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Abstract

Logical characterizations of the common prior assumption (CPA) are investi-
gated. Two approaches are considered. The first is called frame distinguishability,
and is similar in spirit to the approaches considered in the economics literature.
Results similar to those obtained in the economics literature are proved here as
well, namely, that we can distinguish finite spaces that satisfy the CPA from those
that do not in terms of disagreements in expectation. However, it is shown that,
for the language used here, no formulas can distinguish infinite spaces satisfying
the CPA from those that do not. The second approach considered is that of finding
a sound and complete axiomatization. Such an axiomatization is provided; again,
the key axiom involves disagreements in expectation. The same axiom system is
shown to be sound and complete both in the finite and the infinite case. Thus, the
two approaches to characterizing the CPA behave quite differently in the case of
infinite spaces.

*Work supported in part by NSF under grant TRI-96-25901 and by the Air Force Office of Scientific
Research under grant F49620-96-1-0323.



1 Introduction

The common prior assumption (CPA) is one that, up until quite recently, was almost
an article of faith among economists. This assumption says that differences in beliefs
among agents can be completely explained by differences in information. Essentially, the
picture is that agents start out with identical prior beliefs (the common prior) and then
condition on the information that they later receive. If their later beliefs differ, it must
thus be due to the fact that they have received different information.

The CPA has played a prominent role in economic theory. Harsanyi [1968] showed
that a game of incomplete information could be reduced to a standard game of imperfect
information with an initial move by nature iff individuals could be viewed as having a
common prior over some state space. Aumann [1976] showed that individuals with a
common prior could not “agree to disagree”; that is, if their posteriors were derived from
a common prior and they had common knowledge of their posterior probabilities of a
particular event, these posteriors would have to be the same.

The CPA has come under a great deal of scrutiny recently. (See, for example, the
exchange between Gul [1998] and Aumann [1998]; see [Morris 1995] for an overview.)
In an effort to try to understand the implications of the CPA better, there have been
a number of attempts to characterize the CPA. Of most relevance here are the results
of Bonanno and Nehring [1999], Feinberg [1995, 2000], Morris [1994], and Samet [1998],
who all showed that, in finite spaces, the common prior could be characterized by a
disagreement in expectations, in a sense explained below. Feinberg [2000] extended this
result to infinite spaces that satisfied a certain compactness condition, and also showed
that this compactness condition was necessary.

This paper continues these efforts. I characterize the CPA using traditional tools from
modal logic, and compare these characterizations to those used in the economics litera-
ture. In the process, I highlight the role of the language used in getting a characterization.
Feinberg [2000] showed how to characterize the CPA in syntactic terms, essentially using
a logic with operators for knowledge and probability. I use a much richer language here,
one introduced in [Fagin and Halpern 1994], which has operators for knowledge, common
knowledge, and probability. Feinberg’s language is weaker than that used here in two sig-
nificant respects. The first is that it does not include an operator for common knowledge.
To get around this, his characterization involves infinite sets of formulas. The second is
that the operators in his language do not allow us to express expectation. In particular,
this means that disagreement in expectation cannot be expressed. Feinberg gets around
this by an ingenious construction that involves adding coin tosses to the description of
the world, in order to construct a more complex model. In this model, disagreement in
expectation is converted to disagreement between two agents about the probability of an
event, and this fact can be expressed in Feinberg’s language. By using a richer language,
the need for this construction is completely obviated.

However, characterizing the CPA involves more than just language. It depends on
what counts as a characterization. I consider two quite different characterizations here.



One is called frame distinguishability, and is very similar in spirit to the types of char-
acterization considered in the economics literature. Not surprisingly, the results I obtain
for frame distinguishability are quite similar to those obtained in the economics literature
(and much the same techniques are used). In particular, I show that finite frames (essen-
tially, finite spaces) that satisfy the CPA can be distinguished from those that do not in
terms of disagreements in expectation. However, there are no formulas in the language
considered here that can distinguish infinite spaces satisfying the CPA from those that
do not.

The second type of characterization I consider is that of finding a sound and complete
axiomatization. I provide such an axiomatization; again, the key axiom involves disagree-
ments in expectation. The same axiom system is shown to be sound and complete both
in the finite and the infinite case. Thus, the distinction between finite and infinite spaces
vanishes when we consider axiomatizations. Roughly speaking, this can be understood
as saying that the language is too weak to distinguish finite from infinite spaces (despite
being much stronger than that considered by Feinberg).

It may seem strange at first that a language not rich enough to provide a distinguishing
test can still completely characterize all the properties of a notion of interest in that
language. But this phenomenon is actually quite familiar in other areas of mathematics.
There is a well-known complete axiomatization of the real numbers with addition and
multiplication due to Tarski [1951]. Nevertheless there are nonstandard models of the
reals that satisfy the same axioms, so the language cannot distinguish the standard
models from the nonstandard models. (This observation is in fact the basis for the whole
enterprise of nonstandard analysis [Davis 1977].) Essentially, I show that, just as there
are nonstandard models of the reals that satisfy all the properties of the reals, there
are “nonstandard” models that satisfy all the properties of the CPA expressible in the
(rather rich) language considered here yet do not satisfy the CPA.

A natural question to ask is which of the two types of characterization I consider is
more appropriate. That, of course, depends on the application. If we are interested in
testing whether the CPA holds in a given space, this is a question essentially about frame
distinguishability. As it happens, if a finite space does not satisfy the CPA, there is a
single formula that will be true in that space that is not true in any space that satisfies
the CPA. Moreover, that formula is one that the agents themselves know to be true, so
not only can the modeler make the distinction, the agents themselves can.! On the other
hand, suppose rather than being given a particular space, all that the modeler is given
is a finite collection ¥ of facts about the space. (For example, 3 may give information
about the agents’ knowledge and beliefs.) Note that ¥ will in general not determine a
single space; there may be a number of spaces compatible with ¥. The modeler may then
be interested in knowing what follows from the CPA together with ¥ as opposed to just
from X alone. That is, what extra conclusions follow from the CPA, given ¥. This is a
question that can be answered using a complete axiomatization—frame distinguishability

!There are some subtle computational issues here though; see Section 3.1.



is of no help at all. Thus, for example, the axiomatization can be viewed as providing,
among other things, an exact characterization of the extent to which the CPA implies no
common knowledge of disagreement.

The rest of this paper is organized as follows. In Section 2, I carefully define the
language considered and its semantics. In Section 3, I consider the two types of charac-
terizations. I also consider what happens if the common knowledge operator is not in the
language. In this case, I show that there are no new consequences of the CPA. This re-
sult is similar in spirit to, but different from, one of Lipman [1997]. Lipman showed that
there are some (albeit weak) consequences of the CPA, even without common knowledge
in the language. The differences in our results are attributable to a small but significant
difference in our definitions of the CPA in the case when there are information sets with
prior probability 0; see Section 3 for details. I conclude in Section 4 with some discussion
of these results.

Most proofs can be found in the appendix.

2 Syntax and Semantics

To reason formally about knowledge and probability, the standard approach in the liter-
ature in philosophy and mathematics, which has also been adopted in computer science,
starts with a language (the syntaz). Of course, there is some flexibility in exactly what
language should be chosen. Since I want to reason about knowledge, common knowledge,
and probability here, I use the syntax first defined in [Fagin and Halpern 1994], that lets
us reason explicitly about all these notions. This choice of language (particularly the
assumption that the language includes common knowledge) has nontrivial consequences
for the results of this paper, as we shall see. I return to the issue of the choice of lan-
guage in Section 4; for now I just focus on this language (occasionally without common
knowledge).

Suppose we consider a system with n agents, say 1,...,n, and we have a nonempty
set @ of primitive propositions about which we wish to reason. (Think of these primitive
propositions as representing basic events such as “agent 1 went left on his last move”.) We
take LICPT £0 be the least set of formulas that includes ® and is closed under the following
construction rules:? If ¢, ¢/, 91, ..., ¢, are formulas in LXCP" then so are =, ¢ A ¢,
K;p,i=1,...,n, (which is read “agent i knows ¢"), C¢p (“p is common knowledge”),
and aypri(p1) + - + apnpri(pm) > b, where ay, ..., a,,b are rational numbers, (pr;(¢)
is read “the probability of ¢ according to agent i"). Let LXP" consist of all the formulas
in LE-©Pr that do not mention the C operator.

Asusual, pV¢' and p = ¢’ are abbreviations for =(—@A-¢’) and —pV ¢/, respectively.
In addition, E'¢ (“everyone knows ¢”) is an abbreviation for K19 A ... K, and E™ ¢

2Gtrictly speaking, I should write £X-C:P7(®), because ® is also a parameter of the language, just as
n is. However, I omit it here, to simplify the notation.



is an abbreviation for E'E™y (“everyone knows that everyone knows ...that everyone
knows—m + 1 times—¢”), for m > 1. Many other abbreviations will be used for rea-
soning about probability without further comment, such as pr;(¢) < b for =(pr;(¢) > b),
pri(p) > b for —pri(p) < —b, and pri(p) = b for pr;(p) < b A pri(p) > b. Note that
we can express simple conditional probabilities such as pr;(p|v) = 2/3 by clearing the
denominator to get pri(p A ¥) = Zpri(1)).

