numberof actions. A larger state
spaceleadsto a moreaccuratemodelof thesystem.But,
if we arenot careful,thestatespacecanquickly become
unmanageable.We discussthis issuein detail andshow
that undersomesimplifying andyet reasonablypractical
assumptionswe canconstructamanageablestatespace.

Wearenot thefirst to applyMDPsto thecall-admission
problem(seeSectionVI for otherreferences).However,
thereareanumberof subtletiesthatarisein usingMDPsin
this context thatdo not seemto have beenconsideredear-
lier. For example,it is typically assumedthatwearegiven
theprobabilitiesandutilities in anMDP, andthatwemust
thenconstructan optimal admissionpolicy. However, in
a wirelessnetwork, theprobabilitiesarethemselvesinflu-
encedby theadmissionpolicy weconstruct.For example,
theprobabilitythatacall will behandedoff from a neigh-
boringcell dependsontheprobabilitythattheneighboring
cell will acceptthecall. This, in turn, dependson thead-
missionpolicy, which was developedusing assumptions
aboutthoseprobabilities. This is an issuethat doesnot
seemto have beenconsideredin the literatureon MDPs,
perhapsbecauseit wasassumedthat the probabilitiesof
call blocking and droppingwere so low that they could
be ignored. Sincewe want our systemto be ableto deal
with situationswherethe probability of blocking may be
nonnegligible, wemustaddressthisproblemaspartof our
solution.We do soby constructinga sequenceof policies
that converge to a limit. In the limit, we have a policy
that is “locally” optimalwith respectto a given probabil-
ity measureandutility function,suchthat theprobability
measureis preciselythatinducedby thepolicy.

By finding a (locally) optimal policy usingMDPs, we
areableto make optimaltradeoffs betweensuchconcerns
asproviding the desiredconnection-level QoSandspec-
trum utilization. We show by anextensive seriesof simu-
lationsthatourapproachprovidessubstantialperformance
improvementoveroneof thebestheuristicapproachescon-
sideredin theliterature,givensomestandardassumptions
aboutarrival timesandholding timesof calls. However,
we donot view ourmajorcontribution astheperformance
improvementsin this particularcase.Rather, we consider
our major contribution as the generaldecision-theoretic
framework andthe discussionregardinghow to go about
usingit in practice. We believe that this framework pro-
videsuswith ageneralmethodologyfor evaluatingadmission-
controlpoliciesandfor characterizingoptimalpolicies.

The rest of this paperis organizedas follows. Sec-
tion II discussesourassumptionsabouttheunderlyingsys-
tem and our use of QoS classes. SectionIII considers
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how the admission-controlproblemcanbe formulatedas
an MDP andthe subtletiesinvolved in doing so. Section
IV shows how the optimal admission-controlpolicy can
be computed. SectionV presentsresultsfrom an exten-
sive seriesof simulationsthat comparesthe performance
of the decision-theoreticadmissionpolicy for the caseof
two QoSclasses,one for dataandonefor video, with a
well-known heuristicapproach[4], [21]. Relatedwork is
describedin SectionVI, which alsoofferssomeconclud-
ing remarks.

I I . NETWORK MODEL AND QOS CLASSES

We assumethat thenetwork consistsof a cellularwire-
lessportion anda wired backbone.The wirelessportion
consistsof a setof cells, eachcell containsa singlebase
station(BS). All the BSsareconnectedto the sameMo-
bile SwitchingCenter(MSC).TheMSCis responsiblefor
switchingcallsbetweencellsandfor maintainingconnec-
tionsto thewired backbone.We focussolelyon thewire-
lessportion in this paper;anintegratedadmission-control
schemecanbe obtainedby taking the wired portion into
account.

Wewantto allow thenetwork thepossibilityof treating
differentcalls in differentwaysdueto, for instance,user
preferencesandtolerances.Wewouldcertainlyexpectdif-
ferenttraffic classes(e.g.,voice,video,data)to betreated
differently, but, aswe observed earlier, we mayalsowant
to treatcallswithin thesametraffic classin differentways.

Thus,we proposethat eachtraffic classbe partitioned
into anumberof QoSclasses,sothatthenetwork provides�

QoSclassesaltogether. We may furtherwant to refine
eachQoS classinto a numberof layers. The more lay-
ersassignedto a traffic stream,thebetterQoSis provided.
Partitionsinto layersgive thesystemanoptionfor further
QoS differentiationbeyond just the decisionof whether
or not to admit a call. This would, for instance,allow
us to take advantageof recentadvancesin video coding
[2], [19] by representingvideo(or audio)streamsasmulti-
layerscalableflows thatcanadaptdynamicallyto chang-
ing network andlink conditions.Dealingwith layersis a
straightforward extensionof the ideaspresentedhere;for
easeof exposition,wedonotconsiderlayersfurtherin this
paper.

We assumethateachQoSclassis associatedwith a set
of numbersrepresentingutilities: theutility (cost)perunit
of timeof handlingacall in thatserviceclass,thenegative
utility (cost)of blocking a call, andthe costof dropping
a call during a handoff. (The ideaof associatinga setof
utilities with aQoSclasswasinspiredby theQoScontract
notionin [1].)

I I I . FORMULATING ADMISSION CONTROL AS AN

MDP

Ourgoalis to constructanadmission-controlpolicy that
decides,for eachnew call and handoff call, whetherit
shouldbeadmittedor rejectedand,if it is admitted,atwhat
QoSlevel. The possibility of queuingincomingcalls for
lateradmissionis notconsideredin thispaper. Wewantto
find apolicy thatmaximizesexpectedutility.

It is notsufficient to simplymaximizetheexpectedutil-
ity of currentnew call requestsandcurrentadmittedcalls.
This doesnot take into accountthe futureneedfor hand-
offs as active usersmove acrosscell boundaries. Such
an approachwould result in future expectedutility being
muchlower thanthecurrentexpectedutility. Instead,we
try to maximizetheexpectedtotal utility (in a sensemade
precisebelow). Thismeanswemustconsiderutility streams
asopposedto temporallyisolatedutility values.

