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Abstract—Many ad hoc routing protocolsare basedon somevariant of
flooding. Despitevarious optimizations, many routing messagesare prop-
agatedunnecessarily. We proposea gossiping-basedapproach,where each
nodeforwards a messagewith someprobability, to reducethe overheadof
the routing protocols. Gossipingexhibits bimodal behavior in sufficiently
largenetworks: in someexecutions,the gossipdiesout quickly and hardly
any nodegetsthe message;in the remaining executions,a substantial frac-
tion of the nodesgetsthe message.The fraction of executionsin which most
nodesget the messagedependson the gossipingprobability and the topol-
ogy of the network. In the networks we have considered, using gossiping
probability between0.6 and 0.8 sufficesto ensure that almost every node
getsthe messagein almost every execution. For large networks, this sim-
ple gossipingprotocol usesup to 35% fewer messagesthan flooding, with
improved performance. Gossipingcan alsobe combinedwith various opti-
mizationsof flooding to yield further benefits.Simulationsshow that adding
gossipingto AODV resultsin significant performanceimprovement,even in
networks assmall as150nodes.Weexpectthat the improvementshould be
even more significant in larger networks.

I . INTRODUCTION

An ad hoc networkis a multi-hop wirelessnetwork with no
fixedinfrastructure.Rooftopnetworksandsensornetworksare
two existingtypesof networksthatmightbeimplementedusing
theadhocnetworking technology. Ad hocnetworkscanbeuse-
fully deployed in applicationssuchasdisasterrelief, tetherless
classrooms,andbattlefieldsituations.

In ad hocnetworks, the power supplyof individual nodesis
limited,wirelessbandwidthis limited,andthechannelcondition
canvary greatly. Moreover, sincenodescanbe mobile, routes
may constantlychange.Thus, to enableefficient communica-
tion, robustroutingprotocolsmustbedeveloped.

Many ad hoc routing protocolshave beenproposed.Some,
suchasLAR [KV98], GPSR[KK00], andDREAM [BCSW98]
assumethat nodes are equipped with GPS hardware and
thus know their locations; others, such as DSR [JM96],
AODV [PR99],ZRP [HP98], andTORA [PC97],do not make
this assumption.Essentiallyall protocolsthat do not useGPS
(and somethat do, suchas LAR and DREAM) make useof
flooding,usuallywith someoptimizations.

Despitetheoptimizations,in routingprotocolsthatuseflood-
ing, many routing messagesare propagatedunnecessarily. In
this paper, we show that gossiping—essentially, tossinga coin
to decidewhetheror not to forwarda message—canbeusedto
significantlyreducethenumberof routingmessagessent.

It follows from resultsin percolationtheory[Gri89], [MR96]
thatgossipingexhibits a certaintypeof bimodalbehavior. Let
the gossipprobability be � . Then, in sufficiently large “nice”
graphs,therearefractions �������
	 and ���
����	 suchthatthegossip
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quickly diesout in ������������	 of theexecutionsand,in almostall
of thefraction ��������	 of theexecutionswherethegossipdoesnot
die out, a fraction �������
	 of the nodesget the message.More-
over, in many casesof interest, � � ����	 is closeto 1. Thus, in
almostall executionsof the algorithm,eitherhardlyany nodes
receivethemessage,or mostof themdo. Ideally, wecouldmake
the fraction of executionswherethe gossipdiesout relatively
low while alsokeepingthegossipprobabilitylow, to reducethe
messageoverhead.The goal of this paperis to investigatethe
extent to which this can be done. Our resultsshow that, by
using appropriateheuristics,we can save up to 35% message
overheadcomparedto flooding. Furthermore,addinggossiping
to a protocol suchas AODV not only gives improvementsin
the numberof messagessent,but alsoresultsin improvednet-
work performancein termsof end-to-endlatency andthrough-
put. (For readersunfamiliar with AODV, a brief overview is
givenin SectionV-A.) We expectthat thevariousoptimizations
appliedto floodingby otherprotocols(for example,thecluster-
basedschemeof [NTCS99])canalsobeusefullycombinedwith
gossipingto getfurtherperformanceimprovements.

We arecertainlynot the first to usegossipingin networking
applications. For example, it hasbeenapplied in networked
databasesto spreadupdatesamongnodes[DGH� 87] and to
multicasting[BHO� 99]. However, in almostall of the earlier
work on gossiping,it is assumedthat any nodein the network
cansenda messageto any othernode,eitherbecausethereis a
directlink to thatnodeor arouteto thatnodeis known. Gossip-
ing proceedsby choosingsomesetof nodesat randomto which
to gossip.Wedonothavetheluxury of beingableto makesuch
anassumptionin thecontext of adhocnetworks. Our problem
is to find routesto differentnodes.

In anadhocnetwork, if a messageis transmittedby a node,
due to the broadcastingnatureof radio communications,the
messageis usuallyreceivedby all thenodesonehopaway from
the sender. Becauseof the fact that wirelessresourcesareex-
pensive, it makessenseto take advantageof this physical-layer
broadcastingfeatureof theradiotransmission.In our gossiping
protocol, we control the probability with which this physical-
layerbroadcastis sent.

Therehasbeensomerecentwork onapplyinggossipingin ad
hoc networks,but the focusandthusthe techniquesusedhave
beenvery differentfrom our work. VahdatandBecker [VB00]
applygossipingto adhocunicastrouting.However, their usage
of gossipingis very differentfrom ours. In their work, they try
to ensurethat messagesare eventuallydeliveredeven if there
is no connectedpathbetweenthe sourceandthe destinationat
any given point in time. As long as thereexists a pathusing
communicationlinks at somepoint in time, messagescan be
deliveredthrougha randompair-wiseexchangesamongmobile
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hosts.Their techniquesarenot intendedfor (andwouldnotper-
form well in) our setting,wherewe are trying to find routes
thatweassumeexist (becausenetwork partitionis a rareevent).
Chandraet al. [CRB01] usea gossipingmechanismto improve
multicastreliability in adhocnetworks;they do not usegossip-
ing to reducethe numberof messagessent. Indeed,they start
with anarbitrary, possiblyunreliable,multicastprotocolto mul-
ticasta message.They thenusegossiping(underthe assump-
tion thatroutesareknown) to randomlyexchangemessagesbe-
tweennodesin orderto recover lost messages.Heinzelmanet
al. [HKB99] have appliedgossipingin datadisseminationin
wirelesssensornetworks, using techniquessimilar in spirit to
thoseof [VB00]. Again, the settingandresultsarequite dif-
ferentfrom ours. Ni et al. [NTCS99]proposefive differentap-
proachesto reducebroadcastredundancy. Oneof them(briefly
mentionedin a few sentences)is gossiping.However, they do
notstudythepropertiesof gossipingnordothey considerheuris-
tics for dealingwith problemsintroducedby gossipingin real-
istic ad hoc network topologies. Their experimentsdo show,
however, that,in a 100-nodenetwork, usinggossipingcansave
messages.

