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Abstact—Many ad hoc routing protocolsare basedon somevariant of
flooding. Despitevarious optimizations, many routing messagesre prop-
agatedunnecessarily We proposea gossiping-basedipproach, where each
nodeforwards a messagevith someprobability, to reducethe overhead of
the routing protocols. Gossiping exhibits bimodal behavior in sufficiently
large networks: in someexecutions,the gossipdiesout quickly and hardly
any nodegetsthe messageijn the remaining executions,a substantial frac-
tion of the nodesgetsthe messageThe fraction of executionsin which most
nodesget the messagalependson the gossipingprobability and the topol-
ogy of the network. In the networks we have considerd, using gossiping
probability between0.6 and 0.8 sufficesto ensure that almost every node
getsthe messagen almost every execution. For large networks, this sim-
ple gossipingprotocol usesup to 35% fewer messageshan flooding, with
impr oved performance. Gossipingcan alsobe combinedwith various opti-
mizationsof flooding to yield further benefits. Simulationsshow that adding
gossipingto AODV resultsin significant performanceimpr ovement,evenin
networks assmall as150nodes.We expectthat the impr ovementshould be
even more significantin larger networks.

|. INTRODUCTION

An ad hoc networkis a multi-hop wirelessnetwork with no
fixedinfrastructure.Rooftopnetworks andsensometworks are
two existing typesof networksthatmight beimplementedising
theadhocnetworkingtechnology Ad hocnetworkscanbeuse-
fully deployedin applicationssuchasdisasterrelief, tetherless
classroomsandbattlefieldsituations.

In ad hoc networks, the power supplyof individual nodesis
limited, wirelesshandwidthis limited, andthechannetondition
canvary greatly Moreover, sincenodescanbe mobile, routes
may constantlychange. Thus, to enableefficient communica-
tion, robustrouting protocolsmustbe developed.

Many ad hoc routing protocolshave beenproposed.Some,
suchasLAR [KV98], GPSR[KK00], andDREAM [BCSW98]
assumethat nodes are equippedwith GPS hardware and
thus know their locations; others, such as DSR [IM96],
AODV [PR99],ZRP [HP98],and TORA [PC97],do not make
this assumption.Essentiallyall protocolsthat do not useGPS
(and somethat do, suchas LAR and DREAM) make use of
flooding,usuallywith someoptimizations.

Despitethe optimizationsjn routing protocolsthatuseflood-
ing, mary routing messagesire propagatedinnecessarily In
this paper we shav that gossiping—essentiallytossinga coin
to decidewhetheror not to forwarda message—cabe usedto
significantlyreducethe numberof routingmessagesent.

It follows from resultsin percolationtheory[Gri89], [MR96]
that gossipingexhibits a certaintype of bimodalbehaior. Let
the gossipprobability be p. Then, in sufficiently large “nice”
graphstherearefractionsé® (p) andd’(p) suchthatthegossip
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quickly diesoutin 1 —6°(p) of theexecutionsand,in almostall
of thefraction#® (p) of theexecutionswvherethegossipdoesnot
die out, a fraction 0% (p) of the nodesgetthe message More-
over, in mary casesof interest,6(p) is closeto 1. Thus,in
almostall executionsof the algorithm, eitherhardly any nodes
recevethemessageyr mostof themdo. Ideally, we couldmalke
the fraction of executionswherethe gossipdies out relatively
low while alsokeepingthe gossipprobability low, to reducethe
messag®verhead. The goal of this paperis to investigatethe
extent to which this can be done. Our resultsshow that, by
using appropriateheuristics,we can saze up to 35% message
overheadcomparedo flooding. Furthermoreaddinggossiping
to a protocol suchas AODV not only givesimprovementsin
the numberof messagesent,but alsoresultsin improved net-
work performancen termsof end-to-endateng andthrough-
put. (For readersunfamiliar with AODV, a brief overview is
givenin SectionVVA.) We expectthatthevariousoptimizations
appliedto flooding by otherprotocols(for example,the cluster
basedschemef [NTCS99])canalsobeusefullycombinedwith
gossipingto getfurther performancemprovements.

We arecertainly not the first to usegossipingin networking
applications. For example, it hasbeenappliedin networked
databaseso spreadupdatesamongnodes[DGH*87] and to
multicasting[BHO'99]. However, in almostall of the earlier
work on gossiping,it is assumedhatarny nodein the network
cansenda messagéeo ary othernode,eitherbecausehereis a
directlink to thatnodeor arouteto thatnodeis known. Gossip-
ing proceeddy choosingsomesetof nodesatrandomto which
to gossip.We do nothave theluxury of beingableto make such
anassumptionn the context of ad hoc networks. Our problem
is to find routesto differentnodes.

In anadhoc network, if a messagés transmittedby a node,
due to the broadcastinghature of radio communicationsthe
messagés usuallyrecevedby all thenodesonehop away from
the sender Becauseof the fact that wirelessresourcesare ex-
pensve, it makessenseo take advantageof this physical-layer
broadcastindeatureof theradiotransmissionIn our gossiping
protocol, we control the probability with which this physical-
layerbroadcasts sent.

Therehasbeensomerecentwork onapplyinggossipingn ad
hoc networks, but the focusandthusthe techniquesusedhave
beenvery differentfrom our work. VahdatandBecker [VB0O]
applygossipingto ad hocunicastrouting. However, their usage
of gossipingis very differentfrom ours. In their work, they try
to ensurethat messagesire eventually deliveredeveniif there
is no connectedpath betweerthe sourceandthe destinationat
ary given pointin time. As long asthereexists a pathusing
communicationlinks at somepoint in time, messagesan be
deliveredthrougha randompair-wise exchangesmongmobile



hosts.Theirtechniquesrenotintendedor (andwould not per
form well in) our setting, wherewe are trying to find routes
thatwe assumexist (becauseetwork partitionis arareevent).
Chandraet al. [CRB01] usea gossipingmechanisnto improve
multicastreliability in ad hoc networks;they do not usegossip-
ing to reducethe numberof messagesent. Indeed,they start
with anarbitrary possiblyunreliable multicastprotocolto mul-
ticasta message.They thenusegossiping(underthe assump-
tion thatroutesareknown) to randomlyexchangemessagebe-
tweennodesin orderto recover lost messagesHeinzelmanet
al. [HKB99] have applied gossipingin datadisseminationin
wirelesssensometworks, using techniquessimilar in spirit to
thoseof [VB0O0]. Again, the settingandresultsare quite dif-
ferentfrom ours. Ni etal. [NTCS99] proposefive differentap-
proachego reducebroadcastedundanyg. Oneof them(briefly
mentionedn a few sentencesis gossiping. However, they do
notstudythepropertief gossipingnordothey considetheuris-
tics for dealingwith problemsintroducedby gossipingin real-
istic ad hoc network topologies. Their experimentsdo show,
however, that,in a 100-nodenetwork, usinggossipingcansave
messages.

