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Abstract— The allocation of scarce spectral resourcesto
support as many user applications as possiblewhile main-
taining reasonablequality of sewice is a fundamental prob-
lem in wir elesscommunication. We arguethat the problem
is bestformulated in terms of decisiontheory. We propose
a schemethat takesdecision-theoetic concems (lik e prefer-
ences)nto accountand discussthe difficulties and subtleties
involvedin applying standard techniquesfr om the theory of
Mark ov Decision ProcessegMDPSs) in constructing an al-
gorithm that is decision-theoetically optimal. As an exam-
ple of the proposedframework, we construct such an algo-
rithm under somesimplifying assumptions.Additionally , we
presentanalysisand simulation resultsthat show that our al-
gorithm meetsits designgoals. Finally, we investigatehow
far fr om optimal onewell-known heuristic is. The main con-
trib ution of our resultsis in providing insight and guidance
for the designof near-optimal admission-contmol policies.

I. INTRODUCTION

Whenausermakesacall in awirelessnetwork, the sys-
tem must decidewhetherto admit the call or block it.*
Whatmakesthe decisiondifficult is that,to achieve some
sensef optimality, oneneeddo considerthefuturestatus
of the network resourcesndthe patternof the future ar
rival requestsFor example,evenif the network currently
hassuficient resourcego handlethe call, admitting the
call may resultin other alreadyin-progresscalls being
droppedin the future. This problemis aggraatedby the
trend to decreasingcell sizescoupledwith an increased
demandfor multimedia services. The reductionin cell
sizeleadsto increasedspectrum-utilizatiorefficiency, but
alsoincreaseshe numberof handofs experiencedduring
a typical connection.This meanghatthe call requestsat
onecellwill bemoreaffectedby decisiongnadein nearby

Hn this paper we usethe term “user” to referto the actualuseror
theapplicationrunningonthe users mobiledevice; we usethegeneric
term“call” to indicatean attemptto initiate a sessionwhich could be
of ary mediumtype or types(e.g.,voice,data,video, hybrid); we use
theterm“block” to meanrejectingnew calls,theterm“drop” to mean
rejectingcallsalreadyin progresge.g.,duringahandof process)and
theterm“reject” to meaneitherblock or drop.

cells. Furthermoreasthe numberof cells increasesthe
amountof resourceger cell decreasesThus,the trunk-
ing efficiencyis reduced,leadingto more severe fluctu-
ationsin the quality of service(Qo0S). The provision of
connection-leel QoSraisesa distinctyetdependensetof
issues.Guaranteemadeby onecell placefutureburdens,
dueto handofs, ontheresource®f othercells.

This particularproblemis but oneof mary in the gen-
eral areaof admission-contropolicies. The crafting of
admissionpolicies is generallyapproachediy focusing
on a subsetof the designissues,while ignoring others.
For example, several schemedor wirelessnetworks [3],
[21], [18] have beenproposedo provide connection-leel
QoS by basingthe call-admissiondecisionon a require-
mentthatthe handof-dropping probability be keptbelav
a certainlevel. Clearly however, lowering the handof-
droppingprobabilitywill, in generalmeanincreasinghe
probability of callsbeingblocked. A majorissueremains
unaddresseds it worth decreasinghe handof-dropping
probabilityfrom, say 2%to 1% if it meansncreasinghe
probability of blocking from 5% to 10%? In otherwords,
whatis an acceptabldradeof betweencall blocking and
call droppingprobabilities?

Toleranceo blockinganddroppingamonguserss also
notaddressebly asimpleminimizationof handof-dropping
probability Forexample,compareatypicalvoicecall with
afile transfer A usermakinga voice call may be mildly
frustratedif shecannotconnectto the sener, but would
be muchmoreannged if the call were droppedhalfway
throughthe corversation. On the other hand, a userat-
temptingto do a numberof FTP file transfersmay prefer
to be connectedmmediately evenif this meansa higher
probabilityof beingdroppedsincethisincreasesheprob-
ability of atleastsomerapidfile transfers Shouldthe net-
work treatvoice andfile transferconnectionsuniformly
andprovide a singledroppingprobability for both?

Webelievethatsensibleadmissiordecisionshouldtake
both utilities and probabilitiesinto account,and are best
formulatedin decision-theoreti¢erms. In this paper we



describea generaldecision-theoretiapproacho call ad-
mission. Although we usea specificexampleto demon-
strateour approachpur approachgivesa framavork that
canaccommodateariousQoSrequirementsn the multi-
mediaresource-allocatioprocess.Our focusis on wire-
lessnetworks, but the generalizatiorto other contets is

an MDP. The standardechniquedor finding the optimal
policy in an MDP run in time polynomialin the size of
the statespaceandthe numberof actions. A larger state
spacdeadsto a moreaccuratanodelof the system.But,
if we arenot careful,the statespacecan quickly become
unmanageableWe discussthis issuein detail and shav

immediate We shav thatevenasimplisticdecision-theoretithat undersomesimplifying andyet reasonablypractical
approacho wirelessnetwork admissiompoliciesproduces assumptionsve canconstructa manageablstatespace.

substantialperformancemprovementover several well-
known heuristics.

The key ingredientsin decisiontheory are probability
and utility. Probabilityis a measureof the likelihood of
an event, while the utility (which can be interpretedas
thereward) measureshe event’s percevedimportance A
decision-theoreti@dmission-contropolicy cantake into
accountthe relative utility of blocking and dropping,as
well asotherconsiderationssuchasnetwork utilizationor
servicedifferentiationanddelayrequirements.

If we areto usea decision-theoretiapproachyve must
somehw determineghe probabilitiesandutilities. We as-
sumethatthe probabilitiescanbe obtainedby taking suf-
ficient statisticalmeasurementsObtainingthe utilities is
someavhat more problematic. Utilities are subjectve and
differentuseramay have differentutilities for thesameap-
plication. Moreover, thereis theproblemof whatis knowvn
asinter-subjectiveutility: oneusers utility of 10 may not
beequvalentto anotherusers 10.