Therestof this paperis organizedasfollows: SectionII dis-
cussesthebasicbimodaleffect in moredetail. SectionIII pro-
videsexperimentalevidenceof the bimodaleffect in networks
of reasonablesize,andalsogivesasenseof how theprobability
varieswith the averagedegreeof the network and initial con-
ditions. SectionIV presentsa numberof heuristicsthatshould
improve theperformanceof gossipingin networksof interests,
andinvestigatestheextent to which they do soexperimentally.
SectionV showsthatgossipingcanhelpin practicalsettings,by
consideringthe effect of addinggossipingto AODV. We show
by simulationthatevenin networkswith 150nodesonly, adding
gossipingto AODV can result in significantperformanceim-
provementson all standardmetrics. We expect that this im-
provementwill beevenmoresignificantin largernetworks.Sec-
tion VI concludesour paper.

I I . THE BIMODAL BEHAVIOR OF GOSSIPING

Sincefloodingis a basicelementin many of theadhocrout-
ing protocols,asmentionedin SectionI, we startby comparing
gossipingto flooding.

Our basicgossipingprotocol is simple. A sourcesendsthe
routerequestwith probability 1. Whena nodefirst receivesa
routerequest,with probability � it broadcaststhe requestto its
neighborsandwith probability ����� it discardsthe request;if
the nodereceivesthe samerouterequestagain,it is discarded.
Thus,anodebroadcastsagivenrouterequestatmostonce.This
simpleprotocolis calledGOSSIP1(� ).

GOSSIP1hasa slight problemwith initial conditions.If the
sourcehasrelatively few neighbors,thereis a chancethatnone
of themwill gossip,andthegossipwill die. To make surethis
doesnot happen,we gossipwith probability 1 for the first �
hopsbeforecontinuingto gossipwith probability � . Wecall this
modifiedprotocolGOSSIP1(����� ).1
�
Of course,thefact thatgossipinghasdifficultiesif a nodehasrelatively few

neighborsis true not just initially. We returnto this point in the next section
whenwediscussoptimizations.

The performanceof GOSSIP1(����� ) clearly dependson the
choiceof � and � . Clearly, GOSSIP1(1,1)is equivalentto flood-
ing. What happensin general? That dependsin part on the
topologyof thenetwork (particularlytheaveragedegreeof the
network nodes),thegossipprobability � , andthe initial condi-
tions (asdeterminedby � ). If we think of gossipingasspread-
ing adiseasein anepidemic,thissimplysaysthatthelikelihood
of anepidemicspreadingdependsin parton how many people
eachpersoncaninfect (thedegree),the likelihoodof the infec-
tion spreading(the gossipprobability), andhow many people
areinitially infected.

As we said in the introduction,gossipingand, in particular,
the performanceof GOSSIP1(� ,0) (that is, the scenariowhere
eventhesourcegossipswith probability � ) hasbeenwell stud-
ied in the work on percolationtheory[Gri89], [MR96]. Quite
a few typesof networks have beenstudiedin the literature. In
this section,we focuson two of them. We first study regular
networks, sincethey allow us to easilyanalyzehow GOSSIP1
behaveswith respectto differentparameters,suchasthegossip
probability, network size,andnodedegree,without othercom-
plicating factors. We thenstudyrandomnetworks constructed
asfollows. Nodesareplacedat randomon a two-dimensional
area;an edgeis placedbetweenany pair of nodeslessthana
fixeddistance� apart.This typeof randomgraphseemsappro-
priatefor modelinga numberof applicationsinvolving ad hoc
networks. Nodeshave a limited amountof transmissionpower,
andsocancommunicateonly with reasonablyclosenodes.The
randomplacementcanbeviewedasmodelingfeaturessuchas
therandommobility of nodesandtherandomplacementof sen-
sorsin a largeregion.

Thefollowing theoremgivesasenseof thetypeof resultsthat
havebeenproved.

TheoremII.1: For all � �"! , for all infinite regular graphs#
, and for almostall (i.e., a measure1 subset)of the infinite

randomgraphs
#

constructedasabove,if GOSSIP1(� ,0) is used
by every nodeto spreada message,thenthereis a well-defined
probability ���$ ���
	&%'� that themessagereachesinfinitely many
nodes. Moreover, the probability ��($ ���
	 that a nodereceives
themessageandforwardsit in anexecutionwherethemessage
reachesinfinitely many nodesis equalto ���$ ����	 .2

Note that the probability of a messagedying out (i.e., not
spreadingto infinitely many nodes)is averagedover the exe-
cutionsof the algorithm. That is, the theoremsaysthat if we
executethealgorithmrepeatedly, theprobabilitythata message
doesnot die out in any givenexecutionis ���$ ���
	 . On theother
hand,��($ ����	 talksabouttheprobabilitythata nodereceivesand
forwardsthemessagein agivenexecutionof thealgorithm.The
intuition behindtheequalityof ���$ ���
	 and ��($ ����	 is easyto ex-
plain. A gossipinitiated by a source) $ diesout if thereis a
setof nodes* that disconnects) $ from the restof the graph;
thatis, every infinite pathstartingat ) $ mustgo througha node
in * . Thus, � �$ ���
	 is the probability that thereis no discon-
nectingset * suchthat noneof the nodesin * forward the
message.(Note that * could consistof the singletonnode) $
itself.) Similarly, the probability ��($ ���
	 that a randomnode )
receives and forwards the messageis preciselythe probabil-
+
Note thatour bimodaleffect is differentfrom [BHO , 99]. They describea

bimodalbehavior whereeitherall or noprocessreceivesthemulticastmessage.
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ity that thereis no set *.- suchthat *.- disconnects) from ) $
andnoneof thenodesin * - forwardsthemessage.Therefore,
���$ ����	0/1��($ ���
	0/ def � $ ����	 .