Therestof this paperis organizedasfollows: Sectionll dis-
cusseghe basicbimodaleffectin moredetail. Sectionlll pro-
vides experimentalevidenceof the bimodal effect in networks
of reasonablsize,andalsogivesa sensef how the probability
varieswith the averagedegreeof the network andinitial con-
ditions. SectionlV presentsa numberof heuristicsthat should
improve the performanceof gossipingin networks of interests,
andinvestigateghe extentto which they do so experimentally
SectionV shavsthatgossipingcanhelpin practicalsettingsby
consideringthe effect of addinggossipingto AODV. We showv
by simulationthatevenin networkswith 150nodesonly, adding
gossipingto AODV canresultin significantperformancam-
provementson all standardmetrics. We expect that this im-
provementwill beevenmoresignificantin largernetworks. Sec-
tion VI concludesur paper

Il. THE BIMODAL BEHAVIOR OF GOSSIPING

Sincefloodingis a basicelementin mary of theadhocrout-
ing protocols,asmentionedn Sectionl, we startby comparing
gossipingto flooding.

Our basicgossipingprotocolis simple. A sourcesendsthe
route requestwith probability 1. Whena nodefirst recevesa
routerequestwith probability p it broadcastshe requesto its
neighborsandwith probability 1 — p it discardsthe request;f
the noderecevesthe samerouterequestagain,it is discarded.
Thus,anodebroadcasta givenrouterequesatmostonce. This
simpleprotocolis calledGOSSIP1p).

GOSSIP1lhasa slight problemwith initial conditions.If the
sourcehasrelatively few neighborsthereis a chancehatnone
of themwill gossip,andthe gossipwill die. To make surethis
doesnot happen,we gossipwith probability 1 for the first &
hopsbeforecontinuingto gossipwith probabilityp. We call this
modifiedprotocolGOSSIP1g, k).

LOf course thefactthatgossipinghasdifficultiesif anodehasrelatively few
neighborsis true not just initially. We returnto this point in the next section
whenwe discusptimizations.

The performanceof GOSSIP1y, k) clearly dependson the
choiceof p andk. Clearly, GOSSIP1(1,1js equivalentto flood-
ing. What happensn general? That dependsn part on the
topologyof the network (particularlythe averagedegreeof the
network nodes) the gossipprobability p, andtheinitial condi-
tions (asdeterminedby k). If we think of gossipingasspread-
ing adiseasen anepidemicthis simply saysthatthelikelihood
of anepidemicspreadingdependsn parton how mary people
eachpersoncaninfect (the degree), thelikelihood of the infec-
tion spreading(the gossipprobability), and how mary people
areinitially infected.

As we saidin the introduction,gossipingand, in particulay
the performanceof GOSSIP14,0) (thatis, the scenariowhere
eventhe sourcegossipswith probability p) hasbeenwell stud-
ied in the work on percolationtheory[Gri89], [MR96]. Quite
a few typesof networks have beenstudiedin the literature. In
this section,we focuson two of them. We first study regular
networks, sincethey allow usto easilyanalyzehow GOSSIP1
behareswith respecto differentparameterssuchasthe gossip
probability, network size,andnodedegree,without othercom-
plicating factors. We then studyrandomnetworks constructed
asfollows. Nodesare placedat randomon a two-dimensional
area;an edgeis placedbetweenary pair of nodeslessthana
fixeddistanced apart. This type of randomgraphseemsappro-
priatefor modelinga numberof applicationsinvolving ad hoc
networks. Nodeshave a limited amountof transmissiorpower,
andsocancommunicatenly with reasonablyglosenodes.The
randomplacementanbe viewed asmodelingfeaturessuchas
therandommobility of nodesandtherandomplacementf sen-
sorsin alargeregion.

Thefollowing theoremgivesa sensef thetypeof resultsthat
have beenproved.

Theoemll.1: For all p > 0, for all infinite regular graphs
G, andfor almostall (i.e., a measurel subset)of the infinite
randomgraphs constructedsabove,if GOSSIP1,0)is used
by every nodeto spreada messagethenthereis a well-defined
probability§5 (p) < 1 thatthe messageeachesnfinitely mary
nodes. Moreover, the probability 6" (p) that a nodereceies
the messagandforwardsit in anexecutionwherethe message
reachesnfinitely mary nodesis equalto 5 (p).?

Note that the probability of a messagealying out (i.e., not
spreadingto infinitely mary nodes)is averagedover the exe-
cutionsof the algorithm. Thatis, the theoremsaysthat if we
executethe algorithmrepeatedlythe probabilitythata message
doesnot die outin ary givenexecutionis 5 (p). On the other
hand,0f (p) talksaboutthe probabilitythata noderecevesand
forwardsthemessagén a givenexecutionof thealgorithm.The
intuition behindthe equalityof 05 (p) and6f (p) is easyto ex-
plain. A gossipinitiated by a sourceng diesout if thereis a
setof nodesN thatdisconnects:, from the restof the graph;
thatis, every infinite pathstartingat ny mustgo througha node
in N. Thus, 85 (p) is the probability that thereis no discon-
nectingset N suchthat none of the nodesin N forward the
message (Note that N could consistof the singletonnodeng
itself.) Similarly, the probability 6" (p) thata randomnoden
receves and forwards the messagds preciselythe probabil-

2Note that our bimodaleffect is differentfrom [BHO*99]. They describea
bimodalbehaior whereeitherall or no procesgecevesthe multicastmessage.



ity thatthereis no set N’ suchthat N’ disconnects: from nq
andnoneof the nodesin N’ forwardsthe messageTherefore,
05 (p) = 05 (p) =det 0o(p)-

It follows from theseresultsthat, in an executionwherethe
messageloesnot die out, the probability that a randomnode
recevesthe messagés 0y (p)/p, sincereceiing the messagés
independenof forwardingit. Thus,in termsof thenotationused
in theintroduction,0® (p) = 0y (p) andd’(p) = 6y (p)/p.