We cannotjust identify the total utility with the sum
of utilities over time, sincethis is in generalan infinite
sum. Therearetwo standardapproachesin the literature
to defining total utility [24]. The first is to discountthe
utility over time by somefactor � , with �������	� . That
is, if 
�� is the utility obtainedat time 
 , we take the to-
tal utility to be ������ � � 
�� . We thentry to find thepolicy
thatmaximizestheexpectedtotalutility. Thisdefinitionis
meantto capturethenotionof presentvaluein accounting:
adollarnow is worthmorethanadollaronetimeunit later.
Thesmaller� is, themorewe weight thepresent.This is
reasonableif the time units arereasonablylarge. For ex-
ample,bankspayinterestsothat$95atyear� canbecome
$100at year����� . This suggeststhathaving $100at year����� is thesameashaving $95atyear� ; i.e.,wecanassign�������� to capturethiseffect.

A secondapproachto computethe total utility seems
moreappropriatein ourcontext, sincewearedealingwith
small time intervals. Thefocusin this approachis theav-
erageutility perunit of time; thenthetotal utility over !
timeunitscanjustbetakento be ! timestheaverageutil-
ity. Thus,in thisapproachwetry to maximizetheexpected
valueof "�#�$&%(' � ) %����� 
�*,+.-/! .

Whichever approachin definingthetotal utility we use,
we canformulatetheproblemof finding thepolicy which
optimizesthe expectedtotal utility asa Markov Decision
Process(MDP). Formally, anMDP is a tuple

).021/341,541/6 +
consistingof a set

0
of states,a set

3
of actions,a transi-

tion function
58790�:;3=<?>4).0 + , where

>4).0 + is theset
of probabilitydistributionsover

0
, anda reward function6�7@0A:B3C<ED

, where
D

is thesetof realnumbers.Intu-
itively,

5F).GH1/I + describestheprobabilityof endingup in a
state

GKJ�LM0
if weperformaction

I
in state

G
, while

6N).GH1/I +
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describestheimmediaterewardobtainedif weperformac-
tion

I
in state

G
.

Thereare standardtechniquesfor finding the optimal
policy in MDPs, suchasvalue iterationandpolicy itera-
tion. Thesealgorithmsandanumberof theirvariantshave
beenstudiedin detail, andit is well understoodwhat are
therelativeadvantagesof eachalgorithm(again,see[24]).
Wewantto modelthecall-admissionproblemasanMDP,
so as to be able to useall the power of MDPs. We now
discusshow thiscanbedone,consideringthecomponents
of anMDP oneby one.We payparticularattentionto the
problemof keepingthesizeof thestatespacemanageable.
Our discussionhereis at a generallevel; we returnto the
specific issuesraisedherewhen we considersimulation
resultsin SectionV.

A. TheStateSpace

We representthestateof thecell asthenumberof calls
in progressin thecell. Decisionsat a cell aremadeon the
basisof this state.Clearly, themoreinformationaboutthe
systemwe put into thestate,themoreaccuratethemodel
of the systemis, andthus,the moreaccurateour estima-
tion of theactualrewardsreceived. For our algorithmsto
work,wealsoneedto putenoughinformationinto thestate
to guaranteetheMarkov property; i.e., we want theprob-
ability of makinga transitionfrom onestateto anotherto
dependonly on thecurrentstate,not on theprevious his-
tory. On the otherhand,the moredetailswe put into the
state,themorestatesthereare,andthelongerit will taketo
computetheoptimalpolicy. If we put in toomuchdetails,
the statespacewill be so large that we cannotcompute
the optimal policy in a reasonablelengthof time. Thus,
thereis a tradeoff that mustbe madewhenmodelingthe
state;we may have to modelonly certainfeatures,while
ignoringothers.A techniquesuchasvalueiterationcom-
putestheoptimalpolicy with respectto thestatemodel.Of
course,if our modelof thestatedoesnot captureenough
featuresof relevanceto the problem, the optimal policy
computedby theMDP maynotbeoptimalin practice.

We briefly discusssomeof theseissuesthat arise in
modelingthe statehereand the choiceswe madein our
simulations.O

Shouldwe include time in the state? Clearly, on one
hand,traffic andmobility patternsdependon time of day
(anddayof theweekandweekof theyear),sowe would
getamoreaccuratemodelby includingtime. Ontheother
hand,adding time as a separatecomponentin the state
spacemeansthat the numberof statesis increasedby a
factorof

5
, where

5
is thetotal numberof time unitsthat

we deemrelevant. (For example,if we decidethatall that
is relevant is the hour of the day, thentherewould be 24

timeunits;if wewantto modelthebehavior at thelevel of
minutes,thenwe would have 1440time units.) It seems
to us that, in practice,the overheadof including time is
not worth the ensuingcomputationalcomplexity, andwe
arebetteroff having a numberof separateMDPs,onefor
eachexpectedpattern,andsolvingeachof themseparately.
(Thus, for example,we could have a “mid-day” MDP, a
middle-of-the-nightMDP, and“morningrushhour” MDP,
andsoon.)O

Shouldwe includeinformationaboutneighboringcells
in the state? The numberof calls in neighboringcells
(togetherwith the mobility model) in fact determinesthe
handoff probability(thedistributionthatdescribestheprob-
ability that a call will be handedoff in the next � time
units).Thehandoff probabilityis in factnecessaryfor even
definingtheMDP, sinceit affectsthe transitionprobabil-
ity. On the otherhand,keepingtrack of this information
cansignificantlyincreasethesizeof thestatespace.Fortu-
nately, in many casesof interest,it is possibleto estimate
the handoff probability (and thus the transitionprobabil-
ity), althoughsubtletiesarisethat seemto have beenig-
nored in other paperson the subject. We return to this
issuein SectionIV.O

Shouldwe keeptrack of how long eachcall hasbeen
in thesystem?Thereare(at least)two reasonswhy such
informationmaybe necessary. For one,it maybe neces-
saryin orderto estimatehow muchlongerthecall will re-
mainin thesystem.(For example,if thelengthof a call is
characterizedby aheavy-taileddistribution, thentheprob-
ability that a call terminatesdependson how long it has
lasted.) For another, if the utility of a call is a nonlinear
function of the lengthof the call, it will be necessaryto
includethis information in the statein order to correctly
calculatetheutilities. In our simulations,neitherof these
reasonsapply. Our assumptionsguaranteethat the prob-
ability of a call terminationis independentof how long it
hasbeenin progress(i.e. theMarkovian property)andour
utility doesnotdependin anonlinearwayon thelengthof
thecall.O

Do wehave to includein thestateinformationaboutthe
most recentcall (what QoSclassit is in, whetherit is a
new call or a handoff, etc.)? We have decidedto include
this information;thealternative would beto have a much
morecomplicatedchoiceof actions.Wereturnto thisissue
in SectionIII-B.