It follows from theseresultsthat, in an executionwherethe
messagedoesnot die out, the probability that a randomnode
receivesthemessageis � $ ����	324� , sincereceiving themessageis
independentof forwardingit. Thus,in termsof thenotationused
in theintroduction,��������	5/1� $ ���
	 and �������
	5/1� $ ����	324� .

Let ���6 ����	 betheprobabilitythatamessagereachesinfinitely
many nodesif GOSSIP1(����� ) is used. It is easyto seethat
��� 7�����	0/1� $ ���
	824� , sincetheprobabilitythatthemessagereaches
infinitely many nodesusing GOSSIP1(����� ) is precisely the
probability thata messagereachesinfinitely many nodesusing
GOSSIP1(���9! ) giventhatthesourceactuallygossips.However,
notethattheprobabilitythatanodereceivesandforwardsames-
sageif GOSSIP1(����� ) is used,giventhat themessagedoesnot
dieout,is still � $ ����	 . Thatis, theprobabilitythatanodereceives
the messageis independentof the choiceof � . On the other
hand,it is not hardto seethat if eachnodelearnsthe network
topology in a zoneof radius � (so that it canroutea message
directly to any nodein its zone),thentheprobabilitythatanode
receivesand forwardsa messagegiven that the messagedoes
not dieout is � 6 ���
	 .

All theseresultsarefor infinite graphs.It is not hardto show
that essentiallythe sameresultshold for finite graphs,except
possiblynearthe boundary. In sufficiently large finite graphs,
therewill be two typesof executions:thosewherehardly any
nodegetsthe message,andthosewherethe messagemakesit
all the way to the boundary. It follows easilyfrom the Central
Limit Theoremthat, in sufficiently large graphs,in almostall
executionswherethegossipdoesnotdieout,a fraction � $ ����	324�
nodeswill get themessage.That is, we expectthebimodalbe-
havior: eitherhardly any nodesget the message,or a fraction
� $ ���
	32:� receive the message.As we shall see,in casesof in-
terest, � $ ����	 is quitecloseto � . Thus,in almostall executions
of the algorithmin sufficiently large graphs,eitherhardly any
nodesreceive themessage,or mostdo.

This leadsto a numberof obviousquestions:; How largeis “sufficiently large”?; Whatis thebehavior of � 6 ���
	 for differentgraphsof interest?; Whatcanbedoneto improvetheperformanceof gossipingin
realisticsettings?
We investigatethesequestionsin thenext two sections.

I I I . GOSSIPING IN FINITE NETWORKS

Wedid anumberof experimentsto investigatethebehavior of
gossiping.We summarizesomeof themoreinterestingresults
here.WeassumedanidealMAC layerfor theseexperimentsbe-
causewe wantedto decoupletheeffect of theMAC layer from
the effect of gossiping.An ideal MAC layer is onethat is not
subjectto packet loss. When we considermore realistic sce-
nariosin SectionV, we usethe IEEE 802.11MAC layer. In
this section,we focuson regulargraphsandtherandomgraphs
discussedin theprevioussection.

Our first set of experimentsinvolves “medium-sized”net-
works, with 1000nodes.We startby consideringa 20-row by
50-columngrid (i.e., a regular graphof degree4). We focus
on GOSSIP1(���9< ), sincetaking �=/>< producesa reasonable

tradeoff. (We reporttheeffect of varying � towardsthe endof
this section.)Theresultsdependin parton wherewe placethe
routerequestsource.As we would expectfrom the theoretical
arguments,the locationof the sourcenodedoesnot affect the
fraction of nodesreceiving the message.However, it doesaf-
fect thenumberof executionsin which thegossipdiesout. The
numberof executionsin which the gossipdoesnot die out is
higherfor amorecentralnode,andlower for acornernode.We
reportresultsherefor thecasewheretherouterequestsourceis
at the left boundaryof row 10. Our experimentsshow that,on
average,theperformancefor otherlocationsof therouterequest
sourceis somewhat betterthan the resultsreportedhere. The
resultsareillustratedin Figure1. Notice thatGOSSIP1(.72,4)
onthegrid ensuresthatalmostall nodesgetthemessage,except
for a slight dropoff at distancegreaterthan50. This dropoff is
a boundaryeffect,which we discussin moredetailbelow. Note
that the graphin Figure1(a) representsan averageof 120exe-
cutionsof theprotocol.With gossipprobability.72for thisgrid
size, in almostall the executionsof the algorithm, almostall
nodesgetthemessage.
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Fig. 1. Thebehavior of gossipingona @4ACBED4A grid.

The situationchangessignificantly if the gossipprobability
is even a little lessthan .7. For example,the averageperfor-
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manceof GOSSIP1(.65,4)is shown in Figure1(c). As thegraph
shows,atdistance40,onaverage58%of thenodesgot themes-
sage.However, in this case,thegraphis somewhatmisleading.
Theaveragingis hiding thetruebehavior. As we would expect
from TheoremII.1, thereis bimodalbehavior. This is illustrated
in Figure1(d). If we considernodesat distance15–45(soasto
ignoreinitial effectsandboundaryeffects),in 14% of the exe-
cutions,fewer than10%of the nodesget the message;in 19%
of theexecutions,fewer than20%of thenodesgetthemessage;
in 59% of the executions,morethan80% of the nodesget the
message;andin 41% of the executions,morethan90% of the
nodesgetthemessage.

If we lower the gossipprobability further, we get the same
bimodalbehavior; all thatchangesis thefractionof executions
in which all nodesandno nodesget the message.Thedropoff
is fairly rapid. For example,Figure 1(e) and (f) describethe
situationfor GOSSIP1(.60,4).By thetimewegetto probability
.6 on the grid, in only 4% executionsof the algorithmis it the
casethatmorethan90%of thenodesget themessage;in only
11% of the executionsdo morethan80% of the nodesget the
message;andin over50%of theexecutions,fewer than20%of
thenodesgetthemessages.