Let 0 (p) bethe probabilitythata messageeachesnfinitely
mary nodesif GOSSIP1y, k) is used. It is easyto seethat
07 (p) = 6o(p) /p, sincetheprobabilitythatthemessageeaches
infinitely mary nodesusing GOSSIP1, 1) is precisely the
probability thata messageeachesnfinitely mary nodesusing
GOSSIP1y, 0) giventhatthe sourceactuallygossips However,
notethattheprobabilitythatanoderecevesandforwardsames-
sageif GOSSIP1y, k) is used,giventhatthe messageloesnot
dieout,isstill 6y(p). Thatis, theprobabilitythatanodereceves
the messageas independenbdf the choiceof k. On the other
hand,it is not hardto seethatif eachnodelearnsthe network
topologyin a zoneof radiusk (sothatit canroutea message
directlyto any nodein its zone),thenthe probabilitythatanode
receves and forwardsa messagajiven that the messageloes
notdie outis 0y (p).

All theseresultsarefor infinite graphs.It is not hardto show
that essentiallythe sameresultshold for finite graphs,except
possiblynearthe boundary In suficiently large finite graphs,
therewill be two typesof executions:thosewherehardly ary
nodegetsthe messageand thosewherethe messagenakesit
all the way to the boundary It follows easilyfrom the Central
Limit Theoremthat, in sufiiciently large graphs,in almostall
executionswherethegossipdoesnotdie out, afractiony (p)/p
nodeswill getthe messageThatis, we expectthe bimodalbe-
havior: eitherhardly any nodesget the messageor a fraction
6o(p)/p receve the message.As we shall see,in casesof in-
terest,fy(p) is quite closeto p. Thus,in almostall executions
of the algorithmin sufiiciently large graphs,eitherhardly any
nodesreceve the messagegr mostdo.

This leadsto a numberof obviousquestions:

« How largeis “sufficiently large”?

« Whatis thebehaior of 6 (p) for differentgraphsof interest?
« Whatcanbedoneto improvethe performancef gossipingn
realisticsettings?

We investigatehesequestionsn the next two sections.

I1l. GOSSIPING IN FINITE NETWORKS

We did anumberof experimentdo investigatehebehaior of
gossiping.We summarizesomeof the moreinterestingresults
here.We assume@dnidealMAC layerfor thesesxperimentse-
causewe wantedto decouplethe effect of the MAC layerfrom
the effect of gossiping. An ideal MAC layeris onethatis not
subjectto paclket loss. Whenwe considermore realistic sce-
nariosin SectionV, we usethe IEEE 802.11MAC layer. In
this section,we focuson regulargraphsandthe randomgraphs
discussedh the previoussection.

Our first set of experimentsinvolves “medium-sized”net-
works, with 1000nodes. We startby consideringa 20-row by
50-columngrid (i.e., a regular graphof degree4). We focus
on GOSSIP1y, 4), sincetaking k = 4 producesa reasonable

tradeof. (We reportthe effect of varying & towardsthe end of
this section.) Theresultsdependn parton wherewe placethe
routerequesisource.As we would expectfrom the theoretical
argumentsthe locationof the sourcenodedoesnot affect the
fraction of nodesreceving the message However, it doesaf-
fectthe numberof executionsin which the gossipdiesout. The
numberof executionsin which the gossipdoesnot die out is
higherfor amorecentralnode,andlower for acornernode.We
reportresultsherefor the casewherethe routerequessourcels
at the left boundaryof row 10. Our experimentsshaw that, on
averagetheperformancdor otherlocationsof therouterequest
sourceis somavhat betterthan the resultsreportedhere. The
resultsareillustratedin Figure 1. Notice thatGOSSIP1(.72,4)
onthegrid ensureshatalmostall nodeggetthe messagegxcept
for a slight dropof at distancegreaterthan50. This dropof is
aboundaryeffect, whichwe discussn moredetailbelow. Note
thatthe graphin Figure1(a) representsn averageof 120 exe-
cutionsof the protocol. With gossipprobability .72 for this grid
size, in almostall the executionsof the algorithm, almostall
nodesgetthemessage.
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Fig. 1. Thebehaior of gossipingona20 x 50 grid.

The situationchangessignificantly if the gossipprobability
is even a little lessthan.7. For example,the averageperfor



manceof GOSSIP1(.65,4is shavnin Figurel(c). Asthegraph
shaws, atdistancet0, on averages8% of thenodegyotthe mes-
sage.However, in this case the graphis someavhatmisleading.
The averagingis hiding the true behavior. As we would expect
from Theoremll.1, thereis bimodalbehaior. Thisis illustrated
in Figure1(d). If we considemodesat distancel5-45(soasto
ignoreinitial effectsandboundaryeffects),in 14% of the exe-
cutions,fewer than 10% of the nodesgetthe messagein 19%
of theexecutionsfewerthan20%of thenodesyetthe message;
in 59% of the executions,morethan80% of the nodesgetthe
messageandin 41% of the executions,morethan90% of the
nodesgetthe message.

If we lower the gossipprobability further, we get the same
bimodalbehaior; all thatchangess the fraction of executions
in which all nodesandno nodesgetthe messageThe dropoff
is fairly rapid. For example, Figure 1(e) and (f) describethe
situationfor GOSSIP1(.60,4)By thetime we getto probability
.6 on the grid, in only 4% executionsof the algorithmis it the
casethatmorethan90% of the nodesgetthe messagein only
11% of the executionsdo morethan80% of the nodesget the
messageandin over 50% of the executionsfewer than20% of
thenodesgetthe messages.