Giventheseconsiderations,we take thestatespace
0

to
consistof vectorsof length

� ��� . (Recallthat
�

is the
numberof QoSclasses.)Weset

G � )QP � 1 �/�/� 1,P�RS1/T + LU0 ,
where

P * is the numberof ongoingcalls in QoSclassV ,
for VS�W� 1 �/�/� 1 � , and

T
is a descriptionof the call event

that happensat the currenttime unit if thereis one,and
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X (for no event), otherwise.Therearethreetypesof call
events:anew-call arrival of QoSclassV , ahandoff-call ar-
rival of QoSclassV , andcall departureof QoSclassV . We
describetheseeventsby pairsof theform

)QYZ1 VK+ , ).[\1 VK+ , and).]^1 V_+ , respectively. We assumethatat mostonecall event
happensateachtime. Thus,thereareatmost ` � �a� possi-
ble valuesof this lastcomponent.(The

).]b1 VK+ eventcannot
occurif thereareno calls of QoSclassV currentlyin the
cell.) Thestatespaceis constrainedby thetotalnumberof
channelsin thesystem.We assumethateachcall in QoS
classV requirescd* channelsandthat thereare e channels
altogether. Notethat“channels”arenotnecessarilyphysi-
cal channels;they canbe logical channelsaswell (for in-
stance,thenumberof concurrentusersin CDMA). Thus,0 �gf G � )QP � 1 �/�/� 1,P�Ra1/T + 7HP *9h � 1

R
* ��� c * P *ji eAk��

B. TheActionSpaceandTransitionFunction

Given our representationof states,we needonly two
possibleactions:acceptandreject. Theseactionshave the
obvious effect if thereis a call arrival at the currenttime
unit, andno effect at all if thereis a call departureor no
call eventat thecurrenttime unit. This is capturedby the
transitionfunction.Notethattheeffectof anactionon the
first 
 componentsof a stateis completelydeterministic;
the only uncertaintyis what the next call event will be.
For example,if

� �ml , thenin state
) l 1 ` 1/)QY�1 l�+.+ , accept

resultsin a stateof the form
) l 1,n\1/T + while reject results

in a stateof the form
) l 1 ` 1/T + . Similarly, in a stateof the

form
) l 1 ` 1/).]^1 l�+.+ , bothacceptandrejectresultin astateof

theform
) l 1 l 1/T + . Therelative probabilityof eachof these

outcomesdependson our assumptionsaboutdwell times,
mobility (how often calls leave onecell for another),and
the probability of call arrival. It may alsodependon the
policy itself, sincethepolicy affectsthenumberof callsin
eachcell, which in turnmayaffect thehandoff probability.
For example,if thepolicy rejectsall calls,thenthehandoff
probabilityis guaranteedto be0. Wereturnto this issuein
SectionsIV andV.

Wecanrepresentthetransitionfunctionin termsof two
matrices,onefor theactionacceptandonefor reject. The).GH1 �o+ entry of theacceptmatrix describestheprobability
of goingfrom

G
to � if theacceptactionis performed,and

similarly for reject. Sincethereareonly ` � �g� entries
in eachrow that have positive probability, the matrix is
relatively sparse.This may make it possibleto speedup
someof thecomputationsinvolved.

As we saidearlier, we could usea staterepresentation
that did not includethe last component.We would then
needactionsof the form

).I � 1 �/�/� 1/Iqp R + , whereeach
I * is

eitheracceptor reject. For Vr�8� 1 �/�/� 1 � , the
I * compo-

nenttellsuswhatto doif thenext call eventis anarrival of

anew call of QoSclassV ; for Vs� � �Ft , ta��� 1 �/�/� 1 � , theI * componenttells uswhatto do if thenext call event is a
handoff of QoSclasst . Of course,if thenext call eventis
a departure,thenwe againtake theobvious transition. In
[26], it wassuggestedthat this representationwould lead
to computationalefficiencies. However, sincewe save a
factorof only ` � �u� in thesizeof thestatespacewhile
increasingthe numberof possibleactionsby a factor ofl R , andsincethestandardalgorithmrunsin time v 0 v p v 3 v ,
it seemsunlikely thatthisapproachwould indeedbemore
computationallyefficient.

C. TheReward Function

The reward function makes useof the utilities of the
QoS classes.However, theseutilities do not completely
determinethe reward. For example,if the utility of QoS
class V is 
 * , do we obtain the utility (i.e., reward) only
once(saywhenthecall is connected)?Do weobtainit for
eachunit of time that thecall is connected?Thefirst pos-
sibility correspondsto a chargeof a flat ratepercall (with
perhapssomepenaltiesfor droppinga call or blockingit);
thesecondcorrespondsto a chargepercall that is a linear
functionof its duration. Clearlyotherschemesarepossi-
ble aswell. Our approachcaneasilyaccommodateboth
flat-ratepricing and linear pricing in a naturalway. We
representthe reward

6
by a matrix

).6 *xw + , VS�W� 1 �/�/� 1 � ,t��E� 1 � 1 l . Roughlyspeaking
6 *zy is the reward for ac-

ceptingacall of QoSclassV , if we arethinking of flat-rate
pricing, andthe reward for carryinga call of QoSclassV
for a unit of time, if we arethinking of linearpricing.

6 * �
is thepenaltyfor blockinga call of QoSclassV and

6 * p is
thepenaltyfor droppingacall of QoSclassV .