The operators K; and C allow us to reason about knowledge and common knowledge,
respectively. Formulas such as aijpri(p1) + -+ + ampri(pm) > b are called i-probability
formulas; they allow us to express a number of notions of interest.> Note that by using
i-probability formulas, we can also describe agent i’s beliefs about the expected value
of a random variable, provided that the worlds in which the random variable takes on
a particular value can be characterized by formulas. For example, suppose that agent 1
wins $2 if a coin lands heads and loses $3 if it lands tails. Then the formula 2pr (heads) —
3pri(tails) > 1 says that agent 1 believes his expected winnings are at least $1. This is
a much richer language for expressing an agent’s beliefs than that used in the relevant
literature in economics (for example, [Feinberg 2000]), although the belief indices of
Bonanno and Nehring [1999] provide a semantic way of expressing yet richer notions.

To assign truth values to formulas in £LX“P" we need a semantic model. The basic
semantic model we use is a (Kripke) frame (for knowledge and probability for n agents).
This is a tuple F' = (W, Ky,..., K, PR1,...,PR,), where W is a set of possible worlds
or states, ICy, ..., K, are equivalence relations on W, and PRy,..., PR, are probability
assignments; PR; associates with each world w in W a probability space PR;(w) =
(Wa,iy X i, Pty ;). Intuitively, K;(w) = {w' : (w,w’) € K;} is the set of worlds that agent
i considers possible in world w and PR;(w) is the probability space that agent i uses at
world w. PR; must satisfy the following three assumptions.

Al. W,; = K;(w): that is, the sample space at world w consists of the worlds that
agent ¢ considers possible at w.

A2. If w' € K;(w), then PR;(w) = PR;(w'): at all worlds that agent ¢ considers
possible, he uses the same probability space.

A3. X, the set of measurable sets, includes K;(w) N IC;(w') for each agent j and world
w' € K;(w). Intuitively, each agent’s information partitions are measurable.

Apart from minor notational differences, a Kripke frame is the standard model used in the
economics literature to capture knowledge and probability (see, for example, [Feinberg
2000]); K;(w) is usually called agent i’s information set at world w. In the economics
literature, an agent’s knowledge is usually characterized by a partition, but this, of course,

3Note that the syntax does not allow “mixed” formulas such as pri(¢1) + pra(p2) > 1. There would
be no difficulty giving semantics to such formulas, but the results on complete axiomatizations become
more difficult if we allow them. Thus, for ease of exposition, they are disallowed here, just as they are
in [Fagin and Halpern 1994].



is equivalent to using an equivalence relation.* I sometimes describe a relation K; by
describing the partition it induces.

A frame does not tell us how to connect the language to the worlds. For example, it
does not tell us under what circumstances a primitive proposition p is true. To do that, we
need an interpretation, that is, a function that associates with each primitive proposition
an event, namely, the set of worlds where it is true. The traditional way of capturing this
in the logic community is by taking 7 to be a function that associates with each world w
a truth assignment to the primitive propositions in ®; i.e., , 7(w)(p) € {true, false} for
each primitive proposition p € ® and each world w € W. A (Kripke) structure (for knowl-
edge and probability for n agents) is a tuple M = (W, Kq,...,Kp, PR1,...,PR,,T),
where F = (W,Ky,..., K., PR1,...,PR,) is a frame and 7 is an interpretation, with
the restriction that

Ad. Ki(w) N [p]lm € Xy, for each primitive proposition p € @, where [p]yr = {w :
m(w)(p) = true} is the event that p is true in structure M. Intuitively, this makes
[p]as a measurable event at every world.

We say that the structure M is based on the frame F'. Note that there are many structures
based on a frame F', one for each choice of interpretation.

Kripke structures for knowledge and probability were first considered in [Fagin and
Halpern 1994], but A1-A4 were not required in the basic framework. These four re-
quirements correspond to the requirements denoted CONS (for consistency), SDP (for
state-determined probability ), and MEAS (for measurability) in [Fagin and Halpern 1994].

We can now associate an event with each formula in £X¢# in a Kripke structure. We
write (M, w) = ¢ if the formula ¢ is true at world w in Kripke structure M; generalizing
the earlier notation, we denote by [¢]y = {w : (M,w) &= ¢} the event that ¢ is true
in structure M. We proceed by induction on the structure of ¢, assuming that we have
given the definition for all subformulas ¢ of ¢ and that [¢']y N K;(w) € X, ;; that is,
the event corresponding to each formula must be measurable.

) = p (for p € ®) iff 7(w)(p) = true
) E @A iff (M,w) = ¢ and (M,w) = ¢’
Jw) = g iff (M, w)
)
)

é

=

= K iff (M,w') = ¢ for all w' € K;(w)

=

,w) = Co iff (M,w) = E*p for all k > 1

“Bonanno and Nehring [1999] assume only that the relation is serial, Euclidean, and transitive, which
is a weaker assumption than it being an equivalence relation, because they want to model belief rather
than knowledge. Otherwise, their formalism is the same.



(M, w) = a1pri(p1) + -+ + ampri(om) > b
if a3 Pryi([o1]ar N W) + -+ + 4 am Proi([0m]ar 0 Wii) > b.

The clause for K;¢ captures the intuition that K;p is true at world w if ¢ is true all
the worlds the agent considers possible at w, namely C;(w); the clause for C'¢ enforces
the intuition that common knowledge is equivalent to everyone knows, and everyone
knows that everyone knows, .... Finally, the clause for i-probability formulas captures
the intuition that a formula such as pr;(¢) + 2pr;(v0) > 1 just says that, according to
agent ¢, the probability of ¢ plus twice the probability of 1 is at least 1.

It should be clear that this approach of starting with formulas and associating events
with them is not so far removed from the more standard approach in the economics
literature of defining knowledge in terms of an operators Ki,...,K, on events, where
Ki(E) = {w: K;(w) C E}. In particular, it is easy to see that K;([¢]n) = [Ki¢]m-

For future reference, it is useful to recall a well-known alternative characterization
of common knowledge. We say that world w’ is reachable from w if there exist worlds
Wy, - - - , Wy, sSuch that w = wy, w' = w,, and for all k& < m, there exists an agent j such
that wy1 € Kj(wg). Let C(w) consist of all the worlds reachable from w; C(w) is called
the component of w. The reachability relation is clearly an equivalence relation; thus, C
partitions the set W of worlds into components. A subset W/ C W is a component of W
if W' = C(w) for some w € W.

The following lemma is well known (cf. [Fagin, Halpern, Moses, and Vardi 1995,
Lemma 2.2.1]).

Lemma 2.1: (M,w) = Co iff (M,w') = ¢ for all w' € C(w).

With this background, we can formalize the CPA. It is simply another constraint on
probability assignments.

CP. There exists a probability space (W, Xw,Pry) such that Pry (W') > 0 for all
components W’ of W and for all i, w, if PR;(w) = (Ki(w), Xy, Pty ;), then Xy, ; C
Xw and, if Pry(KC;(w)) > 0, then Pr,;(U) = Pry(U|K;(w)) for all U € X, ;.
(There are no constraints on Pr,,; if Pry (K;(w)) = 0.)

This formalization of the CP is slightly different from the others in the literature.
Bonanno and Nehring [1999], Feinberg [2000], and Samet [1998] do not require the con-
dition that the prior gives each component positive probability. However, this condition
is necessary for Aumann’s theorem to hold; see Example 2.3. Aumann [1976, 1987] starts
with the prior and assumes that the posteriors are obtained from the prior by condition-
ing on the information of the agents; in our language this means that Pr,,; is obtained
from Pry by conditioning on K;(w). In [Aumann 1976], Aumann explicitly assumes
that Pry (K;(w)) # 0 for all agents 7 and worlds w. (This assumption is also implicitly
made in [Aumann 1987].) While the issue of what happens when the prior gives an
information set zero probability is a relatively minor technical nuisance, it turns out to

6



play an important role when considering the impact of the CPA. As mentioned in the
Introduction, Lipman [1997] shows that there are still some consequences of the CPA
even without common knowledge in the language. However, as shown here, the assump-
tion that Pry (IC;(w)) # 0 for all 4, w is crucial for Lipman’s results. With the weaker
assumption that only components need get positive probability, there are in fact no con-
sequences of the CPA without common knowledge in the language. This is discussed in
more detail in Section 3.

The CPA is far from a weak assumption, as the following example shows.

Example 2.2: Consider the frame F} described in Figure 1. There are four worlds;

Agent 2
13 2/3
° °
W W,
172 12
Agent 1
2/3 13
°
W3 V\tl
1/2 1/2

Figure 1: A frame that does not satisfy CP.

the partition induced by K; has the equivalence classes {wy, ws} and {ws, w4}, and the
partition induced by K, has the equivalence classes {wy, w3} and {wy, ws}. Whatever
two worlds agent 1 considers possible, he ascribes them both probability 1/2. Agent 2,
however, thinks that ws is twice as likely w; and ws, is twice as likely as wy. It is easy to
see that I} cannot satisfy CP. 11

Let F, consist of all frames for n agents. Let F/™ consist of all frames for n agents
where the set of worlds is finite and the probability spaces at each point are such that
every set is measurable. Let F T (resp., FPf") consist of all frames in F,, (resp., Ffir)
that satisfy CP. I use M,,, Mf" MEP and MEPF™ to denote the corresponding sets of
structures.’