We alsoinvestigatedhe effect of the degreeof the network
on gossiping. Not surprisingly increasingthe degreemalesit
betterand decreasingt makesit worse. In a 20 x 50 regular
network of degree®, it suficesto gossipwith probability .65 to
ensurethat almostall nodesgetthe messagén almostall exe-
cutions;with gossipprobability.6, we startto seesomedropoff.
(Again, the numbersgivenin the graphare actually the result
of averagingover a numberof executionsof the algorithm,and
maskthe bimodalbehaior obseredin the executions.) Onthe
otherhand,for a20 x 50 regularnetwork of degree3, we need
to gossipwith probability.86to ensurehatalmostall nodesget
themessagén all executions.

While easyto study regular graphsare not typical of the
topology we expect in practical ad hoc networks. Random
graphsare a someavhat bettermodel. We consideredwo fam-
ilies of randomgraphs. In the first, we randomlyplaced1000
nodesin a 7500m x 3000m rectangularegion, wherea node
cancommunicatevith anothernodeif it is no more than 250
metersaway. This resultsin a network with averagedegree8.
Sincereal networks have boundariesye did not experimenton
wrap-aroundneshesAs we shall see,dealingwith nodesnear
the boundaryraisessomeinterestingissues.The resultsof our
experimentsareillustratedin Figure?2.

The resultsare qualitatively similar to thoseon the grid, as
we would expect.Indeed the bimodaleffectis particularlypro-
nouncedwith GOSSIP1(.65,4)asshavn in Figure2(d). If we
considemodesat distancel 5-35,Figure2(d) shows, in 20% of
the executionsfewerthan10%of the nodesgetthe messagen
70% of the executionsover 90% of the nodesgetthe message,
andin 75% of the executions,over 80% of the nodesget the
message.

To considerwhat happenswith a higherdegreenetwork, we
alsoplaced1200 nodesat randomin the samerectangulare-
gion; this resultsin a network with averagedegreel0. In this
network, it suficesto gossipwith probability .65 to ensurethat
almostall nodesgetthemessagén almostall executions.
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Fig. 2. Gossipingonarandomnetwork of averagedegree8.

All thegraphsabove shav amarkeddropof in probabilityfor
nodesthat are closeto the boundary This is not just an effect
of averaging;this dropof occursin almostall executionsof the
algorithm. Thedropof is dueto two relatedboundaryeffects.
1. Distantnodeshave fewer neighbors sincethey arecloseto
theboundary
2. Nodesat distanced from the sourcemay well receve mes-
sagedueto “back-propagationfrom nodesat distanced’ > d
thatgetthe messageSuchback-propagatiors not possiblefor
boundarynodes.

We discusssometechniquego dealwith this dropof in Sec-
tion IV-D.

We did onelastsetof experimentgo betterevaluatedy (p). In
theseexperimentswe used1,000,00nodeson a 1000 x 1000
grid, andplacedthe sourceat the centerof row 10. This s far
enoughaway from the boundaryto avoid significantboundary
effects? Theresultsof usingGOSSIP1g, k) for particularval-
uesof p areillustratedin Figure3. As theseresultsshow, the
bimodaleffectis very markedby thetime we getto suchalarge
network, andbeginsto closelyapproximateheresultsexpected
from thetheorem.Figure4 shavs how 67 (p) varieswith p. As
we cansee,if p is below .59, thenthe gossipdiesoutin almost
all executions.f7 (p) thenincreasesery rapidly, going from 0
at.59to almost1 at .65. (The rapidincreasen the caseof in-
finite graphsfollows from a deepemathematicalnalysis,and
hasbeendiscussedn the percolationtheory literature[Gri89],
[MR96].)

Finally, we considerechow 67 (p) and 6% (p) variedwith k
for afixedvalueof p. As theorypredicts #7 (p) doesnotchange

3Experimentaresultsshav thattherearenontrivial boundaryeffectsfor val-
uesof p very closeto .59 no matterwherewe placethe source.Intuitively, this
is becausdor p very closeto, but above .59, the probability of having a large
disconnectingsetof nodesis nontrivial, andthe boundarycanhelpin forming
suchsets.
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GOSSIP1(p,4)
1
0.9
0.8
0.7 /
0.6 [
05 \
0.4 ‘
0.3
0.2 ‘
0.1 B

0 .
0 0102030405060.70809 1
gossip probability p

Fig. 4. Hf (p) asafunctionof thegossipprobabilityp on a 1000x1000grid.

at all with p. Thereis someeffect on 7 (p). Of course,since
07 (p) = 65 (p)/p, thereis asignificanjump ask goesfrom 0 to
1. As k increasedeyondl, thereis anincreasen 6 (p), butit is
not sosignificant. For example,f7 (.65) = .95, 05 (.65) = .98,
and@? (.65) = 1; similarly, 65(.6) = .53, 67(.5) = .67, and
07y = .73.

IV. HEURISTICS TO IMPROVE THE PERFORMANCE OF
GOSSIPING

The resultsof the previous sectionsuggestan obvious way
that gossipingcan be appliedin ad hoc routing. Ratherthan
flooding,we useGOSSIP1p,k) with p sufficiently highto guar
anteethat almostall nodeswill receve the messagén almost
all executions We canpracticallyguarante¢hatthe destination
noderecevesthemessageyhile saving afraction1 — p of mes-
sageslin case®f interestwherethethresholdorobabilityseems
to beabout.65—-.75 this meansve canensurehatall nodesget
the messageising 25—35%fewer messagethanflooding. No-
tice that, if the network is congeste@dndevery nodehasa con-
gestiondroppingprobability f, thento obtainthe sameresults,

the broadcasprobabilityneedsto bep/ f. If congestioris very
localized,thenwe cansimply usep becauset is not likely to
changethe outcomeof a givenrun of gossiping.However, the
generalinteractionbetweergossipingandcongestioris a topic
thatdeseresfurtherstudy

Thebasicgossipingschemecanbe optimizedin a numberof
ways, using ideasthat have beenappliedto flooding andideas
specificto gossiping.We discusssomeoptimizationsin there-
mainderof this section. This sectionis intendedasa proof of
concepishaving thatgossipings a worthwhile approacho ex-
plore. We do notattemptto do anexhaustve analysisto find the
optimal parameters.

A. Atwo-thresholdscheme

In mary casef interestagossipprotocolis runin conjunc-
tion with otherprotocols.If the otherprotocolsmaintainfairly
accurateénformationregardinganodesneighborsye canmake
useof thisinformationto improvetheperformancef GOSSIP1
furtherby a simpleoptimization.