With therewardmatrixin hand,wecannow describethe
rewardfunction

6N).GH1/I + in a straightforward way for both
flat-ratepricing and linear pricing. (We do not consider
otherrewardpolicieshere.)For flat-ratepricing,wehave:O 6N).)b{P91/T + 1 accept+|� 6 *}y if

T � )QYZ1 V_+O 6N).)b{P91/T + 1 accept+|�g� if
T

is
).]b1 VK+ , ).[~1 VK+ , or XO 6N).)b{P91/T + 1 reject+�� 6 * � if

T
is
)QY�1 VK+O 6N).)b{P91/T + 1 reject+�� 6 * p if

T
is
).[~1 VK+O 6N).)b{P91/T + 1 reject+��g� if

T
is
).]^1 VK+ or X .

For linearpricing,we have:O 6N).)b{P91/T + 1 accept+N� 6 *}y � R
w ��� P w 6 w�y if

T
is
)QYZ1 VK+ or).[\1 V_+O 6N).)b{P91/T + 1 accept+|� R

w ��� P w 6 w�y if
T

is
).]^1 V_+ or XO 6N).)b{P91/T + 1 reject+�� 6 * � �

R
w ��� P w 6 w�y if

T
is
)QY�1 VK+O 6N).)b{P91/T + 1 reject+�� 6 * p � R

w ��� P w 6 w�y if
T

is
).[\1 V_+O 6N).)b{P91/T + 1 reject+��g� 6 *zy �

R
w ��� P w 6 w�y if

T
is
).]b1 VK+O 6N).)b{P91/T + 1 reject+�� R

w ��� P w 6 w�y if
T

is X .
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IV. COMPUTING THE OPTIMAL POLICY

Ourgoalis to find thepolicy (mappingfrom statesto ac-
tions)thatmaximizestheaveragesumof rewards.Theop-
timal policy canbeobtainedusingdynamicprogramming,
by a modificationof standardtechniqueslike valueitera-
tion or policy iteration(see[24] for moredetails).To ex-
plain why we needto modify thestandardtechniques,we
first briefly review thevalueiterationalgorithm(although
thepointswe make applyequallywell to policy iteration,
the otherstandardapproach,andall their variants). The
valueiterationapproachis basedon the following obser-
vation.Let �b��/� betheprobabilityof makingthetransition
from state

P
to state� if action

I
is taken(this probability

is definedby the transitionfunction). Suppose� is some
policy for theMDP. Let ��� )QP + bethevalueof state

PML�0
for policy � , that is, theexpectedreward if we usepolicy� startingin state

P
. The idea behindvalue iteration is

thatwecancomputetheoptimalpolicy �s� andtheoptimal
valuefunction � � by successive approximations.Westart
with anarbitraryvaluefunction � y . Let � y betheoptimal
choiceof actionwith respectto �by ; thatis

�~y )QP +�� argmax���o� 6N)QP91/I +�� �q���
� ��/� �by ) ��+ 1

(1)

where
� ��/� is theprobability

5F)QPj1/I + ) ��+ of makingthetran-
sition from

P
to � if action

I
is chosen.Supposewe have

defined��y 1 �/�/� 1 ��� and �by 1 �/�/� 1 ��� . We thendefine �b��� �
and� ��� � asfollows:

� ��� � )QP +���$��_�� ���
6N)QPj1/I +�� �H���

� ��/��� � ) ��+ � (2)

� ��� � )QP +�� argmax���/� 6N)QPj1/I +2� �H���
� ��/� � ��� � ) ��+ �

(3)
It is a standardresult that � ��� � convergesto an optimal
policy �s� and �b� convergesto thevalue �a� of �s� . In prac-
tice, we choosesome   and stop the computationwhenv ��� )QP +��¡����� � )QP +�v��¢  for all states

P�L;0
; ��� is thenan

acceptableapproximationto � � .
We want to applyvalueiterationto computingoptimal

admissiondecisions.But, aswe hintedabove, theremay
beaproblemevendefiningtheMDP. Admissiondecisions
in cell £ must take into accounthow many calls will be
handedoff from neighboringcells. If many morehand-
off calls arelikely to arrive, the admissiondecisionmust
make new call admissiondecisionsmore conservatively.
How many handoff callswill arrive at a cell £ dependson
the numberof calls in £ ’s neighborsandon the mobility

pattern.However, if £ ’s statedoesnot includethenumber
of calls in neighboringcells (asis thecasein our model),
we mustfind someway of estimatingthenumberof calls
at £ ’s neighborsin order to estimatethe handoff proba-
bility (which in turn affects the transitionprobability in
theMDP). Therearetwo (conflicting)intuitionsregarding
this estimate.The first is that the numberof calls in the
currentcell (which is partof thecell’s state)is a goodes-
timateof the numberof calls at its neighbors.Note that
this saysthat the numberof calls in a cell andits neigh-
borsis stronglycorrelated.Thesecondintuition suggests
that,givenapolicy, agoodestimateof thenumberof calls
in eachQoSclassataneighboringcell is just theexpected
numberof callsin eachQoSclassin astateovertimeasthe
policy is run. This intuition suggeststhat,given a policy,
the numberof calls at £ ’s neighborsis uncorrelatedwith
thenumberof callsat £ .

If thefirst intuition is correct(aswe expectit will bein
somecases),thenit is relatively straightforward to deter-
minetheprobabilitythatacall will behandedoff to acell £
in state

G
(giventhemobility model)andthusto definethe

transitionprobabilitiesfor the MDP. However, if the sec-
ond intuition is correct(as experimentalevidenceshows
that it is under the assumptionsof our simulation) then
thehandoff probability(andhencethetransitionprobabil-
ity) dependson thepolicy. Thus,it seemswe cannoteven
definethe MDP, let aloneusevalue iteration to compute
the optimal policy! (We remarkthat this problemseems
not to have beennoticedin otherpapersthatuseMDPsin
thiscontext [25], [28], [33], whichsimply assumethatthe
handoff probabilityis fixed,independentof thepolicy, and
is givenaspartof themodel.)