We sidestepheseproblemsto someextentby assuming
thatwe have only oneuser which canbethoughtof asthe
systemprovider. Of course,it is in the systemprovider’s
interestto keepusersashappy aspossible.Sowe canas-
sumethat, to someextent, the systemprovider’s utility is
representate of a typical users utilities. This is particu-
larly trueif, aswe would expect,thesystemprovider gives
higherutilities to callsfor which usersarepreparedo pay
more.

To useour approachthe systemprovider mustdecide
whattherelative utilities of blockingvs. droppingoughtto
be. Presumablthis will be doneby weighingthe profits
lost from blocking a call, comparedo the profitslost due
to customerswitchingto adifferentprovider asaresultof
having callsdroppedtoo frequently(andpossiblyrefunds
dueto droppedcalls). In this paperwe assumehatwe are
simply given the relevant utilities, while recognizingthat
obtainingthemmaybea nontrivial problem.

Once we have the relevant probabilitiesand utilities,
we canemploy Markov DecisionProcesse@MIDPSs)[24].
More specifically we model the call-admissionproblem
asan MDP, allowing usto usewell-knowvn techniquesor
finding the optimal call-admissionpolicy. However, we
mustbe carefulin modelingthe call-admissiorproblemas

We arenotthefirst to applyMDPsto the call-admission
problem(seeSectionVI for otherreferences).However,
thereareanumberof subtletieghatarisein usingMDPsin
this context thatdo not seemto have beenconsiderecear
lier. For example,it is typically assumedhatwe aregiven
the probabilitiesandutilities in anMDP, andthatwe must
thenconstructan optimal admissionpolicy. However, in
awirelessnetwork, the probabilitiesarethemselesinflu-
encedby theadmissiorpolicy we construct.For example,
the probabilitythata call will be handedbff from a neigh-
boringcell depend®ntheprobabilitythattheneighboring
cell will acceptthecall. This, in turn, dependn the ad-
missionpolicy, which was developedusing assumptions
aboutthoseprobabilities. This is an issuethat doesnot
seemto have beenconsideredn the literatureon MDPs,
perhapsbecausédt wasassumedhat the probabilitiesof
call blocking and droppingwere so low that they could
beignored. Sincewe want our systemto be ableto deal
with situationswherethe probability of blocking may be
nonngligible, we mustaddresshis problemaspartof our
solution. We do so by constructinga sequencef policies
that corverge to a limit. In the limit, we have a policy
thatis “locally” optimal with respecto a given probabil-
ity measureandutility function, suchthatthe probability
measuras preciselythatinducedby the policy.

By finding a (locally) optimal policy using MDPs, we
areableto make optimaltradeofs betweersuchconcerns
as providing the desiredconnection-leel QoS andspec-
trum utilization. We shav by an extensve seriesof simu-
lationsthatour approactprovidessubstantiaperformance
improvementoveroneof thebestheuristicapproacheson-
sideredin theliterature,given somestandarcassumptions
aboutarrival timesand holding times of calls. However,
we do not view our majorcontrikution asthe performance
improvementsn this particularcase.Rathey we consider
our major contrikution as the generaldecision-theoretic
frameavork andthe discussiorregardinghow to go about
usingit in practice. We believe that this framework pro-
videsuswith ageneramethodologyor evaluatingadmission-
controlpoliciesandfor characterizingpptimal policies.

The rest of this paperis organizedas follows. Sec-
tion 1l discussesurassumptionabouttheunderlyingsys-
tem and our use of QoS classes. Sectionlll considers



how the admission-controproblemcanbe formulatedas

an MDP andthe subtletiesinvolved in doing so. Section
IV showvs how the optimal admission-contropolicy can

be computed. SectionV presentgesultsfrom an exten-

sive seriesof simulationsthat compareghe performance
of the decision-theoretiadmissionpolicy for the caseof

two QoS classespnefor dataandonefor video, with a

well-knowvn heuristicapproach4], [21]. Relatedwork is

describedn SectionVI, which alsooffers someconclud-
ing remarks.

Il. NETWORK MODEL AND QOS CLASSES

We assumehatthe network consistsof a cellularwire-
lessportion anda wired backbone.The wirelessportion
consistsof a setof cells, eachcell containsa single base
station(BS). All the BSsare connectedo the sameMo-
bile SwitchingCenter(MSC). The MSCis responsibldor
switchingcallsbetweercellsandfor maintainingconnec-
tionsto the wired backbone We focussolely on the wire-
lessportionin this paper;anintegratedadmission-control
schemecan be obtainedby taking the wired portioninto
account.

We wantto allow the network the possibility of treating
differentcallsin differentwaysdueto, for instance user
preferenceandtolerancesWewould certainlyexpectdif-
ferenttraffic classege.g.,voice,video,data)to betreated
differently but, aswe obsenred earlief we may alsowant
to treatcallswithin the sametraffic classin differentways.

Thus, we proposethat eachtraffic classbe partitioned
into anumberof QoSclassessothatthenetwork provides
K QoSclassesltogether We may further wantto refine
eachQoS classinto a numberof layers. The more lay-
ersassignedo atraffic streamthebetterQoSis provided.
Partitionsinto layersgive the systeman optionfor further
QoS differentiationbeyond just the decisionof whether
or not to admita call. This would, for instance,allow
us to take advantageof recentadwancesin video coding
[2], [19] by representingideo(or audio)streamsasmulti-
layer scalableflows that canadaptdynamicallyto chang-
ing network andlink conditions. Dealingwith layersis a
straightforvard extensionof the ideaspresentedere;for
easef exposition,we do notconsidedayersfurtherin this
paper

We assumeéhateachQoSclassis associatedavith a set
of numbergepresentingitilities: theutility (cost)perunit
of time of handlinga call in thatserviceclass the neggative
utility (cost) of blocking a call, andthe costof dropping
a call during a handof. (Theideaof associatinga setof
utilities with a QoSclasswasinspiredby the QoScontract
notionin [1].)

[I1. FORMULATING ADMISSION CONTROL AS AN

MDP

Ourgoalis to constructanadmission-contrgbolicy that
decides,for eachnew call and handof call, whetherit
shouldbeadmittedor rejectedand,if it is admitted atwhat
QoSlevel. The possibility of queuingincomingcalls for
lateradmissioris not consideredn this paper We wantto
find a policy thatmaximizesexpectedutility.

