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Abstract. Motivated by problems that arise in computing degrees of belief, we consider the
problem of computing asymptotic conditional probabilities for first-order sentences. Given first-
order sentences ¢ and 6, we consider the structures with domain {1,..., N} that satisfy 6, and
compute the fraction of them in which ¢ is true. We then consider what happens to this fraction
as N gets large. This extends the work on 0-1 laws that considers the limiting probability of first-
order sentences, by considering asymptotic conditional probabilities. As shown by Liogon’kii [Math.
Notes Acad. USSR, 6 (1969), pp. 856-861] and by Grove, Halpern, and Koller [Res. Rep. RJ 9564,
IBM Almaden Research Center, San Jose, CA, 1993], in the general case, asymptotic conditional
probabilities do not always exist, and most questions relating to this issue are highly undecidable.
These results, however, all depend on the assumption that 6 can use a nonunary predicate symbol.
Liogon’kil [Math. Notes Acad. USSR, 6 (1969), pp. 856-861] shows that if we condition on formulas
0 involving unary predicate symbols only (but no equality or constant symbols), then the asymptotic
conditional probability does exist and can be effectively computed. This is the case even if we place
no corresponding restrictions on ¢. We extend this result here to the case where 8 involves equality
and constants. We show that the complexity of computing the limit depends on various factors, such
as the depth of quantifier nesting, or whether the vocabulary is finite or infinite. We completely
characterize the complexity of the problem in the different cases, and show related results for the
associated approximation problem.
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1. Introduction. Suppose we have a sentence 6 expressing facts that are known
to be true, and another sentence ¢ whose truth is uncertain. Our knowledge 6 is often
insufficient to determine the truth of ¢: both ¢ and its negation may be consistent
with 6. In such cases, it can be useful to assign a probability to ¢ given 6. In a
companion paper [23], we described our motivation for investigating this idea, and
presented our general approach. We repeat some of this material below, to provide
the setting for the results of this paper.

One important application of assigning probabilities to sentences—indeed, the one
that has provided most of our motivation—is in the domain of decision theory and
artificial intelligence. Consider an agent (or expert system) whose knowledge consists
of some facts 6, who would like to assign a degree of belief to a particular statement
. For example, a doctor may want to assign a degree of belief to the hypothesis that
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a patient has a particular illness, based on the symptoms exhibited by the patient
together with general information about symptoms and diseases. Since the actions
the agent takes may depend crucially on this value, we would like techniques for
computing degrees of belief in a principled manner.

The difficulty of defining a principled technique for computing the probability
of ¢ given 0, and then actually computing that probability, depends in part on the
language and logic being considered. In decision theory, applications often demand the
ability to express statistical knowledge (for instance, correlations between symptoms
and diseases) as well as first-order knowledge. Work in the field of 0-1 laws (which, as
discussed below, is closely related to our own) has examined some higher-order logics
as well as first-order logic. Nevertheless, the pure first-order case is still difficult, and
is important because it provides a foundation for all extensions. In this paper and in
[23] we address the problem of computing conditional probabilities in the first-order
case. In a related paper [22], we consider the case of a first-order logic augmented
with statistical knowledge.

The general problem of assigning probabilities to first-order sentences has been
well studied (cf. [15] and [16]). In this paper, we investigate two specific formalisms for
computing probabilities, based on the same basic approach. Our approach is itself an
instance of a much older idea, known as the principle of insufficient reason [28] or the
principle of indifference [26]. This states that all possibilities should be given equal
probability, and was once regarded as one of the most basic principles of probability
theory. (See [24] for a discussion of the history of the principle.) We use this idea
to assign equal degrees of belief to all basic “situations” consistent with the known
facts. The two formalisms we consider differ only in how they interpret “situation.”
We discuss this in more detail below.

In many applications, including the one of most interest to us, it makes sense to
consider finite domains only. In fact, the case of most interest to us is the behavior
of the formulas ¢ and 6 over large finite domains. Similar questions also arise in
the area of 0-1 laws. Our approach essentially generalizes the methods used in the
work on 0-1 laws for first-order logic to the case of conditional probabilities. (See
Compton’s overview [8] for an introduction to this work.) Assume, without loss of

generality, that the domain is {1,..., N} for some natural number N. As we said
above, we consider two notions of “situation.” In the random-worlds method, the pos-
sible situations are all the worlds, or first-order models, with domain {1,..., N} that

satisfy the constraints 6. Based on the principle of indifference, we assume that all
worlds are equally likely. To assign a probability to ¢, we therefore simply compute
the fraction of them in which the sentence ¢ is true. The random-worlds approach
views each individual in {1,..., N} as having a distinct name (even though the name
may not correspond to any constant in the vocabulary). Thus, two worlds that are
isomorphic with respect to the symbols in the vocabulary are still treated as dis-
tinct situations. In some cases, however, we may believe that all relevant distinctions
are captured by our vocabulary, and that isomorphic worlds are not truly distinct.
The random-structures method attempts to capture this intuition by considering a
situation to be a structure—an isomorphism class of worlds. This corresponds to
assuming that individuals are distinguishable only if they differ with respect to prop-
erties definable by the language. As before, we assign a probability to ¢ by comput-
ing the fraction of the structures that satisfy ¢ among those structures that satisfy
6.1

IThe random-worlds method considers what has been called in the literature labeled structures,
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Since we are computing probabilities over finite models, we have assumed that
the domain is {1,..., N} for some N. However, we often do not know the precise
domain size N. In many cases, we know only that N is large. We therefore estimate
the probability of ¢ given 6 by the asymptotic limit, as IV grows to infinity, of this
probability over models of size N.

Precisely the same definitions of asymptotic probability are used in the context of
0-1 laws for first-order logic, but without allowing prior information 6. The original
0-1 law, proved independently by Glebskii et al. [18] and Fagin [13], states that the
asymptotic probability of any first-order sentence ¢ with no constant or function
symbols is either 0 or 1. This means that such a sentence is true in almost all finite
structures, or in almost none.

Our work differs from the original work on 0-1 laws in two respects. The first
is relatively minor: we need to allow the use of constant symbols in ¢, as they are
necessary when discussing individuals (such as patients). Although this is a minor
change, it is worth observing that it has a significant impact. It is easy to see that once
we allow constant symbols, the asymptotic probability of a sentence ¢ is no longer
either 0 or 1; for example, the asymptotic probability of P(c) is 2. Moreover, once we
allow constant symbols, the asymptotic probability under random worlds and under
random structures need not be the same. The more significant difference, however, is
that we are interested in the asymptotic conditional probability of ¢, given some prior
knowledge 6. That is, we want the probability of ¢ over the class of finite structures
defined by 6.

Some work has already been done on aspects of this question. Liogon’kii [31],
and independently Fagin [13], showed that asymptotic conditional probabilities do
not necessarily converge to any limit. Subsequently, 0-1 laws were proved for special
classes of first-order structures (such as graphs, tournaments, partial orders, etc.; see
the overview paper [8] for details and further references). In many cases, the classes
considered could be defined in terms of first-order constraints. Thus, these results
can be viewed as special cases of the problem that we are interested in: computing
asymptotic conditional probabilities relative to structures satisfying the constraints
of a database. Lynch [32] showed that, for the random-worlds method, asymptotic
probabilities exist for first-order sentences involving unary functions, although there
is no 0-1 law. (Recall that the original 0-1 result is specifically for first-order logic
without function symbols.) This can also be viewed as a special case of an asymptotic
conditional probability for first-order logic without functions, since we can replace
the unary functions by binary predicates, and condition on the fact that they are
functions.

The most comprehensive work on this problem is the work of Liogon’kii [31].2
In addition to pointing out that asymptotic conditional probabilities do not exist
in general, he shows that it is undecidable whether such a probability exists. (We
generalize Liogon’kii’s results for this case in [23].) He then investigates the special
case of conditioning on formulas involving unary predicates only (but no constants

while the random-structures method considers unlabeled structures [8]. We choose to use our own
terminology for the random-worlds and random-structures methods, rather than the terminology of
labeled and unlabeled. This is partly because we feel it is more descriptive, and partly because there
are other variants of the approach that are useful for our intended application, and that do not fit
into the standard labeled /unlabeled structures dichotomy (see [2]).

2In an earlier version of this paper [21], we stated that, to our knowledge, no work had been done
on the general problem of asymptotic conditional probabilities. We thank Moshe Vardi for pointing
out to us the work of Liogon’kit [31].
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or equality). In this case, he proves that the asymptotic conditional probability does
exist and can be effectively computed, even if the left side of the conditional, ¢, has
predicates of arbitrary arity and equality. This gap between unary predicates and
binary predicates is somewhat reminiscent of the fact that first-order logic over a
vocabulary with only unary predicates (and constant symbols) is decidable, while if
we allow even a single binary predicate symbol, then it becomes undecidable [11],
[29]. This similarity is not coincidental; some of the techniques used to show that
first-order logic over a vocabulary with unary predicate symbols is decidable are used
by us to show that asymptotic conditional probabilities exist.

In this paper, we extend the results of Liogon’kii [31] for the unary case. We
first prove (in §3) that, if we condition on a formula involving only unary predicates,
constants, and equality that is satisfiable in arbitrarily large models, the asymptotic
conditional probability exists. We also present an algorithm for computing this limit.
The main idea we use is the following: to compute the asymptotic conditional prob-
ability of ¢ given 6, we examine the behavior of ¢ in finite models of 6. It turns out
that we can partition the models of # into a finite collection of classes, such that ¢
behaves uniformly in any individual class. By this we mean that almost all worlds
in the class satisfy ¢ or almost none do; i.e., there is a 0-1 law for the asymptotic
probability of ¢ when we restrict attention to models in a single class. In §3 we define
these classes and prove the existence of a 0-1 law within each class. We also show
how the asymptotic conditional probability of ¢ given 6 can be computed using these
0-1 probabilities.

In §4 we turn our attention to the complexity of computing the asymptotic prob-
ability in this case. Our results, which are the same for random worlds and random
structures, depend on several factors: whether the vocabulary is finite or infinite,
whether there is a bound on the depth of quantifier nesting, whether equality is used
in @, whether nonunary predicates are used, and whether there is a bound on pred-
icate arities. For a fixed and finite vocabulary, there are just two cases: if there is
no bound on the depth of quantifier nesting then computing asymptotic conditional
probabilities is PSPACE-complete, otherwise the computation can be done in linear
time. The case in which the vocabulary is not fixed (which is the case more typically
considered in complexity theory) is more complex. The results for this case are sum-
marized in Table 1.1. Perhaps the most interesting aspect of this table is the factors
that cause the difference in complexity between #EXP and #TA(EXP,LIN) (where
#TA(EXP,LIN) is the counting class corresponding to alternating Turing machines
that take exponential time and make only a linear number of alternations; a formal
definition is provided in §4.5). If we allow the use of equality in 6, then we need to
restrict both ¢ and 6 to using only unary predicates to get the #EXP upper bound.
On the other hand, if § does not mention equality, then the #EXP upper bound is
attained as long as there is some fixed bound on the arity of the predicates appearing
in . If we have no bound on the arity of the predicates that appear in ¢, or if we
allow equality in 6 and predicates of arity 2 in ¢, then the #EXP upper bound no
longer holds, and we move to #TA(EXP,LIN).

Our results showing that computing the asymptotic probability is hard can be
extended to show that finding a nontrivial estimate of the probability (i.e., deciding
if it lies in a nontrivial interval) is almost as difficult. The lower bounds for the
arity-bounded case and the general case require formulas of quantification depth 2 or
more. For unquantified sentences or depth-1 quantification, things seem to become
an exponential factor easier. We do not have tight bounds for the complexity of
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TABLE 1.1
Complezity of asymptotic conditional probabilities.

Depth <1 Restricted General case
Existence NP-complete | NEXPTIME-complete NEXPTIME-complete
Compute #P/PSPACE #EXP-complete #TA(EXP,LIN)-complete
Approximate | (co-)NP-hard | (co-)NEXPTIME-hard TA(EXP,LIN)-hard

computing the degree of belief in this case; we have a #P lower bound and a PSPACE
upper bound. The results for depth 1 are not proved in this paper; see [27] for details.

We observe that apart from our precise classification of the complexity of these
problems, our analysis provides an effective algorithm for computing the asymptotic
conditional probability. The complexity of this algorithm is, in general, double-
exponential in the number of unary predicates used and in the maximum arity of
any predicate symbol used; it is exponential in the overall size of the vocabulary and
in the lengths of ¢ and 6.

Our results are of more than purely technical interest. The random-worlds method
is of considerable theoretical and practical importance. We have already mentioned its
relevance to computing degrees of belief. There are well-known results from physics
that show the close connection between the random-worlds method and mazimum
entropy [25]. These results say that in certain cases the asymptotic probability can
be computed using maximum entropy methods. Some formalization of similar results,
but in a framework that is close to that of the current paper, can be found in [33]
and [22]. (These results are of far more interest when there are statistical assertions
in the language, so we do not discuss them here.)

As we observe in [23] and [22], this connection relies on the fact that we are
conditioning on a unary formula. In fact, in almost all applications where maximum
entropy has been used (and where its application can be best justified in terms of
the random-worlds method) the knowledge base is described in terms of unary pred-
icates (or, equivalently, unary functions with a finite range). For example, in physics
applications we are interested in such predicates as quantum state (see [10]). Simi-
larly, AT applications and expert systems typically use only unary predicates [7] such
as symptoms and diseases. In general, many properties of interest can be expressed
using unary predicates, since they express properties of individuals. Indeed, a good
case can be made that statisticians tend to reformulate all problems in terms of unary
predicates, since an event in a sample space can be identified with a unary predicate
[36]. Indeed, in most cases where statistics are used, we have a basic unit in mind (an
individual, a family, a household, etc.), and the properties (predicates) we consider
are typically relative to a single unit (i.e., unary predicates). Thus, results concerning
computing the asymptotic conditional probability if we condition on unary formulas
are significant in practice.

2. Definitions. Let ® be a set of predicate and function symbols, and let £(®)
(resp., L7(®)) denote the set of first-order sentences over ® with equality (resp.,
without equality). To simplify the presentation, we begin by assuming that @ is
finite; the case of an infinite vocabulary is deferred to §2.3. Much of the material in
§82.1 and 2.2 is taken from [23].

2.1. The random-worlds method. We begin by defining the random-worlds,
or labeled, method. Given a sentence £ € L(®), let #worldy (£) be the number of
worlds, or first-order models, of £ over ® with domain {1,..., N}. Note that the
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assumption that ® is finite is necessary for #worldy (€) to be well defined. Define

@
Pr%’q)(go 16) = #worldN((bcp A 6) .
Hworld 5 (0)

In [23], we proved the following proposition.

PROPOSITION 2.1. Let ®,®' be finite vocabularies, and let p,6 be sentences in
both £(D) and L(P'). Then Pry® (o | 0) = Pry® (o] 6).

Thus, the value of Pr%’q)(cp | 8) does not depend on the choice of ®. We therefore
omit reference to ¢ in Pr?\}’q)(@ | 8), writing Priy (¢ | 0) instead.

We would like to define Pr (¢ | ) as the limit limy_,oo Priv(p | 6). There is
a small technical problem we have to deal with in this definition: we must decide
what to do if #worldy(0) = 0, so that Pr'(¢ | 8) is not well defined. In [23], we
differentiate between the case where Priy (¢ | 0) is well defined for all but finitely many
N’s, and the case where it is well defined for infinitely many N’s. As we shall show
(see Lemma 3.30) this distinction need not be made when 6 is a unary formula. Thus,
for the purposes of this paper, we use the following definition of well-definedness,
which is simpler than that of [23].

DEFINITION 2.2. The asymptotic conditional probability according to the random-
worlds method, denoted Pr(p | 6), is well defined if #worldy(9) # 0 for all but
finitely many N. If Pr% (¢ | 0) is well defined, then we take Priy (¢ | 0) to denote
limy 00 Priv(p | 0). 0

Note that for any formula ¢, the issue of whether Pr} (¢ | 6) is well defined is
completely determined by 6. Therefore, when investigating the question of how to
decide whether such a probability is well defined, it is often useful to ignore . We
therefore say that Pry (x| 6) is well defined if Pry (¢ | 0) is well defined for every
formula ¢ (which is true iff Pry (true | 6) is well defined).

2.2. The random-structures method. As we explained in the introduction,
the random-structures method is motivated by the intuition that worlds that are
indistinguishable within the language should only be counted once. Thus, the random-
structures method counts the number of (unlabeled ) structures, or isomorphism classes
of worlds.

Formally, we proceed as follows. Given a sentence & € L(®), let #structy(€)
be the number of isomorphism classes of worlds with domain {1,..., N} over the
vocabulary @ satisfying £&. Note that since all the worlds that make up a structure
agree on the truth value they assign to &, it makes sense to talk about a structure

satisfying or not satisfying £&. We can then proceed, as before, to define Pr;’,q)(go | 9)

#structT (pA0)
#struct$, (0)

in terms of Prf\}cp (¢ | 0), in analogy to the earlier definition for random worlds. It is
clear that #worldy (0) = 0 iff #structy () = 0, so that well-definedness is equivalent
for the two methods, for any ¢, 6.

PROPOSITION 2.3. For any 6 € L(®), Pr (x | 8) is well defined iff Prs:®(x | 6)
is well defined.

As the following example, taken from [23], shows, for the random-structures
method the analogue to Proposition 2.1 does not hold; the value of Pri}q)(cp | 6), and
even the value of the limit, depends on the choice of ®. This example, together with
Proposition 2.1, also demonstrates that the values of conditional probabilities gen-
erally differ between the random-worlds method and the random-structures method.

. We define asymptotic conditional probability, denoted Pr:* (¢ | 6)
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By way of contrast, Fagin [14] showed that the random-worlds and random-structures
methods give the same answers for unconditional probabilities, if we do not have
constant or function symbols in the language.

Ezample 2.4. Suppose ® = { P}, where P is a unary predicate symbol. Let 6 be
Az P(x) V -3z P(x) (where, as usual, “3!” means “exists a unique”), and let ¢ be
3z P(z). For any domain size N, #struct’y () = 2. In one structure, there is exactly
one element satisfying P and N — 1 satisfying —P; in the other, all elements satisfy
—P. Therefore, Pr%:* (¢ | §) = i

Now, consider &' = {P, Q}, for a new unary predicate ). There are 2N structures
where there exists an element satisfying P: the element satisfying P may or may not
satisfy @), and of the N — 1 elements satisfying =P, any number between 0 and N — 1
may also satisfy Q. On the other hand, there are N + 1 structures where all elements

satisf/y —P: any number of elements between 0 and N may satisfy . Therefore,
Pri;? (] 6) = 5227, and Pri® (| 0) = 2.

We know that the asymptotic limit for the random-worlds method will be the
same, whether we use ® or ®. Using ®, notice that the single structure where
3lz P(x) is true contains N worlds (corresponding to the choice of element satisfying
P), whereas the other possible structure contains only one world. Therefore, Prly (¢ |
0) =1. 0

Although the two methods give different answers in general, we shall see in the
next section that there are important circumstances under which they agree.

2.3. Infinite vocabularies. Up to now we have assumed that the vocabulary ®
is finite. As we observed, this assumption is crucial in our definitions of #worldy (£)
and #struct% (€). Nevertheless, in many standard complexity arguments it is impor-
tant that the vocabulary be infinite. For example, satisfiability for propositional logic
formulas is decidable in linear time if we consider a single finite vocabulary; we need to
consider the class of formulas definable over some infinite vocabulary of propositional
symbols to get NP-completeness.

How can we modify the random-worlds and random-structures methods to deal
with an infinite vocabulary 2?7 The issue is surprisingly subtle. One plausible choice
depends on the observation that even if ) is infinite, the set of symbols appearing in
a given sentence is always finite. We can thus do our computations relative to this
set. More formally, if ,,¢ denotes the set of symbols in € that actually appear in
@ A0, we could define Prey? (¢ | 0) = Prﬁ’,’ﬂ“’w (¢ | 0). Similarly, for the random-

structures method, we could define Prf\}Q (p|0) = Prf\}sz“’” (¢ ] 8). The problem with
this approach is that the values given by the random-structures approach depend
on the vocabulary, and it is easy to find two equivalent sentences ¢ and ¢’ such
that Q, # Q. and Pri’oQ“’“’ (p]0) # Pri’oﬂq’”\e (¢' | ). (A simple example of this
phenomenon can be obtained by modifying Example 2.4 slightly.) Thus, under this
approach, the value of asymptotic conditional probabilities can depend on the precise
syntax of the sentences involved. We view this as undesirable, and so we focus on the
following two interpretations of infinite vocabularies.?