Fortunately, even if thesecondintuition is moreappro-
priate,it is still oftenpossibleto find theoptimalpolicy by
arelatively simplemodificationof valueiteration.Westart
by guessinga vector

{£ y that describesthe expectednum-
berof callsin eachQoSclass.Underthesecondintuition,
provided the guessis correct, it (along with the known
call arrival probability andmobility model) is enoughto
determinethe handoff probability and thus the transition
probabilities,andhencedefineanMDP. Wethenusestan-
dardvalueiterationto obtaintheoptimalpolicy �s�y for the
resultingMDP. Underminimal assumptions(namely, that
for any two states

G
and

G J
, the probabilityof reaching

G J
starting in

G
is positive when using policy � �y , which is

certainly the casefor this problem),the policy �s�y deter-
minesa stationaryprobability distribution

� y over states
[24]. The probabilityof a state

G
accordingto

� y canbe
viewedastheprobabilityof finding a cell in state

G
if we

sampleat random.Let
{£ � betheexpectednumberof calls

of eachQoS classaccordingto
� y . We then use

{£ � to
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calculatethe handoff probability, and thusdeterminethe
transitionprobabilitiesfor a new MDP. We canthencal-
culatethe optimal policy �s�� for this MDP. We then iter-
atethis procedure.In general,it seemsthat this approach
shouldconverge undersomereasonableassumptions,but
we have not yet provedthis analytically. It doesconverge
for our simulation.However, evenif it converges,thereis
no guaranteethat it will converge to anoptimalMDP. All
thatwecanguaranteein generalis thatit convergesto alo-
cal optimum. Methodssuchassimulatedannealing[14],
geneticalgorithms[7], or Tabu search[6] shouldbeuseful
for findingaglobaloptimum.

V. EXPERIMENTAL RESULTS

WehavecomparedourMDPapproachtoonewell-known
heuristicin the literature: the NAG policy [4], [21]. We
havechosenNAG becauseit is reportedin [4] to beoneof
the bestadmission-controlpolicies in termsof balancing
utilization efficiency andconnection-level QoS.

A. Experimentalassumptions

In performingour experiments,we madea numberof
assumptions.To make the simulationseasierto run, we
assumedthat thereareonly two QoSclasses,onefor data
andonefor video.Weusedthemobility modelproposedin
[11], extendedto accountfor multipleQoSclassesandthe
finite capacityof thecell BS.We alsomadethefollowing
traffic andmobility assumptions:O

The region is coveredby ��� hexagonalcells, eachcell
with a radius

6 �g� ��¤ . In orderto simulatea largearea,
whenacall is handedoff beyondtheregionboundary, it is
handedback to anothercell on the boundary(with cells
having fewer neighborshaving a proportionatelyhigher
chanceof being chosen). This adjustsfor the fact that,
otherwise,thenumberof handoffs received on averageat
theboundarycellswill besmallerthanat theinteriorcells.O

Mobilescantravel in any directionwith equalprobabil-
ity andwith aconstantspeed

0 �
.O

Eachmobilegoesthroughchangesof directionat “arbi-
trary” placesandtimes.O

Connectionrequestsaregeneratedaccordingto a Pois-
sonprocesswith rate ¥ (connections/second/cell) in each
cell.O

Eachconnectioncanbea datacall with probability
6§¦�¨

or avideocall with probability �©� 6ª¦«¨ .O
The call-holdingtime distribution is the samefor both

videoanddata,andis exponentiallydistributedwith mean
120seconds(

�¬ �g��l�� seconds).O
The dwell time is exponentiallydistributed with mean�­�¬ seconds,where®B�W¯±° �

p�²
°q³ �b´µ ¬�¶ .

O
A videocall occupies

n
BU, whereaBU is definedto be

thebandwidthto carryoutonevoicecall.O
Eachcell hasafixedcapacityof 100BU.
Identicalassumptionshave beenmadein many similar

studies[16], [15], [17], [18], [21], [27], [28], [31], [32],
[33] so, for the sake of comparison,we make themhere
aswell. While theseassumptionsseemquitereasonablein
many contexts, we arewell awarethat they may be quite
inappropriatein others. For example, if we are consid-
ering traffic alonga highway, assumingthat the mobile’s
movementis randomis clearly incorrect,althoughit may
bemorereasonableif weareconsideringcallsin midtown
Manhattan.Theassumptionthatcall-holdingtimesareex-
ponentiallydistributedbecomeslessappropriateaswire-
less traffic startsto approximateInternet traffic; studies
of the Internetsuggestthat heavy-tailed distributions are
moreappropriate[22], [23], [30]. Indeed,recentstudies
of telephonetraffic suggestthatevenfor telephonetraffic,
heavy-taileddistributionsmaybeappropriate[5], although
work by Guerin [11] supportsthe useof the exponential
distribution. In any case,we stressthat we are making
theseassumptionsonly for our casestudy. Nothingin our
generalframework dependson them.

Undertheassumptionsmadehere,themodelingapproach
we usedin SectionIII is appropriate.Our traffic andmo-
bility modeldo not dependon time. In addition,our as-
sumptionsaboutPoissonarrival processandexponential
call holdingtimeguaranteetheMarkov property, sowedo
not needto put time into thestatespace.We considerflat
rateandlinearratepricing; therefore,wedonotkeeptrack
of how long eachcall hasbeenin thesystem.We assume
that traffic patternsare homogeneous.The stateof the
neighboringcell affects the currentcell only throughthe
arrival rateof handoff calls, which dependson the num-
berof callsin thecell. Sinceexperimentalevidenceshows
that,underourassumptions,thenumberof callsataneigh-
bor is theexpectednumberof calls in a stateover time as
thepolicy is run (i.e., thesecondintuition holds),we can
computethehandoff probabilityandtheoptimalpolicy by
using the modified value iterationapproachdiscussedin
SectionIV.