It is notsufficient to simply maximizethe expectedutil-
ity of currentnew call request&indcurrentadmittedcalls.
This doesnot take into accountthe future needfor hand-
offs as active usersmove acrosscell boundaries. Such
an approachwould resultin future expectedutility being
muchlower thanthe currentexpectedutility. Insteadwe
try to maximizethe expectedtotal utility (in a sensanade
precisebelow). Thismeanave mustconsideutility streams
asopposedo temporallyisolatedutility values.

We cannotjust identify the total utility with the sum
of utilities over time, sincethis is in generalan infinite
sum. Therearetwo standardapproache#n the literature
to defining total utility [24]. The first is to discountthe
utility overtime by somefactor~, with 0 < v < 1. That
is, if u;, is the utility obtainedat time &, we take the to-
tal utility to be 322 ; v*u. We thentry to find the policy
thatmaximizeshe expectedotal utility. This definitionis
meanto capturethenotionof presenwaluein accounting:
adollarnow is worthmorethanadollaronetime unitlater.
The smaller~ is, the morewe weightthe present.This is
reasonabléf thetime units arereasonablyarge. For ex-
ample,bankspayinterestsothat$95atyeart canbecome
$100atyeart + 1. This suggestshathaving $100atyear
t+1isthesameashaving $95atyeart; i.e.,we canassign
~ = .95 to capturethis effect.

A secondapproachto computethe total utility seems
moreappropriaten our context, sincewe aredealingwith
smalltime intervals. Thefocusin this approachs the av-
erageutility perunit of time; thenthetotal utility over M
time unitscanjustbetakento be M timestheaverageutil-
ity. Thus,in thisapproactwetry to maximizetheexpected
valueof limps oo (0L, ws) /M.

Whicherer approachn definingthetotal utility we use,
we canformulatethe problemof finding the policy which
optimizesthe expectedtotal utility asa Markov Decision
ProcesyMDP). Formally, anMDP is atuple (S, A, T, R)
consistingof asetS of statesasetA of actions,atransi-
tion function7 : S x A — TI(S), wherell(S) is the set
of probability distributionsover S, anda reward function
R: S5 x A — R,whereR is thesetof realnumbersintu-
itively, T'(s, a) describesghe probability of endingupin a
states’ € S if weperformactiona in states, while R(s, a)



describesheimmediaterewardobtainedf we performac-
tion a in states.

There are standardtechniquedor finding the optimal
policy in MDPs, suchasvalueiterationandpolicy itera-
tion. Thesealgorithmsandanumberof their variantshave
beenstudiedin detail, andit is well understoodvhat are
therelatve advantage®f eachalgorithm(again,see[24]).
We wantto modelthe call-admissiomproblemasan MDP,
so asto be ableto useall the power of MDPs. We now
discusshow this canbe done,consideringhe components
of anMDP oneby one. We pay particularattentionto the
problemof keepingthesizeof the statespacemanageable.
Our discussiorhereis at a generallevel; we returnto the
specificissuesraisedhere when we considersimulation
resultsin SectionV.

A. TheStateSpace

We representhe stateof the cell asthe numberof calls
in progressn thecell. Decisionsat a cell aremadeon the
basisof this state.Clearly, the moreinformationaboutthe
systemwe put into the state the moreaccuratehe model
of the systemis, andthus,the more accurateour estima-
tion of the actualrewardsreceved. For our algorithmsto
work, we alsoneedo putenoughinformationinto thestate
to guaranteg¢he Markov property i.e., we wantthe prob-
ability of makinga transitionfrom one stateto anotherto
dependonly on the currentstate,not on the previous his-
tory. On the otherhand,the moredetailswe putinto the
state themorestateghereare,andthelongerit will taketo
computethe optimalpolicy. If we putin too muchdetails,
the statespacewill be so large that we cannotcompute
the optimal policy in a reasonabldengthof time. Thus,
thereis a tradeof that mustbe madewhenmodelingthe
state;we may have to modelonly certainfeatureswhile
ignoring others.A techniquesuchasvalueiterationcom-
putestheoptimalpolicy with respecto thestatemodel. Of
course,if our modelof the statedoesnot captureenough
featuresof relevanceto the problem,the optimal policy
computedoy the MDP maynot beoptimalin practice.

We briefly discusssomeof theseissuesthat arisein
modelingthe statehereand the choiceswe madein our
simulations.

« Shouldwe include time in the state? Clearly on one
hand,traffic andmobility patternsdependon time of day
(andday of the weekandweekof the year),sowe would
getamoreaccuratanodelby includingtime. Ontheother
hand, addingtime as a separatecomponentin the state
spacemeansthat the numberof statesis increasedoy a
factorof T', whereT' is thetotal numberof time unitsthat
we deemrelevant. (For example,if we decidethatall that
is relevantis the hour of the day, thentherewould be 24

time units;if wewantto modelthebehaior atthelevel of

minutes,thenwe would have 1440time units.) It seems
to usthat, in practice,the overheadof including time is

not worth the ensuingcomputationatompleity, andwe

arebetteroff having a numberof separaté&ViDPs, onefor

eachexpectedpattern andsolvingeachof themseparately
(Thus, for example,we could have a “mid-day” MDP, a

middle-of-the-nightViDP, and“morning rushhour” MDP,

andsoon.)

« Shouldwe includeinformationaboutneighboringcells

in the state? The numberof calls in neighboringcells

(togetherwith the mobility model)in factdetermineghe

handof probability(thedistributionthatdescribesheprob-
ability that a call will be handedoff in the next ¢ time

units). Thehandof probabilityis in factnecessarfor even

definingthe MDP, sinceit affectsthe transitionprobabil-
ity. On the otherhand,keepingtrack of this information
cansignificantlyincreasehesizeof thestatespace Fortu-

nately in mary caseof interest,it is possibleto estimate
the handof probability (and thusthe transitionprobabil-
ity), althoughsubtletiesarisethat seemto have beenig-

noredin other paperson the subject. We returnto this

issuein SectionlV.