The first of these two alternative approaches treats an infinite vocabulary as
a limit of finite subvocabularies. Assume for ease of exposition that € is count-
able. Let €, consist of the first m symbols in Q (using some arbitrary fixed or-
dering). We can then define Pr¥y?(¢ | 6) = lim,, oo Prv®™ (¢ | 6) (where we

3We note, however, that all our later complexity results concerning infinite vocabularies can be
easily shown to hold for the definition just discussed.
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take Priy®™ (¢ | 6) to be undefined if ¢,0 ¢ L£(€,)).* Similarly, we can define
Pri? (0] 0) = limp, oo Prif™™ (o | 6). It follows from the results we prove below that
these limits are independent of the ordering of the symbols in the vocabulary.

The second interpretation is quite different. In it, although there may be an
infinite vocabulary 2 in the background, we assume that each problem instance comes
along with a finite vocabulary ® as part of the input. Thus, in our infinite vocabulary
), we may have predicates that are relevant to medical diagnosis, physics experiments,
automobile insurance, etc. When thinking about medical applications, we use that
finite portion ® of the infinite vocabulary that is appropriate. In this approach, we
always deal with finite vocabularies, but ones whose size is potentially unbounded
because we do not fix the relevant vocabulary in advance.

In essence, the first approach can be viewed as saying that there really is an infi-
nite vocabulary, while the second approach considers there to be an infinite collection
of finite vocabularies (with no bound on the size of the vocabularies in the collection).
The distinction between these possibilities is not usually examined as closely as we
have done here. This is because the difference is rarely important. For example,
propositional satisfiability is NP-complete over an infinite vocabulary, no matter how
we interpret “infinite.” In our context, the difference turns out to be moderately sig-
nificant. For random worlds, an argument based on Proposition 2.1 shows the two ap-
proaches lead to the same answers (as does the approach that we rejected where, when
computing Pr“l\},’g(go | 0), we restrict the vocabulary to Q,n9). On the other hand, the
two approaches can lead to quite different answers in the case of the random-structures
approach. It is important to point out, however, that the complexity of all problems we
consider turns out to be the same no matter which interpretation of “infinite” we use.

In fact, as we now show, according to the first approach the random-structures
method and the random-worlds method agree whenever we have an infinite vocabulary
(and thus we have an analogue to Fagin’s result [14] for the case of unconditional
probabilities). A structure of size N is an equivalence class of at most N! worlds,
since there are at most V! worlds isomorphic to a given world. We say that such a
structure is rigid if it consists of exactly V! worlds. It is easy to see that a structure
is rigid just if every (nontrivial) permutation of the domain elements in a world that
makes up the structure produces a different world in that structure. We say a world
is rigid if the corresponding structure is.

Example 2.5. Let ® consist of a single unary predicate P, and consider the worlds
over the domain {1,2,3}. All worlds where the denotation of P contains exactly two
elements are isomorphic. Therefore, these worlds form a single structure S. There
are three worlds in S, corresponding to the possible denotations of P: {1,2}, {1, 3},
{2,3}. Therefore, S is not rigid. In fact, it is easy to see that no structure over @ is
rigid. Now, consider structures over ® = {P,Q}, where @ is a new unary predicate.
The set of all worlds where the denotation of P contains two elements no longer forms
a structure over ®’. For example, one structure S’ over @’ is the set of worlds where
the denotations of P A Q, P A =@, and =P A () each contain one element. There
are six worlds in &', corresponding to the possible permutations of the three domain
elements. Therefore, S’ is rigid. 0

This example demonstrates that increasing the vocabulary tends to cause rigidity.

4Here, we chose to take the limit on the vocabulary, and only then to take the limit on the domain
size. We could, however, have chosen to reverse the order of the limits, or to consider arbitrary joint
limits of these two parameters. The approach taken here seems to be the most well motivated in this
framework.
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We now formalize this intuition, and show its importance. Note that in the following
definition (and throughout the paper) all logarithms are taken to the base 2.

DEFINITION 2.6. We say that a vocabulary ® is sufficiently rich with respect to
N if

(a) ® contains at least kx constant symbols and kx > N%log N, or

(b) ® contains at least T unary predicate symbols and wn > 3log N, or

(c) ® contains at least one nonunary predicate symbol. 0

Fagin showed that if ® contains at least one nonunary predicate symbol, then the
number of worlds over ® of size N is asymptotically N! times the number of structures
[14]. That is, almost all structures are rigid in this case. We now generalize this result.
Let 7igid be an assertion that is true only in rigid structures or rigid worlds; note that
rigid cannot be expressed in first-order logic. If F(IN) and G(V) are two functions of
N, we write F(N) ~ G(N) if limy_,o0 F(N)/G(N) = 1.

THEOREM 2.7. Suppose that for every N, ® and Qn are disjoint finite vocabu-
laries such that Qn is sufficiently rich with respect to N. Then for any & € L(P),

Jim_ Pri® Y (rigid | €) = 1,

provided that £ is satisfiable for all sufficiently large domains. Hence, #world%m” (&) ~
Nl#tstruct 77 (€).

Proof. We first prove the result under the additional assumptions that £ = true
and ® = (). We consider each of the three possibilities for sufficient richness separately,
and for each case we show that almost all structures are rigid. As we said above, the
case where 2y contains at least one nonunary predicate and £ = true is Fagin’s result,
so we need only consider the remaining two cases.

Suppose £ = true, ® = (), and Qn contains ky constant symbols. Without loss of
generality, we can assume that these constants are the only symbols in 2, because
any expansion of a rigid structure over Q0 to a richer vocabulary will also be rigid.
Consider a structure S. All the worlds that make up & must agree on the equality
relations between the interpretations of the constants. That is, for any pair of constant
symbols ¢ and ¢/, either they are equal in all worlds that make up the structure or
not equal in all of them. Thus, a lower bound on the number of distinct structures
over Qy is given by the number of ways of partitioning kx objects into N or fewer
equivalence classes. There is no closed form expression for this number, but a simple
lower bound is obtained by counting structures where the first NV constants denote
distinct objects. There are N*~¥—N) guch structures, because we must choose, for
each of the other constants, to which of the first IV constants it is equal. It is easy
to see that if all or all but one of the elements in a structure (that is, in any of the
worlds in that structure) are denoted by some constant, then this structure is rigid.
Hence, if a structure is nonrigid, then two or more elements are not denoted by any
constant. Thus, an upper bound on the number of nonrigid structures is (N — 2)"~.
Therefore,

— 92)kN KN "
Pr?\’,QN(—\rigid | true) < =2 =NV (1 - i]) < NNe 27,
This will tend to 0 if Ky > N?log N.

Next, suppose that & = true, ® = 0, and Qu contains my unary predicate sym-
bols. As before, we can assume that these predicates comprise all of Q. Consider
a structure S and a world W in the isomorphism class making up that structure.
These my unary predicates partition the domain of W into 2™~ cells, according to
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the subset of predicates satisfied by each of the domain elements. Notice that the
predicates actually partition each of the isomorphic worlds in s in the same way (in
that corresponding elements of the partition have the same size). Thus, a lower bound
on the number of distinct structures over ® is the number of ways of allocating N in-
distinguishable elements into 2™V distinguishable cells, which is (QWNTVN 71). Clearly,
a structure is nonrigid if and only if some element of the partition contains more than
one domain element. Thus, an upper bound on the number of nonrigid structures can
be obtained by counting the number of structures over N — 1 elements, then choosing
one of the these elements to be a “double” element, representing two elements. This
can be done in (N — 1)(2m\1’vt1\1[72) ways. Therefore,

(N-DEVNT) NN

(Q"N—I',-VN—l) = 27~ + N —1°

P (—rigid | true) <

This tends to zero if 2™~ /N? — oo as N grows, which is ensured by the assumption
mn > 3log N.

Finally, we drop the assumptions that £ = true and ® = (). Given a structure over
Qpn, we can choose the denotation for the predicates in ® in any way that satisfies
&. Tt is easy to verify that if the original structure is rigid, all such choices lead to
distinct structures. Therefore,

#struct s N (rigid A €) > #structEN (rigid) - #world 3 (€) .
On the other hand, clearly
Hstruct v (~rigid A €) < #structIN (—rigid) - #worldy (€) .
The second factor is the same in both these bounds, and therefore
Priy "N (rigid | €) > Priy®™ (rigid | true) .
From our results for £ = true and ® = () we conclude that

lim Pri® 2 (rigid | €) = 1.
N—oc0
0
We also need to prove an analogous result for the random-worlds method. Note
that while, if we restrict to formulas in £(®), the answers given by the random-worlds
method are independent of the vocabulary, the predicate rigid has a special definition
in terms of the random-structures method, and so rigidity may well depend on the
vocabulary. Thus, in the next result, we are careful to mention the vocabulary being
used.
COROLLARY 2.8. Suppose that for every N, ® and Qy are disjoint finite vocab-
ularies such that Q is sufficiently rich with respect to N. Then for any & € L(P),

lim Pr%@UQN(rigid | €) =1,
N—oo

provided that & s satisfiable in all sufficiently large domains.

Proof. Any rigid structure with domain size N that satisfies £ corresponds to N!
worlds. On the other hand, nonrigid structures correspond to fewer than N! worlds.
It follows that the proportion of worlds satisfying £ that are rigid is at least as great
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as the proportion of structures satisfying £ that are rigid. Since the latter proportion
is asymptotically 1, so is the former. O

Our main use of this theorem is in the following two corollaries. The first shows
that when the vocabulary is infinite (and therefore sufficiently rich) the random-
worlds and random-structures methods coincide. The second corollary shows that the
same thing happens when the vocabulary is sufficiently rich because of a high-arity
predicate, as long as this predicate does not appear in the formula we are conditioning
on.

COROLLARY 2.9. Suppose that 2 is infinite and @,0 € L(2). Then

(a) Pry?(p | 0) ~ Pry®(o | 6),

(b) Pr%(p | 0) = Pri%(p | 0).

Proof. Fix N, and let §2,, be the first m symbols in some enumeration of 2. We
will be interested in the limit as m — oo, so without loss of generality assume that
m > N?log N 4 [Qppg|. Clearly Q,, — Qung is sufficiently rich with respect to N, so
by Theorem 2.7, almost all structures are rigid. Since a rigid structure over a domain
of size N consists of N! worlds, we get:

QongUm QuonoUm
W, Qo0 UL _ #worldN‘pA (pNn0) #st'ructN“D (pN0)
Pry (p]0) = ~

#worldi‘pAeUQm (0) #structiﬁ‘msugm (0)
= Pry* % (o | 0).
Since this holds for any sufficiently large m, it certainly holds at the limit. This proves
part (a). Part (b) follows easily. O

We can easily strengthen part (a) and prove that we actually have Pr%’ﬂ(w | 6) =

Pr;’,ﬂ(cp | ), for all N. Since we do not need this result in this paper, we omit the
proof here. We remark that this result also holds for much richer languages; we did
not use the fact that we were dealing with first-order logic anywhere in the proof.
COROLLARY 2.10. Suppose that p,0 € L(P) where ® contains some nonunary
predicate symbol that does not appear in 0. Then Pr¥ (¢ | 0) = Pri*(¢ | 0).
Proof. Using the rules of probability theory, we know that

Pri® (o | 0) = Pri® (o | OArigid)-Pre:® (rigid | 0)+Prs® (¢ | OA-rigid)-Pre® (=rigid | 6) ,
if all limits exist. Because of the high-arity predicate, ® — ®y is sufficiently rich with
respect to any N. Therefore, by Theorem 2.7, we deduce that PrS® (rigid | 8) = 1
and Pr%® (=rigid | §) = 0. Thus

Prif(p | 0) = Prilt (v | 0 A rigid) .
Using Corollary 2.8 instead of Theorem 2.7, we can similarly show

Pr¥® (¢ | 8) = Pro®(¢ | 6 A rigid) .
Because of rigidity,

Pri® (o | 0 A rigid) = Pr® (o | 0 A rigid).

The result now follows immediately. O
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3. Asymptotic probabilities. We begin by defining some notation that will
be used consistently throughout the rest of the paper. We use ® to denote a finite
vocabulary, which may include nonunary as well as unary predicate symbols and
constant symbols. We take P to be the set of all unary predicates in ®, C to be the
set of all constant symbols in @, and define ¥ = P UC. Finally, if ¢ is a formula, we
use ®, to denote those symbols in ® that appear in ¢; we can similarly define C,,
P,, and ¥,.

Our goal is to show how to compute asymptotic conditional probabilities. As we
explained in the introduction, the main idea is the following. To compute Pr (¢ | 6),
we partition the models of # into a finite collection of classes, such that ¢ behaves uni-
formly in any individual class, that is, there is a 0-1 law for the asymptotic probability
of ¢ when we restrict attention to models in a single class. Computing Pry, (¢ | 0)
reduces to first identifying the classes, computing the relative weight of each class
(which is required because the classes are not necessarily of equal relative size), and
then deciding, for each class, whether the asymptotic probability of ¢ is zero or one.
In this section we deal with the logical aspects of this process; namely, showing how
to construct an appropriate partition into classes. In the next section, we use results
from this section to construct algorithms that compute asymptotic probabilities, and
examine the complexity of these algorithms.

For most of this section, we will concentrate on the asymptotic probability ac-
cording to random worlds. In §3.5 we discuss the modifications needed to deal with
random structures, which are relatively minor.

3.1. Unary vocabularies and atomic descriptions. The success of the ap-
proach outlined above depends on the lack of expressivity of unary languages. In
this section we show that sentences in £(¥) can only assert a fairly limited class of
constraints. For instance, one corollary of our general result will be the well-known
theorem that, if € L(P) is satisfiable at all, it is satisfiable in a “small” model, one
of size at most exponential in the size of the 6. (See [1] for a proof of this result and
further historical references.)

We start with some definitions.

DEFINITION 3.1. Given a vocabulary ® and a finite set of variables X, a complete
description D over ® and X is an unquantified conjunction of formulas such that

o for every predicate R € ® U{=} of arity m, and for every z1,...,2m € CUX,
D contains exactly one of R(z1,...,2m) or 7 R(21,...,2m) as a conjunct;
e D is consistent.’ |

We can think of a complete description as being a formula that describes as fully
as possible the behavior of the predicate symbols in ® over the constant symbols in
® and the variables in X.

We can also consider complete descriptions over subsets of ®. The case when we
look just at the unary predicates and a single variable & will be extremely important.

DEFINITION 3.2. Let P be {Pi,...,Py}. An atom over P is a complete descrip-
tion over P and some variable {x}. More precisely, it is a conjunction of the form
P{(z)A...NP[(z), where each P} is either P; or —P;. Since the variable x is irrelevant
to our concerns, we typically suppress it and describe an atom as a conjunction of the
form P{ A...APJ. O

Note that there are 2F = 2/ atoms over P, and that they are mutually exclusive

5Inconsistency is possible because of the use of equality. For example, if D includes z1 = z2 as
well as both R(z1, z3) and = R(z2, z3), it is inconsistent.
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and exhaustive. We use Aj,..., Ay» to denote the atoms over P, listed in some
fixed order. For example, there are four atoms over P = {P;, P,}: Ay = P1 A P,
A2:P1/\_|P2, A3:_‘P1/\P2,A4:_|P1/\_|P2.

We now want to define the notion of atomic description which is, roughly speak-
ing, a maximally expressive formula in the unary vocabulary ¥. Fix a natural number
M. A size M atomic description consists of two parts. The first part, the size de-
scription with bound M, specifies exactly how many elements in the domain should
satisfy each atom A;, except that if there are M or more elements satisfying the atom
it only expresses that fact, rather than giving the exact count. More formally, given
a formula &(z) with a free variable x, we take 3™z {(x) to be the sentence that says
there are precisely m domain elements satisfying ¢:

I wé(x) =der Ir oo wm | N | @) A N\ (5 # 2:) | AVY(EQY) = Vily = 2))
i i

Similarly, we define 32™z £(z) to be the formula that says that there are at least m
domain elements satisfying &:

Elzmxg(x) —def 3.1‘1 oo Ty /\ €($l) A /\(l‘] 75 .’131)
i VED)

DEFINITION 3.3. A size description with bound M (over P) is a conjunction of
2Pl formulas: for each atom A; over P, it includes either 32M g A;(z) or a formula
of the form 3™x A;(x) for some m < M. 0

The second part of an atomic description is a complete description that specifies
the properties of constants and free variables.

DEFINITION 3.4. A size M atomic description (over ¥ and X') is a conjunction
of:

e q size description with bound M over P, and
e a complete description over ¥ and X. ]

Note that an atomic description is a finite formula, and there are only finitely
many size M atomic descriptions over ¥ and X (for fixed M). For the purposes
of counting atomic descriptions (as we do in §3.4), we assume some arbitrary but
fixed ordering of the conjuncts in an atomic description. Under this assumption,
we cannot have two distinct atomic descriptions that differ only in the ordering of
conjuncts. Given this, it is easy to see that atomic descriptions are mutually exclusive.
Moreover, atomic descriptions are exhaustive—the disjunction of all consistent atomic
descriptions of size M is valid.

Ezxample 3.5. Consider the following size description ¢ with bound 4 over P =
{Pl, PQ}Z

Ay () A FPa Ag(x) A F242 Az(x) A F240 Ag().

Let @ = {Py, Pa,c1,c2,c3}. It is possible to augment o into an atomic description in
many ways. For example, one consistent atomic description v, of size 4 over ¥ and
() (no free variables) is:%

oA AQ(Cl) A A3(02) AN A3(63) ANecy #coNep # 3 ANes = cs3.

SIn our examples, we use the commutativity of equality in order to avoid writing down certain
superfluous disjuncts. In this example, for instance, we do not write down both ¢1 # c2 and ¢c2 # c3.
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On the other hand, the atomic description
oA Al(Cl) A Al(CQ) A A3(63) A C1 7é C2 AN C1 7£ C3 A Co 7é C3

is an inconsistent atomic description, since o dictates that there is precisely one
element in the atom A;, whereas the second part of the atomic description implies
that there are two distinct domain elements in that atom. |
As we explained, an atomic description is, intuitively, a maximally descriptive
sentence over a unary vocabulary. The following theorem formalizes this idea by
showing that each unary formula is equivalent to a disjunction of atomic descriptions.
For a given M and set X of variables, let ‘A%/L v be the set of consistent atomic
descriptions of size M over ¥ and X.
DEFINITION 3.6. Let d(§) denote the depth of quantifier nesting in £&. We define
d(&) by induction on the structure of € as follows:
e d(&) =0 for any atomic formula &,
o d(=§) = d(¢),
o d(&§1 N&2) =d(&1 V E2) = max(d(§1),d(82)),
o d(Vy&) =d(Iy) =d(§) + 1. 0
THEOREM 3.7. If¢ is a formula in L(P) whose free variables are contained in X,
and M > d(&) + |C| + |X|, then there exists a set of atomic descriptions AE'I’ - A]\'II/I,X
such that £ is equivalent to \/wEAg’ .

Proof. We proceed by a straightforward induction on the structure of £&. We
assume without loss of generality that £ is constructed from atomic formulas using
only the operators A, —, and 3.

First suppose that £ is an atomic formula. That is, £ is either of the form P(z) or
of the form z = 2/, for 2,2’ € CUX. In this case, either the formula ¢ or its negation
appears as a conjunct in each atomic description ¢ € A%I,ﬁ' Let Ag’ be those atomic
descriptions in which £ appears as a conjunct. Clearly, £ is inconsistent with the
remaining atomic descriptions. Since the disjunction of the atomic descriptions in
AJ‘I\’L y 1s valid, we obtain that £ is equivalent to \/1/“E AY .

If £ is of the form & A &, then by the induction hypothesis, & is equivalent
to the disjunction of a set .Ag’i - .A%’/[)X, for i = 1,2. Clearly £ is equivalent to the
disjunction of the atomic descriptions in .Ag’l ﬂAg’z. (Recall that the empty disjunction
is equivalent to the formula false.)