We alsoinvestigatedthe effect of the degreeof the network
on gossiping.Not surprisingly, increasingthe degreemakesit
betteranddecreasingit makes it worse. In a FG!�HJIK! regular
network of degree6, it sufficesto gossipwith probability.65 to
ensurethatalmostall nodesget the messagein almostall exe-
cutions;with gossipprobability.6,westartto seesomedropoff.
(Again, the numbersgiven in the graphareactually the result
of averagingover a numberof executionsof thealgorithm,and
maskthebimodalbehavior observedin theexecutions.) Onthe
otherhand,for a FG!LHMIK! regularnetwork of degree3, we need
to gossipwith probability.86to ensurethatalmostall nodesget
themessagein all executions.

While easyto study, regular graphsare not typical of the
topology we expect in practical ad hoc networks. Random
graphsarea somewhat bettermodel. We consideredtwo fam-
ilies of randomgraphs. In the first, we randomlyplaced1000
nodesin a N4IK!G!POQHJRK!G!K!PO rectangularregion, wherea node
cancommunicatewith anothernodeif it is no more than250
metersaway. This resultsin a network with averagedegree8.
Sincerealnetworkshave boundaries,we did not experimenton
wrap-aroundmeshes.As we shallsee,dealingwith nodesnear
the boundaryraisessomeinterestingissues.The resultsof our
experimentsareillustratedin Figure2.

The resultsarequalitatively similar to thoseon the grid, as
wewould expect.Indeed,thebimodaleffect is particularlypro-
nouncedwith GOSSIP1(.65,4),asshown in Figure2(d). If we
considernodesat distance15–35,Figure2(d) shows, in 20%of
theexecutions,fewer than10%of thenodesgetthemessage;in
70%of theexecutions,over90%of thenodesgetthemessage,
and in 75% of the executions,over 80% of the nodesget the
message.

To considerwhathappenswith a higher-degreenetwork, we
alsoplaced1200nodesat randomin the samerectangularre-
gion; this resultsin a network with averagedegree10. In this
network, it sufficesto gossipwith probability .65 to ensurethat
almostall nodesgetthemessagein almostall executions.
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Fig. 2. Gossipingona randomnetwork of averagedegree8.

All thegraphsaboveshow amarkeddropoff in probabilityfor
nodesthat arecloseto the boundary. This is not just an effect
of averaging;this dropoff occursin almostall executionsof the
algorithm.Thedropoff is dueto two relatedboundaryeffects.
1. Distantnodeshave fewer neighbors,sincethey arecloseto
theboundary.
2. Nodesat distance� from the sourcemay well receive mes-
sagedueto “back-propagation”from nodesat distance� -�S �
thatgetthemessage.Suchback-propagationis not possiblefor
boundarynodes.
We discusssometechniquesto deal with this dropoff in Sec-
tion IV-D.

Wedid onelastsetof experimentsto betterevaluate� 6 ���
	 . In
theseexperiments,we used1,000,000nodeson a �:!K!K!THU�:!K!G!
grid, andplacedthe sourceat thecenterof row 10. This is far
enoughaway from the boundaryto avoid significantboundary
effects.3 Theresultsof usingGOSSIP1(����� ) for particularval-
uesof � areillustratedin Figure3. As theseresultsshow, the
bimodaleffect is verymarkedby thetimewegetto sucha large
network, andbeginsto closelyapproximatetheresultsexpected
from thetheorem.Figure4 shows how ���V ���
	 varieswith � . As
we cansee,if � is below W IKX , thenthegossipdiesout in almost
all executions. ���V ����	 thenincreasesvery rapidly, goingfrom 0
at .59 to almost1 at .65. (The rapid increasein the caseof in-
finite graphsfollows from a deepermathematicalanalysis,and
hasbeendiscussedin the percolationtheory literature[Gri89],
[MR96].)

Finally, we consideredhow ���6 ����	 and ���6 ����	 variedwith �
for afixedvalueof � . As theorypredicts,���6 ����	 doesnotchange
Y
Experimentalresultsshow thattherearenontrivial boundaryeffectsfor val-

uesof Z very closeto [ D4\ no matterwherewe placethesource.Intuitively, this
is becausefor Z very closeto, but above [ D4\ , the probability of having a large
disconnectingsetof nodesis nontrivial, andtheboundarycanhelp in forming
suchsets.
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Fig. 3. Thebehavior of gossipingona1000x1000grid.
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at all with � . Thereis someeffect on ���6 ���
	 . Of course,since
��� 7�����	0/1���$ ���
	32:� , thereis asignificantjumpas � goesfrom 0 to
1. As � increasesbeyond1, thereis anincreasein ���6 ����	 , but it is
not sosignificant.For example, ��� 7
�8W cGI�	C/ W XKI , ���d �3W cKI�	e/fW XKg ,
and ���h �8W cGI�	i/j� ; similarly, ��� 7 �3W c�	k/lW IGR , ���V �3W I�	m/nW c�N , and
��� 7 $ /oWpN4R .

IV. HEURISTICS TO IMPROVE THE PERFORMANCE OF

GOSSIPING

The resultsof the previous sectionsuggestan obvious way
that gossipingcan be appliedin ad hoc routing. Ratherthan
flooding,weuseGOSSIP1(� , � ) with � sufficiently highto guar-
anteethat almostall nodeswill receive the messagein almost
all executions.We canpracticallyguaranteethatthedestination
nodereceivesthemessage,while saving afraction �q�m� of mes-
sages.In casesof interest,wherethethresholdprobabilityseems
to beabout.65–.75,this meanswecanensurethatall nodesget
themessageusing25–35%fewer messagesthanflooding. No-
tice that, if thenetwork is congestedandevery nodehasa con-
gestiondroppingprobability r , thento obtainthesameresults,

thebroadcastprobabilityneedsto be ��2Kr . If congestionis very
localized,thenwe cansimply use � becauseit is not likely to
changethe outcomeof a givenrun of gossiping.However, the
generalinteractionbetweengossipingandcongestionis a topic
thatdeservesfurtherstudy.

Thebasicgossipingschemecanbeoptimizedin a numberof
ways,usingideasthat have beenappliedto flooding andideas
specificto gossiping.We discusssomeoptimizationsin there-
mainderof this section. This sectionis intendedasa proof of
conceptshowing thatgossipingis a worthwhileapproachto ex-
plore.Wedonotattemptto doanexhaustiveanalysisto find the
optimalparameters.

A. A two-thresholdscheme

In many casesof interest,agossipprotocolis run in conjunc-
tion with otherprotocols.If theotherprotocolsmaintainfairly
accurateinformationregardinganode’sneighbors,wecanmake
useof this informationto improvetheperformanceof GOSSIP1
furtherby a simpleoptimization.