« Shouldwe keeptrack of how long eachcall hasbeen
in the system?Thereare (at least)two reasonavhy such
informationmay be necessatyFor one,it may be neces-
saryin orderto estimatehow muchlongerthe call will re-

mainin the system.(For example,if thelengthof acall is

characterizethy a heavry-taileddistribution, thentheprob-

ability thata call terminatesdependson how long it has
lasted.) For another if the utility of a call is a nonlinear
function of the length of the call, it will be necessaryo

includethis informationin the statein orderto correctly
calculatethe utilities. In our simulations neitherof these
reasonsapply Our assumptionguarantedhat the prob-

ability of a call terminationis independenbf how long it

hasbeenin progresdi.e. the Markovian property)andour

utility doesnotdependn anonlinearway onthelengthof

thecall.

« Do we have to includein the stateinformationaboutthe

mostrecentcall (what QoSclassit is in, whetherit is a

new call or a handof, etc.)? We have decidedto include
this information;the alternatve would be to have a much
morecomplicatecthoiceof actions.Wereturnto thisissue
in Sectionlll-B.

Giventheseconsiderationsye take the statespaceS to
consistof vectorsof length K + 1. (Recallthat K is the
numberof QoSclasses.Wesets = (z1,...,zx,0) € S,
wherez; is the numberof ongoingcallsin QoS classi,
fori = 1,..., K, and@ is a descriptionof the call event
that happensat the currenttime unit if thereis one,and



n (for no event), otherwise. Therearethreetypesof call

events:anen-call arrival of QoSclassi, ahandof-call ar

rival of QoSclassi, andcall departureof QoSclassi. We

describetheseeventsby pairsof theform (r, ), (h,4), and
(d, 1), respectiely. We assumehatat mostonecall event
happensiteachtime. Thus,thereareatmost3 K + 1 possi-
ble valuesof this lastcomponent(The (d, i) eventcannot
occurif thereareno calls of QoSclass: currentlyin the

cell.) Thestatespacds constrainedy the total numberof

channeldn the system.We assumehat eachcall in QoS
classi requiresh; channelsandthatthereare V channels
altogetherNotethat“channels"arenot necessarilyphysi-

cal channelsthey canbelogical channelsaswell (for in-

stancethe numberof concurrentusersin CDMA). Thus,
S = {8 = (1‘1,...,$K,9) 1T > 0, Zfilbzxz < N}

B. TheActionSpaceand TransitionFunction

Given our representatiorof states,we needonly two
possibleactions:acceptandreject Theseactionshave the
obvious effect if thereis a call arrival at the currenttime
unit, andno effect at all if thereis a call departureor no
call eventat the currenttime unit. Thisis capturedby the
transitionfunction. Notethatthe effect of anactiononthe
first K component®f a stateis completelydeterministic;
the only uncertaintyis what the next call event will be.
For example,if K = 2, thenin state(2, 3, (r,2)), accept
resultsin a stateof the form (2, 4, ) while rejectresults
in a stateof the form (2, 3,0). Similarly, in a stateof the
form (2, 3, (d, 2)), bothacceptandrejectresultin astateof
theform (2, 2, 0). Therelative probability of eachof these
outcomegdependn our assumptionsiboutdwell times,
mobility (how often callsleave onecell for another),and
the probability of call arrival. It may alsodependon the
policy itself, sincethepolicy affectsthe numberof callsin
eachcell, whichin turn mayaffectthehandof probability
For example,if thepolicy rejectsall calls,thenthe handof
probabilityis guaranteedb be0. Wereturnto thisissuein
SectiondV andV.

We canrepresenthetransitionfunctionin termsof two
matricesonefor theactionacceptandonefor reject The
(s,t) entry of the acceptmatrix describeghe probability
of goingfrom s to ¢ if theacceptactionis performedand
similarly for reject Sincethereareonly 3K + 1 entries
in eachrow that have positive probability the matrix is
relatively sparse.This may make it possibleto speedup
someof the computationsnvolved.

As we said earlier we could usea staterepresentation

that did not include the last component. We would then
needactionsof the form (a1, ...,asx ), whereeacha; is
eitheracceptor reject Fori = 1,..., K, thea; compo-
nenttellsuswhatto doif thenext call eventis anarrival of

anew call of QoSclassi; fori = K+j,5 =1,..., K, the
a; componentellsuswhatto doif thenext call eventis a
handof of QoSclass;j. Of coursejf thenext call eventis
a departurethenwe againtake the obvious transition. In
[26], it wassuggestedhat this representatiomvould lead
to computationakfficiencies. However, sincewe save a
factorof only 3K + 1 in thesizeof the statespacewhile
increasingthe numberof possibleactionsby a factor of
2K andsincethe standardalgorithmrunsin time | S|2| A|,
it seemsunlikely thatthis approactwould indeedbe more
computationallyefficient.

C. TheRewvard Function

The reward function males use of the utilities of the
QoS classes.However, theseutilities do not completely
determinethe reward. For example,if the utility of QoS
classi is u;, do we obtainthe utility (i.e., reward) only
once(saywhenthecall is connected)®o we obtainit for
eachunit of time thatthe call is connected X hefirst pos-
sibility correspondso a chage of aflat ratepercall (with
perhapsomepenaltiefor droppinga call or blockingit);
thesecondcorrespondso a chage percall thatis alinear
functionof its duration. Clearly otherschemesre possi-
ble aswell. Our approachcaneasilyaccommodatéoth
flat-rate pricing and linear pricing in a naturalway. We
representhereward R by a matrix (R;;),i = 1,..., K,
j = 0,1,2. RoughlyspeakingR;, is the reward for ac-
ceptinga call of QoSclassi, if we arethinking of flat-rate
pricing, andthe rewardfor carryinga call of QoSclass:
for aunit of time, if we arethinking of linearpricing. R;;
is the penaltyfor blockinga call of QoSclassi and R;- is
the penaltyfor droppinga call of QoSclassi.

With therewardmatrixin hand we cannow describghe
rewardfunction R(s, a) in a straightforvard way for both
flat-rate pricing and linear pricing. (We do not consider
otherrewardpolicieshere.)For flat-ratepricing, we have:
e R((Z,0),accepy = Ry if 0 = (r,1)

e R((Z,0),accepy =0if Ois (d,1), (h,i),0rn
o R((%,0),rejecth = Ry if Ois (r,1)

e R((Z,0),rejech = Ry if 0is (h,1)

o R((Z,0),rejech =0if Ois (d,i) orn.