If £ is of the form —¢’ then, by the induction hypothesis, £’ is equivalent to the
disjunction of the atomic descriptions in A‘g’,. It is easy to see that £ is the disjunction
of the atomic descriptions in A%, = Ay,  — A

Finally, we consider the case that £ is of the form Jy ¢’. Recall that M > d(§) +
IC|+]X|. Since d(¢') = d(£) —1, it is also the case that M > d(¢')+|C|+|XU{y}|. By
the induction hypothesis, £’ is therefore equivalent to the disjunction of the atomic
descriptions in Ag’,. Clearly ¢ is equivalent to Jy V¢ A%, 1, and standard first-order

reasoning shows that 3y V¢ 4% 1 is equivalent to V¢ 45 Jy 1. Since Af, C AY, XULy}
El g/ k)

it suffices to show that for each atomic description v € 'AJ\%/I, XUy} Jy 1 is equivalent

to an atomic description in A} .

Consider some 9 € AJ‘I\’L xufy}> We can clearly pull out of the scope of Jy all the
conjuncts in ¢ that do not involve y. It follows that Jy 1) is equivalent to ¢’ A Jy ",
where ¥ is a conjunction of A(y), where A is an atom over P, and formulas of the
form y = z and y # 2. It is easy to see that v’ is a consistent atomic description over ¥
and X of size M. To complete the proof, we now show that ¢’ A3y )" is equivalent to
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1'. There are two cases to consider. First suppose that 1" contains a conjunct of the
form y = z. Let ¥"'[y/z] be the result of replacing all free occurrences of y in ¥” by z.
Standard first-order reasoning (using the fact that ¢[y/z] has no free occurrences of
y) shows that 9" [y/z] is equivalent to Jy )" [y/z], which is equivalent to Jy)”. Since
1 is a complete atomic description which is consistent with 1", it follows that each
conjunct of ¢"[y/z] (except z = z) must be a conjunct of ¢, so ¢’ implies ¥"'[y/z].
It immediately follows that v’ is equivalent to ¥’ A Jy " in this case. Now suppose
that there is no conjunct of the form y = z in ", In this case, Jy 1" is certainly true
if there exists a domain element satisfying atom A different from the denotations of
all the symbols in X UC. Notice that 1 implies that there exists such an element,
namely, the denotation of y. However, 9’ must already imply the existence of such
an element since 1)’ must force there to be enough elements satisfying A to guarantee
the existence of such an element. (We remark that it is crucial for this last part of
the argument that M > |X|+ 1+ |C|.) Thus, we again have that ¢’ is equivalent
to ¢’ A Jy . Tt follows that Jy 1) is equivalent to a consistent atomic description in
A\J%L v, hamely ¢, as required. O

For the remainder of this paper we will be interested in sentences. Thus, we
restrict attention to atomic descriptions over ¥ and the empty set of variables. More-
over, we assume that all formulas mentioned are in fact sentences, and have no free
variables.

DEFINITION 3.8. For U = P UC, and a sentence & € L(V), we define Ag’ to
be the set of consistent atomic descriptions of size d(§) + |C| over U such that & is
equivalent to the disjunction of the atomic descriptions in AY. ]

It will be useful for our later results to prove a simpler analogue of Theorem 3.7 for
the case where the sentence & does not use equality or constant symbols. A simplified
atomic description over P is simply a size description with bound 1. Thus, it consists
of a conjunction of 2!PI formulas of the form 32'x A;(x) or 3z A;(x), one for each
atom over P. Using the same techniques as those of Theorem 3.7, we can prove the
following theorem.

THEOREM 3.9. If &£ € L7 (P), then £ is equivalent to a disjunction of simplified
atomic descriptions over P.

Proof. The proof is left to the reader. O

3.2. Named elements and model descriptions. Recall that we are attempt-
ing to divide the worlds satisfying 6 into classes such that:
e ¢ is uniform in each class, and
e the relative weight of the classes is easily computed.
In the previous section, we defined the concept of atomic description, and showed that
a sentence 6 € L(¥) is equivalent to some disjunction of atomic descriptions. This
suggests that atomic descriptions might be used to classify models of 6. Liogon’kii
[31] has shown that this is indeed a successful approach, as long as we consider lan-
guages without constants and condition only on sentences that do not use equality. In
Theorem 3.9 we showed that, for such languages, each sentence is equivalent to the dis-
junction of simplified atomic descriptions. The following theorem, due to Liogon’kii,
says that classifying models according to which simplified atomic description they
satisfy leads to the desired uniformity property. This result will be a corollary of a
more general theorem that we prove later.
PROPOSITION 3.10. [31] Suppose that C = (. If p € L(P) and ¢ is a consistent
simplified atomic description over P, then Pry (¢ | 1) is either 0 or 1.
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If C # 0, then we do not get an analogue to Proposition 3.10 if we simply partition
the worlds according to the atomic description they satisfy. For example, consider
the atomic description 1, from Example 3.5, and the sentence ¢ = R(c1, ¢1) for some
binary predicate R. Clearly, by symmetry, Pr (¢ | ¢.) = 1/2, and therefore ¢ is not
uniform over the worlds satisfying ¥,. We do not even need to use constant symbols,
such as c1, to construct such counterexamples. Recall that the size description in ),
included the conjunct 3'z A;(z). So if ¢’ = Jx (A1(z) A R(x,z)) then we also get
Pl (¢ | ) = 1/2.

The general problem is that, given 1., ¢ can refer “by name” to certain domain
elements and thus its truth can depend on their properties. In particular, ¢ can refer to
domain elements that are denotations of constants in C as well as to domain elements
that are the denotations of the “fixed-size” atoms—those atoms whose size is fixed by
the atomic description. In the example above, we can view “the x such that A;(z)”
as a name for the unique domain element satisfying atom A;. In any model of v, we
call the denotations of the constants and elements of the fixed-size atoms the named
elements of that model. The discussion above indicates that there is no uniformity
theorem if we condition only on atomic descriptions, because an atomic expression
does not fix the denotations of the nonunary predicates with respect to the named
elements. This analysis suggests that we should augment an atomic description with
complete information about the named elements. This leads to a finer classification of
models which does have the uniformity property. To define this classification formally,
we need the following definitions.

DEFINITION 3.11. The characteristic of an atomic description ¥ of size M is a
tuple Cw Of the form <(f17 gl)v SRR (f2\7’\ ) 9ol Pl )>7 where

o fi =m if exactly m < M domain elements satisfy A; according to 1,

o fi =x if at least M domain elements satisfy A; according to i,

e g; is the number of distinct domain elements which are interpretations of
elements in C that satisfy A; according to 1. a

Note that we can compute the characteristic of 1) immediately from the syntactic
form of .

DEFINITION 3.12. Suppose Cy = ((f1,91),-- -, (farr1, gaim1)) is the characteristic
of . We say that an atom A; is active in ¢ if f; = *; otherwise A; is passive. Let
A1) be the set {i : A; is active in ¥}. 0

We can now define named elements.

DEFINITION 3.13. Given an atomic description 1 and a model W of v, the
named elements in W are the elements satisfying the passive atoms and the elements
that are denotations of constants.

The number of named elements in any model of ¥ is

v(y) = Z gi + Z fis

i€A(Y) igA(Y)

where Cy = ((f1,91),- - -5 (fair1, g2171)), as before. o

As we have discussed, we wish to augment 1 with information about the named
elements. We accomplish this using the following notion of model fragment which is,
roughly speaking, the projection of a model onto the named elements.

DEFINITION 3.14. Let ¢v = o A D for a size description o and a complete de-
scription D over U. A model fragment V for 1 is a model over the vocabulary ® with
domain {1,...,v(¢)} such that:

e V satisfies D, and
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o V satisfies the conjuncts in o defining the sizes of the passive atoms. D

We can now define what it means for a model W to satisfy a model fragment V.

DEFINITION 3.15. Let W be a model of ¥, and let iy,. .., i, € {1,...,N} be
the named elements in VW, where iy < iz < -+ <'i,y). The model W is said to satisfy
the model fragment V if the function F(j) = i; from the domain of V to the domain
of W is an isomorphism between V and the submodel of W formed by restricting to
the named elements. O

Example 3.16. Consider the atomic description v, from Example 3.5. Its charac-
teristic Cy, is ((1,0), (3,1), (x,1), (*,0)). The active atoms are thus A3 and A4. Note
that g3 = 1 because co and c3 are constrained to denote the same element. Thus, the
number of named elements v(1),) in a model of ¢, is 1 + 3 + 1 = 5. Therefore each
model fragment for v, will have domain {1,2,3,4,5}. The elements in the domain
will be the named elements; these correspond to the single element in Aq, the three
elements in A,, and the unique element denoting both ¢o and c¢3 in As.

Let ® be { Py, P, c1,¢2, c5, R} where R is a binary predicate symbol. One possible
model fragment V, for i, over ® gives the symbols in ® the following interpretation:

c‘f* =4, cy" =3, cg* =3,

PV =1{1,2,4,5}, Py =1{1,3}, RV ={(1,3),(3,4)}.

It is easy to verify that V, satisfies the properties of the constants as prescribed by
the description D in 9, as well as the two conjuncts 3'x A;(x) and F3x Ay(x) in the
size description in ..

Now, let W be a world satisfying 1., and assume that the named elements in
W are 3,8,9,14,17. Then W satisfies V, if this 5-tuple of elements has precisely the
same properties in W as the 5-tuple 1,2, 3,4,5 does in V. O

Although a model fragment is a semantic structure, the definition of satisfaction
just given also allows us to regard it as a logical assertion that is true or false in any
model over ® whose domain is a subset of the natural numbers. In the following,
we use this view of a model description as an assertion frequently. In particular,
we freely use assertions which are the conjunction of an ordinary first-order 1 and
a model fragment ), even though the result is not a first-order formula. Under this
viewpoint it makes perfect sense to use an expression such as Pri, (¢ | ¥ A V).

DEFINITION 3.17. A model description augmenting ¥ over the vocabulary ® is
a conjunction of 1 and a model fragment V for 1 over ®. Let M® (1)) be the set of
model descriptions augmenting 1. (If ® is clear from context, we omit the subscript
and write M(3) rather than M®(1).) D

It should be clear that model descriptions are mutually exclusive and exhaustive.
Moreover, as for atomic descriptions, each unary sentence 6 is equivalent to some
disjunction of model descriptions. From this, and elementary probability theory, we
conclude the following fact, which forms the basis of our techniques for computing
asymptotic conditional probabilities.

PROPOSITION 3.18. For any ¢ € L(®) and 6 € L(T)

Yo=Y Y Pl(plwAY) PrL@AV]6),

PEAY (YAV)EM(Y)

U)

if all limits exist.
As we show in the next section, model descriptions have the uniformity property
so the first term in the product will always be either 0 or 1.
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It might seem that the use of model fragments is a needless complication and
that any model fragment, in its role as a logical assertion, will be equivalent to some
first-order sentence. Consider the following definition.

DEFINITION 3.19. Let n = v(v). The complete description capturing V, denoted
Dy, is a formula that satisfies the following:”

e Dy is a complete description over ® and the variables {x1,...,x,} (see Def-
inition 3.1),

o for each i # j, Dy contains a conjunct x; # x;, and

o V satisfies Dy when i is assigned to x; for eachi=1,... n. 0

Example 3.20. The complete description Dy, capturing the model fragment
V. from the previous example has conjuncts such as Pi(x1), —Pi(x3), R(x1,x3),
—R(x1,x9), and x4 = ¢;. 0

The distinction between a model fragment and the complete description capturing
it is subtle. Clearly if a model satisfies V, then it also satisfies 3x1,...,z, Dy. The
converse is not necessarily true. A model fragment places additional constraints on
which domain elements are denotations of the constants and passive atoms. For ex-
ample, a model fragment might entail that, in any model over the domain {1,..., N},
the denotation of constant c¢; is less than that of ¢;. Clearly, no first-order sentence
can assert this. The main implication of this difference is combinatorial; it turns out
that counting model fragments (rather than the complete descriptions that capture
them) simplifies many computations considerably. Although we typically use model
fragments, there are occasions where it is important to remain within first-order logic
and use the corresponding complete descriptions instead. For instance, this is the case
in the next subsection. Whenever we do this we will appeal to the following result,
which is easy to prove.

PROPOSITION 3.21. For any ¢ € L(®) and model description ¥ NV over ®, we
have

Pri(p | ¥ AV) =Pri (o] ¥ ATz, ... 2 Dy).

Proof. The proof is left to the reader. O

3.3. A conditional 0-1 law. In the previous section, we showed how to par-
tition # into model descriptions. We now show that ¢ is uniform over each model
description. That is, for any sentence ¢ € L£(®) and any model description ¢ A V,
the probability Pry (¢ | ¥ AV) is either 0 or 1. The technique we use to prove this is
a generalization of Fagin’s proof of the 0-1 law for first-order logic without constant
or function symbols [13]. This result states that if ¢ is a first-order sentence in a
vocabulary without constant or function symbols, then Pr¥ (¢) is either 0 or 1.% It
is well known that we can get asymptotic probabilities that are neither 0 nor 1 if we
use constant symbols, or if we look at general conditional probabilities. However, in
the special case where we condition on a model description there is still a 0-1 law.
Throughout this section let ¥ AV be a fixed model description with at least one active
atom, and let n = v(1)) be the number of named elements according to .

As we said earlier, the proof of our 0-1 law is based on Fagin’s proof. Like Fagin,
our strategy involves constructing a theory T which, roughly speaking, states that

"Note that there will, in general, be more than one complete description capturing V. We choose
one of them arbitrarily for Dy,.

8 As we noted in the introduction, the 0-1 law was first proved by Glebskii et al. [18]. However,
it is Fagin’s proof technique that we are using here.
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any finite fragment of a model can be extended to a larger fragment in all possible
ways. We then prove two propositions.

1. T is complete; that is, for each ¢ € L(®), either T = ¢ or T = —p. This

result, in the case of the original 0-1 law, is due to Gaifman [16].

2. For any ¢ € L(®),if T = ¢ then Pri(p | A V) = 1.
Using the first proposition, for any sentence ¢, either T' = ¢ or T |= —¢. Therefore,
using the second proposition, either Pri, (¢ | Y AV) =1 or Pri.(—¢ | p AV) =1. The
latter case immediately implies that Prly (¢ | ¥ AV) = 0. Thus, these two propositions
suffice to prove the conditional 0-1 law.

We begin by defining several concepts which will be useful in defining the theory
T.

DEFINITION 3.22. Let X' D X, let D be a complete description over ® and X,
and let D' be a complete description over ® and X'. We say that D’ extends D if
every conjunct of D is a conjunct of D’. 0

The core of the definition of T is the concept of an extension axiom, which asserts
that any finite substructure can be extended to a larger structure containing one more
element.

DEFINITION 3.23. Let X = {x1,...,x;} for some k, let D be a complete descrip-
tion over ® and X, and let D' be any complete description over ® and X U {xj41}
that extends D. The sentence

le,xg, ey Xy (D = 31’j+1D/)

s an extension axiom. 0

In the original 0-1 law, Fagin considered the theory consisting of all the extension
axioms. In our case, we must consider only those extension axioms whose components
are consistent with 1, and which extend D+y.

DEFINITION 3.24. Given ¥ ANV, we define T to consist of ¢ A 3x1,...,x, Dy
together with all extension axioms

Va1, xo,. .. x5 (D= 3xj41 D)

in which D (and hence D') extends Dy and in which D' (and hence D) is consistent
with 1. |

We have used Dy, rather than V in this definition so that T is a first-order theory.
Note that the consistency condition above is not redundant, even given that the
components of an extension axiom extend D). However, inconsistency can arise only
if D’ asserts the existence of a new element in some passive atom (because this would
contradict the size description in ).

We now prove the two propositions that imply the 0-1 law.

PROPOSITION 3.25. The theory T s complete.

Proof. The proof is based on a result of Lo$ and Vaught [40] which says that
any first-order theory with no finite models, such that all of its countable models
are isomorphic, is complete. The theory T' obviously has no finite models. The fact
that all of its countable models are isomorphic follows by a standard “back and forth”
argument. That is, let & and U’ be countable models of T'. Without loss of generality,
assume that both models have the same domain D = {1,2,3,...}. We must find a
mapping F : D — D which is an isomorphism between U and U’ with respect to ®.

We first map the named elements in both models to each other, in the appropriate
way. Recall that T' contains the assertion 3z, ...,x, Dy. Since U |= T, there must
exist domain elements d1,...,d, € D that satisfy Dy, under the model /. Similarly,
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there must exist corresponding elements df,...,d,, € D that satisfy Dy under the
model U’. We define the mapping F' so that F(d;) = d} for i = 1,...,n. Since Dy
is a complete description over these elements, and the two substructures both satisfy
Dy, they are necessarily isomorphic.

In the general case, assume we have already defined F' over some j elements
{di1,ds,...,d;} € D so that the substructure of U over {ds,...,d;} is isomorphic to
the substructure of U’ over {dy,...,d;}, where d; = F/(d;) for i = 1,...,j. Because
both substructures are isomorphic there must be a description D that is satisfied
by both. Since we began by creating a mapping between the named elements, we
can assume that D extends Dy. We would like to extend the mapping F' so that it
eventually exhausts both domains. We accomplish this by using the even rounds of
the construction (the rounds where j is even) to ensure that U is covered, and the
odd rounds to ensure that U’ is covered. More precisely, if j is even, let d be the first
element in D which is not in {dy,...,d;}. There is a model description D’ extending
D that is satisfied by di,...,d;,d in #. Consider the extension axiom in T" asserting
that any j elements satisfying D can be extended to 7+1 elements satisfying D’. Since
U’ satisfies this axiom, there exists an element d’ in U’ such that di, ..., d}, d’ satisfy
D’. We define F'(d) = d'. It is clear that the substructure of U over {di,...,d;,d} is
isomorphic to the substructure of U" over {dy,...,d},d'}. If j is odd, we follow the
same procedure, except that we find a counterpart to the first domain element (in &’)
which does not yet have a pre-image in /. It is easy to see that the final mapping F’
is an isomorphism between U/ and U/’. O

PROPOSITION 3.26. For any ¢ € L(®), if T |= ¢ then Pris(p | Y AV) = 1.

Proof. We begin by proving the claim for a sentence £ € T. By the construc-
tion of T, £ is either ¢ A 3x1,...,2, Dy or an extension axiom. In the first case,
Proposition 3.21 trivially implies that Pry (£ | ¥ AV) = 1. The proof for the case
that ¢ is an extension axiom is based on a straightforward combinatorial argument,
which we briefly sketch. Recall that one of the conjuncts of v is a size description
o. The sentence o includes two types of conjuncts: those of the form 3"z A(x) and
those of the form 3™z A(z). Let ¢’ be o with the conjuncts of the second type
removed. Let ¢’ be the same as 1 except that ¢’ replaces o. It is easy to show that
Pr¥ (32Mz A(z) | ¢’ AV) = 1 for any active atom A, and so Pr (v | ¥/ A V) = 1.
Since 1 = ', by straightforward probabilistic arguments, it suffices to show that
Pr (¢ | 4/ AV) = 1.

Suppose £ is an extension axiom involving D and D’, where D is a complete
description over X = {z1,...,2z;} and D’ is a description over X U {z; 11} that ex-
tends D. Fix a domain size NV, and some particular j domain elements di,...,d;
that satisfy D. Observe that, since D extends Dy, all the named elements are among
di,...,d;. For a given d & {d1,...,d;}, let B(d) denote the event that di,...,d;,d
satisfies D’, conditioned on ¢’ A'V. The probability of B(d), given that di,...,d;
satisfies D, is typically very small but is bounded away from 0 by some ( inde-
pendent of N. To see this, note that D’ is consistent with ) AV (because D’ is
part of an extension axiom) and so there is a consistent way of choosing how d
is related to dy,...,d; so as to satisfy D’. Then observe that the total number
of possible ways to choose d’s properties (as they relate to di,...,d;) is indepen-
dent of N. Since D extends Dy, the model fragment defined over the elements
di,...,d; satisfies ' A V. (Note that it does not necessarily satisfy 1, which is
why we replaced ¢ with ¢’.) Since the properties of an element d and its relation
to dy,...,d; can be chosen independently of the properties of a different element
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d', the different events B(d), B(d'),... are all independent. Therefore, the proba-
bility that there is no domain element at all that, together with di,...,d;, satisfies
D' is at most (1 — 8)N~J. This bounds the probability of the extension axiom be-
ing false, relative to fixed di,...,d;. There are exactly (IJV ) ways of choosing j ele-
ments, so the probability of the axiom being false anywhere in a model is at most
(ij )(1 — B)N~J. However, this tends to 0 as N goes to infinity. Therefore, the axiom
Vai,...,z; (D = 3xj11 D) has asymptotic probability 1 given ¢’ AV, and therefore
also given ¢ A V.