A formula ¢ is wvalid (resp., satisfied) in a Kripke structure M = (W,...) if for all
(resp., some) w € W, we have (M,w) = ¢. A formula is valid (resp., satisfied) in frame
F if it is valid in every Kripke structure (resp., satisfied in some Kripke structure) based
on F. A formula ¢ is valid in a set M of structures (resp., set F of frames) if it is valid
in every structure M € M (resp., every frame F' € F). It is easy to check that a formula
is valid in a set F of frames iff it is valid in the set M of all structures based on the
frames in F.

S5Technically, these are not sets but classes; they are too large to be sets. I ignore the distinction here.



To the extent that there has been consideration of formulas and structures that satisfy
them in the economics literature, the focus has been on what has been called the canonical
structure or canonical model. This is essentially a universal structure, which has the
property that if a formula is satisfiable at all, it is satisfied at some world in the canonical
structure. This was introduced in the economics literature by Aumann [1989], although
the basic idea is well known in the modal logic community, and seems to have been
introduced independently by Kaplan [1966], Makinson [1966], and Lemmon and/or Scott
[Lemmon 1977]. The canonical model has the property that every structure can be
embedded in it, in a precise sense.

This may suggest that all we need to consider is the canonical model. While a case
for this can be made if we do not have common knowledge in the language, the canonical
model construction fails if we add common knowledge to the language, because of the
infinitary nature of common knowledge (see [Fagin, Halpern, Moses, and Vardi 1995,
Section 3.3]). But even ignoring this issue, there are advantages in considering models
other than the canonical model, with its uncountable state space. If we are analyzing
a simple game, we are clearly far better off conducting the analysis using a model that
reflects that game. In any case, for the results in this paper, it is useful to consider not
just the canonical model, but the spaces of structures and frames introduced above.

Aumann’s [1976] theorem tells us that for all @ and b, the formula —C(pri(¢) =
a Apry(p) = b) is valid in MST if a # b: agents cannot agree to disagree in the presence
of a common prior. It is, however, not valid in My. In fact, if M; is a structure
based on the frame F; of Example 2.2 where p is true at ws and w,, then we have
C(pri(p) = 1/2 A pra(p) = 2/3 is valid in M;. The requirement that the common prior
give each component positive measure is necessary for Aumann’s result, as the following
example shows:®

Example 2.3: Consider the structure M = (W, Ky, Ky, PRy, PRy, ) described in Fig-
ure 2, where W = {w;, ws, w3} and the partitions induced by K; and Ky are the same;
the equivalence classes are {wy, ws} and {ws}. Agents 1 and 2 disagree about the prob-

Agent 1 2/3 1/3 1
° ° °
Agent 2 ™ v Vs
1/2 1/2 1

Figure 2: A structure with disagreement in probability in one component.

abilities in the first component. According to agent 1, w; gets probability 2/3 (so w; get
probability 1/3); according to agent 2, w; and ws get equal probability. Suppose 7 is

61 think Bart Lipman for bringing this issue—and this example—to my attention.



such that p is true at w; and false at the other two worlds. Then it is easy to see that
(M,wy) = C(pri(p) = 2/3 A pra(p) = 1/2), so we have a disagreement in probability.
However, if we drop the requirement in CP that Pry must give each component posi-
tive probability, then there would be a common prior in this case: it would assign ws
probability 1 and the other two worlds probability 0. I

3 Characterizing the CPA

In this section, I consider two approaches to characterizing the CPA. The first is in the
spirit of the approaches taken in the economics literature (although it has analogues in
the modal logic literature too), while the second involves finding a sound and complete
axiomatization. In Section 4, I discuss in more detail what the definitions tell us, in light
of the results.

3.1 Frame Distinguishability

Frame distinguishability essentially asks whether there is a test (expressed as a set of
formulas) that allows us to distinguish the frames satisfying a certain property from ones
that do not.

Definition 3.1: A set A of formulas distinguishes a collection F of frames from another
collection F" if (a) every formula in A is valid in F and (b) if ' € F', then some formula
in A is not valid in F. I

Typically the set A of formulas in Definition 3.1 consists of all instances of some axiom
and the set F is the set of frames satisfying a certain property (like the CPA). Note
that this definition is given in terms of frames, not structures; this is necessary for the
technical results to hold.

My results on frame distinguishability parallel those of Feinberg [2000]: we cannot
distinguish frames that satisfy the CPA from those that do not, but we can distinguish
finite frames satisfying the CPA from those that do not. To do this, we might hope
to use the axiom characterizing Aumann’s “no disagreement” theorem, —C'(pr;(¢) =
a Apri(p) = b) for a # b. While this axiom in valid in F¢F (and hence F7f") it is not
strong enough to distinguish FP* from Ffin — FCP.fin - Ag Feinberg [2000] points out,
there are frames in Ffi" — FCP:fin that satisfy every instance of this axiom, simply because
C(pri(¢) = a) does not hold for any choice of a. For example, if we slightly modify the
probabilities in the frame F} of Example 2.2 (for example, changing agent 2’s probability
so that the probability of ws is 2/3 + € for some small € (so that the probability of w; is
1/3 —¢€), then the only formulas for which agent 2’s probabilities are common knowledge
are true and false. Thus, =C(pri(¢) = a Apra(@) = b) for a # b trivially holds. It follows
that we need something stronger than disagreement in probability to characterize the
CPA.



Consider the following axiom.

CPy. If ¢4, ..., ¢n are mutually exclusive formulas (that is, if =(p; A ¢;) is an instance
of a propositional tautology for 7 # j), then

~C(arpri(e1) + -+ + ampri(@m) > 0 A arpra(er) + -+ + ampra(em) < 0).

Notice that CP, is really an axiom scheme; that is, it represents a set of formulas, obtained
by considering all instantiations of a4, ..., a,, and ¢4, ..., @,. CPyis valid in a structure
M if it is not common knowledge that agents 1 and 2 disagree about the expected value
of the random variable which takes value a; on [¢;]am, j = 1,...,m. Intuitively, CP,
says that it cannot be common knowledge that agents 1 and 2 have a disagreement in
expectation. It is easy to see that disagreements in expectation cannot exist if there is
a common prior; Feinberg [1995, 2000] and Samet [1998] showed that the converse also
holds in finite spaces.” The following theorem just recasts their results in this framework;
its proof shows why we need to use frames rather than structures in Definition 3.1.

Theorem 3.2: CP, distinguishes Fy* ™ from F§" — Fy.

Proof: See the appendix. 1

The proof of Theorem 3.2 shows that if F' is a finite frame that does not satisfy
the CPA; there is a single instance ¢ of CP, which is not valid in F'. Since this is an
epistemic formula, the agents both know, at a given world in F', that ¢ is not valid in F'.
Intuitively, this means that not only can the modeler distinguish F' from structures that
satisfy the CPA, so can the agents.

Does this mean that the agents in a given a finite frame F' can tell if I’ satisfies the
CPA? Given infinite time and computational resources, yes. They simply check each of
the (countably many) instances of CPy to see if they are all valid in F. If all of them
are, then F' satisfies the CPA; if not, then F' does not satisfy the CPA. This approach
is obviously not feasible in practice. There is a better approach: given F', as shown by
Samet [1998], a prior is compatible with agent i’s posteriors in F iff it is in the convex
hull of the probability measures PR;(w), for the worlds w € F. Standard techniques
of computational geometry can be used to compute the convex hull efficiently for each
agent ¢ and to check if the two convex sets thus obtained are disjoint (see, for example,
[Cormen, Leiserson, and Rivest 1990]). F' satisfies the CPA iff the convex hulls are not
disjoint.

As Feinberg and Samet show, we can extend this characterization of the CPA in the
case of two agents to n > 2 agents. Consider the following axiom:

"Essentially the same result is proved by Bonanno and Nehring [1999], but they were dealing with
belief rather than knowledge, so rather than being equivalences, their IC; relations were serial, Euclidean,
and transitive.
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CP,. If ¢1,...,¢m are mutually exclusive formulas and a;;, ¢ = 1,...,n, 7 =1,...,m,
are rational numbers such that }>i'; a;; = 0, for j = 1,...,m, then

=C(anpri(er) + -+ a1mpri(@m) > 0OA A ap1pra(@1) + -« - + GomPTn(m) > 0).

It is easy to see that CP, is equivalent to the axiom that results from CP,, above when
n = 2, so I take the liberty of abusing notation and denoting both as CPs.

The following result generalizes Theorem 3.2; its proof is omitted, since it follows
from results of Feinberg and Samet in the same way as Theorem 3.2.

Theorem 3.3: CP, distinguishes FCT from Flin — FCPfn - for all n > 2.

What happens if the set of worlds is not finite? Feinberg shows by example that we
can find structures for which there is no common prior, and yet there is no disagreement
in expectation (at least, not by bounded random variables). His counterexample can
also be used to show that CP, does not distinguish FF* from F, — FFF. 1 give his
counterexample here (actually, a simplification of it, which suffices for my purposes),
since it will be needed to prove the next theorem.