For linearpricing, we have:
e R((Z,0),accep} = R;o + Z]K:I zjRjo if 0is (r,i) or
(h,i

. ,accepy = Iz Rjo if 0is (d, ) orn

,0)
,0),rejech = Ry + S0, xR0 if 0 is (r, 1)
,0),rejech = Rio + 35 2 Rjo if 0is (h, 1)
0)
0)

z
. z
=
T

sV )s rejeCD =—Rjp+ Zf(:l x]RJO if 0is (d’ ,L)
,rejec) = Y0 xR if Oisn.
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IV. COMPUTING THE OPTIMAL PoLicy

Ourgoalistofind thepolicy (mappingfrom statedo ac-
tions)thatmaximizegheaveragesumof rewards.Theop-
timal policy canbe obtainedusingdynamicprogramming,
by a modificationof standardechniquedike valueitera-
tion or policy iteration(see[24] for moredetails). To ex-
plain why we needto modify the standardechniqueswe
first briefly review the valueiterationalgorithm (although
the pointswe malke apply equallywell to policy iteration,
the other standardapproachandall their variants). The
valueiterationapproachis basedon the following obser
vation. Let pg, bethe probability of makingthe transition
from statex to statey if actiona is taken (this probability
is definedby the transitionfunction). Supposer is some
policy for theMDP. Let V. (z) bethevalueof statex € S
for policy 7, thatis, the expectedreward if we usepolicy
« startingin statex. The ideabehindvalue iterationis
thatwe cancomputetheoptimalpolicy 7* andtheoptimal
valuefunction VV* by successie approximationsWe start
with anarbitraryvaluefunction V4. Let 7y bethe optimal
choiceof actionwith respecto Vj; thatis

mo(x) = agmax, . , (R(w,a) +> Pﬁy%(y)) (@)

yeS

wherePy, istheprobabilityT'(x, a)(y) of makingthetran-
sition from z to y if actiona is chosen.Supposeve have
definedny,...,m, andVg,...,V,. WethendefineV,,;

andm, 1 asfollows:

Vag1(z) = max (R(:v,a) +) PﬁyVn(y)) ;o (2

yeSs

7Tn+l(x) =amgmax ., (R(x> a) + Z ngVn+l(y)
yeS

3)
It is a standardresultthat r,,,; convergesto an optimal
policy 7* andV,, corvergesto thevalueV* of 7*. In prac-
tice, we choosesomee and stop the computationwhen
|Vi(z) — Vg1 ()| < e for all statese € S; 7, is thenan
acceptabl@approximatiorto 7*.

We wantto apply valueiterationto computingoptimal
admissiondecisions.But, aswe hintedabove, theremay
beaproblemevendefiningthe MDP. Admissiondecisions
in cell ¢ musttake into accounthow mary calls will be
handedoff from neighboringcells. If mary more hand-
off callsarelikely to arrive, the admissiondecisionmust
make new call admissiondecisionsmore conseratively.
How mary handof callswill arrive ata cell ¢ dependon
the numberof callsin ¢'s neighborsand on the mobility

pattern.However, if ¢'s statedoesnotincludethe number
of callsin neighboringcells (asis the casein our model),
we mustfind someway of estimatingthe numberof calls
at ¢'s neighborsin orderto estimatethe handof proba-
bility (which in turn affects the transition probability in
the MDP). Therearetwo (conflicting)intuitionsregarding
this estimate. Thefirst is that the numberof callsin the
currentcell (which is partof the cell’s state)is a goodes-
timate of the numberof calls at its neighbors. Note that
this saysthat the numberof callsin a cell andits neigh-
borsis stronglycorrelated.The secondntuition suggests
that,givenapolicy, agoodestimateof the numberof calls
in eachQoSclassataneighboringcell is justtheexpected
numberof callsin eachQoSclassin astateovertimeasthe
policy is run. This intuition suggestdhat, given a policy,
the numberof calls at ¢’s neighborsis uncorrelatedvith
thenumberof callsatc.

If thefirst intuition is correct(aswe expectit will bein
somecases)thenit is relatively straightforvard to deter
minetheprobabilitythatacall will behandedff toacell ¢
in states (giventhe mobility model)andthusto definethe
transitionprobabilitiesfor the MDP. However, if the sec-
ond intuition is correct(as experimentalevidenceshavs
that it is underthe assumptionf our simulation)then
thehandof probability (andhencethe transitionprobabil-
ity) depend®nthepolicy. Thus,it seemsve cannoteven
definethe MDP, let aloneusevalueiterationto compute
the optimal policy! (We remarkthat this problemseems
notto have beennoticedin otherpaperghatuseMDPsin
this context [25], [28], [33], which simply assuméhatthe
handof probabilityis fixed,independenof the policy, and
is givenaspartof themodel.)

Fortunately evenif the secondntuition is moreappro-
priate,it is still oftenpossibleto find theoptimalpolicy by
arelatively simplemodificationof valueiteration. We start
by guessinga vector ¢, that describeghe expectednum-
berof callsin eachQoSclass.Underthe secondntuition,
provided the guessis correct, it (along with the known
call arrival probability and mobility model)is enoughto
determinethe handof probability and thusthe transition
probabilities,andhencedefinean MDP. We thenusestan-
dardvalueiterationto obtainthe optimalpolicy 7 for the
resultingMDP. Underminimal assumptiongnamely that
for ary two statess ands’, the probability of reachings’
startingin s is positive when using policy 7, which is
certainly the casefor this problem),the policy 7 deter
minesa stationaryprobability distribution P, over states
[24]. The probability of a states accordingto P, canbe
viewed asthe probability of finding a cell in states if we
sampleatrandom.Let ¢; bethe expectednumberof calls
of eachQoS classaccordingto P,. We thenusec; to



calculatethe handof probability andthus determinethe
transitionprobabilitiesfor a nev MDP. We canthencal-
culatethe optimal policy 77 for this MDP. We theniter-
atethis procedure.ln general,jt seemghatthis approach
shouldcornverge undersomereasonabl@assumptionshut
we have not yet proved this analytically It doescorverge
for our simulation.However, evenif it converges,thereis
no guaranteghatit will corverge to anoptimalMDP. All
thatwe canguaranteén generals thatit corvergesto alo-
cal optimum. Methodssuchassimulatedannealing[14],
geneticalgorithmg[7], or Talu searcH6] shouldbeuseful
for finding a globaloptimum.