It remains to deal only with the case of a general formula ¢ € L£(®) such that
T E ¢. By the compactness theorem for first-order logic, if T |= ¢ then there is
some finite conjunction of assertions &1,...,&y, € T such that A", & = ¢. By the
previous case, each such & has asymptotic probability 1, and therefore so does this
finite conjunction. Hence, the asymptotic probability Priy (¢ | ¥ AV) is also 1. O

As outlined above, this concludes the proof of the main theorem of this section,
which we now state.

THEOREM 3.27. For any sentence ¢ € L(P) and model description y AV, Pry (¢ |
Y AV) is either 0 or 1.

Note that if ¢ is a simplified atomic description, then there are no named elements
in any model of ¥. Therefore, the only model description augmenting ¢ is simply
itself. Thus Proposition 3.10, which is Liogon’kii’s result, is a corollary of the above
theorem.

3.4. Computing the relative weights of model descriptions. We now want
to compute the relative weights of model descriptions. It will turn out that certain
model descriptions are dominated by others, so that their relative weight is 0, while all
the dominating model descriptions have equal weight. Thus, the problem of comput-
ing the relative weights of model descriptions reduces to identifying the dominating
model descriptions. There are two factors that determine which model descriptions
dominate. The first, and more significant, is the number of active atoms; the sec-
ond is the number of named elements. Let a(¢) denote the number of active atoms
according to 1.

To compute these relative weights of the model descriptions, we must evaluate
#world%(z/} AV). The following lemma gives a precise expression for the asymptotic
behavior of this function as N grows large.

LEMMA 3.28. Let ¢ be a consistent atomic description of size M > |C| over ¥,
and let ( AN V) € M®(¥).

(a) If a(yp) = 0 and N > v(y), then #worldy (1)) = 0. In particular, this holds

for all N > 2P|,

(b) If a(yp) > 0, then

N ) il
Hworld® (1 A V) ~ <n>aN—”2Zi>zbl<N )

where a = a(y), n = v(y), and b; is the number of predicates of arity i in .

Proof. Suppose that Cy, = ((f1,91),...,(farr1,g2171)) is the characteristic of .
Let W be a model of cardinality N, and let IV; be the number of domain elements in
W satisfying atom A;. In this case, we say that the profile of W is (Ny,..., Ny»|).
Clearly we must have Ny +- -+ Ny = N. We say that the profile (N, ..., Ny») is
consistent with Cy if f; # * implies that N; = f;, while f; = * implies that N; > M.
Notice that if W is a model of 1, then the profile of W must be consistent with Cly.
For part (a), observe that if a(y)) = 0 and N > ). f;, then there can be no
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models of cardinality N whose profile is consistent with C,. However, if a(y) = 0,
then ), f; is precisely v(v). Hence there can be no models of 9 of cardinality N if
N > v(v). Moreover, since v(1) < 2/PIM, the result holds for any N > 2/, This
proves part (a).

For part (b), let us first consider how many ways there are of choosing a world
satisfying ¢ AV with cardinality N and profile (Ny,..., Ny /). To do the count, we
first choose which elements are to be the named elements in the domain. Clearly,
there are (]Z) ways in which this can be done. Once we choose the named elements,
their properties are completely determined by V.

It remains to specify the rest of the properties of the world. Let R be a nonunary
predicate of arity ¢ > 2. To completely describe the behavior of R in a world, we
need to specify which of the N i-tuples over the domain are in the denotation of R.
We have already specified this for those i-tuples all of whose components are named
elements. There are n’ such i-tuples. Therefore, we have N — n' i-tuples left to
specify. Since each subset is a possible denotation, we have 2V ="' possibilities for
the denotation of R. The overall number of choices for the denotations of all nonunary
predicates in the vocabulary is therefore 2%iz20:(N'=n")

It remains only to choose the denotations of the unary predicates for the N/ =
N — n domain elements that are not named. Let i1,...,%, be the active atoms in 1,
and let h; = N;, — g;, for j = 1,...,a. Thus, we need to compute all the ways of
partitioning the remaining N’ elements so that there are h; elements satisfying atom
Aj;; there are (h1 ho / ha) ways of doing this.

We now need to sum over all possible profiles, i.e., those consistent with ¢ A V. If
ij € A(%), then there must be at least M domain elements satisfying A;,. Therefore
Ni, > M, and h; = N;; — g;; > M — g;,. This is the only constraint on h;. Thus, it
follows that

N (N —ni N’
Hworld® (YAV) ~ 3 ( )22i>2b1<w )(h ) )
{h1,....;ha: hat-+ha=N', Vj h;>M—g;,} " 1 la

This is equal to

n

<N> 2Zi22 bi(Niini)S

for
N/
S = .
2 <h1 ha>
{h1,oshat e tha=N', ¥j h;>M—g; }
It remains to get a good asymptotic estimate for S. Notice that
N’ ,
> — oV
hy ... h
{h1,...,ha: hi4-+ha=N"}

since the sum can be viewed as describing all possible ways to assign one of a possible
atoms to each of N’ elements. Our goal is to show that a” is actually a good
approximation for S as well. Clearly S < a’¥ . Let

N/
5= 2 }(hl ha>'

{h1,eishat hy <M, hy+-+he=N’
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Straightforward computation shows that

N/

" Z (h1 ha)

{h1,eeshg: h1<M, hi+-+he=N'}
) > N (N =

B hi)\h2 ... ha

h1=0 {ho,....ha: hottha=N'—hi} >

< — )N
_hzo ™ (a—1)

Similar arguments show that S; < MNM(a — 1)V for all j. It follows that

S > > <h1 N/ ha)—(51+"'+5a)

{h1,...;ha:h1+--+h,=N"'}
> aN/ N aMNM(a— 1)N/ '

Therefore,

S ~ aN/ _ G,N_n,
thus concluding the proof. O

The asymptotic behavior described in this lemma motivates the following defini-
tion.

DEFINITION 3.29. Given an atomic description v over W, let the degree of 1,
written A1), be the pair (a(v),v(v¥)), and let degrees be ordered lexicographically.
We extend this definition to sentences as follows. For 6 € L(V), we define the degree
of 6 over W, written AY(0), to be max,c 4v A(%), and the activity count of 6 to be
a¥(9) (i.e., the first component of A¥(0)). 0

One important conclusion of this lemma justifies our treatment of well-definedness
(Definition 2.2) when conditioning on unary formulas. It shows that if 6 is satisfied
in some “sufficiently large” model, then it is satisfiable over all “sufficiently large”
domains.

LEMMA 3.30. Suppose that 0 € L(V), and M = d(0) + |Cg|. Then the following
conditions are equivalent:

(a) 6 is satisfied in some model of cardinality greater than 21PN,

(b) a¥(0) >0,

(c) for all N > 2IPIM, 6 is satisfiable in some model of cardinality N,

(d) Pry (x| 0) is well defined.

Proof. By definition, 6 is satisfiable in some model of cardinality N iff #world v (6) >
0. We first show that (a) implies (b). If  is satisfied in some model of cardinality
N greater than 2/PIM | then there is some atomic description ¢ € Ag’ such that ¥ is
satisfied in some model of cardinality N. Using part (a) of Lemma 3.28, we deduce
that a (i) > 0 and therefore that a¥(§) > 0. That (b) entails (c) can be verified
by examining the proof of Lemma 3.28. That (c) implies (d) and (d) implies (a) is
immediate from the definition of well-definedness. O

For the case of sentences in the languages without equality or constants, the
condition for well-definedness simplifies considerably.
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COROLLARY 3.31. If0 € L= (P), then Pry (x| 0) is well defined iff 0 is satisfiable.

Proof. The only if direction is obvious. For the other, if 6 is consistent, then it
is equivalent to a nonempty disjunction of consistent simplified atomic descriptions.
Any consistent simplified atomic description has arbitrarily large models. O

We remark that we can extend our proof techniques to show that Corollary 3.31
holds even if C # 0, although we must still require that # does not mention equality.
We omit details here.

For the remainder of this paper, we will consider only sentences # such that
a?(0) > 0.

Lemma 3.28 shows that, asymptotically, the number of worlds satisfying ¢ AV is
completely determined by the degree of ¥. Model descriptions of higher degree have
many more worlds, and therefore dominate. On the other hand, model descriptions
with the same degree have the same number of worlds at the limit, and are therefore
equally likely. This observation allows us to compute the relative weights of different
model descriptions.

DEFINITION 3.32. For any degree 6 = (a,n), let A;P"S be the set of atomic
descriptions ¢ € AJ such that A(y) = 8. For any set of atomic descriptions A’, we
use M(A’) to denote Uye 4 M(¥)). |

THEOREM 3.33. Let 6 € L(V) and AY(0) = 6 > (1,0). Let ¥ be an atomic
description in Ay, and let p NV € M®(1)).

(a) If A(Y) < & then Prio (v AV | 0) =0.

(b) If A(¥) = & then Pre(p AV | 6) = 1/|M2(AY"°)).

Proof. We begin with part (a). Since AY(0) = 6 = (a,n), there must exist some
atomic description ¢’ € Ay with A(y’) = 4. Let ¢/ AV’ be some model description
in M(y).

w _ FHworldy (h A V)
Prv(wav]) = Hworldy (0)

< #world%(d; AV)
N #world%(d;/ AV
)(a(zp))N—u(w)gZizQbiuvtu(w)

N
Ly

AR

n

= O(N"™""(a(y)/a)™).

The last step uses the fact that n and v(y) can be considered to be constant, and
that for any constant k, (JZ) ~ N*/K!. Since A(¢)) < & = (a,n), either a(y)) < a or
a(y) = a and v(¢)) < n. In either case, it is easy to see that N*(¥)="(a(¢))/a)N tends
to 0 as N — oo, giving us our result.

To prove part (b), we first observe that, due to part (a), we can essentially ignore
all model descriptions of low degree. That is:

Hworld% (0) ~ > Hworldy (' A V).
(W' AV EM(AG®)

Therefore,

Hworldy () A V)
Z(wl/\VI)EM(A;I/’S) #U)Orld%(d)/ A V’)

Pry(v AV | 0) =
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(g)aN—"QZizzb"(Ni_”i)

~

N oD isg bi(Ni=nT)
Z(Wv')eM(A;"‘)( )ay 222

1
s MA))

as desired. O
Combining this result with Proposition 3.18, we deduce the following.
THEOREM 3.34. For any ¢ € L(®) and 6 € L(V) such that AY(0) =& > (1,0),

Pri(p|0)= Y Pri(elvAV)/IM(A).
(YAVIEM(AY %)

This result, together with the techniques of the next section, will allow us to compute
asymptotic conditional probabilities.

The results of Liogon’kii are a simple corollary of the above theorem. For an
activity count a, let .A;I"a denote the set of atomic descriptions 1) € Aj such that
a(¥) = a.

THEOREM 3.35. [31] Assume that C =0, p € L(®), 6 € L™ (P), and o (0) =
a>0. Then P& (¢ | 0) = 3, 47 Priv (o | )/1A7].

Proof. By Theorem 3.9, a sentence § € L~ (P) is the disjunction of the simplified
atomic descriptions in AZ;. A simplified atomic description ¥ has no named elements,
and therefore A(y)) = (a(1),0). Moreover, M(3) = {¢} for any 1 € A}. The result
now follows trivially from the previous theorem. O

This calculation simplifies somewhat if ¢ and 6 are both monadic. In this case,
we assume without loss of generality that d(¢) = d(#). (If not, we can replace ¢ with
@ A0 and 6 with § A (¢ V =p).) This allows us to assume that A7,, C Ay, thus
simplifying the presentation.

COROLLARY 3.36. Assume that p,0 € L~ (P), and a”(0) = a > 0. Then
AZR

Pi(e0) = S5
0

Proof. Since ¢ is monadic, ¢ A € is equivalent to a disjunction of the atomic
descriptions AEAQ - AZ;. Atomic descriptions are mutually exclusive; thus, for ¢ €
A, Pris(e | ¢) = 1if ¢ € AL, and Pri (¢ | ) = 0 otherwise. The result then
follows immediately from Theorem 3.35. O

3.5. Asymptotic probabilities for random structures. We now turn our at-
tention to computing asymptotic conditional probabilities using the random-structures
method. There are two cases. In the first, there is at least one nonunary predicate
in the vocabulary. In this case, random structures is equivalent to random worlds, so
that the results in the previous section apply without change.

THEOREM 3.37. If ® # U then for any ¢ € L(®) and 6 € L(V), Pri® (¢ | 0) =
Prio(e|6).

Proof. Since ® # WU, there is at least one nonunary predicate in ® that does not
appear in 6. We can therefore apply Corollary 2.10, and conclude the desired result.
0

Random worlds and random structures differ in the second case, when all predi-
cates are unary, but the absence of high-arity predicates makes this a much simpler
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problem. For the rest of this section, we investigate the asymptotic probability of ¢
given 6 using random structures, for ¢,0 € L£(¥). As discussed earlier, we can assume
without loss of generality that .ASO o CAY.

We will use the same basic technique of dividing the structures satisfying 6 into
classes, and computing the probability of ¢ on each part. In the case of random
structures, however, we partition structures according to the atomic description they
satisfy. That is, our computation makes use of the equation

Prf(p|0) = D Pl (p | )P (v ] 0).
peAY

As for the case of random worlds, we assign weights to atomic descriptions by
counting structures. The following lemma computes #struct}l\’,(w) for an atomic de-
scription . In the case of random worlds, we saw in Lemma 3.28 that certain model
descriptions 1 A V dominate others, based on the activity count a(y) and the num-
ber of named elements v(¢) of the atomic description. The following analogue of
Lemma 3.28 shows that, for the random-structures method, atomic descriptions of
higher activity count «(t)) dominate regardless of the number of named elements.

LEMMA 3.38. Let ¢ be a consistent atomic description of size M > |C| over U.

(a) If a(yp) = 0 and N > v(1p), then #struct () = 0. In particular, this holds

for N > 2IPIpr.
i Na()—1

(b) If a(yp) > 0 then #struct y(¢) ~ Ta@=T

Proof. Part (a) follows immediately from Lemma 3.28(a), since #struct y () = 0
iff #worldy (1) = 0.

We now proceed to show part (b). Suppose that Cy = ((f1,91),---, (farrl, garm1))
is the characteristic of 1. Let S be a structure of cardinality N. For any of the models
in 8, let N; be the number of domain elements satisfying atom A; (because S is an
isomorphism class, IV; must be the same for all worlds in the class). As before, we say
that the profile of S is (N1, ..., Ny»|). Clearly we must have Ny + --- + Nypj = N.
Recall that the profile (Ny,..., Ny»|) is consistent with Cy if f; # * implies that
N; = f;, while f; = % implies that N; > M. Notice that if S is a structure of 1,
then the profile of S must be consistent with Cy. In fact, there is a unique structure
consistent with ¢ with cardinality N and profile (Ni,..., Ny»/). This is because
a structure is determined by the number of elements in each atom, the assignment
of constants to atoms, and the equality relations between the constants. The first
part is determined by the profile, while the second and third are determined by .
It therefore remains to count only the number of profiles consistent with Cy. Let
N =N — Zz‘ng(w) fi, and let 41,...,4,, a = a(¢), be the active components of Cy.
We want to compute

={(Ni,,...,Ni,): Niy+---+N;, =N', Vj N;, > M} .
Notice that7 since ;o 4y fi and a are constants,

N 4+a—1 (N/)afl Na—1
a—1 ) Tla—1! T (a—1)°
As in the proof of Lemma 3.28, let S; = [{(Ny,,..., Ni,) : Ny +---+N;, = N', N, <

M}|. Tt is easy to see that

|{< 11v""Nia>: Ni1+"'+Nia:Nl}|:<

ZH igs-- s Nig) t Nig -+ Ny, = N' = N, }|

< M(N Y2
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and similarly for all other Sj. Therefore,

> (N/;_a . 1) — aM(N')"~2
g/ i —aM(N')*~?
Nafl

- (a—1)!°

It follows that S ~ Tl)" as desired. O

COROLLARY 3.39. If0 € L(¥), a¥(0) =a >0, and ¢ € A}, then
(a) if a(v) < a then Pry; ‘P(w | 6) =0,
(b) if () = a then PriY (¢ | 6) = 1/]435°|.
Proof. Using Lemma 3. 38 we can deduce that
NW !/ (a(y) — 1)!
Ypear NI (a(y) — 1)1

As in the proof of Theorem 3.33, we can deduce that if a(y) < a = a¥(), then
Prs¥ (¢ | ) = 0. Therefore

#structy (0) ~ Z #structy ().

YEAY®

Priy’ (v ] 0) ~

Since #stmct%(d/ ) is asymptotically the same for all ¢’ with the same activity count
a(y'), we deduce that if a(¢)) = a, then Pri¥ (¢ | 6) = 1/|.A\I' a| O
We can now complete the computation of the value of Pr2.¥ (o | 6) for the case of

unary ¢, 6.
THEOREM 3.40. If ¢,0 € L(¥) and a = a¥(0) > 0, then

A
Pry (<p | 0) = L .
|Ag

Proof. Recall that

Prl (o] 0) = > Prl (e | v)Pr¥ (4] 0).
weA‘P

We have already computed Pr2¥ (¢ | 6). It remains to compute Pri¥ (¢ | ¢) for
an atomic description ©. Recall that ¢ A € is equivalent to a disjunction of the
atomic descriptions A:f,\a - Ag’, and that atomic descriptions are mutually exclusive.

Therefore, for 1) € AY, it is easy to see that Pri¥(p | ¢) = 1if ¢ € Ag/\e and
Prs¥(p | 1) = 0 otherwise. Since Pr%.¥ (¢ | 0) is 0 except if ) € A;I/’a, it follows from
Corollary 3.39 that

A
Prif(p]0) = —%
A1
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as desired. O

Recall that if & € £7(P), then AP (&) = (a¥(€),0). Thus, comparing Corol-
lary 3.36 with Theorem 3.40 shows that, for formulas in £~ (P), random worlds and
random structures are the same.

COROLLARY 3.41. If ¢, 0 € L™ (P), then for any ¥ 2 P, we have Pra (¢ | 0) =
P2 (| 0).

Note that, although in general the asymptotic conditional probability in the case
of random structures may depend on the vocabulary, for formulas without constant
symbols or equality, it does not.

COROLLARY 3.42. If 9,0 € L™ (P) and Porg € U N, then Pri¥(p | 0) =

Pr (o | 6) = Pri(e] 6).

4. Complexity analysis. In this section we investigate the computational com-
plexity of problems associated with asymptotic conditional probabilities. In fact, we
consider three problems: deciding whether the asymptotic probability is well defined,
computing it, and approximating it. As we did in the previous section, we begin with
the case of random worlds. As we shall see, the same complexity results also hold for
the random-structures case (even though, as we have seen, the actual values being
computed can differ between random structures and random worlds). The analysis
for the unary case of random structures is given in §4.6.

Our computational approach is based on Theorem 3.34, which tells us that

w 1 w
MAT o Zoss

The basic structure of the algorithms we give for computing Pr¥ (¢ | 8) is simply to
enumerate model descriptions ) A V and, for those of the maximum degree, compute
the conditional probability Pri (¢ | ©» A V). In §4.1 we show how to compute this
latter probability.

The complexity of computing asymptotic probabilities depends on several factors:
whether the vocabulary is finite, whether there is a bound on the depth of quantifier
nesting, whether equality is used in #, whether nonunary predicates are used, and
whether there is a bound on predicate arities. If we consider a fixed and finite vocab-
ulary there are just two cases: if there is no bound on the depth of quantifier nesting
then computing probabilities is PSPACE-complete; otherwise the computation can be
done in linear time. The case in which the vocabulary is not fixed, which is the case
more typically considered in complexity theory, is more complicated. The problem of
computing probabilities is complete for the class #EXP (defined below) if either (a)
equality is not used in 6 and there is some fixed bound on the arity of predicates that
can appear in @, or (b) all predicates in ¢ are unary. Weakening these conditions in
any way—allowing equality while maintaining any arity bound greater than one, or
allowing unbounded arity even without using equality in 6—gives the same complex-
ity as the general case (which is complete for a class we call #TA(EXP, LIN), defined
later). All these results for the case of an unbounded vocabulary use formulas with
quantifier depth 2. As suggested in the introduction, the complexity of the problem
drops in the case of formulas of depth 1. A detailed analysis for this case can be found
in [27].