In a randomnetwork, unlike thegrid, a nodemayhave very
few neighbors. In this case,the probability that noneof the
node’s neighborswill propagatethe gossipis high. In general,
we may want the gossipprobability at a node to be a func-
tion of its degree,wherenodeswith lower degreegossipwith
higher probability. To show the effect of this, we considera
specialcasehere: a protocol with four parameters,� 7 , � , � d ,
and ) . As in GOSSIP1,� 7 is thetypical gossipprobabilityand
� is the numberof hopswith which we start gossipingwith
probability 1. The new featuresare � d and ) ; the idea is that
the neighborsof a nodewith fewer than ) neighborsgossip
with probability � d S � 7 . That is, if a nodehasfewer than
) neighbors,it instructsits immediateneighborsto broadcast
with probability � d ratherthan � 7 . Call this modifiedprotocol
GOSSIP2(� 7 ���s�8� d �3) ). To understandwhy theneighbors’ gos-
sip probability is increasedif therearefew neighbors,consider
theinitiator of thegossip.Clearly, if noneof its neighborsgos-
sip, thenthegossipwill die. If theinitiator hasmany neighbors,
even if eachgossipswith relatively low probability, the proba-
bility thatat leastoneof themwill gossipis high. This is not the
caseif it hasfew neighbors.

GOSSIP2is not of interestin regularnetworks. However, in
randomnetworks which typically have somesparseregions,it
canhave a significantimpact.For example,for therandomnet-
work with averagedegree8 first consideredin Figure2, GOS-
SIP2(0.6,4,1,6)hasbetterperformancethanGOSSIP1(0.75,4),
asshown in Figure5, while using4% lessmessagesthanGOS-
SIP1(0.75,4).Only when �t�u!vW g doesGOSSIP1(���w< ) begin
to have the sameperformanceas GOSSIP2(0.6,4,1,6);how-
ever, GOSSIP1(0.8,4)uses13% more messagesthan GOS-
SIP2(0.6,4,1,6).

Theremaybeothercombinationsof parametersfor GOSSIP2
thatgiveevenbetterperformance;wehavenotcheckedexhaus-
tively. The key point is that usinga higher thresholdfor suc-
cessorsof nodeswith low degreeseemsto significantlyimprove
performance.
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Fig. 5. Gossipingwith two thresholdsvs.oneon a randomnetwork of average
degree8.

B. Preventingprematuregossipdeath

As we have seen,the real problemwith gossipingis that, if
wegossipwith too low aprobability, themessagemay“die out”
in acertainfractionof theexecutions.Measurescanbetakento
prevent this (for example,having successorsof nodeswith low
degreegossipwith ahigherprobability)but,unfortunately, there
is no way for a nodeto know if a messageis dying out. Never-
theless,anodemaygetsomeclues.Onesuchclueis notgetting
too many copiesof themessage.Supposethata nodex got the
messagebut doesnot broadcastit becauseits coin tosslanded
“tails”. Furthersupposethat x has) neighbors.If themessage
doesnot die out, thenit would expect that all of its neighbors
would getthemessageaswell, andthus,if thegossipprobabil-
ity is � , it shouldget roughly �G) messagesfrom its neighbors.
If it getssignificantly fewer than �G) within a reasonabletime
interval, thenthis is acluethatthemessageis dyingout.

This suggeststhe following optimizationof GOSSIP1and
GOSSIP2.If a nodewith ) neighborsreceivesa messageand
doesnot broadcastit, but then doesnot receive the message
from at leastO neighborswithin a reasonabletimeoutperiod,it
broadcaststhemessageto all its neighbors.Theobviousques-
tion hereis what O shouldbe. If O is chosentoo large, then
wemayendupwith toomany messages.Ourexperimentsshow
thatwe actuallyget themostsignificantperformanceimprove-
ment by taking O /y� . Let GOSSIP3(�����z�3O{	 be just like
GOSSIP1(����� ), exceptfor the following modification. A node
that originally did not broadcasta received message(because
its coin landedtails), but thendid not get the messagefrom at
leastO othernodeswithin sometimeoutperiod,broadcaststhe
messageimmediatelyafter the timeoutperiod. (The choiceof
timeoutperiodcanbetakenquitesmall.Wediscussthis issuein
detailsin SectionV.) It mayseemthatsuchrebroadcastingcan
significantlyeffect the latency of themessage.However, asthe
experimentsdiscussedbelow show, if theparametersarechosen
correctly, latency is not aproblematall.

As Figure 6 shows, the performanceof GOSSIP3(0.65,4,1)
is even betterthan that of GOSSIP1(0.75,4).However, GOS-
SIP3(0.65,4,1)sendsonly 67% of the messagessentby flood-
ing. By way of contrast,GOSSIP1(0.75,4)sends75% of the
messagessentby flooding.Thus,wegetbetterperformanceus-
ing GOSSIP3while sending8%fewermessages.

To examinethe effect of GOSSIP3on latency, we recorded
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Fig. 6. GOSSIP3ona randomnetwork of degree8.

thenumberof timeoutintervalsa messageexperienced,usinga
variable| , whichwasaugmentedeverytimeamessagewasfor-
wardedaftera timeout. Amongall themessagessentby GOS-
SIP3(0.65,4,1),only 2% have |}�j� . Among thesemessages
with |~�f� , 95%of themhave |~�~F . Thus,it seemslatency is
not aproblemhere.

C. Retries

Thebimodaldistributionobservedin theuseof gossipingcan
be viewed as a significantadvantage. Oncea route is found,
acknowledgmentsarepropagatedbackto the sourcealongthe
route, so the sourceknows the route. If a route is not found
within a certaintimeoutperiod,therearetwo possibilities:ei-
ther thereis no route at all, or the protocol did not detectit.
Our focus is on networks that are sufficiently well connected
thattheretypically is a route.However, whenusinga gossiping
protocol, thereis always a possibility that a route will not be
foundeven if it exists. Of course,thereis a simplesolutionto
this problem:simply retry theprotocol. Thus,for example,the
probability of finding a routewithin two attemptsto a nodeat
distance25 usingGOSSIP1(.65,4)in therandomnetwork with
averageoutdegree8 is .95: theprobabilityof a nodenot receiv-
ing a messagein any givenexecutionof theprotocolis .23,and
executionsareindependent.