In arandomnetwork, unlike the grid, a nodemay have very
few neighbors. In this case,the probability that none of the
nodes neighborswill propagatehe gossipis high. In general,
we may want the gossip probability at a nodeto be a func-
tion of its degree,wherenodeswith lower degreegossipwith
higher probability To shav the effect of this, we considera
specialcasehere: a protocolwith four parameterspy, k, pa,
andn. As in GOSSIP1p; is thetypical gossipprobability and
k is the numberof hopswith which we start gossipingwith
probability 1. The new featuresarep, andn; the ideais that
the neighborsof a nodewith fewer than n neighborsgossip
with probability p > p;. Thatis, if a node hasfewer than
n neighbors,it instructsits immediateneighborsto broadcast
with probability p, ratherthanp,. Call this modified protocol
GOSSIP2f4, k, p2,n). To understandvhy the neighbos’ gos-
sip probability is increasedf therearefew neighborsgconsider
theinitiator of the gossip.Clearly, if noneof its neighborsgos-
sip, thenthegossipwill die. If theinitiator hasmary neighbors,
evenif eachgossipswith relatively low probability, the proba-
bility thatatleastoneof themwill gossipis high. Thisis notthe
caself it hasfew neighbors.

GOSSIP2Zs not of interestin regularnetworks. However, in
randomnetworks which typically have somesparseregions, it
canhave a significantimpact. For examplefor therandomnet-
work with averagedegree8 first consideredn Figure2, GOS-
SIP2(0.6,4,1,6hasbetterperformancehan GOSSIP1(0.75,4),
asshawn in Figure5, while using4% lessmessagethanGOS-
SIP1(0.75,4).0Only whenp > 0.8 doesGOSSIP1y, 4) begin
to have the sameperformanceas GOSSIP2(0.6,4,1,6)how-
ever, GOSSIP1(0.8,4uses13% more messageshan GOS-
SIP2(0.6,4,1,6).

Theremaybeothercombination®f parameterfor GOSSIP2
thatgive evenbetterperformanceywe have not checledexhaus-
tively. The key pointis that using a higherthresholdfor suc-
cessor®f nodeswith low degreeseemso significantlyimprove
performance.
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Fig. 5. Gossipingwith two thresholds/s. oneon arandomnetwork of average
degree8.

B. Preventingprematue gossipdeath

As we have seen the real problemwith gossipingis that, if
we gossipwith too low aprobability, the messagenay“die out”
in acertainfraction of the executions Measureganbetakento
preventthis (for example,having successoref nodeswith low
degreegossipwith ahigherprobability) but, unfortunatelythere
is noway for a nodeto know if amessagés dying out. Never-
thelessanodemaygetsomeclues.Onesuchclueis notgetting
too mary copiesof the messageSupposehata nodex gotthe
messagdut doesnot broadcastt becausets coin tosslanded
“tails”. Furthersupposéhatz hasn neighbors.If the message
doesnot die out, thenit would expectthatall of its neighbors
would getthe messagaswell, andthus,if the gossipprobabil-
ity is p, it shouldgetroughly pn messagefrom its neighbors.
If it getssignificantly fewer than pn within a reasonabldime
interval, thenthis is a cluethatthe messagés dying out.

This suggestghe following optimization of GOSSIPland
GOSSIP2.1f anodewith n neighborsrecevesa messagend
doesnot broadcastt, but then doesnot receve the message
from atleastm neighborswithin areasonabléimeoutperiod,it
broadcastshe messageo all its neighbors.The obvious ques-
tion hereis whatm shouldbe. If m is chosentoo large, then
we mayendup with too mary messageOur experimentshov
thatwe actuallygetthe mostsignificantperformancemprove-
mentby takingm = 1. Let GOSSIP3f, k, m) be just like
GOSSIP1, k), exceptfor the following modification. A node
that originally did not broadcast receved messagdgbecause
its coin landedtails), but thendid not getthe messagdrom at
leastm othernodeswithin sometimeoutperiod,broadcastshe
messageémmediatelyafter the timeoutperiod. (The choiceof
timeoutperiodcanbetakenquitesmall. We discusghisissuein
detailsin SectionV.) It may seemthatsuchrebroadcastingan
significantlyeffectthe lateng of the messageHowever, asthe
experimentgliscussedbelor shaw, if the parameterarechosen
correctly lateng is notaproblematall.
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Fig.6. GOSSIP3narandomnetwork of degree8.

the numberof timeoutintervalsa messagexperiencedusinga
variableL, whichwasaugmente@verytime amessagasfor-
wardedafteratimeout. Amongall the messagesentby GOS-
SIP3(0.65,4,1)only 2% have L > 1. Amongthesemessages
with L > 1, 95%o0f themhave L < 2. Thus,it seemdateng is
notaproblemhere.

C. Retries

Thebimodaldistribution obsenedin theuseof gossipingcan
be viewed as a significantadwantage. Oncea route is found,
acknavledgmentsare propagatedackto the sourcealongthe
route, so the sourceknows the route. If a routeis not found
within a certaintimeoutperiod, therearetwo possibilities: ei-
ther thereis no route at all, or the protocol did not detectit.
Our focusis on networks that are sufficiently well connected
thattheretypically is aroute. However, whenusinga gossiping
protocol, thereis always a possibility that a route will not be
found evenif it exists. Of course thereis a simplesolutionto
this problem: simply retry the protocol. Thus,for example,the
probability of finding a routewithin two attemptsto a nodeat
distance25 usingGOSSIP1(.65,4)n the randomnetwork with
averageoutdegree8 is .95: the probability of anodenot recei-
ing amessagén ary givenexecutionof the protocolis .23,and
executionsareindependent.

With retries,the bimodalmessagelistribution works signifi-
cantlyto our benefit. As we obsened,with GOSSIP1(.65,4)n
72% of the executions almostall nodesgetthe messagelf we
pick a destinationat random,in thoseexecutionswherealmost
all nodesget the messagethe destinationis likely to get the
messaganda retry will not be necessaryOn the otherhand,
in thoseexecutionswherehardly any nodesgot the message,
aretry will probablybe necessaryHowever, suchfailing gos-
sip attemptsdo notinvolve too mary transmissionssincemost
nodesdo notgetthemessagén ary case.