4.1. Computing the 0-1 probabilities. The method we give for computing
Pr (¢ | WAV) is an extension of Grandjean’s algorithm [20] for computing asymptotic
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probabilities in the unconditional case. For the purposes of this section, fix a model
description ¥ AV over ®. In our proof of the conditional 0-1 law (§3.3), we defined
a theory T corresponding to ¥» A V. We showed that T is a complete and consistent
theory, and that ¢ € £(®) has asymptotic probability 1 iff T = . We therefore need
an algorithm that decides whether T' = ¢.

Grandjean’s original algorithm decides whether Pr (¢) is 0 or 1 for a sentence
¢ with no constant symbols. For this case, the theory T consists of all possible ex-
tension axioms, rather than just the ones involving model descriptions extending Dy,
and consistent with 1 (see Definition 3.24). The algorithm has a recursive structure,
which at each stage attempts to decide something more general than whether T' |= .
It decides whether T' = D = &, where

e D is a complete description over ® and the set X; = {z1,...,x;} of variables,

and

o { € L(D) is a formula whose only free variables (if any) are in Xj.
The algorithm begins with j = 0. In this case, D is a complete description over Xj and
®. Since ¢ contains no constants and Xj is the empty set, D must in fact be the empty
conjunction, which is equivalent to the formula true. Thus, for j =0, T = D = ¢ iff
T | . While j = 0 is the case of real interest, the recursive construction Grandjean
uses forces us to deal with the case j > 0 as well. In this case, the formula D = ¢
contains free variables; these variables are treated as being universally quantified for
purposes of determining if T = D = ¢.

Our algorithm is the natural extension to Grandjean’s algorithm for the case of
conditional probabilities and for a language with constants. The chief difference is
that we begin by considering T' = Dy, = ¢ (where V is the model fragment on which

we are conditioning). Suppose Dy uses the variables 1, ..., z,, where n = v(¢)). We
have said that T = Dy = ¢ is interpreted as T = Vaq,...,x, (Dy = ¢), and this is
equivalent to T' = (3x1,...,x, Dy) = ¢ because ¢ is closed. Because 3z, ...,z, Dy

is in T by definition, this latter assertion is equivalent to T | ¢, which is what we
are really interested in.

Starting from the initial step just outlined, the algorithm then recursively exam-
ines smaller and smaller subformulas of ¢, while maintaining a description D which
keeps track of any new free variables that appear in the current subformula. Of course,
D will also extend Dy, and will be consistent with .

We now describe the algorithm in more detail. Without loss of generality, we
assume that all negations in ¢ are pushed in as far as possible, so that only atomic
formulas are negated. We also assume that ¢ does not use the variables x1, x2, x3, . . ..
The algorithm proceeds by induction on the structure of the formula, until the base
case—an atomic formula or its negation—is reached. The following equivalences form
the basis for the recursive procedure:

1. If £ is of the form & or —=¢’ for an atomic formula &', then T = D = £ iff £ is
a conjunct of D.
2. If £ is of the form & A&y, then T E D= (iff TE D= ¢ and T E D = &.
If ¢ is of the form & V& then TE D =i TED =& or T = D = &.
4. If ¢ is of the form Jy &’ and D is a complete description over ® and {z1,...,z;},
then T =D = £ iff T = D' = €'[y/xj41] for some complete description D’
over ® and {x1,...,z;41} that extends D and is consistent with 1.
5. If € is of the form Vy ' and D is a complete description over ® and {z1,...,z;},
then T =D = {iff T |= D' = ¢'[y/x;41] for all complete descriptions D’

@«
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over ® and {x1,...,x;41} that extend D and are consistent with .

The proof that this procedure is correct is based on the following proposition,
which can easily be proved using the same techniques as for Proposition 3.25.

PROPOSITION 4.1. If D is a complete description over ® and X and £ € L(D) is a
formaula all of whose free variables are in X, then either T =D = & or T = D = —¢.

Proof. We know that T" has no finite models. By the Lowenheim—Skolem Theorem
[12, p. 141], we can, without loss of generality, restrict attention to countably infinite
models of T

Suppose X = {1, 2, ..., 2, } and that T f= D = £. Then there is some countable
model U of T, and j domain elements {d,...,d;} in the domain of I, which satisfy
DA=¢. Consider another model U’ of T', and any {dj, ..., d}} in the domain of U’ that
satisfy D. Because D is a complete description, the substructures over {dy,...,d;}
and {d},...,d;} are isomorphic. We can use the back and forth construction of
Proposition 3.25 to extend this to an isomorphism between U and U’. But then it
follows that {d1,..., d;} must also satisfy —&. Since U was arbitrary, T = D = —¢.
The result follows. O

The following result shows that the algorithm above gives a sound and complete
procedure for determining whether T' = Dy, = .

THEOREM 4.2. Each of the equivalences in steps (1)—(5) above is true.

Proof. The equivalences for steps (1)—(3) are easy to show, using Proposition 4.1.
To prove (4), consider some formula D = Jy&’, where D is a complete description
over x1,...,x; and the free variables of £ are contained in {xi1,...,2;}. Let U be
some countable model of T', and let di,...,d; be elements in ¢/ that satisfy D. If U
satisfies D = Jy &’ then there must exist some other element d;; that, together with
di,...,d;, satisfies £. Consider the description D’ over 1,...,x,41 that extends D
and is satisfied by di,...,dj41. Clearly T & D' = =¢'[y/z;11] because this is false
in U. So, by Proposition 4.1, T' = D" = {'[y/x;41] as required.

For the other direction, suppose that T = D’ = ¢’[y/xj41] for some D’ extending
D. It follows that T' = 3z, 11 D" = Jx;41&[y/xj41]. The result follows from the
observation that T' contains the extension axiom Vz1,...,z;(D = 3,41 D’).

The proof for case (5) is similar to that for case (4), and is omitted. O

We analyze the complexity of this algorithm in terms of alternating Turing ma-
chines (ATMs) [5]. Recall that in an ATM, the nonterminal states are classified into
two kinds: universal and existential. Just as with a nondeterministic TM, a nonter-
minal state may have one or more successors. The terminal states are classified into
two kinds: accepting and rejecting. The computation of an ATM forms a tree, where
the nodes are instantaneous descriptions (IDs) of the machine’s state at various points
in the computation, and the children of a node are the possible successor IDs. We
recursively define what it means for a node in a computation tree to be an accepting
node. Leaves are terminal states, and a leaf is accepting just if the machine is in an
accepting state in the corresponding ID. A node whose ID is in an existential state is
accepting iff at least one of its children is accepting. A node whose ID is in a univer-
sal state is accepting iff all of its children are accepting. The entire computation is
accepting if the root is an accepting node.

We use several different measures for the complexity of an ATM computation.
The time of the computation is the number of steps taken by its longest computation
branch. The number of alternations of a computation of an ATM is the maximum
number of times, over all branches, that the type of state switched (from universal to
existential or vice versa). The number of branches is simply the number of distinct
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computation paths. The number of branches is always bounded by an exponential in
the computation time, but sometimes we can find tighter bounds.

Grandjean’s algorithm, and our variant of it, is easily implemented on an ATM.
Each inductive step corresponding to a disjunction or an existential quantifier can be
implemented using a sequence of existential guesses. Similarly, each step correspond-
ing to a conjunction or a universal quantifier can be implemented using a sequence of
universal guesses. Note that the number of alternations is at most |¢|. We must ana-
lyze the time and branching complexity of this ATM. Given ¢ AV, each computation
branch of this ATM can be regarded as doing the following. It

(a) constructs a complete description D over the variables x1, ..., 2,4 that ex-
tends Dy and is consistent with 1, where n = v(¢) and k < |p|/2 is the
number of variables appearing in ¢,

(b) chooses a formula & or —¢, where ¢ is an atomic subformula of ¢ (with free
variables renamed appropriately so that they are included in {1, ..., Zn ik }),
and

(c) checks whether T =D = €.

Generating a complete description D requires time |D|, and if we construct D by
adding conjuncts to Dy, then it is necessarily the case that D extends Dy. To check
whether D is consistent with 1, we must verify that D does not assert the exis-
tence of any new element in any finite atom. Under an appropriate representation
of ¢ (outlined after Corollary 4.4 below), this check can be done in time O(|D|2!7!).
Choosing an atomic subformula & of ¢ can take time O(|¢p]|). Finally, checking whether
T E D = £ can be accomplished by simply scanning |D|. It is easy to see that we
can do this without backtracking over |D|. Since |D| > £, it can be done in time
O(|D]). Combining all these estimates, we conclude that the length of each branch is
O(ID[2P! + |g)).

Let D be any complete description over ® and X. Without loss of generality, we
assume that each constant in ® is equal to (at least) one of the variables in X. To
fully describe D we must specify, for each predicate R of arity ¢, which of the ¢-tuples
of variables used in D satisfy R. Thus, the number of choices needed to specify the
denotation of R is bounded by |X|? where p is the maximum arity of a predicate in
®. Therefore, |D| is O(|®||X|?). In the case of the description D generated by the
algorithm, X is {z1,...,Zn, Tnit1,- -, Tntk ), and n+k is less than n + |p|. Thus, the
length of such a description D is O(|®|(n + |¢|)?).

Using this expression, and our analysis above, we see that the computation time
is certainly O(|®|2/7(n + |¢[)?). In general, the number of branches of the ATM
is at most the number of complete descriptions multiplied by the number of atomic
formulas in ¢. The first of these terms can be exponential in the length of each
description. Therefore the number of branches is O(|p|2/®!(H#D”) = 20(®I(n+le])?),
We can, however, get a better bound on the number of branches if all predicates in
® are unary (i.e., if p = 1). In this case, ¢ already specifies all the properties of the
named elements. Therefore, a complete description D is determined when we decide,
for each of the at most k variables in D not corresponding to named elements, whether
it is equal to a named element and, if not, which atom it satisfies. It follows that there
are at most (2%l +n)* complete descriptions in this case, and so at most |¢|(2/®I+n)*
branches. Since k < |¢|/2, the number of branches is certainly O((2/®/4+-n)l¢1)if p = 1.
We summarize this analysis in the following theorem, which forms the basis for almost
all of our upper bounds in this section.

THEOREM 4.3. There exists an alternating Turing machine that takes as input a
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finite vocabulary ®, a model description ¥ AV over ®, and a formula ¢ € L(P), and
decides whether Pr (o | 1 AV) is 0 or 1. The machine uses time O(|®|2/P(v(¢) +
l])?) and O(|p|) alternations, where p is the mazimum arity of predicates in ®. If
p > 1, the number of branches is 20URIWWIHD") " If p = 1, the number of branches
is O((21%1 + v())#!).

An alternating Turing machine can be simulated by a deterministic Turing ma-
chine which traverses all possible branches of the ATM, while keeping track of the
intermediate results necessary to determine whether the ATM accepts or rejects. The
time taken by the deterministic simulation is linear in the product of the number of
branches of the ATM and the time taken by each branch. The space required is the
logarithm of the number of branches plus the space required for each branch. In this
case, both these terms are O(|D| + |¢]), where D is the description generated by the
machine. This allows us to prove the following important corollary.

COROLLARY 4.4. There exists a deterministic Turing machine that takes as input
a finite vocabulary ®, a model description ¥ AV over ®, and a formula ¢ € L(D),
and decides whether Pry (o | v AV) is 0 or 1. If p > 1 the machine uses time
201w HeD") and space O(|®|(v(h) + |@|)?). If p = 1 the machine uses time
20Ueli®log(()+1) gnd space O(|||®|log(v(1) + 1)).

4.2. Computing asymptotic conditional probabilities. Our overall goal is
to compute Pry, (¢ | 0) for some ¢ € L(®) and 0 € L(¥). To do this, we enumerate
model descriptions over ® of size d(6) + |C|, and check which are consistent with 6.
Among those model descriptions that are of maximal degree, we compute the fraction
of model descriptions ¢ AV for which Pr& (¢ | ¥ A V) is 1.

More precisely, let 59 = AY(6). Theorem 3.34 tells us that

w ]' w
Pri(pl0)= —3s 3. Prl(p|daV).
M(AT)]
(AV)EM(A*?)

The procedure Compute-Prs,, described in Fig. 4.1, generates one by one all model
descriptions of size d(f) + |C| over ®. The algorithm keeps track of three things,
among the model descriptions considered thus far: (1) the highest degree ¢ of a model
description consistent with 6, (2) the number count(6) of model descriptions of degree
d consistent with 0, and (3) among the model descriptions of degree § consistent with
6, the number count(p) of descriptions such that Priy (¢ | ¥ AV) = 1. Thus, for each
model description ¥ AV generated, the algorithm computes A(v). If A(¥) < § or
Pril (0 | ¢ AV) is 0, then the model description is ignored. Otherwise, if A(y)) > 4,
then the count for lower degrees is irrelevant. In this case, the algorithm erases the
previous counts by setting 0 < A(t)), count(f) < 1, and count(p) < Pry (¢ | Y A V).
If A(y)) = 6, then the algorithm updates count(d) and count(y) appropriately.

Examining Compute-Prs,, we see that its complexity is dominated by two major
quantities: the time required to generate all model descriptions, and the time required
to compute each 0-1 probability using our variant of Grandjean’s algorithm. The
complexity of the latter was given in Theorem 4.3 and Corollary 4.4. The following
proposition states the length of a model description; the time required to generate all
model descriptions is exponential in this length.

PROPOSITION 4.5. If M > |C| then the length of a model description of size M
over ® is

o(|@[(271a)?).
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Procedure Compute-Proo(p | 6)
6 — (0,0)
For each model description ¥ AV do:
Compute Pr. (0 | ) A V) using our variant of Grandjean’s algorithm
If A() =46 and Pr (6 | ¥ AV) =1 then
count(0) «— count(6) + 1
Compute Pre (¢ | ¥ A V) using our variant of Grandjean’s algorithm
count(p) «— count(p) + Pra (o | ¥ A V)
If A(y) >0 and Pry (6 | ¥ AV) =1 then
5 AW)
count(0) — 1
Compute Pre (¢ | ¥ A V) using our variant of Grandjean’s algorithm
count(p) « Pri,(p [P A V)
If 6 = (0,0) then output “Pri (¢ | 8) not well defined”
otherwise output “Pri. (¢ | 8) = count(p)/count(d)”.

Fic. 4.1. Compute-Proo for computing asymptotic conditional probabilities.

Proof. Consider a model description over ® of size M = d() + |C|. Such a model
description consists of two parts: an atomic description ¥ over ¥ and a model fragment
V over ® which is in M(¢)). To specify an atomic description v, we need to specify the
unary properties of the named elements; furthermore, for each atom, we need to say
whether it has any elements beyond the named elements (i.e., whether it is active).
Using this representation, the size of an atomic description ¢ is O(|¥|v(y) + 2!71).
As we have already observed, the length of a complete description D over ® and X
is O(|®||X|?). In the case of a description Dy, for V € M(v), this is O(|®|v(w)?).
Using (1) < 2!PIM, we obtain the desired result. O

Different variants of this algorithm are the basis for most of the upper bounds in
the remainder of this section.

4.3. Finite vocabulary. We now consider the complexity of various problems
related to Pry (¢ | ) for a fixed finite vocabulary ®. The input for such problems is
simply ¢ and 6, and so the input length is the sum of the lengths of ¢ and 6. Since,
for the purposes of this section, we view the vocabulary ® as fixed (independent of
the input), its size and maximum arity can be treated as constants.

We first consider the issue of well-definedness.

THEOREM 4.6. Fiz a finite vocabulary ® with at least one unary predicate symbol.
For0 € L(V), the problem of deciding whether Pry, (x| 0) is well defined is PSPACE-
complete. The lower bound holds even if 6 € L~ ({P}).

Proof. Tt follows from Lemma 3.30 that Pr (x | 6) is well defined iff o¥(0) > 0.
This is true iff there is some atomic description ¢ € AJ such that «(i)) > 0. This
holds iff there exists an atomic description v of size M = d(#) + |C| over ¥ and some
model fragment V € MY () such that a(y) > 0 and Pr2 (6 | ¥» AV) = 1. Since
we are working within ¥, we can take p = 1 and |P| to be a constant, independent
of . Thus, the length of a model description 1 A V as given in Proposition 4.5 is
polynomial in |6]. It is therefore possible to generate model descriptions in PSPACE.
Using Corollary 4.4, we can check, in polynomial space, for a model description ) AV
whether Pri, (6 | »AV) is 1. Therefore, the entire procedure can be done in polynomial
space.

For the lower bound, we use a reduction from the problem of checking the truth of
quantified Boolean formulas (QBF), a problem well known to be PSPACE-complete
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[37]. The reduction is similar to that used to show that checking whether a first-order
sentence is true in a given finite structure is PSPACE-hard [6]. Given a quantified
Boolean formula §, we define a first-order sentence g € L~ ({P}) as follows. The
structure of £z is identical to that of 3, except that any reference to a propositional
variable x, except in the quantifier, is replaced by P(x). For example, if 8 is Va Jy (z A
y), &g will be Vo 3y (P(z)AP(y)). Let 6 be EgATx P(z)AJx —P(x). Clearly, Pry (x| 0)
is well defined exactly if 3 is true. O

In order to compute asymptotic conditional probabilities in this case, we simply
use Compute-Prs.. In fact, since Compute-Pro, can also be used to determine well-
definedness, we could also have used it to prove the previous theorem.

THEOREM 4.7. Fiz a finite vocabulary ®. For ¢ € L(P) and § € L(D), the
problem of computing Pry. (¢ | 0) is PSPACE-complete. Indeed, deciding if Pry, (¢ |
true) = 1 is PSPACE-hard even if ¢ € L~ ({P}) for some unary predicate symbol P.

Proof. The upper bound is obtained directly from Compute-Pry, in Fig. 4.1. The
algorithm generates model descriptions one by one. Using the assumption that & is
fixed and finite, each model description has polynomial length, so that this can be
done in PSPACE. Corollary 4.4 implies that, for a fixed finite vocabulary, the 0-1
probabilities for each model description can also be computed in polynomial space.
While count(f) and count(p) can be exponential (as large as the number of model
descriptions), only polynomial space is required for their binary representation. Thus,
Compute-Pro, works in PSPACE under the assumption of a fixed finite vocabulary.

For the lower bound, we provide a reduction from QBF much like that used in
Theorem 4.6. Given a quantified Boolean formula ¢ and a unary predicate symbol
P, we construct a sentence {g € L~ ({P}) just as in the proof of Theorem 4.6. It
is easy to see that Priy(§s | true) = 1 iff § is true. (By the unconditional 0-1 law,
Pry (s | true) is necessarily either 0 or 1.) O

It follows immediately from Theorem 4.7 that we cannot approximate the limit.
Indeed, if we fix € with 0 < e < 1, the problem of deciding whether Pri (¢ | ) €
[0,1 — €] is PSPACE-hard even for ¢,8 € L~ ({P}). We might hope to prove that for
any nontrivial interval [ry, 73], it is PSPACE-hard to decide if Pry (¢ | 8) € [r1, r2].
This stronger lower bound does not hold for the language £~ ({P}). Indeed, it fol-
lows from Theorem 3.35 that if ® is any fixed vocabulary then, for ¢ € L£(®) and
0 € L7(U), Pri(p | 0) must take one of a finite number of values (the possible
values being determined entirely by ®). So the approximation problem is frequently
trivial; in particular, this is the case for any [r1, 72| that does not contain one of the
possible values. To see that there are only a finite number of values, first note that
there is a fixed collection of atoms over ®. If 6 does not use equality, an atomic
description can only say, for each atom A over ®, whether 3z A(z) or —~Jx A(x)
holds. There is also a fixed set of constant symbols to describe. Therefore, there
is a fixed set of possible atomic descriptions. Finally, note that the only named
elements are the constants, and so there is also a fixed (and finite) set of model
fragments. This shows that the set of model descriptions is finite, from which it
follows that Pry (¢ | ) takes one of finitely many values fixed by ®. Thus, in
order to have Pri (¢ | ) assume infinitely many values, we must allow equality
in the language. Moreover, even with equality in the language, one unary predi-
cate does not suffice. Using Theorem 3.34, it can be shown that two unary pred-
icates are necessary to allow the asymptotic conditional probability to assume in-
finitely many possible values. As the following result shows, this condition also suf-
fices.
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THEOREM 4.8. Fiz a finite vocabulary ® that contains at least two unary predi-
cates and rational numbers 0 < ry < rqg <1 such that [r1,r3] # [0,1]. Fory,0 € L(P),
the problem of deciding whether Pry. (¢ | 0) € [r1,72] is PSPACE-hard, even given an
oracle that tells us whether the limit is well defined.