With retries,thebimodalmessagedistribution workssignifi-
cantlyto our benefit.As we observed,with GOSSIP1(.65,4),in
72%of theexecutions,almostall nodesgetthemessage.If we
pick a destinationat random,in thoseexecutionswherealmost
all nodesget the message,the destinationis likely to get the
messageanda retry will not be necessary. On the otherhand,
in thoseexecutionswherehardly any nodesgot the message,
a retry will probablybe necessary. However, suchfailing gos-
sip attemptsdo not involve too many transmissions,sincemost
nodesdo not getthemessagein any case.

Of course,retriesincreaselatency, evenif they do notsignifi-
cantly increasethenumberof messagessent.This is especially
truein largenetworks,wherethetimeoutperiodwill have to be
largesoasto allow themessageto propagatethroughoutthenet-
work. However, evenhere,thebimodaldistributioncanbeused
to advantageto decreasetheretry latency. Note thateachmes-
sagemustkeeptrackof thenumberof hopsit hastaken.Wecan
modify thealgorithmsoasto requirethatany nodethatreceives
a messagewith, say, 15 hop counts,forwardsan acknowledg-
mentto thesenderalongthatroutewith someprobability. (The
probabilitycanbechosensothatthesenderreceivesanexpected
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numberof, say, fiveacknowledgmentsif almostall nodesgetthe
message.)Becauseof thebimodaldistribution, if thesenderre-
ceivesseveralacknowledgments,thenit canbefairly confident
that the executionis onein which almostall nodesaregetting
the message.On the otherhand,if it doesnot receive several
acknowledgments,it is likely thattheexecutionis onein which
hardlyany nodesgetthemessage,andit shouldresendthemes-
sageimmediately. This shows thatwe canboundthelatency of
retry, independentof thenetwork size.

D. Zones

Oneof the best-known optimizationsto flooding is the zone
routingprotocol(ZRP)[HP98]. In ZRP, eachnode� maintainsa
so-calledzone, whichconsistsof all thenodesthatareatmost�
hopsawayfrom � , for someappropriatelychosenzoneradius� .
A nodethatis exactly � hopsaway from � is calledaperipheral
nodeof � .

A nodeproactively tries to maintaincompleterouting tables
for all nodesin its zone. Initially, a nodediscovers who its
neighborsareandthenbroadcastsits neighborsto its zone(by
usingfloodingup to hopcount � ). Theneachtime it discovers
a change(i.e., that it haslost or gaineda neighbor),it broad-
castsan update.This procedureensuresthata nodehasa very
accuratepictureof its zone.

If a sourcewantsto sendto a destinationin its zone,it sim-
ply routesthe messagedirectly there,sinceit knows the route.
Otherwise,it sendsarouterequestqueryto theperipheralnodes
in its zone.If thedestinationis in a peripheralnode’s zone,the
peripheralnodereplieswith the route to the query originator.
Otherwise,it forwardsthequeryto its peripheralnodes,which
in turn forwardsit, andsoon.

In thecontext of ZRP, therearetwo advantagesof maintaining
a zone. First, if a nodeis in thezone,flooding is unnecessary;
a messagecanbesentdirectly to the intendedrecipient,saving
muchcontrol traffic. This bringsabouta significantimprove-
ment in overall performanceif a substantialfraction of nodes
arein thezone(which is likely to betruein asmallnetwork, but
far lesslikely in a largeone).Second,if wewantto sendames-
sageoutsidethe zone,we canmulticastto the boundaryof the
zone(or a subsetof thenodeson theboundary),which canbea
significantsaving overflooding. However, thereis a tradeoff in
choosingthesizeof thezone:a biggerzonebenefitsmorefrom
thesetwo advantages,but alsoresultsin overheadfor proactive
maintenanceof thezones.In general,theoptimalzonesizewill
dependonfactorslikemobility andfrequency of routerequests.

The idea of zonescan be usedin gossipingas well. Here
thereis a third advantage:if a nodein thezonereceivesa gos-
sip message,thenit cansendit directly to any nodein thezone.
This meansthat it would suffice for a gossipingprotocolto get
the messageto a nodein the intendedrecipient’s zone. How
much of an advantageis this? In large networks, the advan-
tageis quiteminimal. As we haveobserved,gossipingis essen-
tially bimodal:for typicalgossipprobabilities,eitherhardlyany
nodesget the messageor mostof themdo. Zoneshave a rela-
tively small effect in eithercase.Thus,zoneshelp only in the
relatively few executionsthatexhibit “intermediate”behavior.

Let GOSSIP4(�����s��� - ) bejustlikeGOSSIP1(����� ), exceptthat
eachnodehasa zoneof radius � - . ComparingFigure7(b) to
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Fig. 7. Gossipingwith zonesona randomnetwork of averagedegree8.

Figure 7(a), we seeusing a zoneradius of 4 with gossiping
probability .65 in the randomnetwork with averagedegree8
improvesperformanceby only a few percentover mostof the
distances.However, it doesamelioratetheback-propagationef-
fect. As shown in Figure 7(c), increasingthe zoneradiusto
8 doesnot significantly improve the limiting performance,but
it hasan even more beneficialeffect on the back-propagation
problem.
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Fig. 8. Gossipingwith zonesona100noderandomnetwork.

The situationis muchdifferent for smallernetworks. Here
zonescanhaveasignificantimpact.For example,if weusegos-
sip probability.65 in a randomnetwork with 100nodesandav-
eragedegree13, thenetwork is too small for thebimodaleffect
to show up. However, theback-propagationproblemis signifi-
cant. As Figure8 shows, for thesmall randomnetwork of 100
nodes,if we useGOSSIP1(0.65,1),thenonly 76% of nodesat
distance10 getthemessage.However, if we have a zoneof ra-
dius 3 (GOSSIP4(0.65,1,3)),then96% of nodesat distance10
getthemessage.
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V. INCORPORATING GOSSIPING IN AODV

How muchdoesgossipingreally help in practice?That de-
pends,of course,on issueslike thenetwork topology, mobility,
andhow frequentlymessagesaregenerated.We believe that in
larger networks with high mobility many of the optimizations
discussedin the literaturewill bemuchlesseffective. (We dis-
cussthis point in moredetail below in the context of AODV.)
In this case,flooding will occurmorefrequently, so gossiping
will beparticularlyadvantageous.However, asourresultsshow,
gossipingcanprovide significantadvantagesevenin smallnet-
works.