Example 3.4: Let F* = (W,K, Ky, PR1,PR2) be the frame described in Figure 3:
W = {wy,ws,...}; Ky induces the partition {{w;}, {wq, w3}, {ws, ws},...} and Ky in-
duces the partition {{wy, ws},{ws, ws},...}; PR, and PR, are as described in the figure.
As the figure shows, both agents think that all the worlds they consider possible at each

Agentl | 1 | 12 1/2‘1/2 1/2‘1/2 1/2‘
o

AR TR A

1 2
po Wl ol

Agent2 | 1"

Figure 3: A frame that satisfies CP5, but not the CPA.

world are equally likely (which means that they have probability 1/2 except in the case
of agent 1 at worlds wy ).

It is easy to see that there is no common prior in F™*. For suppose that Pry is such
a common prior. To get all the conditional probabilities to work out, we must have
Pry (wy) = Pry(wy) = Pry(ws) = .. ., and this is clearly impossible; there is no uniform
distribution on a countable set.®

8There is a common improper prior on W, namely, the uniform measure, which assigns measure 1 to
each world (and measure oo to every infinite set, including ). We might hope for a characterization of
the CPA in infinite spaces using common improper priors. However, it is not hard to show that agents
with a common improper (even uniform) prior can disagree about the expectation of a bounded random
variable, so the obvious characterization does not work.
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On the other hand, suppose that there exist mutually exclusive formulas ¢1,..., @,
such that Ci(aipri(e1) + -+ + ampri(@m) > 0 A arpra(er) + -+« + ampr2(pm) < 0) is
satisfied in some structure M* based on F. This means that (M*, w;) = a1pri(¢1)+-- -+
amPr1(m) > 0Aa1pra(p1) + - -+ + ampra(pm) < 0 for all j. Since ¢; and ¢; are mutually
exclusive, we must have that [o;]ap~ N [@j]m- = 0 if @ # j. Suppose, without loss of
generality, that ¢1,..., @, are ordered so that min{k : wy € [pi]m+} < min{k : wy €
[;lm=} if i < j. Note that this means that either w; ¢ [¢;]m~ for all j or wy € [p1] -
Since (M*,w1) = a1pri(@1) + - -+ + ampri(om) > 0, we must have that wy € [¢1]y+ and
that a; > 0. Since (M*,wy) E a1pra(v1) + -+ + ampra(pm) < 0, we must have wy €
[oa]ar< and as < —ay. An easy induction now shows that (a) wx € [er]m=, (b) |ax| >
lag_1| for k =2,...,m, and (c) a; alternates in sign for j = 1,..., k. Now suppose that m
is even (a similar argument works if m is odd). In that case, ICi(wy,) = {wm, Wny1} and
@, is negative. It follows that (M*, wy,) = a1pri(e1)+- - -+ ampri(om) < 0, contradicting
our original assumption. Thus, every instance of CPy holds in M™. I

Example 3.4 shows that CP, does not distinguish FF* from F, — FFP | since every
instance of CPy is valid in F* € F, — F7. We might hope to find a richer set of formulas
that does allow us to distinguish F{F from Fy — FLF; the following theorem shows that
we cannot.

Theorem 3.5: For all k > 2, there is no set A of formulas in EkK’C’pT that distinguishes
FEP from Fr — FEE.

Proof: See the appendix. I

The key step in the proof of Theorem 3.5 involves showing that every formula that is
valid in 7 is valid in the frame F* of Example 3.4. Proving this requires a characteri-
zation of the formulas that are valid in FF; that is the subject of the next section.

3.2 A Sound and Complete Axiomatization of the CPA

The more standard approach to characterizing a notion like the CPA in the logic com-
munity is via a sound and complete axiomatization. An aziom system AX consists of a
collection of arioms and inference rules. An axiom is a formula, and an inference rule
has the form “from ¢, ..., @ infer 10,” where o1, ..., ¢k, 1 are formulas. Typically (and,
in particular, in this paper), the axioms are all instances of ariom schemes. Thus, for
example, an axiom scheme such as K;p = ¢ defines an infinite collection of axioms, one
for each choice of ¢. A proof in AX consists of a sequence of formulas, each of which is
either an axiom in AX or follows by an application of an inference rule. A proof is said
to be a proof of the formula ¢ if the last formula in the proof is ¢. We say ¢ is provable
in AX, and write AX F ¢, if there is a proof of ¢ in AX; similarly, we say that ¢ is
consistent with AX if - is not provable in AX.

12



An axiom system AX is said to be sound for a language £ with respect to a set M of
structures if every formula in £ provable in AX is valid with respect to every structure
in M. The system AX is complete for £ with respect to M if every formula in £ that
is valid with respect to every structure in M is provable in AX. We think of AX as
characterizing the class M if it provides a sound and complete axiomatization of that
class. Soundness and completeness provide a connection between the syntactic notion of
provability and the semantic notion of validity.’

In [Fagin and Halpern 1994], a complete axiomatization is provided for the language
LEPr wwith respect to M,,. The axiom system can be modularized into five components:
axioms for propositional reasoning, axioms for reasoning about knowledge, axioms for
reasoning about linear inequalities (since i-probability formulas are basically linear in-
equalities), axioms for reasoning about probability, and axioms for combined reasoning
about knowledge and probability, forced by assumptions A1 and A2. Let AX*?" consist
of the following axioms and inference rules, where i € {1,... n}:

I. Propositional Reasoning
Prop. All instances of propositional tautologies.
R1. From ¢ and ¢ = 9 infer .
I1. Reasoning About Knowledge
Kl. (K;p A Ki(o = ¥)) = K.
K2, K;p = .
K3. K;p = K;K;p.
K4. =Ko = K;,~K,p.
RK. From ¢ infer K;p.

III. Axioms for reasoning about linear inequalities

I1. (a1pri(e1)+- -+ ampri(pm) > b) & (arpri(e1)+- - -+ ampri(©m) +0pri(@rs1) > b).

2. (aipri(p1) + « -+ + ampri(om) > b) = (azpri(e;) + - + a;,pri(9),) > b), if
J1,- -+, Jm 1S a permutation of 1,...,m.

90ne could similarly define the notion of a sound and complete axiomatization with respect to a set
of frames. Invariably, an axiom system is sound and complete with respect to a set of structures iff it is
sound and complete with respect to the corresponding set of frames, since a formula is valid with respect
to a frame iff it is valid with respect to all the structures based on it. Thus, for simplicity, I focus only
on structures here.
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I3. (apri(pr) + -+ ampn(som) > b) A (aypri(or) + -+ + appri(em) > V) =
(a1 + al)pn(wl) + (am + ay,)pri(pm) > (b + b’)-
4. (a1pri(p1) + -« + ampri(om) > b) & (cpri(e1) + - + capri(om) > db) if d > 0.
I5. (a1pri(er) + - -« + ampri(om) = b) V (a1pri(p1) + - - - + ampri(m) < 0).
16. (a1pri(@1) + <+« + ampri(@m) > b) = (a1pri(o1) + -+« + ampri(om) > ') if b > b'.

IV. Reasoning about probabilities

PL. pri() > 0.
P2. pri(true) = 1.

P3. pri(e A ) +pri(e A =) = pri(e).
RP. From ¢ < 9 infer pr;(p) = pri(v).1°

V. Reasoning about knowledge and probabilities

KP1. K;(p) = pri(¢) = 1.
KP2. ¢ = K, if ¢ is an i-probability formula or the negation of an i-probability formula.

The axioms and rules for propositional reasoning and reasoning about knowledge to-
gether give the standard complete axiomatization for knowledge [Fagin, Halpern, Moses,
and Vardi 1995|. The axioms and rules for reasoning about inequalities and reasoning
about probability are taken from [Fagin, Halpern, and Megiddo 1990], where it is shown
that, together with the the propositional component, they give a complete axiomatization
for reasoning about probability. Note that P3 essentially captures finite additivity. Al-
though our probability measures are countably additive, there is no axiom for countable
additivity. This is essentially because the language is too weak to capture this inherently
infinitary property.

What happens when we add common knowledge to the language? It is well known
[Fagin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1992] that adding the fol-
lowing to the axioms and rules for knowledge gives a complete axiomatization for the
language of knowledge and common knowledge:!*

VI. Reasoning About Common Knowledge

10Tn [Fagin and Halpern 1994], this inference rule is stated as the axiom pr;(¢) = pri(¥) if ¢ & ¢
is a propositional tautology. We need the more general inference rule to prove, for example, that
pri(Kjp) = pri(K;K;p).

"Tn [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1992] there is also an axiom that says
Ep & KipA...AKyp. This axiom is unnecessary here because I have taken E¢ to be an abbreviation
(whose definition is given by the axiom), rather than taking E to be a primitive operator.
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Cl. Cp< E(pACy).
RC. From ¢ = E(p A ) infer ¢ = C1).

Let AXZ®P" he the system consisting of the axioms and rules of AXXP" together
with C1 and RC.

Theorem 3.6: AXXCP is g sound and complete axviomatization for LX5CP" with respect
to both M,, and MI™ (and hence also with respect to both F, and Ffm).

Proof: The proof is a straightforward (although lengthy and tedious) combination of
the techniques of [Fagin and Halpern 1994] and [Halpern and Moses 1992]. The result is
actually proved in the course of proving Theorem 3.8. I

It is worth noting that, although common knowledge is, in a sense, an infinitary notion
(that is, C' can be defined in terms of an infinite conjunction of formulas involving the
K;’s), it can be characterized using a finitary axiom and inference rule—C1 and RC.