Proof. We first show that, for any rational number r with 0 < r < 1, we can
construct .., 6, such that Pry (¢, | 6,) = r. Suppose r = ¢q/p. We assume, without
loss of generality, that ® = {P,Q}. Let 6,. be the sentence

P Plz) A (37 2 (P(z) AQ(x)) V 3z (P(z) AQ(x))) A Tz (—P(z) A —Q()).

That is, no elements satisfy the atom —P A —(Q), either ¢ or ¢ — 1 elements satisfy
the atom P A @, and p — 1 elements satisfy P. Thus, there are exactly two atomic
descriptions consistent with 6,.. In one of them, 11, there are ¢ — 1 elements satisfying
PAQ and p—q elements satisfying PA—Q (all the remaining elements satisfy “PAQ).
In the other, 15, there are q elements satisfying P AQ and p—q—1 elements satisfying
P A Q. Clearly, the degree of 17 is the same as that of 3, so that neither one
dominates. In particular, both define p — 1 named elements. The number of model

fragments for v is (Z :}) = %. The number of model fragments for s is
(") = 2= Let ¢, be ¢y Clearly

w _ |M(¢1)|
Proo(er 100) = (0] + M)
_ (=D ((g—=Dp—a)h)
=DV ((g-=Dp-)+ -/ P-q-1))
q q

= = - =17
gt+(p—q) p

Now, assume we are given ;1 < 19. We prove the result by reduction from
QBF, as in the proof of Theorem 4.6. If r; = 0 then the result follows immediately
from Theorem 4.7. If 0 < r1 = ¢q/p, let B be a QBF, and consider Pri, (s A ¢, |
0,, A 3z —P(x)). Note that, since p > 2, 0,., implies Iz P(z). It is therefore easy to
see that this probability is 0 if 3 is false and Pt (¢, | 0r,) = 71 otherwise. Thus, we
can check if 3 is true by deciding whether Pryy (£ A ¢ry | 05, A Jz—P(2)) € [r1,72].
This proves PSPACE-hardness.? 0

These results show that simply assuming that the vocabulary is fixed and finite
is not by itself enough to lead to computationally easy problems. Nevertheless, there
is some good news. We observed in a companion paper [23] that if ® is fixed and
finite, and we bound the depth of quantifier nesting, then there exists a linear time
algorithm for computing asymptotic probabilities. In general, as we observed in [23],
we cannot effectively construct this algorithm, although we know that it exists. As
we now show, for the case of conditioning on a unary formula, we can effectively
construct this algorithm.

THEOREM 4.9. Fiz d > 0. For ¢ € L(®), § € L(TV) such that d(p),d(0) < d,
we can effectively construct a linear time algorithm that decides if Priy (¢ | 6) is well
defined and computes it if it is.

91n this construction, it is important to note that although ¢, and 6., can be long sentences,
their length depends only on r1, which is treated as being fixed. Therefore, the constructed asymp-
totic probability expression does have length polynomial in |8|. This is also the case in similar
constructions later in the paper.
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Proof. The proof of the general theorem in [23] shows that if there is a bound d
on the quantification depth of formulas and a finite vocabulary, then there is a finite
set X4 of formulas such that every formula £ of depth at most d is equivalent to a
formula in ¥3. Moreover, we can construct an algorithm that, given such a formula
&, will in linear time find some formula equivalent to £ in ¥4. (We say “some” rather
than “the,” because it is necessary for the algorithm’s constructibility that there will
generally be several formulas equivalent to £ in ¥,4.) Given this, the problem reduces
to constructing a lookup table for the asymptotic conditional probabilities for all
formulas in ¥4. In general, there is no effective technique for constructing this table.
However, if we allow conditioning only on unary formulas, it follows from Theorem 4.7
that there is. The result now follows. O

4.4. Infinite vocabulary—restricted cases. In the next two sections we con-
sider an infinite vocabulary . As discussed in §2.3, there are at least two distinct
interpretations for asymptotic conditional probabilities in the case of an infinite vo-
cabulary. One interpretation of “infinite vocabulary” views {2 as a potential or back-
ground vocabulary, so that every problem instance includes as part of its input the
actual finite subvocabulary that is of interest. So, although this subvocabulary is
finite, there is no bound on its possible size. The alternative is to interpret infinite
vocabularies more literally, using the limit process explained in §2.3. In the case of
the random-worlds method, Proposition 2.1 shows that both interpretations give the
same result. Thus, it is immediate that all complexity results we prove with respect
to one interpretation immediately hold for the other. As we are postponing the dis-
cussion of random structures to §4.6, we present the earlier results with respect to the
second, less cumbersome, interpretation.

As before, we are interested in computing the complexity of the same three prob-
lems: deciding whether the asymptotic probability is well defined, computing it, and
approximating it. As we mentioned earlier, the complexity is quite sensitive to a
number of factors. One factor, already observed in the unconditional case [4], [20], is
whether there is a bound on the arity of the predicates in 2. Without such a bound,
the problem is complete for the class #TA(EXP,LIN). Unlike the unconditional case,
however, simply putting a bound on the arity of the predicates in €2 is not enough to
improve the complexity (unless the bound is 1); we also need to restrict the use of
equality, so that it cannot appear in the right-hand side of the conditional. Roughly
speaking, with equality, we can use the named elements to play the same role as the
predicates of unbounded arity. In this section, we consider what happens if we in fact
restrict the language so that either (1) Q has no predicate of arity > 2, or (2) there
is a bound (which may be greater than 1) on the arity of the predicates in €, but we
never condition on formulas that use equality. As we now show, these two cases turn
out to be quite similar. In particular, the same complexity results hold.

Throughout this section, we take €2 to be a fixed infinite vocabulary such that all
predicate symbols in € have arity less than some fixed bound p. Let Q be the set of
all unary predicate symbols in 2, let D be the set of all constant symbols in €2, and
let Y =0QUD.

We start with the problem of deciding whether the asymptotic probability is well
defined. Since well-definedness depends only on the right-hand side of the condi-
tional, which we already assume is restricted to mentioning only unary predicates, its
complexity is independent of the bound p.

The following theorem, due to Lewis [30], is the key to proving the lower bound
for well-definedness (and for some of the other results in this section as well).
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THEOREM 4.10. [30] The problem of deciding whether a sentence £ € L™(Q) is
satisfiable is NEXPTIME-complete. Moreover, the lower bound holds even for formu-
las & of depth 2.

Lewis proves this as follows: for any nondeterministic Turing machine M that
runs in exponential time and any input w, he constructs a sentence £ € L7(Q) of
quantifier depth 2 and whose length is polynomial in the size of M and w, such that
¢ is satisfiable iff there is an accepting computation of M on w.

Our first use of Lewis’s result is to show that determining well-definedness is
NEXPTIME-complete; this result does not require the assumptions that we are mak-
ing throughout the rest of this section.

THEOREM 4.11. For 6 € L(Y), the problem of deciding if Priy (x | 0) is well
defined is NEXPTIME-complete. The NEXPTIME lower bound holds even for 6 €
L7(Q) where d(0) < 2.

Proof. For the upper bound, we proceed much as in Theorem 4.6. Let ¥ = Ty
and let C = Dy. We know that Pry (x | 6) is well defined iff there exists an
atomic description @ of size M = d(f) + |C| over ¥ and some model fragment
V € MY(¢) such that a(y) > 0 and Pr2 (0 | v» AV) = 1. Since all the pred-
icates in ¥ have arity 1, it follows from Proposition 4.5 that the size of a model
description ¥ AV over ¥ is O(|¥|2/PIM). Since |¥| < |6], this implies that model
descriptions have exponential length, and can be generated by a nondeterministic
exponential time Turing machine. Because we can assume that p = 1 here when
applying Corollary 4.4, we can also deduce that we can check whether Pri (6 |
¥ AV) is 0 or 1 using a deterministic Turing machine in time 20¢I¥1og((¥)+1)),
Since |¥| < |0], and v(v) is at most exponential in |6, it follows that we can de-
cide if Pry (0 | ¥ AV) = 1 in deterministic time exponential in |f|. Thus, to
check if Pr(x | 6) is well defined we nondeterministically guess a model descrip-
tion ¢ AV of the right type, and check that «(y) > 0 and that Pry (6 | ¢ A
V) = 1. The entire procedure can be executed in nondeterministic exponential
time.

For the lower bound, observe that if a formula & in £ (®) is satisfied in some
model with domain {1,..., N} then it is satisfiable in some model of every domain size
larger than N. Therefore, £ € £L7(Q) is satisfiable if and only if the limit Pra, (x| £)
is well defined. The result now follows from Theorem 4.10. O

We next consider the problem of computing the asymptotic probability Pri (¢ |
), given that it is well defined. We show that this problem is #EXP-complete.
Recall that #P (see [38]) is the class of integer functions computable as the number of
accepting computations of a nondeterministic polynomial-time Turing machine. More
precisely, a function f : {0,1}* — IV is said to be in #P if there is a nondeterministic
Turing machine M such that for any w, the number of accepting paths of M on input
w is f(w). The class #EXP is the exponential time analogue.

The function we are interested in is Pry (¢ | 6), which is not integer valued.
Nevertheless, we want to show that it is in #EXP. In the spirit of similar definitions
for #P (see, for example, [39] and [34]) and NP (e.g., [17]) we extend the definition
of #EXP to apply also to non-integer-valued functions.

DEFINITION 4.12. An arbitrary function f is said to be #EXP-easy if there exists
an integer-valued function g in #EXP and a polynomial-time-computable function h
such that for all x, f(x) = h(g(x)). (In particular, we allow h to involve divisions,
so that f(x) may be a rational function.) A function f is #EXP-hard if, for every
#EXP-easy function g, there exist polynomial-time functions hy and ho such that, for
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all z, g(x) = hao(f(h1(x))).20 A function f is #EXP-complete if it is #EXP-easy
and #EXP-hard. 0

We can similarly define analogues of these definitions for the class #P.

We now show that for an infinite arity-bounded vocabulary in which equality
is not used, or for any unary vocabulary, the problem of computing the asymptotic
conditional probability is #EXP-complete. We start with the upper bound.

THEOREM 4.13. If either (a) ¢,0 € L(T) or (b) p € L(Q) and § € L™ (), then
computing Prel (¢ | 0) is #EXP-easy.

Proof. Let ® = Q,np, let ¥ =T 9, and let P and C be the appropriate subsets
of W. Let 6 = AY(#). Recall from the proof of Theorem 4.7 that we would like
to generate the model descriptions ¢ A V of degree dy, consider the ones for which
Pre (6 | ¥ AV) =1, and compute the fraction of those for which Pry (¢ | ¥ A V).
More precisely, consider the set of model descriptions of size M = d(p A 8) +|C|. For
a degree 8, let count’(#) denote the number of those model descriptions for which
Pr” (6 | ¥ AV) = 1. Similarly, let count®(¢) denote the number for which Pr (¢ A€ |
¥ AV) = 1. We are interested in the value of the fraction count® (y)/count®® ().

We want to show that we can nondeterministically generate model descriptions
¥ AV, and check in deterministic exponential time whether Pri, (0 | ¥ A V) (or,
similarly, Pri (¢ A0 | ¥ AV)) is 0 or 1. We begin by showing the second part: that
the 0-1 probabilities can be computed in deterministic exponential time. There are
two cases to consider. In case (a), ¢ and # are both unary, allowing us to assume
that p = 1 for the purposes of Corollary 4.4. In this case, the 0-1 computations
can be done in time 20U¥N0lI¥[log(w(¥)+1) " where W = T,p. As in Theorem 4.11,
|[¥| < |¢ A 6| and v(y) is at most exponential in ||, allowing us to carry out the
computation in deterministic exponential time. In case (b), € L~ (Y), and therefore
the only named elements are the constants. In this case, the 0-1 probabilities can be
computed in deterministic time 2021 () +eA0D?) where & = Qung. However, as we
have just discussed, v(¢) < |¢ A 8|, implying that the computation can be completed
in exponential time.

Having shown how the 0-1 probabilities can be computed, it remains only to gen-
erate model descriptions in the appropriate way. However, we do not want to consider
all model descriptions, because we must count only those model descriptions of degree
d9. The problem is that we do not know dy in advance. We will therefore construct
a nondeterministic exponential time Turing machine M such that the number of ac-
cepting paths of M encodes, for each degree &, both count’(y) and count’(d). We
need to do the encoding in such a way as to be able to isolate the counts for §s when
we finally know its value. This is done as follows.

Let ) be an atomic description ¢ over ¥ of size M. Recall that the degree A(v)) is
a pair (a(v), v(1))) such that a(¢) < 217l and v() < 2/PIM. Thus, there are at most
E = 22IPIM possible degrees. Number the degrees in increasing order: 61, ...,05.
We want it to be the case that the number of accepting paths of M written in binary
has the form

Pio---P1mqio---91im---PEO---PEmYEOQ - - - Em;

where pig . . . pim is the binary representation of count® (o) and go . . . ¢i is the binary
representation of count’® (). We choose m to be sufficiently large so that there is no

10Notice that we need the function hs as well as hy. For example, if g is an integer-valued function
and f always returns a rational value between 0 and 1, as is the case for us, then there is no function
h1 such that g(z) = f(h1(x)).
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overlap between the different sections of the output. The largest possible value of an
expression of the form count® (6) is the maximum number of model descriptions of
degree §; over ®. This is clearly less than the overall number of model descriptions,
which we computed in §4.2.

The machine M proceeds as follows. Let m be the smallest integer such that 2™
is more than the number of possible model descriptions, which, by Proposition 4.5, is
20(12"IM)*) Note that m is exponential and that M can easily compute m from .
M then nondeterministically chooses a degree §;, for ¢ = 1,..., E. It then executes
E — i phases, in each of which it nondeterministically branches 2m times. This has
the effect of giving this branch a weight of 22™(F=") It then nondeterministically
chooses whether to compute p;g ... Pim O ¢io .- . ¢im. 1f the former, it again branches
m times, separating the results for count® (@) from those for count® (6). In either
case, it now nondeterministically generates all model descriptions ¥ AV over ®. It
ignores those for which A(y) # ;. For the remaining model descriptions ¥ AV, it
computes Pry. (o A6 | ¥ AV) in the first case, and Pry, (6 | ¥ AV) in the latter. This is
done in exponential time, using the same technique as in Theorem 4.11. The machine
accepts precisely when this probability is 1.

This procedure is executable in nondeterministic exponential time, and results in
the appropriate number of accepting paths. It is now easy to compute Pri (¢ | )
by finding the largest degree ¢ for which count®(#) > 0, and dividing count®(y) by
count’® (). O

We now want to prove the matching lower bound. As in Theorem 4.11, we make
use of Lewis’s NEXPTIME-completeness result. As there, this allows us to prove the
result even for ¢,0 € L7(Q) of quantifier depth 2. A straightforward modification
of Lewis’s proof shows that, given w and a nondeterministic exponential time Turing
machine M, we can construct a depth-2 formula £ € £7(Q) such that the number
of simplified atomic descriptions over Pg¢ consistent with £ is exactly the number of
accepting computations of M on w. This allows us to prove the following theorem.

THEOREM 4.14. Given £ € L(Q), counting the number of simplified atomic
descriptions over P¢ consistent with £ is #FEXP-complete. The lower bound holds
even for formulas & of depth 2.

This theorem forms the basis for our own hardness result.

THEOREM 4.15. Given ¢,0 € L7(Q) of depth at least 2, the problem of computing
Pr (¢ | 0) is #EXP-hard, even given an oracle for deciding whether the limit exists.

Proof. Given ¢ € L7(Q), we reduce the problem of counting the number of
simplified atomic descriptions over P, consistent with ¢ to that of computing an
appropriate asymptotic probability. Recall that, for the language £~ (Q), model de-
scriptions are equivalent to simplified atomic descriptions. Therefore, computing an
asymptotic conditional probability for this language reduces to counting simplified
atomic descriptions of maximal degree. Thus, the major difficulty we need to over-
come here is the converse of the difficulty that arose in the upper bound. We now
want to count all simplified atomic descriptions consistent with ¢, while using the
asymptotic conditional probability in the most obvious way would only let us count
those of maximum degree. For example, the two atomic descriptions whose charac-
teristics are represented in Fig. 4.2 have different degrees; the first one will thus be
ignored by a computation of asymptotic conditional probabilities.

Let P be P, = {P,..., Py}, and let Q be a new unary predicate not in P. We let
Ay, ..., Ak for K = 2* be all the atoms over P, and let A},..., A}, be all the atoms
over P = P U{Q}, such that A} = A; AQ and A%, = A;A-Q fori=1,... K.
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A Ay Az Ay
* 0 * 0

* * 0 *

Fia. 4.2. Two atomic descriptions with different degrees.

Al A2 A3 A4

AQ : *x 0 *x 0
AQ: 0 * 0 *
AQ : * % 0 %
A-Q: 0 0 = 0

Fic. 4.3. Two mazimal atomic descriptions.

We define 0’ as follows:

k
0" =get Y,y <<Q(as) A /\(Pz(a:) pas P,(y))) = Q(y)) )

i=1

The sentence 6’ guarantees that the predicate @ is “constant” on the atoms defined
by P. That is, if A; is an atom over P, it is not possible to have 3z (A;(z) A Q(z))
as well as 3z (A4;(x) A =Q(x)). Therefore, if ¢ is a simplified atomic description over
P’ which is consistent with €', then, for each ¢ < K, at most one of the atoms A} and
A’,; can be active, while the other is necessarily empty. It follows that a(y) < K.
Since there are clearly atomic descriptions of activity count K consistent with ',
the atomic descriptions of maximal degree are precisely those for which «(v) = K.
Moreover, if a(¢) = K, then Aj is active iff A%, is not. Two atomic descriptions of
maximal degree are represented in Fig. 4.3. Thus, for each set I C {1,..., K}, there
is precisely one simplified atomic description v consistent with 6’ of activity count K
where A’ is active in v iff i € I. Therefore, there are exactly 2% simplified atomic
descriptions ¥ over P’ consistent with 6’ for which a(y) = K.

Let & = 0 A JxQ(x). Notice that all simplified atomic descriptions @ with
a(y) = K that are consistent with 6" are also consistent with 6, except for the one
where no atom in Aj,..., A is active. Thus, |A§,’K| = 2K _ 1. For the purposes of
this proof, we call a simplified atomic description v over P’ consistent with 6 for which
a(y) = K a mazimal atomic description. Notice that there is an obvious one-to-one
correspondence between consistent simplified atomic descriptions over P and maximal
atomic descriptions over P’. A maximal atomic description where A} is active iff
i €I (and A%, is active for i ¢ I) corresponds to the simplified atomic description
over P where A; is active iff i € I. (For example, the two consistent simplified
atomic descriptions over { Py, P>} in Fig. 4.2 correspond to the two maximal atomic
descriptions over { Py, P2, Q} in Fig. 4.3.) In fact, the reason we consider 6 rather than
6’ is precisely because there is no consistent simplified atomic description over P which
corresponds to the maximal atomic description where no atom in A}, ..., A% is active
(since there is no consistent atomic description over P where none of Ay, ..., Ax are
active). Thus, we have overcome the hurdle discussed above.