In applyingthisapproach,it is necessaryto calculatethe
transitionprobabilitiesfor the MDP given an assumption{£ abouttheexpectednumberof callsof eachclass.As we
observed earlier, all that is neededis to computetherela-
tiveprobabilityof thepossibletypesof next call event;the
detailedcalculationscanbefoundin AppendixA. Wenow
considertheissueof convergence.Undertheassumptions
usedin our simulation,the optimal policy is a threshold
[20]. That is, for eachtypeof call-arrival event,thereis a
thresholdsuchthat,if therearefewercallscurrentlyin the
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systemthanthethreshold,thecall is admitted;otherwiseit
is rejected.If thereis only oneQoSclass,thismodification
of valueiterationconvergesandcomputestheoptimalpol-
icy. Thereasonfor thisconvergenceresultis asfollows: It
is clearthatthehigherthehandoff probabilitythelowerthe
acceptancethreshold(thatis, thelowerthethreshold� such
thatcallsarerejectedif therearemorethan� callsalready
in state� ), andvice versa.We canfind theoptimalpolicy
by doinga binarysearch;that is, startwith anassumption£ y abouttheexpectednumberof calls; computetheopti-
mal policy �s�y accordingto £�y , andcomputetheexpected
number£ Jy of callscorrespondingto � �y . By theargument
above,theexpectednumberof callsunderthetrueoptimal
policy is between£ y and £ Jy . Let £ � � ) £ y �g£ Jy +.-�l . We
computetheoptimalpolicy with respectto £ � , theniterate.
Although this argumentdoesnot work in higher dimen-
sions,nevertheless,our simulationsdoalwaysconverge.

B. TheNAG Policy

Thedesigngoalof NAG is to keepthehandoff-dropping
probability

�~· ¦
below acertainthresholḑ , therebymain-

taining connection-level QoS. A new call is admittedat
cell £ if admitting it doesnot raisethe handoff-dropping
probability of existing calls in the systemabove ¸ and,
if admitted,thenew call’s handoff-droppingprobability is
alsobelow ¸ . Theproblemis to decidetheeffect on

�~· ¦
of acceptingthe new call. NAG doesthis by estimating
the stateof cell £ and its neighboringcells

5�¹�º,»
units of

timeafterthenew-call arrival time,for someappropriately
chosen

5 ¹�º,»
. The choiceof

5 ¹�º,»
is basedon the current

stateof eachcell andtheaggregatehistoryof handoffs ob-
servedin eachcell. As observedin [4], theperformanceof
NAG dependscritically on thechoiceof theinterval

5�¹,º�»
.

It is assumedthat
5�¹,º�»

is small enoughthat the probabil-
ity thatacall experiencesahandoff morethanonceduring5�¹�º,»

time units is negligible. We experimentedwith dif-
ferent valuesof

5 ¹�º,»
andchoseit to be 5 seconds,since

this choiceseemedto give thebestresultsfor NAG in our
experiments.

C. NumericalResults

Therearetwo mainissueswe wantto studyin our sim-
ulation. First, we want to understandthe behavior of the
optimalpolicy, thatis, whatit dependsonandwhatit does
notdependon. Thus,westudytheeffectof userutility, the
pricingscheme,andtraffic andmobility patternsontheop-
timal policy. Second,wewantto comparetheperformance
improvementsof theoptimalpolicy over NAG undervari-
ousconditions.Thecomparisonwill yield insightinto the
behavior of NAG andprovide guidelinesfor thedesignof
moreefficientheuristicadmission-controlpolicies.

For thesestudies,wesettherewardmatrix
6 *xw (seeSec-

tion III) asfollows. We took
6 *}y to beproportionalto the

bandwidthrequirementof eachQoSclass;weset
6 * � to be

negative andits absolutevalueto be ��� % of
6 *zy . We var-

ied the ratio
YH¦�¼.½

(
6 * p divided by

6 * � ) to studyits effects
on theoptimalpolicy. We consideredtwo valuesfor

6§¦�¨
:� (whichmeansthatall callsaredatacalls)and ���� (which

meansthathalf thecallsaredataandhalf arevideo). We
alsoconsideredtwo settingsfor the averagespeedof the
mobile: 100Km/hr and50Km/hr. We refer to the former
settingasthehigh usermobility caseandthe latterasthe
lowerusermobility case.

C.1 TheCharacteristicsof theOptimalAdmissionPolicy

First, we want to studythe effect of userutility on the
optimaladmissionpolicy. To doso,wevary

Yq¦�¼.½
(theratio

betweencall droppingandcall blocking penalty)for the
two QoS classes.In Figure 1, we seethat for the same
offered load, the call-droppingprobability in the caseofYq¦�¼ � � Yq¦�¼K¾ �À¿�� is smallerthanthecall-droppingproba-
bility in thecaseof

Yq¦�¼ � � Yq¦«¼«¾ � n � case.This is what
wewouldexpect,sincetheoptimaladmission-controlpol-
icy takestheapplicationutilities into account.Thegreater
therelative penaltyfor droppingacall, thelower theprob-
ability thatit will bedropped.Figure1 alsoshows thatthe
optimaladmissionpolicy doesnot dependstronglyon the
traffic patternparameter

6§¦�¨
or on themobility parameter0 �

.
Our simulationsdo show that the pricing schemecan

have a significantimpacton theoptimalcontrolpolicy. IfYq¦�¼ � � Yq¦�¼«¾ �g¿�� , thecall droppingprobabilityfor theflat
pricing schemeis around� % underhigh load (seeFigure
1(b)), but for the linearpricing scheme,thecall dropping
probability is around ��� % underthe samehigh load (see
Figure 2) . This result is also very intuitive. Sincethe
reward(

6 *zy : ��-_Á ) for acceptingacall in thelinearpricing
schemeis muchhigherthanthereward(

6 *zy ) for accepting
a call in theflat pricing scheme,thelinearpricing scheme
tendsto acceptmorecallsthantheflat pricingscheme.