Of courseretriesincreasdateng, evenif they do notsignifi-
cantlyincrease¢he numberof messagesent. Thisis especially
truein large networks, wherethe timeoutperiodwill have to be
largesoasto allow themessagéo propagatehroughouthenet-

As Figure 6 shaws, the performanceof GOSSIP3(0.65,4,1) work. However, evenhere thebimodaldistribution canbeused

is even betterthanthat of GOSSIP1(0.75,4) However, GOS-
SIP3(0.65,4,1sendsonly 67% of the messagesentby flood-
ing. By way of contrast, GOSSIP1(0.75,43ends75% of the
messagesentby flooding. Thus,we getbetterperformanceus-
ing GOSSIP3while sending8% fewer messages.

To examinethe effect of GOSSIP3on lateng, we recorded

to advantageto decrease¢heretry lateng. Note thateachmes-
sagemustkeeptrackof the numberof hopsit hastaken.We can
modify thealgorithmsoasto requirethatany nodethatreceves
a messagevith, say 15 hop counts,forwardsan acknavledg-
mentto the sendemlongthatroutewith someprobability. (The
probabilitycanbechosersothatthesenderecevvesanexpected



numberof, say fiveacknavledgmentsf almostall nodegyetthe
message.Becausef the bimodaldistribution, if the sendere-
ceivesseveralacknavledgmentsthenit canbefairly confident
that the executionis onein which almostall nodesare getting
the message.On the otherhand,if it doesnot receve several
acknavledgmentsit is likely thatthe executionis onein which
hardlyany nodesgetthe messageandit shouldresendhemes-
sageimmediately This showvs thatwe canboundthelateng of
retry, independenof the network size.

D. Zones

Oneof the best-knavn optimizationsto flooding is the zone
routingprotocol(ZRP)[HP98]. In ZRP, eachnodeu maintainsa
so-calledzone which consistf all thenodeshatareat mostp
hopsaway from u, for someappropriately}choserzoneradiusp.
A nodethatis exactly p hopsaway from v is calledaperipheal
nodeof u.

A nodeproactively tries to maintaincompleterouting tables
for all nodesin its zone. Initially, a node discovers who its
neighborsareandthenbroadcastis neighborgo its zone(by
usingflooding up to hop countp). Theneachtime it discovers
a change(i.e., thatit haslost or gaineda neighbor),it broad-
castsan update.This procedureensureghat a nodehasa very
accuratepictureof its zone.

If a sourcewantsto sendto a destinationin its zone,it sim-
ply routesthe messagelirectly there,sinceit knows the route.
Otherwisejt sendsarouterequestjueryto theperipherahodes
in its zone.If thedestinationis in a peripherainodes zone,the
peripheralnodereplieswith the route to the query originator
Otherwise|it forwardsthe queryto its peripheralnodeswhich
in turnforwardsit, andsoon.

In thecontext of ZRP, therearetwo advantagesf maintaining
azone. First, if anodeis in the zone,floodingis unnecessary;
amessageanbe sentdirectly to the intendedrecipient,sazing
much control traffic. This bringsabouta significantimprove-
mentin overall performancdf a substantiafraction of nodes
arein thezone(whichis likely to betruein asmallnetwork, but
farlesslikely in alargeone).Secondif we wantto senda mes-
sageoutsidethe zone,we can multicastto the boundaryof the
zone(or a subsebf the nodeson theboundary)which canbea
significantsavzing over flooding. However, thereis a tradeof in
choosingthe sizeof thezone:a biggerzonebenefitsmorefrom
thesetwo advantagesbut alsoresultsin overheador proactive
maintenancef thezones.In generalthe optimalzonesizewill
depencdbnfactorslike mobility andfrequeng of routerequests.

The idea of zonescan be usedin gossipingaswell. Here
thereis a third advantage:if anodein the zonerecevesa gos-
sip messagethenit cansendit directly to any nodein thezone.
This meanghatit would suffice for a gossipingprotocolto get
the messagedo a nodein the intendedrecipients zone. How
much of an adwantageis this? In large networks, the adwan-
tageis quite minimal. As we have obsened,gossipings essen-
tially bimodal:for typical gossipprobabilities eitherhardlyary
nodesgetthe messag®r mostof themdo. Zoneshave arela-
tively small effect in eithercase. Thus, zoneshelp only in the
relatively few executionsthatexhibit “intermediate”behavior.

Let GOSSIP4y, k, k') bejustlike GOSSIP1y, k), exceptthat
eachnodehasa zoneof radiusk’. ComparingFigure7(b) to
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Fig. 7. Gossipingwith zoneson arandomnetwork of averagedegree8.

Figure 7(a), we seeusing a zone radius of 4 with gossiping
probability .65 in the randomnetwork with averagedegree8
improvesperformanceby only a few percentover mostof the
distancesHowever, it doesamelioratethe back-propagatioef-
fect. As shown in Figure 7(c), increasingthe zoneradiusto
8 doesnot significantlyimprove the limiting performanceput
it hasan even more beneficialeffect on the back-propagation
problem.
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Fig. 8. Gossipingwith zoneson a 100noderandomnetwork.

The situationis much differentfor smallernetworks. Here
zonescanhave a significantimpact. For example,if we usegos-
sip probability .65in arandomnetwork with 100nodesandav-
eragedegreel3, the network is too smallfor the bimodaleffect
to shav up. However, the back-propagatioproblemis signifi-
cant. As Figure8 shaws, for the smallrandomnetwork of 100
nodes,if we useGOSSIP1(0.65,1thenonly 76% of nodesat
distancel0 getthe messageHowever, if we have azoneof ra-
dius 3 (GOSSIP4(0.65,1,3)then96% of nodesat distancel0
getthemessage.



V. INCORPORATING GOSSIPING IN AODV

How muchdoesgossipingreally helpin practice? That de-
pendsof course onissuedik e the network topology mobility,
andhow frequentlymessagearegeneratedWe believe thatin
larger networks with high mobility mary of the optimizations
discussedn the literaturewill be muchlesseffective. (We dis-
cussthis point in more detail below in the context of AODV.)
In this case flooding will occurmorefrequently so gossiping
will beparticularlyadvantageousHowever, asour resultsshaw,
gossipingcanprovide significantadvantagesvenin smallnet-
works.