AXECP i not a sound and complete axiomatization for £5CP" with respect to MSP
and MEPFnTf we restrict to structures that satisfy the CPA, we get new valid formulas.
Indeed, as we have already seen, every instance of CP, is valid in MS? (and hence
MEPSin) In light of Theorem 3.3, we might hope that if we add CP,, to AX*P" this
would give us a sound and complete axiomatization, at least for MP+i* Unfortunately,
this is not the case.

To understand why, some background is helpful. Samet [1998] shows that, given a
frame, the set of possible priors for agent ¢ (i.e., those that can generate the posteriors
defined by Pr,, ;) forms a closed convex set. If two agents do not have common prior,
the corresponding sets of possible priors must be disjoint. He then makes use of a
standard result of convex analysis [Rockafellar 1972] to conclude that these sets can
be strictly separated by a hyperplane. The separating hyperplane gives the coefficients
ai, - - ., 0, in CPy. That is, strict separation by a hyperplane amounts to a disagreement
in expectation.

If we consider the set of priors compatible with a given formula, it is no longer
necessarily a closed set, so Samet’s argument does not quite work. For example, let ¢4,
2, and 3 be the three mutually exclusive formulas p A ¢, p A =¢, and —p, respectively.
Let ¢y be (pri(e1) > pri(e2)) V ((pri(er) = pri(e2)) A (pri(es) > 1/2)) and ¢ be
(pra(1) < pra(pa)) V (pra(01) = pra(2)) A (pra(s) < 1/2)).1

Let X consist of all prior probability distributions for agent 7 that satisfy 1, i = 1, 2.
Then X' = {(x1,29,73) : 1 > Ty OT &1 = X9, 73 > 1/2} (where z; is the probability of
i, 1 =1,2,3) and X% = {(x1,29,73) : T1 < Ty OT T, = Ty, 73 < 1/2}. X' and X? are
easily seen to be disjoint. Thus, there cannot be a common prior. However, although X;
and X, are convex, they are not closed; it is easy to show that they cannot be strictly

12This example was suggested by Dov Samet.
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separated by a hyperplane, and we do not have disagreement in expectation in the spirit
of CP;. As a consequence, we get the following theorem.

Theorem 3.7: The formula ~C (1 A 1by) is valid in MST, but is not provable in the
system AXEOPT 4 OP,.

It follows from Theorem 3.7 that, if we are to obtain a completeness result, even in
the case of two agents, we need something stronger than CP,. The key insight comes
from examining the set X' and X? in this counterexample again. For all (z1, 7y, 73) € X!
and (ylay27y3) € X2a we have

T1—22>0>y —ypandx; —xy =y — Yo = (T3 — 21 — 22) > 0> (Y3 — Y1 — Ya)-

This example generalizes. More precisely, any two disjoint convex (but not necessarily
closed) sets Xgo and Xy can be separated in expectation in the following more general
sense. Let Xy and X, denote the topological closure of Xyy and X, respectively . If
Xoo and X are disjoint, then they can be strictly separated by a hyperplane. If not,
then they can be weakly separated by a hyperplane H;. Let X;; = X;oN Hy, for: =0, 1.
Notice that X,y and X;; are disjoint, convex sets. Either X,y and X;; are disjoint, so they
can be strictly separated by a hyperplane, or they are weakly separated by a hyperplane
H,. We can continue in this way to construct convex, disjoint sets X;, ¢ = 0,1 for
7 =0,1,2,.... For sufficiently large 7, their closures must be disjoint, and hence strictly
separable by a hyperplane. This is made precise in Lemma A.3 in the appendix, and
generalized to more than two agents in Lemma A.4.

Essentially, this observation tells us that if the CPA holds, then two agents cannot

disagree in expectation in this more general sense. As a consequence, the following axiom
is valid.

CPy. If @1, ..., @, are mutually exclusive formulas and * € {1,2}, then

~C( X0y aypri(p;) > 0A T aypra(p;) < OA
(7L arjpri(es) = 0A 70, arpra(p;) = 0) =
A
(XFL1 ag-1);pr1(w)) = 0 A Ty ag-1)5pm2(905) < OA
(721 ag-1)ipr1(@j) = 0 A 7Ly ag—1);pr2(05) = 0) =
(71 angpri (9) > 0 AT angpra—i<(05) < 0)))...)).

It is easy to see that the formula —=C'(1); A 19) in Theorem 3.7 follows from CPY. Indeed,
Theorem 3.8 shows that (in the presence of the other axioms), all formulas valid in M$?
follow from CPy,.

Just as CP; generalizes to CP,, with n agents, so we get the following generalization
of CP}:
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CPl,. If ¢1,..., ¢, are mutually exclusive formulas, ax;, ¢ = 1,...,n, j = 1,...,
k = 1,...,h, are rational numbers such that >, aux; = 0, for 7 = 1,...,
k=1,...,h,and * € {1,...,n}, then

O N1 (27 aingpri(es) > 0) AN (T angpri(p;) = 0) =
A
(N1 (T2 ain—1y;pri(e) = 0) A (N1 (72 ain—1y;pri(e;) = 0) =
(X781 @irngpric (95) > 0) A Nigi= (721 @ingpri(p;) > 0)))-..))-

Although CP’ is not as elegant as we might hope, it does the job. Let AXS" consist
of all the axioms and rules of AX“?" together with CP! .

Theorem 3.8: AXS” is a sound and complete aziomatization for LECP™ with respect
to both MEY and MEPF™ (and hence also with respect to both F°F and FCPfm).

Proof: See the appendix. I

The fact that CP/, in addition to the other standard axioms suffices to characterize
the CPA in finite structures may not be so surprising in light of Theorem 3.3. What
may seem somewhat surprising that there is no difference between infinite structure and
finite structures in Theorem 3.8. The contrast with Theorems 3.3 and 3.5 is striking;
they show that there is a big distinction between finite and infinite frames when we try to
characterize the CPA in terms of frame distinguishability. The key point is that, although
this language is quite expressive in some ways, it is not expressive enough to distinguish
finite structures from infinite ones. This is made precise in the following theorem, which
shows that if a formula is satisfiable at all, it is satisfied in a finite structure. The
result actually follows from the proof of Theorem 3.8, but I provide in the appendix
an alternative proof, using a standard proof technique for proving such results from the
modal logic literature known as filtration. Note that it follows from the result that finite
frames cannot be distinguished from infinite frames (whether or not we assume the CPA)
either using frame distinguishability or complete axiomatizations.

Theorem 3.9: A formula in LXCP is valid with respect to MEF (resp., M,,) iff it is
valid with respect to MSPF™ (resp., M ).

Proof: See the appendix. I

3.3 Restricting the Language to L7

What happens if we drop the common knowledge operator from the language? As I
mentioned earlier, it is shown in [Fagin and Halpern 1994] that AXX*" provides a sound
and complete axiomatization for the language £X?" with respect to M,. Here, I show
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that it is also a complete axiomatization for the language £XP" with respect to ME”.
That is, there are no new consequences in the languages £X?" that follow from CP.
Moreover, restricting to finite structures does not change anything.

Theorem 3.10: AXXP" s a4 sound and complete aziomatization for LKP™ with respect
to both MEY and MEPF™ (and hence also with respect to both FCF and FCPf).

Proof: See the appendix. 1

We do no better with frame distinguishability. Of course, we already know from The-
orem 3.5 that formulas in £X©?" cannot distinguish arbitrary (infinite) frames satisfying
the CPA from ones that do not. But Theorem 3.3 tells us that we can distinguish finite
frames satisfying the CPA from ones that do not, using formulas that involve common
knowledge. It is almost immediate from Theorem 3.10 that this use of common knowledge
is necessary. The real point here is that, since we do not have infinite conjunctions in the
language, common knowledge is not definable in terms of knowledge. Moreover, finite
conjunctions of formulas involving knowledge and probability do not suffice for charac-
terizing the CPA; infinite conjunctions (particularly, the infinite conjunctions defined by
the C operator) are necessary.

Theorem 3.11: For all n, no set A of formulas in LEP distinguishes FCP" from
Fiin _ FOPin,

Proof: See the appendix. I

These results are qualitatively similar to those proved by Lipman [1997], although
there are nontrivial technical differences. Lipman shows that given a structure M not
satisfying (his formalization of) the CPA, a world w in M, and N > 0, there is a
structure My that satisfies the CPA and world wy in My such that w and wpy agree on
all formulas of depth at most N (where the depth of a formula is the depth of nesting
of the modal operators in the language; thus, for example, K;p has depth 1, K; Kyp and
K;(pri(p) < 1) have depth 2, and pri(pro(Kip) < 1) > 1/2 has depth 3). On the other
hand, in Lipman’s framework, there are consequences of the CPA even without common
knowledge in the language. In particular, Lipman shows that agents’ belief must be
weakly consistent in the sense that it is impossible for agents to have false beliefs. For
example, given his formalization of the CPA, it is impossible for agent 1 to ascribe positive
probability to the event that p is true but agent 2 ascribing probability 0 to it. That is,
pri(p A pra(p) = 0) > 0 is inconsistent.