C.2 TheExpectedUtility of DifferentAdmissionControl
Policies

Thegoalof thenetwork serviceprovider is to maximize
its revenuewhile providing satisfactoryserviceto theusers
over time. So the network performanceshouldbe mea-
suredin termsof the averagesystemrevenueover time.
Sincethe system’s utility reflectsthe utility of users(to
someextent), the averagesystemrevenueover time also
reflectshow goodis the servicethat the systemprovides
to theusersover time. In our simulation,we comparethe
expectedutilities of NAG andthe optimal control policy
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(a)SP=50:Â�Ã�ÄQÅ�ÆrÂ�Ã�Ä}ÇÈÆrÉKÊ (b)SP=50:Â�Ã�ÄËÅ�ÆrÂ�Ã�Ä}ÇÈÆ(Ì�Ê (c)SP=100:Â�Ã�ÄÍÅ�Æ�Â�Ã�ÄÎÇsÆaÉ_Ê (d)SP=100:Â�Ã�ÄQÅ�ÆrÂ�Ã�Ä}ÇÈÆÏÌÐÊ
Fig. 1. Ñ@ÒÔÓ and Ñ@Õ_Ö vs.offeredload: optimaladmission-controlpolicy (flat pricingscheme).

Yq¦�¼ � � Yq¦«¼«¾ �g¿��
Fig. 2. Ñ@ÒÔÓ and Ñ�ÕoÖ vs.offeredload:optimaladmission-controlpolicy (linearpricingscheme).

(a) ×§ÃÐØ|ÆaÊ�ÙÛÚ (b) ×©ÃÔØ|Æ(ÜoÙ Ê (c) ×§ÃÐØ9ÆrÊ�Ù±Ú (d) ×©ÃÔØ|Æ(ÜoÙ Ê
Fig. 3. Ý�Ö.Ó ÅjÞ Ý�Ö.Ó ÇßÞ(à�á , NAG’sdesigngoalis Ñ�ÕoÖ Þ(â�ã . (a),(b):Expectedutility ratioof MDP andNAG; (c),(d): MDP’sutility

gainoverNAG.

underdifferentofferedloads.To capturetheperformance
degradationof the network asthe load increases,the ex-
pectedutility is normalizedwith respectto anetwork with
infinite capacity. In this section,we presenttheresultsfor
the flat pricing schemeandlower mobility case. Similar
resultshold for thelinearpricingschemeandfor highmo-
bility; we omit detailshere.

Notethatouroptimaladmission-controlpolicy takesthe
user’s utility into accountautomatically. However, NAG
doesnot. Thecall-droppingprobabilityis selectedbyNAG
in anad hocway. With theright choiceof parameters,the
performancesgapbetweenour optimaladmission-control

policy andNAG decreases.On the otherhand,with the
wrongchoice,theoppositeis true.

As our experimentalresultsshow, thereis no oneset-
ting of thecall-droppingprobabilitythatgivesgoodresults
overthewholerangeof interest.For example,Figure3 de-
scribestheresultswhenNAG picks

��· ¦ � n\ä asthede-
signgoal. Theoptimaladmission-controlpolicy achieves
a performanceimprovementof approximately��¿ %,  � %
and � n�n % over NAG at offered loadsof ����� , l���� , and`���� , respectively, in the

6§¦�¨ �å���� case(seeFigure3(c)).
(At load `���� , the improvementof � n�n % correspondsto
a factor of more than 3 in the call-droppingprobability
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(a) ×§ÃÐØ|ÆaÊ�ÙÛÚ (b) ×©ÃÔØ9Æ(ÜoÙ Ê (c) ×©ÃÔØ|ÆaÊ�Ù±Ú (d) ×©ÃÔØ9ÆÏÜoÙ Ê
Fig. 4. Ý Ö.Ó ÅjÞ Ý Ö.Ó ÇßÞ(à�á , NAG’sdesigngoalis Ñ ÕoÖ Þ;æ�ã . (a),(b):Expectedutility ratioof MDP andNAG; (c),(d): MDP’sutility

gainoverNAG.

(a) × ÃÔØ ÆaÊ�Ù±Ú (b) × ÃÔØ ÆaÊ�Ù±Ú
Fig. 5. Ý�Ö.Ó Å©ÞUç , Ý/Ö.Ó Ç&Þ;à�á , NAG’s designgoal is Ñ�ÕoÖ Þèæqã . (a): Expectedutility ratio of MDP andNAG; (b): MDP’s utility

gainoverNAG.

while maintainingalmostthesamecall blockingprobabil-
ity.) With

��· ¦ �é� ä as NAG’s designgoal, as shown
in Figure4, theoptimaladmission-controlpolicy achieves
a performanceimprovementof approximately� n %, l�� %,
and

n � % over NAG at offeredloadsof ����� , l���� , and `���� ,
respectively, in the

6§¦�¨ �ê���� case.The improvementin
thenormalizedexpectedutility dependsin parton thetype
of callsthatmustbedealtwith. For example,theimprove-
mentsin termsof normalizedexpectedutility overNAG at
offeredload ����� , l���� , and `���� is ��� ä ,

n�n\ä
, and ��l�l ä ,

respectively, in thecaseof
6§¦�¨ �ë����� when

��· ¦ � n\ä is
thedesigngoal(seeFigure3(d)). This is becausetheopti-
malpolicy is biasedtowardsdatacalls,sincedatacallscan
still beacceptedin statesthatvideocall cannotbeaccepted
dueto insufficient bandwidth.

The differencesbetweenNAG and our optimal MDP
policy becomeevenmoredramaticif wechange

Yq¦�¼ � from
80 to 2 (makingthepenaltyfor droppinga datacall much
closerto thatof blockinga call; aswe observed in thein-
troduction,this might make sensefor FTP transfers). In
this case,theimprovementof theMDP approachover the
NAG approachincreasesfrom 40%to 70%atofferedload`���� , with

��· ¦ �À� % asNAG’s designgoal(seeFigure5)

.
Of course,onceweaddutilities into thepicture,it would

not be difficult to modify NAG so that it attemptedat all
timesto adjust

�~· ¦
to obtainoptimalperformance.But by

doing this, NAG would essentiallybe approximatingour
MDP approach.In fact,asour statespacegrows, we will
needto find usefulapproximationto the MDP approach,
since it becomescomputationallytoo expensive. NAG
may be onesuchapproach,but theremay be betterones
aswell. TheMDP approachat leastgivesusa framework
by which to judgethis issue.