To testtheimpactof gossipingwe consideredAODV, oneof
the best-studiedad hoc routing protocolsin the literature. We
comparecgureAODV to avariantof AODV thatusesgossiping
insteadof flooding whenerer AODV would useflooding. We
do not have theresourceso simulatethe protocolsin large net-
works. However, our resultsdo verify the intuition that, with
high mobility (whenfloodingwill be needednoreoftenin pure
AODV), gossipingcanprovide a significantadvantage.

A. Abrief overview of AODV

Using AODV, thefirst time a nodeu requestsarouteto node
v, it usesanexpanding-ringseach to find theroute. Thatis, it
first tries to find the route in a zoneof small radius,by flood-
ing. It thentriesto find the routein zonesof largerandlarger
radius. If all theseattemptsfail, it resortsto flooding the mes-
sagethroughthewhole network. The exactchoiceof zoneradii
to try is aparametenf AODV. Typically, nottoo mary radii are
consideredeforeresortingto floodingthroughouthe network.

AODV alsomaintainsaroutingtablewhereit storegheroute
afterit hasbeenfound. If AODV runningat nodeu getsary
paclet with sourceu anddestinatiorw, the routein the routing
tablewill betried first. If ary nodew ontheroutefrom u to v
detectsthatthe link to the next hopis down, thenw generates
arouteerror (RERR)messagewhich is propagatedackto «.
Whenu recevesthe RERR messageit deletesthe routeto v
fromits routingtable.

B. GOSSIP3n AODV

We addedgossipingto AODV in a particularly simple way.
If the expanding-ringsearchwith a smallerradiusfails, rather
thanflooding to the whole network, we useGOSSIP3(.65,1,1).
(We usedtheseparametersincethey gave good performance
in the particularscenariosve considered.)The timeoutperiod
of GOSSIP3shouldbe big enoughto allow neighboringnodes
to gossip. The NODE_TRAVERSAL_TIM E parameteof
AODV is aconsenative estimateof the averageonehoptraver
saltime for pacletsthatincludesgueueingielays,nterruptpro-
cessingtimes and transfertimes. In our experiments,we set
thetimeoutintervaltobei « NODE TRAVERSALTIME
wherei is asmallinteger (i = 5 in our reportedresults). Note
thatwe do notuseGOSSIP3n theexpanding-ringsearchwith a
smallerradius. Becauseof the back-propagatioeffects,flood-
ing is actually more efficient than gossipingfor a zonewith a
smallradius. We call the variantof AODV thatusesGOSSIP3
AODV+G.

C. Simulationmodelandperformanceesults

Oursimulationis donein thens-2[Pro] simulator Thisis also
the simulatorthe literatureusesto evaluateAODV. We usethe
AODV implementationin ns-2 downloadedfrom the web site
of oneof its authorsusinglEEE 802.11asthe MAC layer pro-
tocol. The radio modelsimulatesLucent’s WaveLAN [Tuc93]
with a nominalbit rateof 2Mb/secanda nominalrangeof 250
meters. The radio propagationmodel is the two-ray ground
model[Rap96].

Our applicationtraffic is CBR (constanbit rate). The source-
destinatiorpairs(connectionsarechoserrandomly Theappli-
cationpacletsareall 512 bytes. We assumea sendingrate of
2 paclets/seconénd30 connections.

For mobility, we usethe randomwaypointmodel[BMJ 98]
in arectangulafield. The simulationscenariosareasfollows:
150nodesarerandomlyplacedin agrid of 3300m x 600m. We
chosehislayoutbecausén somesenset providesaworst-case
estimateof the performanceof gossiping. For this layout the
gossipthresholdis about.65. With other more “square” lay-
outs,suchas 1650 x 1200, it is possibleto gossipwith lower
probability (closerto .5), so the saving dueto gossipingwill
be even more significant. Thereare 30 connectionsgachgen-
erating?2 paclet/secsimulationtime is 525 secondsgachnode
moveswith arandomlychoserspeeduniformly choserfrom 0-
20 m/sec)thenpausedor 7 secondsafterreachinga randomly
setdestination. We vary the pausetime to simulatedifferent
mobility scenarios. Eachdatapoint representan averageof
five runsusingtheidenticaltraffic model,but with differentran-
domly generateanobility scenariosTo presere fairnessjden-
tical mobility andtraffic scenariosareusedfor bothAODV and
AODV+G.

We usedthe sameconfigurationparameterdor AODV as
thoseusedin [DPROO0]. Of particularinterestto us are the
expanding-ringsearchparametersln the ns-2implementation
of AODV, first a zoneradiusof 5 hopsis tried; if no routeis
found, network-widefloodingis used.

We studythe performanceof the following four metrics, of
which thefirst threewerealsostudiedin [DPROO]:

« The padet deliveryfraction representsheratio of the num-
berof datapacletssuccessfullydeliveredto the numberof data
pacletsgeneratedyy the CBR sources.

« The average end-to-enddelay of data paclets includesall

possibledelayscausedby buffering during routing discovery,

gueuingattheinterfacequeueretransmissioatthe MAC layer,

propagationandtransfertime.

« Thenormalizedroutingloadrepresentthe numberof routing
pacletstransmittedper datapaclet deliveredat the destination.
Eachhop-wisepaclet transmissiors countedasonetransmis-
sion.

« The route length ratio comparesthe shortestroute length
foundto theactualshortesroutelength.

From Figure 9(a) and 9(b), we seethat AODV+G delivers
betternetwork performancghanAODV in termsof end-to-end
delayandpaclet delivery fraction. The performancamprove-
mentscorrelatewith the amountof routingload reduced.This
is not surprising sinceroutingloadincreasesvith mobility and
constitutes significantpartof thenetwork load (ascanbeseen
from Figure9(c)). At pausdime 0, AODV+G reducesverage
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end-to-endlelayby 36%andincreaseshroughpuby 8%. From
Figure9(c) and9(d), we seethat AODV +G reducegherouting
load; the reductionis from 14%to 27%in termsof normalized
routingload.