To testtheimpactof gossiping,we consideredAODV, oneof
the best-studiedad hoc routing protocolsin the literature. We
comparedpureAODV to avariantof AODV thatusesgossiping
insteadof flooding whenever AODV would useflooding. We
do not have theresourcesto simulatetheprotocolsin largenet-
works. However, our resultsdo verify the intuition that, with
highmobility (whenfloodingwill beneededmoreoftenin pure
AODV), gossipingcanprovidea significantadvantage.

A. A brief overview of AODV

UsingAODV, thefirst time a node� requestsa routeto node� , it usesanexpanding-ringsearch to find theroute. That is, it
first tries to find the route in a zoneof small radius,by flood-
ing. It thentries to find the routein zonesof largerandlarger
radius. If all theseattemptsfail, it resortsto flooding the mes-
sagethroughthewholenetwork. Theexactchoiceof zoneradii
to try is aparameterof AODV. Typically, not too many radii are
consideredbeforeresortingto floodingthroughoutthenetwork.

AODV alsomaintainsaroutingtablewhereit storestheroute
after it hasbeenfound. If AODV runningat node � getsany
packet with source� anddestination� , theroutein therouting
tablewill be tried first. If any node� on theroutefrom � to �
detectsthat the link to the next hop is down, then � generates
a routeerror (RERR)message,which is propagatedbackto � .
When � receivesthe RERRmessage,it deletesthe route to �
from its routingtable.

B. GOSSIP3in AODV

We addedgossipingto AODV in a particularlysimpleway.
If the expanding-ringsearchwith a smallerradiusfails, rather
thanflooding to thewholenetwork, we useGOSSIP3(.65,1,1).
(We usedtheseparameterssincethey gave goodperformance
in the particularscenarioswe considered.)The timeoutperiod
of GOSSIP3shouldbebig enoughto allow neighboringnodes
to gossip.The *����.� �m�E���i�i�E�5��| ���
��� parameterof
AODV is a conservativeestimateof theaverageonehoptraver-
saltimefor packetsthatincludesqueueingdelays,interruptpro-
cessingtimes and transfertimes. In our experiments,we set
thetimeoutinterval to be ���C*����.� �k�����i�i�E�5��| ���
���
where� is a small integer (��/tI in our reportedresults).Note
thatwedonotuseGOSSIP3in theexpanding-ringsearchwith a
smallerradius.Becauseof theback-propagationeffects,flood-
ing is actuallymoreefficient thangossipingfor a zonewith a
small radius.We call thevariantof AODV thatusesGOSSIP3
AODV � G.

C. Simulationmodelandperformanceresults

Oursimulationis donein thens-2[Pro] simulator. Thisisalso
the simulatorthe literatureusesto evaluateAODV. We usethe
AODV implementationin ns-2downloadedfrom the web site
of oneof its authors,usingIEEE 802.11astheMAC layerpro-
tocol. The radio modelsimulatesLucent’s WaveLAN [Tuc93]
with a nominalbit rateof 2Mb/secanda nominalrangeof 250
meters. The radio propagationmodel is the two-ray ground
model[Rap96].

Ourapplicationtraffic is CBR(constantbit rate).Thesource-
destinationpairs(connections)arechosenrandomly. Theappli-
cationpacketsareall 512bytes.We assumeda sendingrateof
2 packets/secondand30 connections.

For mobility, we usethe randomwaypointmodel[BMJ� 98]
in a rectangularfield. Thesimulationscenariosareasfollows:
150nodesarerandomlyplacedin agrid of RGRK!G!POjHicK!G!PO . We
chosethis layoutbecausein somesenseit providesaworst-case
estimateof the performanceof gossiping. For this layout the
gossipthresholdis about.65. With other more “square” lay-
outs,suchas �:cKIK!JH��4FG!K! , it is possibleto gossipwith lower
probability (closer to .5), so the saving due to gossipingwill
be evenmoresignificant. Thereare30 connections,eachgen-
erating2 packet/sec;simulationtime is 525seconds;eachnode
moveswith arandomlychosenspeed(uniformly chosenfrom 0-
20 m/sec),thenpausesfor � secondsafterreachinga randomly
set destination. We vary the pausetime to simulatedifferent
mobility scenarios. Eachdatapoint representsan averageof
fiverunsusingtheidenticaltraffic model,but with differentran-
domly generatedmobility scenarios.To preserve fairness,iden-
tical mobility andtraffic scenariosareusedfor bothAODV and
AODV � G.

We usedthe sameconfigurationparametersfor AODV as
thoseused in [DPR00]. Of particular interest to us are the
expanding-ringsearchparameters.In the ns-2implementation
of AODV, first a zoneradiusof 5 hopsis tried; if no route is
found,network-widefloodingis used.

We studythe performanceof the following four metrics,of
which thefirst threewerealsostudiedin [DPR00]:; Thepacket deliveryfraction representsthe ratio of the num-
berof datapacketssuccessfullydeliveredto thenumberof data
packetsgeneratedby theCBR sources.; The average end-to-enddelay of data packets includesall
possibledelayscausedby buffering during routing discovery,
queuingat theinterfacequeue,retransmissionat theMAC layer,
propagation,andtransfertime.; Thenormalizedroutingloadrepresentsthenumberof routing
packetstransmittedperdatapacket deliveredat thedestination.
Eachhop-wisepacket transmissionis countedasonetransmis-
sion.; The route length ratio comparesthe shortestroute length
foundto theactualshortestroutelength.

From Figure 9(a) and9(b), we seethat AODV � G delivers
betternetwork performancethanAODV in termsof end-to-end
delayandpacket delivery fraction. The performanceimprove-
mentscorrelatewith theamountof routing load reduced.This
is not surprising,sinceroutingloadincreaseswith mobility and
constitutesa significantpartof thenetwork load(ascanbeseen
from Figure9(c)). At pausetime 0, AODV � G reducesaverage
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Fig. 9. AODV � G vs.AODV.

end-to-enddelayby 36%andincreasesthroughputby 8%. From
Figure9(c) and9(d),weseethatAODV � G reducestherouting
load; thereductionis from 14%to 27%in termsof normalized
routingload.