VI. DISCUSSION AND RELATED WORK

Therehasbeena greatdealof relatedwork on admis-
sion control, both in the context of wirelessand wired
networks. Optimalcall-admissionpoliciesin cellularnet-
works which carry only voice calls werestudiedin [25],
[27]. Near-optimal admission-controlpolicies [31], [32]
andheuristicapproaches[3], [21] havebeenstudied.Band-
width adaptationusinglayeredencodinghasbeenstudied
recently in [15], [16], [17]. None of thesepaperstried
to provide a generaldecision-theoreticframework for the
call-admissionproblem.Rather, they typically focusedon
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thestandardscenario(Poissonarrival times;exponentially
distributedcall holdinganddwell times)andtried to solve
theproblemin thatsetting.While webelievethatourmain
contribution is the generalframework, not its application
to the standardscenario,as we saw, our approachdoes
dominateawell-known heuristicapproachin thissetting.

Previous work haseither had the goal of keepingthe
call-droppingprobabilitybelow agiventhreshold[3], [21]
or useda weightedfactorbetweendroppingandblocking
as the designgoal [25], [27], [31], [32]. The problems
with choosingan appropriatehandoff-droppingprobabil-
ity thresholdhave alreadybeendiscussedin detail. The
secondapproachcanbeviewed asa specialcaseof ours.
In [25], [27], [31], [32] theweightingfactoris determined
by therelative utilities of call blockingandcall dropping.
Thus, theseapproachesare essentiallya specialcaseof
ours,usingflat-ratepricing,with only oneQoSclass.They
assumethatthecall handoff ratesarefixed,anddonotdeal
with thefact that they areinfluencedby thepolicy. In ad-
dition, thesepapersdo not addresssubtletiessuchasthe
effect of thepolicy chosenon thehandoff rates.

Thereis anotherlarge body of literatureon admission
controlin wirednetworks.Themeasurement-basedadmission-
control (MBAC) approach[9], [10], [12], [29]. [8] is per-
hapsmostrelevantto ourwork. For example,in [8], Rene-
gotiatedConstantBit Rate(RCBR) Serviceis proposed
for variablebit ratevideo. The main ideato increasethe
throughputthroughstatisticalmultiplexing while provid-
ing delayandlossguaranteesthroughrenegotiation.While
thebasicideaof renegotiationmayproveapplicablein the
wirelesssetting,we cannotimmediatelyusethisapproach
dueto significantdifferencesbetweenthewired andwire-
lesssettings. In particular, sincea wirelesschannelcan
beusedexclusively by only oneflow at a time,we cannot
multiplex many flowsonawirelesschannelaseasilyaswe
canmultiplex flows on bandwidthin thewired case.(For
example,if bothflows transmitat thesametime, thedata
will begarbledin thewirelesscase.)Moreover, in MBAC,
evenif renegotiationfails,theflow keepsits originalband-
width. But for thewirelesscounterpart,if a handoff fails,
theflow losesits original bandwidth.

Ourgeneralapproachleadsto someinterestingresearch
issues. All our algorithmsarepolynomial in the sizeof
thestatespace.In our model,we useda numberof tech-
niquesto limit the size of the statespace. However, in
realistic cases,we can expect to have much larger state
spaces.Althoughthecomputationof theoptimalsolution
is doneoff-line, andtheadmissiondecisionsaremadesim-
ply throughtablelookup,thereis a limit to thenumberof
stateswe canfeasiblyhandle.We arecurrentlyexploring
techniquesto provide good approximatesolutionsin the

presenceof large statespaces.Motivatedby the result in
[13] that the runningtime in computingthe near-optimal
policies in arbitrarily large, unstructuredMDPs doesnot
dependon thenumberof states,we believe thatMDP can
bequiteapplicablein practice.Weexpectthat,if thestate
spaceis large (dueto many QoSclasses)the behavior of
thesystemwill bequalitatively similar to thecasewhenit
is small.
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APPENDIX

I . DERIVING THE STATE-TRANSITION PROBABILITIES

Given our experimentalassumptions,the call holding
timesareexponentiallydistributedandthecallarrival times
aredeterminedby a Poissondistribution. [11] shows ex-
perimentallythehandoff probability is alsoexponentially
distributed; thus,we make that assumptionhere,andcal-
culatetheparametersexperimentally, for eachassumption{£ì� ) £ � 1 £ p + of the expectednumberof call of eachQoS
class.

By takingtheminimumof all thesedistributions,wecan
computethe PDF describingthe time that the next event
happensin state

P � )QP � 1,P p 1/T � + . This PDFis definedas

í ) �o+|�ïîñðHò�ó » 1 (4)

whereî¡� )QP � � P�p +QÁ©�r¥ � �r¥ p � ) £ � �r£ p +Q®^Á , ¥ � � 6§¦�¨ ¥ ,¥ p � ) �ß� 6§¦�¨ +.¥ ;
So theexpectedtime until a new eventoccurswhenin

state
P

is

ô )QP +õ� �y � í ) �o+ ] �
�

p
* ���
)QP * Á * ��¥ * �¡£ * ®^ÁÈ+ ò

�
(5)

The probability of a transitionfrom state
P

to state �
givenaction

I
is:

� ��/� �
¥ � ô )QP + �B� )QP � ��ö � 1,P p ��ö p 1/)QY�1 ��+.+¥ p ô )QP + �B� )QP � ��ö � 1,P p ��ö p 1/)QY�1 l�+.+£ � ®bÁ ô )QP +E�B� )QP � ��ö � 1,P p ��ö p 1/).[~1 ��+.+£ p ®bÁ ô )QP +E�B� )QP � ��ö � 1,P p ��ö p 1/).[~1 l�+.+P � Á ô )QP + �B� )QP � ��ö � 1,P�p ��ö p�1/).]b1 ��+.+P p Á ô )QP + �B� )QP � ��ö � 1,P p ��ö p 1/).]b1 l�+.+

(6)
where

ö * � � if
I � I £o£oð.��� and

T � � )QY�1 VK+ or
).[~1 VK+�&� if

T � � ).]b1 VK+� otherwise.
(7)