We now define ¢g; intuitively, ¢q is ¢ restricted to elements that satisfy Q.
Formally, we define £ for any formula £ by induction on the structure of the formula:



ASYMPTOTIC CONDITIONAL PROBABILITIES 41

o £o = & for any atomic formula &,

b (_‘g)Q = _'gQa

o (ENE)g=¢q Ny

o (Vyé(y))o =y (Qy) = La(y)-
Note that the size of ¢ is linear in the size of ¢. The one-to-one mapping discussed
above from simplified atomic descriptions to maximal atomic descriptions gives us a
one-to-one mapping from simplified atomic descriptions over P consistent with ¢ to
maximal atomic descriptions consistent with ¢g A 3z Q(z). This is true because a

model satisfies ¢¢ iff the same model restricted to elements satisfying () satisfies .
P K
) |

Thus, the number of model descriptions over P consistent with ¢ is precisely |A@Q O

From Corollary 3.36, it follows that

P K
Abanl  1AZ)

PNl
g 2T

Pr(pq | 0) =

Thus, the number of simplified atomic descriptions over P consistent with ¢ is (25 —
1)Pry (¢q | 8). This proves the lower bound. O

As in Theorem 4.8, we can also show that any nontrivial approximation of the
asymptotic probability is hard, even if we restrict to sentences of depth 2.

THEOREM 4.16. Fiz rational numbers 0 < 11 < ry <1 such that [ri,73] # [0, 1].
For ¢,0 € L7(Q) of depth at least 2, the problem of deciding whether Pry (¢ | 0) €
[r1, 2] is both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for
deciding whether the limit exists.

Proof. Let us begin with the case where r;1 = 0 and 7o < 1. Consider any
© € L7(Q) of depth at least 2, and assume without loss of generality that P =
Py, ={Pi,...,P}. Choose Q ¢ P, let P' =P U{Q}, and let £ be Vz(Pi(z) A... A
Pri(xz) A Q(z)). We consider Priy (¢ | ¢ V). Clearly o V¢ is satisfiable, so that this
asymptotic probability is well defined. If ¢ is unsatisfiable, then Prl (¢ | ¢ V &) = 0.
On the other hand, if ¢ is satisfiable, then a”(¢) = j > 0 for some j. It is easy
to see that a® (@) = a” (p V &) = 2j. Moreover, ¢ and ¢ V £ are consistent with
precisely the same simplified atomic descriptions with 2j active atoms. This is true
since o' (€) = 1 < 2j. It follows that if ¢ is satisfiable, then Pr¥ (¢ | o V £) = 1.

Thus, we have that Prly (¢ | ¢ V &) is either 0 or 1, depending on whether or
not ¢ is satisfiable. Thus, Pri, (- | ¢ V) is in [r1, ro] iff ¢ is satisfiable; similarly,
Pry (—¢ | 7 V&) is in [r1,72] iff ¢ is valid. By Theorem 4.10, it follows that this
approximation problem is both NEXPTIME-hard and co-NEXPTIME-hard.

If 1 = q/p > 0, we construct sentences ., and 6,, of depth 2 in £7(Q) such
that Pr (¢, | 0,) = r1.1t Choose £ = [logp], and let P = {Q1,...,Q¢} be a set
of predicates such that P” NP’ = . Let Ay,..., Ay be the set of atoms over P”. We
define 6,, to be

Flz (Ar(z) V Az(2) V...V Ap(2)).
Similarly, ¢, is defined as
(A (z) V Ag(2) V...V Ay(x)).

I The sentences constructed in Theorem 4.8 for the same purpose will not serve our purpose in
this theorem, since they used unbounded quantifier depth.



42 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

Recall from §3.1 that the construct “I'z” can be defined in terms of a formula of
quantifier depth 2. There are exactly p atomic descriptions of size 2 of maximal
degree consistent with 60, ; each has one element in one of the atoms A;,..., A4, and
no elements in the rest of the atoms among A,..., A,, with all the remaining atoms
(those among A, 1, ..., As) being active. Among these atomic descriptions, ¢ are
also consistent with ¢,,. Therefore, Priy (¢r, | 0r,) = q/p. Since the predicates
occurring in ¢, , 0, are disjoint from P’, it follows that

Pri(oN@r [ (0VE NOr) =Prii(p] e VE) Pro(en | 0r) =Pri(e|@VE) - r.

This is equal to 71 (and hence is in [r1,72]) if and only if ¢ is satisfiable, and is 0
other- wise. O

The lower bounds in this section all hold provided we consider formulas whose
quantification depth is at least 2. Can we do better if we restrict to formulas of quan-
tification depth at most 17 As is suggested by Table 1.1, we can. The complexities
typically drop by an exponential factor. For example, checking well-definedness be-
comes NP-complete rather than NEXPTIME-complete. For the problem of computing
probabilities for formulas with quantification depth 1, we know that the problem is in
PSPACE, and is (at least) #P-hard. Finally, the problem of approximating probabil-
ities is hard for both NP and co-NP. A detailed analysis of these results can be found
in [27]; some related work for a propositional language has been done by Roth [35].

4.5. Infinite vocabulary—the general case. In §4.4 we investigated the com-
plexity of asymptotic conditional probabilities when the (infinite) vocabulary satisfies
certain restrictions. As we now show, the results there were tight in the sense that the
restrictions cannot be weakened. We examine the complexity of the general case, in
which the vocabulary is infinite with no bound on predicates’ arities and/or in which
equality can be used.

The problem of checking if Pry (¢ | 6) is well defined is still NEXPTIME-
complete. Theorem 4.11 (which had no restrictions) still applies. However, the com-
plexity of the other problems we consider does increase. It can be best described
in terms of the complexity class TA(EXP,LIN)—the class of problems that can be
solved by an exponential time ATM with a linear number of alternations. The class
TA(EXP,LIN) also arises in the study of unconditional probabilities where there is no
bound on the arity of the predicates. Grandjean [20] proved a TA(EXP,LIN) upper
bound for computing whether the unconditional probability is 0 or 1 in this case, and
Immerman [4] proved a matching lower bound. Of course, Grandjean’s result can be
viewed as a corollary of Theorem 4.3. Immerman’s result, which has not, to the best
of our knowledge, appeared in print, is a corollary of Theorem 4.18 which we prove
in this section.

To capture the complexity of computing the asymptotic probability in the general
case, we use a counting class #TA(EXP,LIN) that corresponds to TA(EXP,LIN).
To define this class, we restrict attention to the class of ATMs whose initial states
are existential. Given such an ATM M, we define an initial existential path in the
computation tree of M on input w to be a path in this tree, starting at the initial
state, such that every node on the path corresponds to an existential state except
for the last node, which corresponds to a universal or an accepting state. That is,
an initial existential path is a maximal path that starts at the root of the tree and
contains only existential nodes except for the last node in the path. We say that an
integer-valued function f : {0,1}* — IN is in #TA(EXP,LIN) if there is a machine
M in the class TA(EXP,LIN) such that, for all w, f(w) is the number of existential
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paths in the computation tree of M on input w whose last node is accepting (recall
that we defined a notion of “accepting” for any node in the tree in §4.1). We extend
the definition of #TA(EXP,LIN) to apply to non-integer-valued functions and define
#TA(EXP,LIN )-easy just as we did before with #P and #EXP in §4.4.

We start with the upper bound.

THEOREM 4.17. For ¢ € L(Q) and 0 € L(Y), the function Pri (¢ | 0) is in
#TA(EXP,LIN).

Proof. Let ® = Qupg, let ¥ = T g, and let p be the maximum arity of a
predicate in ®. The proof proceeds precisely as in Theorem 4.13. We compute, for each
degree &, the values count®(#) and count®(¢). This is done by nondeterministically
generating model descriptions ) AV over ®, branching according to the degree of 1,
and computing Prie (o A6 | ¢ A V) and Pry (6 | ¥ A V) using a TA(EXP,LIN) Turing
machine.

To see that this is possible, recall from Proposition 4.5 that the length of a model
description over ® is O(|®|(2/7/M)?). This is exponential in |®| and p, both of which
are at most |p A 6]. Therefore, it is possible to guess a model description in expo-
nential time. Similarly, as we saw in the proof of Theorem 4.13, only exponentially
many nondeterministic guesses are required to separate the output so that counts
corresponding to different degrees do not overlap. These guesses form the initial non-
deterministic stage of our TA(EXP,LIN) Turing machine. Note that it is necessary to
construct the rest of the Turing machine so that a universal state always follows this
initial stage, so that each guess corresponds exactly to one initial existential path;
however, this is easy to arrange.

For each model description ) AV so generated, we compute Priy (6 | ¥ A V)
or Pr (o A0 | ©» ANV) as appropriate, accepting if the conditional probability is
1. It follows immediately from Theorem 4.3 and the fact that there can only be
exponentially many named elements in any model description we generate that this
computation is in TA(EXP,LIN). Thus, the problem of computing Pry (¢ | 6) is in
#TA(EXP,LIN). O

We now want to prove the matching lower bound. Moreover, we would like to
show that the restrictions from §4.4 cannot be weakened. Recall from Theorem 4.13
that the #EXP upper bound held under one of two conditions: either (a) ¢ and 6
are both unary, or (b) the vocabulary is arity-bounded and € does not use equality.
To show that (a) is tight, we show that the #TA(EXP,LIN) lower bound holds even
if we allow ¢ and 6 to use only binary predicates and equality. (The use of equality
is necessary, since without it we know from (b) that the problem is #EXP-easy.) To
show that (b) is tight, we show that the lower bound holds for a non-arity-bounded
vocabulary, but without allowing equality in #. Neither lower bound requires the use
of constants.

The proof of the lower bounds is lengthy, but can be simplified somewhat by some
assumptions about the construction of the TA(EXP,LIN) machines we consider. The
main idea is that the existential “guesses” being made in the initial phase should be
clearly distinguished from the rest of the computation. To achieve this, we assume
that the Turing machine has an additional guess tape, and the initial phase of every
computation consists of nondeterministically generating a guess string ~ which is
written on the new tape. The machine then proceeds with a standard alternating
computation, but with the possibility of reading the bits on the guess tape.

More precisely, from now on we make the following assumptions about an ATM
M. Consider any increasing functions T'(n) and A(n) (in essence, these correspond
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to the time complexity and number of alternations), and let w be an input of size n.
We assume:

e M has two tapes and two heads (one for each tape). Both tapes are one-way
infinite to the right.

e The first tape is a work tape, which initially contains only the string w.

e M has an initial nondeterministic phase, during which its only action is to
nondeterministically generate a string v of zeros and ones, and write this
string on the second tape (the guess tape). The string v is always of length
T(n). Moreover, at the end of this phase, the work tape is as in the initial
configuration, the guess tape contains only -, the heads are at the beginning
of their respective tapes, and the machine is in a distinguished universal state
S0.

e After the initial phase, the guess tape is never changed.

e After the initial phase, M takes at most T'(n) steps on each branch of its
computation tree, and makes exactly A(n) — 1 alternations before entering a
terminal (accepting or rejecting) state.

e The state before entering a terminal state is always an existential state
(i.e., A(n) is odd).

Let M’ be any (unrestricted) TA(T,A) machine that “computes” an integer func-
tion f. It is easy to construct some M satisfying the restrictions above that also
computes f. The machine M first generates the guess string -y, and then simulates
M’. At each nondeterministic branching point in the initial existential phase of M,
M uses the next bit of the string v to dictate which choice to take. Observe that this
phase is deterministic (given ), and can thus be folded into the following universal
phase. (Deterministic steps can be viewed as universal steps with a single successor.)
If not all the bits in  are used, M continues the execution of M’, but checks in par-
allel that the unused bits of v are all 0’s. If not, M rejects. It is easy to see that on
any input w, M has the same number of accepting paths as M’, and therefore accepts
the same function f. Moreover, M has the same number of alternations as M’, and
at most a constant factor blowup in the running time.!? This shows that it will be
sufficient to prove our hardness results for the class #TA(EXP,LIN) by considering
only those machines that satisfy these restrictions. For the remainder of this section
we will therefore assume that all ATMs are of this type.

Let M be such an ATM and let w be an input of size n. We would like to
encode the computation of M on w using a pair of formulas @, 8,,. (Of course, these
formulas depend on M as well, but we suppress this dependence.) Our first theorem
shows how to encode part of this computation: given some appropriate string - of
length T'(n), we construct formulas that encode the computation of M immediately
following the initial phase of guessing . More precisely, we say that M accepts w
given ~y if, on input w, the initial existential path during which M writes v on the
guess tape leads to an accepting node. We construct formulas ¢, and 8, such
that Pri (0w, | Ow,y) is either 0 or 1, and is equal to 1 iff M accepts w given ~.

We do not immediately want to specify the process of guessing -, so our initial
construction will not commit to this. For a predicate R, let ¢[R] be a formula that
uses the predicate R. Let ¢ be another formula that has the same number of free
variables as the arity of R. Then ¢[¢] is the formula where every occurrence of R is
replaced with the formula &, with an appropriate substitution of the arguments of R

12For ease of presentation, we can and will (somewhat inaccurately, but harmlessly) ignore this
constant factor and say that the time complexity of M is, in fact, T'(n).
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for the free variables in &.

THEOREM 4.18. Let M be a TA(T,A) machine as above, where T(n) = 21" for
some polynomial t(n) and A(n) = O(n). Let w be an input string of length n, and
v € {0,137 be a guess string.

(a) For a unary predicate R, there exist formulas ¢, [R],&, € L() and 0, €
L(T) such that Pry (pwléy] | 0w) = 1 iff M accepts w given v and is 0
otherwise. Moreover, @, uses only predicates with arity 2 or less.

(b) For a binary predicate R, there exist formulas ¢,[R],&’ € L(Q) such that
Pr (¢, [€)] | true) = 1 iff M accepts w given v and is O otherwise.

The formulas v[R)], 0w, and ©),[R] are independent of 7y, and their length is polyno-
mial in the representation of M and w. Moreover, none of the formulas constructed
use any constant symbols.

Proof. Let I' be the tape alphabet of M and let S be the set of states of M. We
will identify an instantaneous description (ID) of length ¢ of M with a string %¢ for
Y =Yw x Xg, where By isTU(T' x S) and X¢ is ({0,1} U ({0,1} x {h})). We think
of the Yy component of the ith element in a string as describing the contents of the
ith location in the work tape and also, if the tape head is at location 4, the state of
the Turing machine. The Y component describes the contents of the ith location
in the guess tape (whose alphabet is {0,1}) and whether the guess tape’s head is
positioned there. Of course, we consider only strings in which exactly one element
in I' x S appears in the first component and exactly one element in {0,1} x {h}
appears in the second component. Since M halts within T'(n) steps (not counting the
guessing process, which we treat separately), we need only deal with IDs of length at
most T'(n). Without loss of generality, assume all IDs have length exactly T'(n). (If
necessary, we can pad shorter IDs with blanks.)

In both parts of the theorem, IDs are encoded using the properties of domain
elements. In both cases, the vocabulary contains predicates whose truth value with
respect to certain combinations of domain elements represent IDs. The only difference
between parts (a) and (b) is in the precise encoding used. We begin by showing the
encoding for part (a).

In part (a), we use the sentence ,, to define T'(n) named elements. This is possible
since 6, is allowed to use equality. Each ID of the machine will be represented using
a single domain element. The properties of the ID will be encoded using the relations
between the domain element representing it and the named elements. More precisely,
assume that the vocabulary has ¢(n) unary predicates Pi, ..., Py, and one additional
unary predicate P*. The domain is divided into two parts: the elements satisfying
P* are the named elements used in the process of encoding IDs, while the elements
satisfying —P* are used to actually represent IDs. The formula 6,, asserts (using
equality) that each of the atoms A over {P*, P, ..., Pyy)} in which P* (as opposed
to —P*) is one of the conjuncts contains precisely one element:

t(n)
vay | | PP@) AP W) A N\ (Pile) & P(y) | = o=y
i=1

Note that 6, has polynomial length and is independent of ~.

We can view an atom A over {P*, Pi,..., Pyy)} in which P* is one of the con-
juncts as encoding a number between 0 and T'(n) — 1, written in binary: if A contains
Pj rather than —P;, then the jth bit of the encoded number is 1; otherwise it is 0.
(Recall that T'(n), the running time of M, is 2!(™).) In the following, we let A;, for
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1=0,...,T(n)— 1, denote the atom corresponding to the number ¢ according to this
scheme. Let e; be the unique element in the atom A; for i = 0,...,7(n) — 1. When
representing an ID using a domain element d (where —P*(d)), the relation between
d and e; is used to represent the ith coordinate in the ID represented by d. Assume
that the vocabulary has a binary predicate R, for each ¢ € . Roughly speaking, we
say that the domain element d represents the ID oq...opmn)—1 if Ry, (d, e;) holds for

i=0,...,T(n) — 1. More precisely, we say that d represents oq...0op@)—1 if
T(n)—1
-Prd)n N\ Yy A= (Redyr N\ —Re(dy)
i=0 o'eX—{o;}

Note that not every domain element d such that —P*(d) holds encodes a valid ID.
However, the question of which ID, if any, is encoded by a domain element d depends
only on the relations between d and the finite set of elements e, ..., ep@,)—1. This
implies that, with asymptotic probability 1, every ID will be encoded by some domain
element. More precisely, let ID(x) = 0¢...0p)—1 be a formula which is true if =
denotes an element that represents og...op(m)—1- (It should be clear that such a
formula is indeed expressible in our language.) Then for each ID oy ...0p@)—1 we
have

Pri,(3z (ID(x) = 00 ... 07(m)—1) | Ow) = 1.

For part (b) of the theorem, we must represent IDs in a different way because
we are not allowed to condition on formulas that use equality. Therefore, we cannot
create an exponential number of named elements using a polynomial-sized formula.
The encoding we use in this case uses two domain elements per ID rather than one.
We now assume that the vocabulary € contains a t(n)-ary predicate R, for each
symbol o € ¥. Note that this uses the assumption that there is no bound on the arity
of predicates in Q. For i =0,...,T(n) —1, let bi(n) ... bt be the binary encoding of i.
We say that the pair (do, d;) of domain elements represents the ID g ...07pm)—1 if

T(n)—1
do # di A /\ R, (db’i’ o ’dbi(n)) A /\ ﬁRa’(dbga ceey dbi(n))
i=0 o'ex—{o:}

Again, we can define a formula in our language ID(xg,z1) = 0¢...0p(n)—1 Which
is true if wo, z1 denote a pair of elements that represent oq...o7(,)—1. As before,
observe that for each ID o ...07p(,)—1 we have

PI‘&(H.’I}Q,Il ([D(l‘o,.’lfl) =09.- -UT(n)fl) | true) =1.

In both case (a) and case (b), we can construct formulas polynomial in the size
of M and w that assert certain properties. For example, in case (a), Rep(x) is true of
a domain element d if and only if d encodes an ID. In this case, Rep(x) is the formula

P (@) Ay (P (4) = VyenBa(e,y)) A
Ay (P () AV oe(rxs)xsa) Bo (@ y)) A3y (P (1) AV ey < (0,11 x (n})) o (:9))

where \/ is an abbreviation whose meaning is that precisely one of its disjuncts is
true.
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In case (b), Rep(xo,x1) is true of a pair (dg,d;) if and only if it encodes an ID.
The construction is similar. For instance, the conjunct of Rep(zo,x1) asserting that
each tape position has a uniquely defined content is

t(n) .
To # T1 AVz21,. ., 24 (n) /\(Zl =xVzi=11)| = \/ Ry (21,5 2t(n))

i=1 oEX

Except for this assertion, the construction for the two cases is completely parallel
given the encoding of IDs. We will therefore restrict the remainder of the discussion
to case (a). Other relevant properties of an ID that we can formulate are:

o Acc(z) (resp., Univ(z), Exis(x)) is true of a domain element d if and only if d
encodes an ID and the state in ID(d) is an accepting state (resp., a universal
state, an existential state).

o Step(z,x’) is true of elements d and d’ if and only if both d and d’ encode
IDs and ID(d’) can follow from ID(d) in one step of M.

e Comp(z,z') is true of elements d and d’ if and only if both d and d’' encode
IDs, and ID(d’) is the final ID in a maximal nonalternating path starting at
ID(d) in the computation tree of M, and the length of this path is at most
T(n). A maximal nonalternating path is either a path all of whose states
are existential except for the last one (which must be universal or accepting),
or a path all of whose states are universal except for the last one. We can
construct Comp using a divide and conquer argument, so that its length is
polynomial in #(n).

We remark that Ace, Step, etc. are not new predicate symbols in the language. Rather,
they are complex formulas described in terms of the basic predicates R,. We omit
details of their construction here; these can be found in [20].