V. EXPERIMENTAL RESULTS

We have compareaur MDP approacho onewell-known
heuristicin the literature: the NAG policy [4], [21]. We
have choserNAG becausdt is reportedn [4] to beoneof
the bestadmission-contropoliciesin termsof balancing
utilization efficiengy andconnection-leel QoS.

A. Experimentahssumptions

In performingour experiments,we madea numberof
assumptions.To make the simulationseasierto run, we
assumedhatthereareonly two QoSclassespnefor data
andonefor video. We usedthemobility modelproposedn
[11], extendedo accountfor multiple QoSclassesndthe
finite capacityof the cell BS. We alsomadethe following
traffic andmobility assumptions:

« Theregion is coveredby 19 hexagonalcells, eachcell
with aradiusR = 1K'm. In orderto simulatealargearea,
whena call is handedff beyondtheregion boundaryit is
handedbackto anothercell on the boundary(with cells
having fewer neighborshaving a proportionatelyhigher
chanceof being chosen). This adjustsfor the fact that,
otherwise the numberof handofs receved on averageat
theboundarycellswill besmallerthanattheinterior cells.
« Mobilescantravel in ary directionwith equalprobabil-
ity andwith aconstanspeedS P.

« Eachmobilegoesthroughchange®f directionat “arbi-
trary” placesandtimes.

« Connectiorrequestsaregeneratediccordingto a Pois-
sonprocesswith rate A (connections/secofadll) in each
cell.

« Eachconnectiorcanbe adatacall with probability R,
or avideocall with probability1 — Rg,.

« The call-holdingtime distribution is the samefor both
videoanddata,andis exponentiallydistributedwith mean
120secondg % = 120 seconds).

« The dwell time is exponentiallydistributed with mean

1 _ (342V3)SP
Y secondswherep = R

« A videocall occupiest BU, whereaBU is definedto be
the bandwidthto carryout onevoicecall.
« Eachcell hasafixedcapacityof 100BU.

Identicalassumptionfiave beenmadein mary similar
studies[16], [15], [17], [18], [21], [27], [28], [31], [32],
[33] so, for the sale of comparisonwe make them here
aswell. While theseassumptionseemquitereasonablén
mary contets, we arewell awarethatthey may be quite
inappropriatein others. For example,if we are consid-
ering traffic alonga highway, assuminghatthe mobile’s
movementis randomis clearly incorrect,althoughit may
bemorereasonablé we areconsideringcallsin midtovn
Manhattan.Theassumptiothatcall-holdingtimesareex-
ponentiallydistributed becomedessappropriateaswire-
lesstraffic startsto approximatelnternettraffic; studies
of the Internetsuggesthat heary-tailed distributions are
more appropriatd22], [23], [30]. Indeed,recentstudies
of telephondraffic suggesthatevenfor telephondraffic,
heary-taileddistributionsmaybeappropriatd5], although
work by Guerin[11] supportsthe useof the exponential
distribution. In ary case,we stressthat we are making
theseassumptionsnly for our casestudy Nothingin our
generalframenvork depend®nthem.

Undertheassumptionmadehere themodelingapproach
we usedin Sectionlll is appropriate. Our traffic andmo-
bility modeldo not dependon time. In addition, our as-
sumptionsaboutPoissonarrival processand exponential
call holdingtime guarante¢he Markov property sowe do
not needto puttime into the statespace.We considerflat
rateandlinearratepricing; thereforewe do notkeeptrack
of how long eachcall hasbeenin the system.We assume
that traffic patternsare homogeneous.The stateof the
neighboringcell affectsthe currentcell only throughthe
arrival rate of handof calls, which dependsn the num-
berof callsin thecell. Sinceexperimentalkevidenceshavs
that,underourassumptionghenumberof callsataneigh-
bor is the expectednumberof callsin a stateovertime as
the policy is run (i.e., the secondntuition holds),we can
computethehandof probabilityandthe optimalpolicy by
using the modified value iteration approachdiscussedn
SectionlV.

In applyingthisapproachit is necessarjo calculatethe
transitionprobabilitiesfor the MDP given an assumption
¢ aboutthe expectednumberof calls of eachclass.As we
obsered earlier all thatis neededs to computetherela-
tive probability of the possibletypesof next call event;the
detailedcalculationsanbefoundin AppendixA. Wenow
considertheissueof convergence.Undertheassumptions
usedin our simulation, the optimal policy is a threshold
[20]. Thatis, for eachtype of call-arrival event,thereis a
thresholdsuchthat,if therearefewer callscurrentlyin the



systenthanthethresholdthecall is admitted;otherwiseit
is rejected.If thereis only oneQoSclass thismodification
of valueiterationcorvergesandcomputeghe optimalpol-
icy. Thereasorfor this corvergenceresultis asfollows: It
is clearthatthehigherthehandof probabilitythelowerthe
acceptancthresholdthatis, thelowerthethreshold such
thatcallsarerejectedf therearemorethant callsalready
in statet), andvice versa.We canfind the optimal policy
by doinga binary searchthatis, startwith anassumption
co aboutthe expectednumberof calls; computethe opti-
mal policy 7 accordingto ¢y, andcomputethe expected
numberc, of callscorrespondindo 7. By theargument
above, theexpectechumberof callsunderthetrue optimal
policy is betweency andc). Lete; = (¢p + ) /2. We
computetheoptimalpolicy with respecto ¢, theniterate.
Although this agumentdoesnot work in higher dimen-
sions,neverthelesspur simulationsdo alwaysconverge.