Note that this formula is consistent in M$?. Consider the structure described in
Figure 4. There are two worlds, w; and w;. Agent 2 cannot distinguish them while
agent 1 can (so agent 2’s partition has one equivalence class—{wy, wy}—while agent 1’s
has two—{w;} and {ws}). Agent 2 ascribes probability 1 to w, and probability 0 to
wi. Obviously, agent 1’s probability at w; and w, is determined. If p is true at w; and
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Agent 1 1 1

Y
Agent 2 0 1 2

Figure 4: A frame satisfying CP but not CP?.

false at wsy, then clearly pri(p A pra(p) = 0) = 1 is true at w;. Moreover, this structure
satisfies CP; we can take the prior to agree with agent 2’s probability measure. Notice
that the common prior assigns IC;(w;) probability 0. This is precisely what is disallowed
by Lipman.

Lipman’s (slightly stronger) version of the CPA can be formalized as follows:

CP*. There exists a probability space (W, Xy, Pry) such that, for all 4, w, if PR;(w) =
(ICZ(w), Xw,,’, Prw,i); then Xwﬂ' C Xw, PrW(IC,(w)) > 0, and Pl"wyi(U) = PrW(U|ICZ(w))
forall U € &, ;.

Let FCP° FOPLn - MEP"and MEP"fn denote the sets of frames (resp., finite frames,
structures, finite structures) for n agents that satisfy CP*.

Lipman’s results characterizing the consequences of CP* in the language £X*" can be
viewed, in terms of the framework here, as a combination of results regarding axiomati-
zations and frame distinguishability. I briefly review his results here (translated to this
framework).

Lipman first shows that the language £XP" cannot distinguish structures satisfying
CP? from those satisfying the weaker common support assumption. A structure M =
(W, K1,...,Kn,PRy,...,PR,, ) satisfies the common support assumption if it satisfies
the following condition:

CS. For all worlds w € W, agents i, j, and events £ C K;(w) N K;(w), if Pr,;(E) =0
then Pr, ;(E) = 0.

Let F°5 (resp., F5/™) consist of those frames in F, (resp., F/") that satisfy CS. CS
is clearly weaker than CP*® (i.e., Z¢F" C F%). Intuitively, it holds as long as i and j’s
priors assign probability 0 to the same events, and does not require that they assign the
same probability to all events. However, Lipman shows that the same formulas in £X»
are valid in both sets of structures.

Theorem 3.12: [Lipman 1997] For all ¢ € LEP" we have FS5 = o iff FOF° = .13

13 Actually, Lipman proves this result only for countable frames. Since, by using the techniques of
El
Theorem 3.9, we can show that a formula is satisfied in F¢5 (resp., F¢F") iff it is satisfied in F.&5-fin
(resp., FOP*fin) the result holds for arbitrary frames as well.
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Lipman further shows that weak consistency distinguishes frames satistying CS from
those that do not. More precisely, consider the following axiom:

WC. pri(p Aprij(¢) =0) =0.
Theorem 3.13: [Lipman 1997] WC distinguishes F,°5 from F, — F5.14

We might at first think that it follows from Theorems 3.12 and 3.13 that WC distin-
guishes frames satisfying CP?® from those that do not, but it is easy to see that this is
not true. It is trivial to construct a 2-world frame that satisfies WC but does not satisfy
CPs. In fact, I conjecture that there are no formulas in £XP" that can distinguish frames
satisfying CP* from ones that do not, although I have not proved this.

What happens when we add common knowledge to the language again? I have not
examined this situation in detail, although I conjecture that analogues to Theorems 3.3,
3.5, and 3.8 hold. Note, however, that we need something stronger than CP,, together
with WC to distinguish finite frames satisfying CP® from those that do not, as the
following example shows.

Example 3.14: Consider the structure M described in Figure 5. There are four worlds,
{wy, wse, w3, wys}. Agent 1’s partition is {wy, ws, w3} and {w, }, while agent 2’s is {w, wsy }.
M clearly satisfies CS, since both agents agree that ws gets probability 0. It also satisfies

Agent 1 1/2 1/2 0 1
[ W ® L W ®
W, W
2 3
Agent 2 23 13 0 14

Figure 5: A frame satisfying CS and CP, but not CP”.

CP, since there is a common prior which gives w, probability 1. However, it does not
satisfy CP*: There can be no common prior that gives {w;,ws} positive probability.
Since M satisfies CS and CP, it satisfies all instances of CPy (in fact, CP%) and WC.
Thus, these formulas cannot distinguish even finite frames satisfying CP® from ones that
do not. 11

The following strengthening of CP, is valid in F¢*” (and not in the frame of Exam-
ple 3.14):

MTipman actually considers structures rather than frames and imposes an additional condition he calls
nonredudancy, which, roughly speaking, says that any two worlds are distinguishable by some formula.
By working at the level of frames, we avoid the need for the nonredundancy condition.
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CPs5. If v1,..., ¢om are mutually exclusive formulas, then

=C(a1pri(er) + -« + ampri(@m) > 0 A ar1pra(pr) + -+ + ampra(om) <0
A=C=(arpri(pr) + -+ - + ampri(om) > 0)).

Whether this formula (and its obvious generalization to n agents) suffices to distinguish
finite frames satisfying CP* from those that do not remains open, as does the problem
of providing a sound and complete axiomatization in the language LXC¢P" for frames
satistying CP?.

4 Discussion

In this paper, I have considered two different ways of characterizing the CPA—by frame
distinguishability and by complete axiomatizations. The notion of frame distinguisha-
bility is closer to the notions typically used in the economics community. If F can be
distinguished from F’, that amounts to saying that we have a test that can distinguish
frames in F from those in F'. That is analogous to saying that we have a test that
distinguishes gold from bronze. Clearly, whether or not we have a distinguishing test
depends on how sharp our tools are. In this context, “sharpness of tools” amounts to
the expressive power of the language.

Having a test that distinguishes gold from bronze does not mean we have a complete
characterization of the properties of gold. But what is a “complete characterization” of
gold? Does it suffice to talk about its molecular structure, or do we also have to mention
its color and the fact that it glitters in the sun? It should be clear that the notion of
“complete characterization” is language dependent. We have a complete characterization
of gold in a given language L if we can describe everything that can be said about gold
in £. In general, having a complete characterization in one language tells us nothing
about getting a characterization in a richer language. For example, if we have a weak
language, it may be easy to find a complete characterization, because there are not many
interesting properties of gold in that language. That does not give us any hint of what
would constitute a complete characterization in a richer language. (By way of contrast, if
we have a distinguishing test in one language, the same test works for any more powerful
language.)

We observed this phenomenon with the CPA: in the language £X?", there is nothing
interesting that we can say about the CPA. There are no new axioms over and above the
axioms for reasoning about knowledge and probability in all structures (Theorem 3.10).
Once we add common knowledge to the language, there are a great many more interesting
things that can be said about (structures satisfying) the CPA.

For similar reasons, we may be able to completely characterize a notion without
being able to distinguish frames that satisfy it from ones that do not. Again, we saw this
phenomenon with the CPA. We can completely characterize the CPA in the language
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LPr (in a not particularly interesting way, as Theorem 3.10 shows), although £X7" is of
no help in providing tests to distinguish frames satisfying the CPA from ones that do not
(Theorem 3.11). If we add common knowledge to the language, then we can distinguish
finite frames satisfying the CPA from ones that do not (Theorem 3.3—this is essentially
the result proved by Feinberg, Samet, and Bonanno and Nehring), but cannot distinguish
infinite frames satisfying the CPA from those that do not (Theorem 3.5); nevertheless,
we can completely characterize the properties of (finite or infinite) frames satisfying the
CPA (Theorem 3.8).

As T observed in the introduction, the fact that a language not rich enough to provide
a distinguishing test can still completely characterize all the properties of a notion of
interest is a standard phenomenon in logic. This leads to an obvious open question: is
there a natural language that is sufficiently rich to distinguish infinite frames satisfying
the CPA from ones that do not (given only their posterior information). Note, however,
that such a sufficiently rich language may not be axiomatizable.

In general, the relative merits of one language relative to another is an issue that needs
to be debated. For example, I have considered a language with common knowledge here,
whereas Feinberg did not consider a language with common knowledge. Is it reasonable
to add common knowledge to the language? In general, there is a tradeoff between the
expressive power of a language and its complexity. Enriching a language may make it
easier to express some notions, but in general makes it harder to decide whether a formula
is valid. For example, although there is an algorithm for deciding if a formula is valid
whether or not the language includes common knowledge, without common knowledge
in the language, the problem is polynomial-space complete; with common knowledge,
it becomes exponential-time complete. (See [Fagin, Halpern, Moses, and Vardi 1995,
Chapter 3| for further discussion of these issues.) Another issue to be considered is that
of axiomatizations. It may be more difficult to axiomatize a richer language.!® It is
typical in the economics literature to define the common knowledge operator in terms
of the knowledge operator, leaving it out of the language. The economics literature
is thus implicitly taking infinite conjunctions (actually, infinite intersections, since in
economics there are events, not formulas) for granted. However, infinite conjunctions are
not expressible in the language £X?" which allows only finite conjunctions. Logicians
have typically avoided infinitary languages; they typically require infinitary axioms and
rules of inference and are difficult to deal with computationally. Following tradition, I
have used an explicit C operator rather than introducing infinite conjunctions. In the
end, perhaps the best argument for including common knowledge here is that the results
are so much more elegant with it than without it. Having said that, it should be clear
that the decision of what to include in the language is, in general, not one to be taken

15 Although this is not necessarily the case. For example, it is easier to give a complete axiomatization
of the logic of probability if linear combinations of probabilities are allowed than if only comparisons
of the form pr(y) > «a are allowed. The axiom P3, which captures the fact that the probability of the
union of two disjoint sets is the sum of the individual probabilities, cannot be expressed in a logic that
does not allow linear combinations.
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lightly.