Finally, we considerroutelengths.Note thatneithergossip-
ing nor flooding (as usedby AODV) will necessarilyfind the
shortestroute. For example, supposethat ��� $ �3� 7 �8� d �3�
� 	 is
the shortestpath from � $ to � � , but that thereis anotherpath
��� $ � � 7 � � d �8� d �3� � 	 . It is possiblethatafter � $ broadcastsaroute
request,� d will receive it alongthepathfrom � d beforereceiv-
ing it from � 7 . Since,in AODV, � d would save in its routingta-
bleinformationfromonly thefirst routerequestto arrive,AODV
will not necessarilydiscover theshortestroute.For similar rea-
sons,with gossiping,we may not alwaysdiscover the shortest
routes.Our experimentalresultsshow that in the150-nodenet-
work studiedhere,thelengthof pathsfoundby floodingandby
our gossipingalgorithm are essentiallyindistinguishable.We
consideredtheratioof theshortestroutefoundby AODV to the
actualshortestroute,andsimilarly for AODV � G. Figure9(e)
shows that the routing length ratio for AODV � G andAODV
is almostthe same(and, indeed,is sometimesmarginally bet-
ter for AODV � G). However, this resultseemsto someextent

to be an artifact of the particularsmall network and the gos-
sip probability usedhere. Experimentalresultsperformedon
the networks studiedin SectionIII show that gossipingfinds
routes10-15%longerthanflooding if gossipingis donewith a
probability just a little above threshold. The gapdecreasesas
thegossipingprobability increases;for sufficiently largegossip
probability, theroutelengthsareagainessentiallyindistinguish-
able.

Thesesimulationswere carriedout in a network with 150
nodes.In sucha smallnetwork, even if route-destinationpairs
arechosenat random,a greatmany pairswill bewithin 5 hops
of eachother, and will thus be discoveredby the expanding-
ring search.Indeed,in our simulation,roughly30%-40%of the
routesdiscoveredhada lengthof lessthanor equalto 5. Thus,
asmany as40%of theroutesarediscoveredby theexpanding-
ring search.We expect that thingswill be quite different in a
largernetwork. Of course,this dependsin parton thenatureof
routerequestsandthe choiceof parametersfor the expanding-
ring search.While it is possiblethatmany requestswill belocal,
thereareapplicationsfor which this seemsunlikely. Certainly
if route-destinationpairsarechosenat random,thenexpanding-
ring searchis unlikely to be effective for almostany choiceof
parametersettings. That is, a great many source-destination
pairs are likely to be far apart, so no expanding-ringsearch
is likely to find themefficiently. Additionally, expanding-ring
searchmayadda greatdealof routing traffic androutediscov-
ery latency. By wayof contrast,gossipingcontinuesto perform
well in largenetworks.Thus,wepredictthattherelativeadvan-
tageof AODV � G overpureAODV will increaseasthenetwork
getslarger. Thegraphspresentedhereunderestimatetheperfor-
manceimprovement.

VI . CONCLUDING REMARKS

Despitethe variousoptimizations,with flooding-basedrout-
ing, many routing messagesarepropagatedunnecessarily. We
show thatgossipingcanreducecontrol traffic up to 35%when
comparedto flooding.Sincetheroutesfoundby gossipingmay
beup to 10-15%longerthanthosefoundby flooding(depend-
ing on thegossipprobability),how muchgossipingcansave in
termsof overall traffic dependson the gossipprobability used,
nodemobility, and the type of messagessent. With high mo-
bility, new routeswill have to be found more frequently, and
the savings will be relatively greater. In addition, if messages
aremainly network-widebroadcasts,ratherthanpoint-to-point,
gossipingmayresultin significantsavingsoverflooding. (Note
thatwith gossiping,in general,asmallfractionof thenodeswill
not get the broadcast.However, in certainapplicationit may
sufficethatalmosteveryonegetsthemessage,or thecontentsof
broadcast� canbepiggybackedwith broadcast�0�T� , sothatthe
probabilityof missinga messagealtogetherbecomesvery low.)

Our protocol is simpleandeasyto incorporateinto existing
protocols.Whenwe addgossipingto AODV, simulationsshow
significantperformanceimprovementsin all the performance
metrics,even in networksassmall as150nodes.As discussed
in the SectionV, we expect this performanceimprovementto
becomeevenmoresignificantin largernetworks.

We have also experimentedwith addinggossipingto ZRP,
by using gossipingto sendthe route requestto someperiph-
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eral nodesratherthan to all peripheralnodes. Again, our re-
sultsshow significantimprovementin all performancemetrics.
It seemslikely thatgossipingcanbeusefullyaddedto anumber
of otheradhocroutingprotocolsaswell.

Gossipinghasa numberof advantagesoverotherapproaches
consideredin the literature.For onething, unlike many heuris-
tics consideredin the literature,we believe thatwe have a very
goodunderstandingof how gossipingwill performin largenet-
works. This understandingis supportedboth by analyticalre-
sultsandour experiments.While therearefundamentallimits
to the amountof nonlocaltraffic that canbe sentin large net-
works,dueto problemsof scaling[GK00], [LBC � 01], gossip-
ing shouldstill beusefulin largenetworkswhennonlocalmes-
sagesneedto besent.It is farlessclearhow well otheroptimiza-
tionsconsideredin theliteraturewill performin largenetworks.
Moreover, asour simulationswith AODV have shown, gossip-
ing canprovide significantadvantageseven in small networks.
Experiencein othercontexts hasshown that gossipingis also
quite robustandableto toleratefaults;we expectthat this will
bethecasein adhocroutingaswell. All this suggeststhatgos-
sipingcanbea very usefuladjunctto thearsenalof techniques
in mobilecomputing.Of course,work needsto bedonein find-
ing goodtechniquesto learntheappropriategossipparameters.
We have experimentedwith adjustingthegossipingprobability
of eachnodeaccordingto thesuccess/failureof routerequests;
it is increasedif therouterequestfailureprobabilityis high,and
decreasedif therouterequestfailureprobabilityis closeto 0. To
propagatethe appropriateprobability throughoutthe network,
it canbe put into the route requestpacket. Eachintermediate
nodereceiving thepacketwill gossipwith theprobabilitycarried
in the routerequestpacket. Our preliminaryexperimentshave
shown that this approachdoesproducegood results,although
we have not hadenoughexperienceto determinethe bestway
of makingtheseadjustmentsto thegossipprobability;we leave
this for futurework.
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