B. TheNAG Policy

Thedesigngoalof NAG is to keepthehandof-dropping
probability P, 4 belov a certainthresholdx, therebymain-
taining connection-leel QoS. A new call is admittedat
cell ¢ if admittingit doesnot raisethe handof-dropping
probability of existing calls in the systemabore o and,
if admitted the new call’'s handof-dropping probability is
alsobelov «. The problemis to decidethe effecton P4
of acceptingthe new call. NAG doesthis by estimating
the stateof cell ¢ andits neighboringcells T¢; units of
time afterthenew-call arrival time, for someappropriately
chosenT,,;. The choiceof T, is basedon the current
stateof eachcell andthe aggrgatehistory of handofs ob-
senedin eachcell. As obseredin [4], theperformancef
NAG dependgritically on the choiceof theintenal T¢g;.
It is assumedhat1.,; is small enoughthat the probabil-
ity thata call experiences handof morethanonceduring
T.s; time unitsis ngyligible. We experimentedwith dif-
ferentvaluesof T,,; andchoseit to be 5 secondssince
this choiceseemedo give the bestresultsfor NAG in our
experiments.

C. NumericalResults

Therearetwo mainissueswve wantto studyin our sim-
ulation. First, we wantto understandhe behaior of the
optimalpolicy, thatis, whatit depend®nandwhatit does
notdependn. Thus,we studytheeffect of userutility, the
pricing schemeandtraffic andmobility patternsontheop-
timal policy. Secondwewantto compargheperformance
improvementsof the optimalpolicy over NAG undervari-
ousconditions.The comparisorwill yield insightinto the
behaior of NAG andprovide guidelinesfor the designof
moreefficient heuristicadmission-contrgbolicies.

For thesestudieswe settherewardmatrix i2;; (seeSec-
tion 111) asfollows. We took R;, to be proportionalto the
bandwidthrequiremenbf eachQoSclasswe setR;; tobe
negative andits absolutevalueto be 10% of R;y. We var-
ied theratio rg,, (R;2 dividedby R;;) to studyits effects
ontheoptimal policy. We consideredwo valuesfor R,:
1 (which meanghatall callsaredatacalls)and0.5 (which
meanghat half the calls aredataandhalf arevideo). We
alsoconsideredwo settingsfor the averagespeedof the
mobile: 100 Km/hr and50Km/ht We referto the former
settingasthe high usermobility caseandthe latter asthe
lower usermobility case.

C.1 TheCharacteristicef the Optimal AdmissionPolicy

First, we wantto studythe effect of userutility on the
optimaladmissiorpolicy. To doso,wevary g, (theratio
betweencall droppingand call blocking penalty)for the
two QoSclasses.In Figure 1, we seethat for the same
offeredload, the call-droppingprobability in the caseof
rap, = T, = 80 is smallerthanthe call-droppingproba-
bility in the caseof rg,, = rq,, = 40 case.This is what
we would expect,sincethe optimaladmission-contrgbol-
icy takesthe applicationutilities into account.The greater
therelative penaltyfor droppinga call, thelower the prob-
ability thatit will bedropped Figurel alsoshavsthatthe
optimaladmissiorpolicy doesnot dependstronglyonthe
traffic patternparameteiR;, or on the mobility parameter
SP.

Our simulationsdo shawv that the pricing schemecan
have a significantimpacton the optimal control policy. If
Tap, = Tap, = 30, thecall droppingprobability for the flat
pricing schemes around1% underhigh load (seeFigure
1(b)), but for the linear pricing schemethe call dropping
probability is around10% underthe samehigh load (see
Figure 2) . This resultis also very intuitive. Sincethe
reward(R;o x 1/p) for acceptingacallin thelinearpricing
schemas muchhigherthanthereward(R;,) for accepting
acall in theflat pricing schemethelinear pricing scheme
tendsto acceptmorecallsthantheflat pricing scheme.

C.2 The ExpectedJtility of DifferentAdmissionControl
Policies

Thegoalof thenetwork serviceprovideris to maximize
its revenuewhile providing satishctoryserviceto theusers
over time. So the network performanceshouldbe mea-
suredin termsof the averagesystemrevenueover time.
Sincethe systems utility reflectsthe utility of users(to
someextent), the averagesystemrevenueover time also
reflectshow goodis the servicethat the systemprovides
to the usersover time. In our simulation,we comparethe
expectedutilities of NAG andthe optimal control policy
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underdifferentofferedloads. To capturethe performance
degradationof the network asthe load increasesthe ex-
pectedutility is normalizedwith respecto a network with
infinite capacity In this section,we presentheresultsfor
the flat pricing schemeand lower mobility case. Similar
resultsholdfor thelinearpricing schemeandfor highmo-
bility; we omit detailshere.
Notethatouroptimaladmission-contrgbolicy takesthe
users utility into accountautomatically However, NAG
doesnot. Thecall-droppingprobabilityis selectedy NAG
in anad hocway. With theright choiceof parametershe

policy and NAG decreasesOn the other hand,with the
wrongchoice,theoppositeis true.

As our experimentalresultsshaw, thereis no one set-
ting of thecall-droppingprobabilitythatgivesgoodresults
overthewholerangeof interest.For example Figure3 de-
scribesthe resultswhenNAG picks Py, = 4% asthede-
signgoal. The optimal admission-contropolicy achieves
a performancempraovementof approximatelyl8%, 55%
and 144% over NAG at offered loads of 100, 200, and
300, respectrely, in the Ry, = 0.5 case(seeFigure3(c)).
(At load 300, the improvementof 144% correspondgo

performancegapbetweenour optimal admission-control a factor of more than 3 in the call-droppingprobability
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while maintainingalmostthe samecall blocking probabil-
ity.) With P,; = 1% asNAG’s designgoal, as shavn
in Figure4, the optimaladmission-contrgbolicy achieves
a performanceémprovementof approximatelyl 4%, 21%,
and40% over NAG at offeredloadsof 100, 200, and300,
respectiely, in the R4, = 0.5 case.Theimprovementin
thenormalizedexpectedutility dependsn partonthetype
of callsthatmustbedealtwith. For example theimprove-
mentsin termsof normalizedexpectedutility over NAG at
offeredload 100, 200, and 300 is 11%, 44%, and122%,
respectiely, in thecaseof Ry, = 1.0 when P,y = 4% is
thedesigngoal(seeFigure3(d)). Thisis becausehe opti-
mal policy is biasedowardsdatacalls,sincedatacallscan
still beacceptedn stateghatvideocall cannotbeaccepted
dueto insuficient bandwidth.