Finally, we considemroutelengths. Note that neithergossip-
ing nor flooding (as usedby AODV) will necessarilyfind the
shortestroute. For example, supposethat (ug, u1, uz, ug) is
the shortestpath from g to ug, but thatthereis anotherpath
(uo,v1,v2, uz, uz). It is possiblethatafteruo broadcastaroute
requestus will receveit alongthe pathfrom vy beforerecev-
ing it from u;. Since,in AODV, u5 would savein its routingta-
bleinformationfrom only thefirst routerequesto arrive, AODV
will not necessarilyiscover the shortestroute. For similar rea-
sons,with gossiping,we may not always discover the shortest
routes.Our experimentakesultsshow thatin the 150-nodenet-
work studiedhere thelengthof pathsfoundby floodingandby
our gossipingalgorithm are essentiallyindistinguishable. We
consideredheratio of the shortestroutefoundby AODV to the
actualshortestroute, and similarly for AODV+G. Figure 9(e)
shaws that the routing length ratio for AODV+G and AODV
is almostthe same(and, indeed,is sometimeanaiginally bet-
ter for AODV +G). However, this resultseemsto someextent

to be an artifact of the particularsmall network and the gos-
sip probability usedhere. Experimentalresultsperformedon
the networks studiedin Sectionlll shav that gossipingfinds
routes10-15%longerthanfloodingif gossipingis donewith a
probability just a little above threshold. The gapdecreasesas
the gossipingprobabilityincreasesfor sufiiciently large gossip
probability, the routelengthsareagainessentiallyindistinguish-
able.

Thesesimulationswere carried out in a network with 150
nodes.In sucha smallnetwork, evenif route-destinatiompairs
arechoserat random,a greatmary pairswill bewithin 5 hops
of eachother andwill thus be discoreredby the expanding-
ring searchindeed,in our simulation,roughly 30%-40%of the
routesdiscoveredhada lengthof lessthanor equalto 5. Thus,
asmary as40% of the routesarediscoveredby the expanding-
ring search. We expectthat thingswill be quite differentin a
larger network. Of course this dependsn parton the natureof
routerequestsandthe choiceof parametergor the expanding-
ring searchWhile it is possiblehatmary requestsvill belocal,
thereare applicationsfor which this seemaunlikely. Certainly
if route-destinatiopairsarechoseratrandomthenexpanding-
ring searchis unlikely to be effective for almostary choiceof
parametersettings. That is, a greatmary source-destination
pairs are likely to be far apart, so no expanding-ringsearch
is likely to find themefficiently. Additionally, expanding-ring
searchmayadda greatdeal of routing traffic androutediscor-
ery lateng. By way of contrastgossipingcontinuego perform
well in largenetworks. Thus,we predictthattherelative advan-
tageof AODV+G over pureAODV will increaseasthenetwork
getslarger. Thegraphspresentedhereunderestimatéhe perfor-
manceimprovement.

VI. CONCLUDING REMARKS

Despitethe variousoptimizations,with flooding-basedout-
ing, mary routing messageare propagatedinnecessarilyWe
shaw that gossipingcanreducecontrol traffic up to 35% when
comparedo flooding. Sincetheroutesfoundby gossipingnay
be up to 10-15%longerthanthosefound by flooding (depend-
ing on the gossipprobability), haw muchgossipingcansave in
termsof overall traffic dependn the gossipprobability used,
nodemobility, andthe type of messagesent. With high mo-
bility, new routeswill have to be found more frequently and
the savings will berelatively greater In addition,if messages
aremainly network-wide broadcasts;atherthanpoint-to-point,
gossipingmayresultin significantsavings over flooding. (Note
thatwith gossipingjn generalasmallfractionof thenodeswill
not get the broadcast. However, in certainapplicationit may
suffice thatalmosteveryonegetsthe messagegr the contentsof
broadcask canbepiggybacledwith broadcask + 1, sothatthe
probability of missinga messagaltogethetbecomewery low.)

Our protocolis simple andeasyto incorporateinto existing
protocols.Whenwe addgossipingto AODV, simulationsshav
significant performanceimprovementsin all the performance
metrics,evenin networksassmallas150 nodes.As discussed
in the SectionV, we expectthis performancamprovementto
becomeavenmoresignificantin largernetworks.

We have also experimentedwith addinggossipingto ZRP,
by using gossipingto sendthe route requestto someperiph-



eral nodesratherthanto all peripheralnodes. Again, our re-
sultsshaw significantimprovementin all performancemetrics.
It seemdik ely thatgossipingcanbe usefullyaddedo anumber
of otherad hocrouting protocolsaswell.

Gossipinghasa numberof advantage®ver otherapproaches
consideredn theliterature. For onething, unlike mary heuris-
tics consideredn the literature,we believe thatwe have a very
goodunderstandin@f how gossipingwill performin large net-
works. This understandings supportedboth by analyticalre-
sultsand our experiments.While thereare fundamentalimits
to the amountof nonlocaltraffic that canbe sentin large net-
works, dueto problemsof scaling[GK00], [LBC T 01], gossip-
ing shouldstill be usefulin large networkswhennonlocalmes-
sageseedo besent.lt is farlessclearhow well otheroptimiza-
tionsconsideredn theliteraturewill performin largenetworks.
Moreover, asour simulationswith AODV have shown, gossip-
ing canprovide significantadvantagesvenin small networks.
Experiencein other contets hasshavn that gossipingis also
quite robustandableto toleratefaults; we expectthat this will
bethecasein adhocroutingaswell. All this suggestshatgos-
siping canbe a very usefuladjunctto the arsenabf techniques
in mobile computing.Of coursework needgo bedonein find-
ing goodtechniquedgo learnthe appropriategossipparameters.
We have experimentedvith adjustingthe gossipingprobability
of eachnodeaccordingto the success#ilure of routerequests;
it isincreasedf therouterequesfailure probabilityis high,and
decreased therouterequestailureprobabilityis closeto 0. To
propagatethe appropriateprobability throughoutthe network,
it canbe put into the route requestpaclet. Eachintermediate
nodereceving thepaclketwill gossipwith theprobabilitycarried
in the routerequestpaclet. Our preliminary experimentshave
shawvn that this approachdoesproducegood results,although
we have not had enoughexperienceto determinethe bestway
of makingtheseadjustmentso the gossipprobability; we leave
this for futurework.
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