To sum up, I have tried to clarify here two distinct notions of “characterization”. As
I tried to indicate in the introduction, both have their uses. Frame distinguishability is
perhaps the more appropriate notion when a frame is given; axiomatizations are more
useful to a modeler who is only give some facts about the frame, rather than a complete
description of the frame. In any case, it is important to to be clear about the differences
between the notions.

A Appendix: Proofs

The order of proofs here is different from the order in which the results are stated in the
main text, since some of the earlier theorems (particularly Theorem 3.5) depend on some
of the later results. The statements are repeated for the convenience of the reader.

Theorem 3.2: CP, distinguishes Fy ™ from Fi" — g0
Proof: It is easy to see that every instance of CP, is valid in every frame of Fy@ /"

this is essentially Aumann’s [1976] argument. I repeat his proof here to make the paper
self-contained, since essentially the same idea is used in a number of other proofs.

Suppose F' € ]:ch’ﬁ", M= (W,Ky,...,K,, ) is a structure based on F', w € W, and
©1,-- ., 9m are mutually exclusive. Suppose by way of contradiction that

(M,w) = Clarpri(p1) + - -+ + ampri(em) > 0 A arpra(p1) + - - + ampra(@m) < 0).

Sets of the form /C;(w') partition C(w). Let Uy,...,Uy be a partition of C(w) into
sets of this form. Since F' € fQCP’ﬁ ", there is a common prior Pry on W as required
by CP. Since (M,w) = C(aipri(¢1) + -+ - + ampri(eom)) > 0, it follows that as long
as Prw(U]) > 0, we have that a4 PrW([[cpl]]M N U]) + o4 am Prw(ﬂwm]]]\/[ N U]) > 0,
for j = 1,...,k. (Of course, a; Priw([e1]m NU;) + -+ + am Prw(Jom]m NU;) = 0
if Pryy(U;) = 0.) Moreover, we have Priy([¢;]n N C(w)) = T5_, Prw([ei]ar N U;),
for i = 1,...,m. Since Pry (C(w)) > 0, we must have Pry (U;) > 0 for some j, so
a1 Pryy ([r]m NC(w)) + -+ + @ Prw ([om] s N C(w)) > 0. On the other hand, a similar
argument using the fact that (M, w) = C(aipra(p1) + - - - + @mpra(pm)) < 0, shows that
a1 Priv([p1]m N C(w)) + -+ + @ Prw([om] s N C(w)) < 0. This gives us the desired
contradiction.

For the converse, suppose that F' = (W, K1, Ky, PR, PR,) € Fln_ FEPI  Feinberg
and Samet show that there is a random variable X such that for each world w € W, agent
1’s expectation of X is positive and agent 2’s is negative. That is, if Pr,; is agent i’s
probability distribution at world w, for i = 1,2, then we have 3=,/ cxc, () X (0') Pry 1 (w') >
0 and 3, exc, (w) X (w') Pry2(w') < 0 for each world w € W. Without loss of generality,
we can assume that X (w) is rational for each world w € W. Suppose W = {wy, ..., wy};
let K = [logy(N)]. Then we can easily write N mutually exclusive propositional formulas
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©1, ...,y using the primitive propositions py, . .., px; these all have the form g1 A. . .Aqg,
where each ¢; is either p; or —p;. We can then define a structure M based on F' with
an interpretation m such that [o;|n = {w,}, 7 = 1,...,N. Taking a; = X(w;), j =
1,...,m, then C(a1pri(p1) +---+ anpri(er) > 0 A a1pra(e1) + - - - + anpra(er) < 0) is
satisfied (in fact, valid) in M. 1

Note that this proof crucially depended on being able to define an interpretation 7
appropriately. This is why frames rather than structures are used in Definition 3.1.

As I said earlier, I defer the proof of Theorem 3.5 until after that of Theorem 3.8,
continuing instead with the proof of Theorem 3.7.

Theorem 3.7:  The formula ~C (Y1 A 1y) is valid in MST, but is not provable in the
system AXEOPT 4 OP,.

Proof: First I show that =C(1); A 1)y) is valid in M?. Suppose that (M, w) = C(; A
1hy) for some M € MSP. Let Pry be the common prior in M, let W; be the set of
worlds in C(w) where pri(¢1) > pri(ps) is satisfied, let W, be the set of worlds in C(w)
where pry(p1) < pra(ps) is satisfied, and let W3 be the set of worlds in C(w) where
pri(p1) = pri(e2) A pra(p1) = pra(ps) is satisfied. As in the proof of Theorem 3.2, let
Ui,...,U, be a partition of C(w) into sets the form K;(w’). Thus, Pry ([o1]m NC(w)) =
>t Prw([e1]m NU;). Since 9 is common knowledge at w, it follows that Pryy ([o1]a N
U;) > Prw([p2]m NU;) for j = 1,...,m. Thus, Prw([ei]m) > Prw([p2]m N C(w)).
Moreover, if Pry (W;) > 0, then Pry ([o1]am N C(w)) > Prw ([w2] s N C(w)).

Similarly, since 15 is common knowledge at w, it follows that Pry ([p1]a N C(w)) <
Pry ([¢2] s NC(w)). Moreover, if Pry (W3) > 0, then Pryy (Jo1]ar NC(w)) < Prw ([pa]amrN
C(w)). Thus, we must have Pry (W;) = Pry(W,) = 0. It follows that Pry (Ws3) =
Pry (C(w)) > 0. (Recall that CP requires Pry, to give every component positive mea-
sure.) But it follows from C1); that Pry (W3 N [ps]a) > 1/2 Pry (W3) and from C
that Pryy (W3 N [ws]ar) < 1/2Pry (Ws). This gives us the desired contradiction.

I next show that —C(11 A1) is not provable AXf GPT L CP,. As usual, let A™ denote
the (m — 1)-dimensional simplex, that is {(z1,...,2m) E R™ : 21+ 4+ Ty = 1, 1; >
0,i=1,...,m}. Let W = {wy, ws, w3} and, for (z1,xs,x3) € A3, define the probability
measure Pr(®1:*27%) on W by taking Pr(®1"27%) (1) = z; fori = 1,2, 3. Consider structures
of the form ME1e2%s) — (¥, ICI,ICQ,PRgml’“’“),PRZ,W), where K; and K, are the
universal relations on W (that is, both agents have only one cell in their partition,
consisting of all of W), Prgf,ll’“’x‘”’) = Pr{®1#2:23) and Pr,, = Pri/4V412) for all w € W,
and 7 is such that p is true at w; and w, and false at ws, while ¢ is true at w; and w3
and false at wy. Let M = {M?® : MT = C(i1 A 13}. Thus, M = {ME=273) 3 >
Tg OT T1 = xg < 1/4}.

Note that MA/41/41/2) ¢ pIPFm - Thyg, MA/41/41/2) satisfies every instance of CPs.
Clearly M(/41/41/2) ¢ M. However, it is easy to see that for each ¢ > 0, there exists
a tuple ¥ € A3 such that |¥ — (1/4,1/4,1/2)| < € and M® € M, where | — ] =
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max;e(1,23) |7 — ;| for ,§ € A3 Thus, MI/4/41/2 s in the closure of M, in an
appropriate topology.

Claim A.1: For every instance o of CP,, there exists ¢, > 0 such that M* = o for all
¥ such that |7 — (1/4,1/4,1/2)| < €,.

I shall prove Claim A.1 shortly; first I show why it suffices to prove the theorem.
Suppose there is a proof of =C(¢; A 1) in the system AXS%P" + CP,. By definition,
this means there is a sequence of formulas ¢1,...,¢,,, each of which is an axiom of
AXECPr L CP, or follows from previous steps by an application of an inference rule,
such that ¢, = —-C(¢; A1s). Let € be the minimum of ¢, for all instances o of CP, that
arise in 1, ..., @m. It is easy to see that each formula ¢;, i = 1,...,m is valid in M? if
|#—(1/4,1/4,1/2)| < e: Each formula ¢; that is an instance of an axiom other than CP,
is valid in every structure; if ¢; is an instance of CP5, this follows from Claim A.1 and the
choice of ¢; and if ¢; follows from previous formulas by application of an inference rule,
this follows since inference rules preserve validity if the formulas they are being applied
to are valid. In particular, ¢,, = =C(¢); A 1) is valid in every structure M% such that
| —(1/4,1/4,1/2)| < e. But this contradicts the fact that C'(i; A 1b2) is valid in every
structure in M, by choice of M.