The differencesbetweenNAG and our optimal MDP
policy becomesvenmoredramaticif we changerg,, from
80to 2 (makingthe penaltyfor droppinga datacall much
closerto thatof blockinga call; aswe obseredin thein-
troduction, this might make sensefor FTP transfers). In
this case theimprovementof the MDP approactover the
NAG approachincrease$rom 40%to 70%at offeredload
300, with P,; = 1% asNAG’s designgoal (seeFigureb)
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Of coursepncewe addutilities into thepicture, it would
not be difficult to modify NAG sothatit attemptedat all
timesto adjustP,,; to obtainoptimal performanceBut by
doing this, NAG would essentiallybe approximatingour
MDP approachn fact,asour statespacegrows, we will
needto find usefulapproximationto the MDP approach,
since it becomescomputationallytoo expensive. NAG
may be one suchapproachjput theremay be betterones
aswell. The MDP approactat leastgivesusaframewvork
by whichto judgethisissue.

V1. DISCUSSION AND RELATED WORK

Therehasbeena greatdeal of relatedwork on admis-
sion control, both in the context of wirelessand wired
networks. Optimal call-admissiomoliciesin cellular net-
works which carry only voice calls were studiedin [25],
[27]. Nearoptimal admission-contropolicies[31], [32]
andheuristicapproachep3], [21] have beenstudied.Band-
width adaptatiorusinglayeredencodinghasbeenstudied
recentlyin [15], [16], [17]. None of thesepaperstried
to provide a generaldecision-theoretiframevork for the
call-admissiorproblem.Rathey they typically focusedon



thestandardscenariqPoissorarrival times;exponentially
distributedcall holdinganddwell times)andtried to solve
theproblemin thatsetting.While we believe thatourmain
contrikution is the generalframenork, not its application
to the standardscenario,as we saw, our approachdoes
dominatea well-known heuristicapproacthin this setting.

Previous work has either had the goal of keepingthe
call-droppingprobabilitybelon agiventhreshold 3], [21]
or useda weightedfactorbetweerdroppingandblocking
asthe designgoal [25], [27], [31], [32]. The problems
with choosingan appropriatehandof-dropping probabil-
ity thresholdhave alreadybeendiscussedn detail. The
secondapproactcanbe viewed asa specialcaseof ours.
In [25], [27], [31], [32] theweightingfactoris determined
by therelative utilities of call blockingandcall dropping.
Thus, theseapproachesre essentiallya specialcaseof
ours,usingflat-ratepricing, with only oneQoSclass.They
assumehatthecall handof ratesarefixed,anddonotdeal
with thefactthatthey areinfluencedby the policy. In ad-
dition, thesepapersdo not addresssubtletiessuchasthe
effect of the policy choseronthe handof rates.

Thereis anotherlarge body of literatureon admission

controlin wired networks. Themeasurement-basadmission-

control (MBAC) approacHh9], [10], [12], [29]. [8] is peF
hapsmostrelevantto ourwork. For example,in [8], Rene-
gotiatedConstantBit Rate (RCBR) Serviceis proposed
for variablebit ratevideo. The mainideato increasethe
throughputthroughstatisticalmultiplexing while provid-
ing delayandlossguaranteethroughrengyotiation. While
thebasicideaof rengyotiationmay prove applicablen the
wirelesssetting,we cannotimmediatelyusethis approach
dueto significantdifferencesetweerthewired andwire-
lesssettings. In particular sincea wirelesschannelcan
be usedexclusively by only oneflow atatime, we cannot
multiplex mary flowsonawirelesschannebseasilyaswe
canmultiplex flows on bandwidthin the wired case.(For
example,if bothflows transmitat the sametime, the data
will begarbledin thewirelesscase.)Moreover, in MBAC,
evenif rengyotiationfails, theflow keepsts originalband-
width. But for the wirelesscounterpartijf a handof fails,
theflow losesits original bandwidth.
Ourgenerabpproacheadsto someinterestingesearch
issues. All our algorithmsare polynomialin the size of
the statespace.In our model,we useda numberof tech-
niquesto limit the size of the statespace. However, in
realistic caseswe can expectto have much larger state
spacesAlthoughthe computationof the optimal solution
is doneoff-line, andtheadmissiordecisionsaremadesim-
ply throughtablelookup, thereis a limit to the numberof
stateswe canfeasiblyhandle.We are currentlyexploring
techniquedo provide good approximatesolutionsin the
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presencef large statespaces.Motivatedby the resultin

[13] thatthe runningtime in computingthe nearoptimal
policiesin arbitrarily large, unstructuredVIDPs doesnot
dependon the numberof stateswe believe thatMDP can
be quite applicablein practice.We expectthat,if the state
spaceis large (dueto mary QoSclasses}he behaior of

thesystemwill be qualitatively similar to the casewhenit

is small.
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APPENDIX
I. DERIVING THE STATE-TRANSITION PROBABILITIES

Given our experimentalassumptionsthe call holding
timesareexponentiallydistributedandthecall arrival times
aredeterminedby a Poissondistribution. [11] shaws ex-
perimentallythe handof probability is alsoexponentially
distributed; thus,we make that assumptiornere,andcal-
culatethe parametersxperimentally for eachassumption
¢ = (c1,¢9) of the expectednumberof call of eachQoS
class.

By takingtheminimumof all thesedistributions,wecan
computethe PDF describingthe time that the next event
happensn statex = (1, 22, 6,). This PDFis definedas

(4)

wherew = (z1+z2)p+A1+ Ao+ (c1+c2) pps A = R,
AQ = (1 - Rdv)A;

Sothe expectedtime until a new eventoccurswhenin
stater is

f(t) =we ™",

T(z) =

/OOO Lf ()t

2 _1
= l (zip; + N + cipp) (5)
—

2

The probability of a transitionfrom statex to statey
givenactionag is:

MT(z)  y=(z1+ 01,72+ 09,(r,1))
Ao ( y = (v1+ 01,22 + 02, (7, 2))
pa ciput(z) y= (21 + 01,22 + 09, (h, 1))
zy coppt(z) Yy = (z1+ 01,22 + 02, (h, 2))
ript(x)  y=(x1+ 01,22+ 02,(d, 1))
xQ,uT(l‘) = (xl +01,Z2 + 09, (d, 2))
(6)
where
1 if a = accept andl,, = (r,i) or (h, 1)
op=1< =1 if 0, =(d,q)
0  otherwise.
(7)