It remains only to describe the formula that encodes the initial configuration of
M on input w. Since we are interested in the behavior of M given a particular guess
string -y, we begin by encoding the computation of M after the initial nondeterministic
phase; that is, after the string « is already written on the guess tape and the rest of
the machine is back in its original state. We now construct the formula Init[R](z)
that describes the initial configuration. This formula takes R as a parameter, and has
the form Init' (z) A R(x). The formulas substituted for R(x) will correspond (in a way
discussed below) to possible guesses 7.

We begin by considering case (a). We assume the existence of an additional binary
predicate By. It is easy to write a polynomial-length formula Init’(x) which is true
of a domain element d if and only if d represents an ID where: (a) the state is the
distinguished state sy entered after the nondeterministic guessing phase, (b) the work
tape contains only w, (c) the heads are at the beginning of their respective tapes,
and (d) for all 4, the ith location of the guess tape contains 0 iff By(d,e;). Here e;
is, as before, the unique element in atom A;. Note that the last constraint can be
represented polynomially using the formula

v (P = [Boww) e\ Ralay)
oceXw x{0,(0,h)}

We also want to find a formula &, that can constrain By to reflect the guess 7.
This formula, which serves as a possible instantiation for R, does not have to be of
polynomial size. We define it as follows, where for convenience, we use B as an
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abbreviation for —By:

T(n)—1
(41) f»y(l') =def /\ Vy (Az(y) = B’Yz‘ (xvy)) .
=0

Note that this is of exponential length.

In case (b), the relation of the guess string v to the initial configuration is essen-
tially the same modulo the modifications necessary due to the different representation
of IDs. We only sketch the construction. As in case (a), we add a predicate By, but
in this case of arity ¢(n). Again, the predicate B represents the locations of the 0’s in
the guess tape following the initial nondeterministic phase. The specification of the
denotation of this predicate is done using an exponential-sized formula 51/, as follows
(again taking B] to be an abbreviation for —~Bj):

5;(170, .Z‘l) =def Bfm (:L‘O, ce ,SC(),J’JQ)/\B,’Y1 (Io, e 71‘0,171)/\. . ./\B,IYT<7L)71(I1, AT .1‘1).

Using these formulas, we can now write a formula expressing the assertion that M
accepts w given . In writing these formulas, we make use of the assumptions made
about M (that it is initially in the state immediately following the initial guessing
phase, that all computation paths make exactly A(n) alternations, and so on). The
formula ¢,,[R] has the following form:

Jz1 (Init[R](x1) A Vg (Comp(x1,x2) = Jxs (Comp(xa,x3) A Vs (Comp(rs,x4) = ...
3 4(n) (Comp(xam)—1,Tamn)) N Acc(Ta@m))) --2))))-

It is clear from the construction that ¢, [R] does not depend on v and that its length
is polynomial in the representations of M and w.

Now suppose W is a world satisfying 6,, in which every possible ID is represented
by at least one domain element. (As we remarked above, a random world has this
property with asymptotic probability 1.) Then it is straightforward to verify that
Yuwl€y] is true in W iff M accepts w. Therefore Pry, (¢w[&,] | 6w) = 1 iff M accepts
w given v and 0 otherwise. Similarly, in case (b), we have shown the construction of
analogous formulas ¢;,[R], for a binary predicate R, and &/ such that Prg; (¢, [£]] |
true) = 1 iff M accepts w given 7, and is 0 otherwise. O

We can now use the above theorem in order to prove the #TA(EXP,LIN) lower
bound.

THEOREM 4.19. For ¢ € L() and § € L(Y), computing Pra (v | 6) is
#TA(EXP,LIN)-hard. The lower bound holds even if ¢,8 do not mention constant
symbols and either (a) ¢ uses no predicate of arity > 2, or (b) 6 uses no equality.

Proof. Let M be a TA(EXP,LIN) Turing machine of the restricted type discussed
earlier, and let w be an input of size n. We would like to construct formulas ¢, 8 such
that from Prly (¢ | 8) we can derive the number of accepting computations of M on w.
The number of accepting initial existential paths of such a Turing machine is precisely
the number of guess strings v such that M accepts w given . In Theorem 4.18, we
showed how to encode the computation of such a machine M on input w given a
nondeterministic guess v. We now show how to force an asymptotic conditional
probability to count guess strings appropriately.

As in Theorem 4.18, let T'(n) = 2! and let P’ = {P}, ..., P,y } be new unary
predicates not used in the construction of Theorem 4.18. As before, we can view an
atom A’ over P’ as representing a number in the range 0,...,7T(n) — 1: if A contains
Pj{, then the jth bit of the encoded number is 1; otherwise it is 0. Again, let A}, for
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1=0,...,T(n)— 1, denote the atom corresponding to the number ¢ according to this
scheme. We can view a simplified atomic description 1) over P’ as representing the
string v = 4o ...Yr(n)—1 such that ~; is 1 if 1) contains the conjunct 3z Aj(z), and
0 if ¢ contains its negation. Under this representation, for every string v of length
T(n), there is a unique simplified atomic description over P’ that represents it; we
denote this atomic description v.,. Note that 1) is not necessarily a consistent atomic
description, since the atomic description where all atoms are empty also denotes a
legal string—that string where all bits are 0.

While it is possible to reduce the problem of counting accepting guess strings
to that of counting simplified atomic descriptions, this is not enough. After all, we
have already seen that computing asymptotic conditional probabilities ignores all
atomic descriptions that are not of maximal degree. We deal with this problem as in
Theorem 4.15. Let Q be a new unary predicate, and let 6" be, as in Theorem 4.15,
the sentence

t(n)
v,y | | Q@) A N\ (Pj) & Pi(y) | = Qy)

=1

Observe that here we use 6’ rather than the formula 6 of Theorem 4.15, since we also
want to count the “inconsistent” atomic description where all atoms are empty. Recall
that, assuming ¢’, each simplified atomic description ., over P’ corresponds precisely
to a single maximal atomic description v, over P’ U {Q}. We reduce the problem
of counting accepting guess strings to that of counting maximal atomic descriptions
over P' U{Q}.

We now consider cases (a) and (b) separately, beginning with the former. Fix
a guess string v. In Theorem 4.18, we constructed formulas ¢, [R],&, € L£(£2) and
0w € L(T) such that Pry (pw[éy] | 6w) = 1iff M accepts w given «, and is 0 otherwise.
Recall that the formula &, (z) (see equation (4.1)) sets the ith guess bit to be 7; by
forcing the appropriate one of By(z,e;) and Bi(x,e;) to hold, where e; is the unique
element in the atom A;. In Theorem 4.18, this was done directly by reference to the
bits v;. Now, we want to derive the correct bit values from 1., which tells us that the
ith bit is 1 iff 3z A(z). The following formula & has precisely the desired property:

t(n)
(@) =aet Vy | P*(y) = | Bi(z,y) & 32 [ Q(2) A N\ (Pi(y) & Pj(2))
j=1

Clearly, ¥/ = { < &,
Similarly, for case (b), the formula £’ is:

t(n)
€ (20, 21) =det YY1 - - Yi(n) /\(yj =xoVy;=x1)| =
j=1
t(n)
Bi(y1,- - ym) € 32 | Q) A N\ (y; = 21 & Pj(2))

j=1

As in part (a), ¥, F & < &

Now, for case (a), we want to compute the asymptotic conditional probability
Pry (¢l€] | 6w A 0'). In doing this computation, we will use the observation (whose
straightforward proof we leave to the reader) that if the symbols that appear in 5 are



50 ADAM J. GROVE, JOSEPH Y. HALPERN, AND DAPHNE KOLLER

disjoint from those that appear in ¢ and 61, then Pry (¢1 | 01 A 02) = Pril (o1 | 61).
Using this observation and the fact that all maximal atomic descriptions over P’ U{Q}
are equally likely given 0, A €', by straightforward probabilistic reasoning we obtain:

Pr (u[€] | 6w A6') ZPr (Pwl€] | 0w A0 ALY P (@, | 0, AE)

= W Z Prffo(gow €] | 0w A N 1/){7)
v

We observed before that £ is equivalent to &, in worlds satisfying ¢/, and therefore

Pre(0wle] [ 0w A" A VL) = Pri(ulés] | 0w A0 AYL) =Py (0uléy] | Ow),

where the second equality follows from the observation that none of the vocabulary
symbols in ¢ or § appear anywhere in ¢,,[,] or in 0,,. In Theorem 4.18, we proved
that Pr (pwléy] | 0w) is equal to 1 if the ATM accepts w given v and 0 if not. We
therefore obtain that

Pr (o] | 0 A 0) = éfT(Zi))

Since both ¢, [£] and 6, A @' are polynomial in the size of the representation of M
and in n = |w|, this concludes the proof for part (a). The completion of the proof for
part (b) is essentially identical. O

It remains only to investigate the problem of approximating Pri (¢ | 6) for this
language.

THEOREM 4.20. Fiz rational numbers 0 < r1 < ro < 1 such that [r1,r2] #
[0,1]. For ¢,0 € L(), the problem of deciding whether Prie(p | 0) € [r1,72] is
TA(EXP,LIN )-hard, even given an oracle for deciding whether the limit exists.

Proof. For the case of ;1 = 0 and ro < 1, the result is an easy corollary of
Theorem 4.18. We can generalize this to the case of 1 > 0, using precisely the same
technique as in Theorem 4.16. O

4.6. Complexity for random structures. So far in this section, we have
investigated the complexity of various problems relating to the asymptotic conditional
probability using the random-worlds method. We now deal with the same issues for
the case of random structures. It turns out that most of our results for random worlds
carry through to random structures for trivial reasons.

First, consider the issue of well-definedness. By Proposition 2.3, well-definedness
is equivalent for random worlds and random structures. Therefore, all of the results
obtained for random worlds carry through unchanged for random structures.

For computing or approximating the limit, Theorem 3.37 allows us to restrict
attention to unary vocabularies and unary sentences ¢ and 6. In particular, there is
no need to duplicate the results in §4 5. For the remainder of this section, we analyze
the complexity of computing Pr.¥ (¢ | 6) for ¢,0 € L(¥). As before, we can assume
that .AS(J o C© A@

The computational approach is essentially the same as that for random worlds.
However, as we showed in §3.5, rather than partitioning 6 into model descriptions, we
can make use of the assumption that the vocabulary is unary and instead partition it
into atomic descriptions 9. That is, for a = a'¥ (6),

1 A
P s, 0) = . 2} w _ 4/)/\9 )
2 (| 0) v > Prl(e ]| ¢) ( Mz )

wEA\I/,a
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As for random worlds, we begin with the problem of computing 0-1 probabilities.
In §4.1, we showed how to extend Grandjean’s algorithm to compute Pr¥ (¢ | ¥ A V).
Fix a unary vocabulary ¥, and suppose that ¢ AV is a model description over W,
with n = v(1). Recall from Proposition 3.21 that Pri(¢ | ¢ A V) = Pri (¢ |
YATxy, ..., x, Dy). However, in the unary case it is easy to see that A3z, ..., x, Dy
is equivalent to 1. This is because the only nontrivial properties of the named elements
given by V is which atom each of them satisfies and the equality relations between
the constants, and this information is already present in the atomic description .

Therefore, we conclude that Prl (¢ | ¢) is either 0 or 1, because this is so for
Pre (¢ | ¥ AV). Now recall that if ¢ € Ag then 1 implies . In this case, clearly
Pri(p | ) = Pr‘;gp(gp | ) = 1. Similarly, if ¢ & Ag, then ) is inconsistent with
@ and Pr¥ (¢ | ) = Pri¥(e | ) = 0. So it follows that we can continue to use
Grandjean’s algorithm, as described in §4.1, to compute Prigp(go | ).

THEOREM 4.21. There exists an alternating Turing machine that takes as input a
finite unary vocabulary ¥, an atomic description 1 over ¥, and a formula ¢ € L(V),
and decides whether PreY (o | ) is 0 or 1. The machine uses time O(|¥[2P1(v(x)) +
l¢])) and has at most O((2"Y! + v(¥))I?1) branches and O(|p|) alternations.

As before, we can simulate the ATM deterministically.

COROLLARY 4.22. There ezists a deterministic Turing machine that takes as
mnput a finite unary vocabulary ¥, an atomic description ¢ over ¥, and a formula
¢ € L(V), and decides whether Pr'2¥(p | 1) is 0 or 1. The machine uses time
20Ul 1og((¥)+1) gnd space O(|o||¥|log(v(¢) + 1)).

We now analyze the complexity of computing Pr%:¥ (¢ | §). We begin with the
case of a fixed finite vocabulary W.

THEOREM 4.23. Fiz a finite unary vocabulary U with at least one predicate
symbol. For ,0 € L(W), the problem of computing Prs:¥ (¢ | 8) is PSPACE-complete.
Moreover, deciding if Pry (¢ | true) =1 is PSPACE-hard, even if o € L~ ({P}).

Proof. By Corollaries 3.41 and 3.42, if 9,0 € L~ ({P}) and P € U, then Pr (¢ |
0) = Priffl (o | ) = Pr3¥(¢ | 6). Thus, the lower bound follows immediately from
Theorem 4.7.

For the upper bound, we follow the same general procedure of Compute-Prs:
generating all atomic descriptions of size d(6) + |C|, and computing Pr:¥ (¢ | 6). The
only difference is that, rather than counting only model descriptions of the highest
degree A(y) = (a(v),v(v)), we count all atomic descriptions of the highest activity
count a(¢)). Clearly, since there are fewer atomic descriptions than model descriptions,
and an atomic description has a shorter description length than a model description,
the complexity of the resulting algorithm can only be lower than the corresponding
complexity for random worlds. The algorithm for random structures is therefore also
in PSPACE. O

Just as Theorem 4.7, Theorem 4.23 shows that even approximating the limit
is hard. That is, for a fixed € with 0 < € < 1, the problem of deciding whether
Pri¥(o | ) € [0,1 — ¢ is PSPACE-hard even for ,0 € £~ ({P}). As for the
case of random worlds, this lower bound cannot be generalized to arbitrary intervals
[r1,72] unless we allow equality. In particular, for any fixed finite language, there
is a fixed number of atomic descriptions of size 1, where this number depends only
on the language. Therefore, there are only finitely many values that the probability
Pré¥ (¢ | 0) can take for p,0 € £~ (¥). However, and unlike the case for random
worlds, for random structures once we have equality in the language, a single unary
predicate suffices in order to have this probability assume infinitely many values.
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THEOREM 4.24. Fix a finite unary vocabulary W that contains at least one unary
predicate and rational numbers 0 < r1 < rg < 1 such that [ri,79] # [0,1]. For
©,0 € L(V), the problem of deciding whether Pr.¥ (¢ | 0) € [r1,79] is PSPACE-hard,
even given an oracle that tells us whether the limit is well defined.

Proof. We first prove the result under the assumption that ¥ = {P}.

For the case of r1 = 0 and r3 < 1, the result follows trivially from Theorem 4.23.
Let r1 = q¢/p > 0. As for random worlds, we construct formulas ¢, ,6,, such that
Prf)g{P}(apTl | 6,,) = r1. The formula 6,, is 3z P(z) A 3Pz P(x). The formula ¢,,
is 3z P(x) A 39z P(x). Clearly, there are p atomic descriptions consistent with 6,.,,
among which ¢ are also consistent with ¢,,. Thus, Pr3 (o, | 6,.) = q/p = 1.

Now, as in Theorem 4.8, let 3 be a QBF, and define {3 as in that proof. As
there, PrifPH(eg Ay, | 0, Az —P(x)) is 0 if § is false and r if it is true. Thus, by
computing this probability, we can decide the truth of 3, proving PSPACE-hardness
in this case.

The result in the case that U # {P} is not immediate as it is for random worlds,
since the asymptotic probability in the case of random structures may depend on the
vocabulary. We define a formula 6’ to be the following conjunction: for each predicate
P’ in ¥ — {P}, 0 contains the conjunct VzP’'(x). If ¥ contains constant symbols, let
c be a fixed constant symbol in W. Then ¢ also contains the conjunct A p, oy P'(c),
and conjuncts ¢ = ¢’ for each constant ¢’ in ¥. We leave it to the reader to check that
for any formulas ¢, 0 € L({P}), Prat (o | 0) = Pri¥ (0 |0 A0). O

For the case of a finite vocabulary and a bound on the quantifier depth, precisely
the same argument as that given for Theorem 4.9 allows us to show the following.

THEOREM 4.25. Fiz d > 0. For ¢,0 € L(VU) such that d(¢),d(0) < d, we can
effectively construct a linear time algorithm that decides if Pre.Y (¢ | 0) is well defined
and computes it if it is.

We now drop the assumption that we have a fixed finite vocabulary. As we pre-
viously discussed, there are at least two distinct interpretations for asymptotic condi-
tional probabilities in this case. One interpretation of “infinite vocabulary” views 2
as a potential or background vocabulary, so that every problem instance includes as
part of its input the actual finite subvocabulary that is of interest. So although this
subvocabulary is finite, there is no bound on its possible size. The alternative is to
interpret infinite vocabularies more literally, using the limit process explained in §2.3.
As we mentioned, for random worlds the two interpretations are equivalent. However,
this is not the case for random structures, where the two interpretations may give
different answers. In fact, from Corollary 2.9, it follows that the random-structures
method reduces to the random-worlds method under the second interpretation. Thus,
the complexity results are the same for random worlds and random structures under
this interpretation. As we already observed, even under the first interpretation, the
random-structures method reduces to the random-worlds method if there is a binary
predicate in the language. It therefore remains to prove the complexity results for
random structures only for the first interpretation, where the vocabulary is considered
to be part of the input, under the assumption that the language is unary. As Ex-
ample 2.4 shows, in this case, the random-worlds method may give answers different
from those given by the random-structures method. Nevertheless, as we now show,
the same complexity bounds hold for both random worlds and random structures.

As for the case of the finite vocabulary, the lower bounds for computing the
probability (Theorem 4.15) and for approximating it (Theorem 4.16) only use formulas
in £~ (P) for some P C Q. Therefore, by Corollaries 3.41 and 3.42, the lower bounds
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hold unchanged for random structures.

THEOREM 4.26. For U C Y and ¢,0 € L~ (P) of depth at least 2, the problem of
computing Prs.¥ (o | 0) is #EXP-hard, even given an oracle for deciding whether the
limit exists.

THEOREM 4.27. Fiz rational numbers 0 < 11 < rg <1 such that [ri,73] # [0,1].
For W C Q and ¢,0 € L~ (P) of depth 2, the problem of deciding whether Pr.’ (¢ |
0) € [r1,r2] is both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle
for deciding whether the limit exists.

It remains only to prove the #EXP upper bound for computing the asymptotic
probability.

THEOREM 4.28. For U C Q and ¢,0 € L(V), the problem of computing Pre.Y (¢ |
0) is #EXP-easy.

Proof. We again follow the outline of the proof for the case of random worlds.
Recall that in the proof of Theorem 4.13 we construct a Turing machine such that the
number of accepting paths of M encodes, for each degree &, count’(¢) and count’ ().
From this encoding we could deduce the maximum degree, and calculate the asymp-
totic conditional probability. This was accomplished by guessing a model description
AV, and branching sufficiently often, according to A(v)), so that the different counts
in the output are guaranteed to be separated. The construction for random structures
is identical, except that we guess atomic descriptions i rather than model descrip-
tions, and branch according to a(t) rather than according to A(vy). Again, since
there are fewer atomic descriptions than model descriptions, and the representation
of atomic descriptions is shorter, the resulting Turing machine is less complex, and
therefore also in #EXP. O

5. Conclusions. In this paper and [23], we have carried out a rather exhaustive
study of complexity issues for two principled methods for computing degrees of belief:
the random-worlds method and the random-structures method. These are clearly not
the only methods that one can imagine for this purpose. However, as discussed in
[2] and [22], both methods are often successful at giving answers that are intuitively
plausible and which agree with well-known desiderata. We believe this success justifies
a careful examination of complexity issues.

Here we have focused on the case where the formula we are conditioning on is a
unary first-order formula. As we mentioned in the introduction, in many applications
we want to move beyond first order and also allow for statistical knowledge. Both
methods continue to make sense in this case. Furthermore, as shown in [33], [3],
and [27], for a unary language we can often calculate asymptotic probabilities in
the random-worlds method, using a combination of the techniques in this paper and
the principle of maximum entropy. Since a lot is already known about computing
maximum entropy (for example, [7], [9], [19]), this combination may lead to efficient
algorithms for some practical problems.
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