Thus, it remains to prove Claim A.1. This claim may seem obvious. Consider any
instance o = =C(a1pri(o1) + « -+ + ampri(om) > 0 A arpra(or) + « -« + ampra(o,,) < 0)
of CP,. Since ¢ is valid in M1/41/41/2) it seems clear that making only slight changes
to agent 1’s probability shouldn’t affect the validity of ¢. This intuition is in fact true;
however, there is one subtlety involved in proving it: We must show that the event
corresponding to o; does not change as a result of small changes in the probability. This
is the content of the next claim, which says that we can partition the set of structure M*
into convex regions over which the event corresponding to a given formula is constant.
Claim A.2: For all formulas ¢ € £5°C"") there is a partition II, of A% into a finite
number of convex sets (defined by linear inequalities) such that for all D € II, and all
subformulas 1 of ¢, there is a subset Wf of W such that [¢] = Wf for all ¥ € D;
that is, for each D € II,, the set of worlds where 9 is true in M % is the same for all
e D.

Proof: This result follows easily by induction on the structure of ¢. If ¢ is a primitive
proposition, then we can take IL, = {A%}; for example, [p]yz = {w1,ws} for all T € A®.
We can take II, = lg,, = ll¢, = II, and take ll,ny = {ANB: Aell,B e ll,}.
Finally, suppose ¢ has the form aypri(c1) + -« - 4+ ampri(c,) > b. If i = 2, it is easy to
see that we can take I, = I, A ro,.- If ¢ =1, consider a cell D in II, A o,,- Let WjD =
[0;]sz forZ € D, j=1,...,m,let D> = {# € D :a, Pr*(WP)+---+a,, Pr*(WP) > b},
and let Il, = {D>,D — D> : D € ll;,n s, }- It is easy to check that this partition has
the desired properties. I

25



We can now prove Claim A.1. Suppose, by way of contradiction, that it does not hold
for some instance o = =C'(a1pri(o1)+- - <+ ampri(om) > 0Aa1pra(o1)+- - -+ ampra(om) <
0) of CP,. Since M(1/41/41/2) gatisfies every instance of CPy, it must be the case that
MA/4/42) = 5 Since a formula of the form C1 is true at either all worlds in W or
none of them, the set W2 must be either () or W for each D € II,. Since Claim A.1 is
assumed to fail for o, there must be some set D € II, such that (1/4,1/4,1/2) € D and
[o]az = 0 for all # € D (i.e., WP = 0). Since M® = a1pri(o1) + -+« + ampri(om) >
0 for all ¥ € D, we have a; Pr*(W2) + -+ + a,, Pr"(WL ) > 0 for all # € D. On
the other hand, since M® = aipry(oy) + -+ + ampra(om) < 0 for £ € D, we have
ay Pr/AYSID (WY 4 g, PYXIAYAYD (WD) < 0. Since (1/4,1/4,1/2) € D, this
gives us the desired contradiction, proving Claim A.1 and the theorem. I

Before proving Theorem 3.8, we need a technical lemma regarding separation of con-
vex sets. It is well known that two closed convex subsets of A™ can be separated by
a hyperplane. (See Rockafellar [1972] for this and all the other standard facts and def-
initions from convex analysis used below.) As Samet [1998] observes, we can take the
separating point to be 0. That is, if X and Y are two closed convex subsets of A™, there
exists a vector @ € IR™ such that for all ¥ € X and iy € Y, we have @-Z > 0 > @4, where
- denotes inner product. The following lemma generalizes this result to the case where
X and Y are not necessarily closed. Roughly speaking, it says that either two convex
subsets of A™ can be separated by a hyperplane Hy, or they can be weakly separated
by H; (where weak separation here means that both sets may intersect H;) and, if we
consider the intersection of the two sets with H;, these sets can be separated by a hyper-
plane H,, or they can be weakly separated by H, and, if we consider the intersection the
intersection of the sets with Hs, ...; moreover, this process stops after a finite number
of sets in such a way that the resulting sets can be (strongly) separated by a hyperplane.

Lemma A.3: Suppose that X' and X? are disjoint, convezx (but not necessarily closed)
subsets of A™. Then, for some i* € {1,2}, h < m — 1, and vectors dy,...,ay, for all
7' € XV and 7 € X>V, we have

- T >0AG - P <O0OA(G- T =0Ad-P2=0=
IUYAN
(nr T > 0N P <O A (s = 0AGpo - P =0 )
Zihgj'1>0/\d'h§'2§0)))

Moreover, if X' and X? are defined by a finite collection of linear equations and inequal-
itres with rational coefficients, the vectors a1, ..., d, can all be taken to be rational.

Proof: The proof proceeds by induction on the maximum dimension of X! and X?2. If
it is 1, then both X! and X? are lines. It is well known that in this case there exists a
vector @, i* € {1,2}, and constant c such that @- 7* > ¢ > @- 7 for all * € X*" and
7> € X*=%. Moreover, if X! and X? are defined by linear equations and inequalities with
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rational coefficients, ¢ and all the coordinates of @ can be taken to be rational. Finally,
as Samet observes, since ', 7% € A™, if we take @’ to be the result of subtracting ¢ from
all the coordinates of @, we have @ - > 0> @ - 2.

Now suppose by induction the result holds for sets of maximum dimension &, and
suppose that in fact the maximum dimension of X* and X? is k + 1. Again, by standard
results, we know that there exists a vector @; such that @, -&* > ¢ > @, -7 for all ! € X*!
and 72 € X. As above, we can assume without loss of generality that ¢ = 0 and, if X*
and X? are defined by linear equations and inequalities with rational coefficients, that
the coordinates of @; are rational. If at least one of the inequalities above is strict, we
are done (replacing @; by —a; if necessary). If not, let Y1 = {#! € X' : @, - #* = 0} and
let Y2={1? € X?: G -7 = 0}. Y! and Y? are disjoint convex sets of dimension at
most k. Moreover, if X! and X? are defined by a finite number of linear equations with
rational coefficients, then so are Y! and Y?2. The result now follows from the induction
hypothesis. I

The expression in (1) is actually an expression in a formal language for reasoning
about linear inequalities introduced in [Fagin, Halpern, and Megiddo 1990]. Since this
will come up again later, it is worth making it a little more precise now. Suppose that
we start with a fixed infinite set of variables. A basic inequality formula is one of the
form ayxy + - -+ + apxy > b, where aq,...,ag,b are rational numbers and x4, ...,z are
variables. For example, 221 — x5 > 3 is a basic inequality formula. An inequality formula
is a Boolean combination of basic inequality formulas. An assignment (to variables) is a
function A that assigns a real number to every variable. We define

A )I a1Ty + -+ apZT > b iff alA(ml) +--- +6LkA(.Tk) > b.

We then extend |= to arbitrary inequality formulas, which are just Boolean combinations
of basic inequality formulas, in the obvious way, namely

Af iff AS
AEfAg iff AEfand AEg.

As usual we say an inequality formula f is valid if A = f for all A that are assignments
to variables. If f is a valid inequality and we obtain a formula ¢ in £X?" by replacing
the variables in f by probability terms of the form pr;(¢) (replacing each occurrence of a
variable x; by the same probability term), then the resulting formula is clearly also valid
in M,,. Moreover, as shown in [Fagin, Halpern, and Megiddo 1990], it is provable using
just the axioms I1-I6 for reasoning about linear inequalities and propositional reasoning
(Prop and R1). This fact will be used in the proof of Theorem 3.8.

Continuing with the main line of our proof, Samet [1998] shows how to generalize
the special case of Lemma A.3 where X! and X? are closed convex sets to the case of n
sets. The following result is the analogous generalization here. I omit the proof, since it
proceeds in much the same spirit as Samet’s, using the ideas of Lemma A.3.
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Lemma A.4: Suppose that X',..., X™ are convex (but not necessarily closed) subsets
of A™ such that N7, X* = 0. Then, for some h < m — 1, i* € {1,...,n}, and vectors
T, i=1,...,n, k=1,...,h, such that X", @y, =0, for k=1,...,h, for all T € X,
1=1,...,n, we have

Ay @i - > 0N (N, @ - T =0 =

(N2 @1y - T 2 OA (A2 (Gigp1y - T =0 =
(C_I:Z'*h‘j’z > O/\/\Z#'L* C_I:i(h_l) ‘.'I_;n 2 O)))...).

Moreover, if the sets X¢, i = 1,...,n, are each defined by a finite collection of linear
equations and inequalities with rational coefficients, the coordinates of d;. can all be taken
to be rational.

We are now ready to prove Theorem 3.8.

Theorem 3.8: AXS? is a sound and complete azviomatization for LICP with respect
to both MEY and MEPF™ (and hence also both FY and FCFm).

Proof: The completeness proof follows closely along the lines of the completeness proof
given in [Fagin and Halpern 1994| (which in turn uses a combination of techniques from
[Fagin, Halpern, and Megiddo 1990; Halpern and Moses 1992; Makinson 1966]), which
shows that AXX" is a sound and complete axiomatization for LK with respect to M,,.
The added complications in this proof are dealing with the fact we have common knowl-
edge in the language and with CP. The techniques for dealing with common knowledge
are well known [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1992], so I
focus here on dealing with CP.

We want to show that if ¢ € LXCP" is valid with respect to MSP/" then it is
provable in AXS?. Equivalently, we must show if ¢ is consistent with AXS? then ¢ is
satisfied in some structure in MEPfi" The proof actually shows how to construct such
a structure.

Let Sub(y) be the set of all subformulas of ¢ and let Sub™(y) be the set of subformulas
of ¢ and their negations.

If w is a finite set of formulas, let ¢, be the conjunction of the formulas in w. The
set w is a marimal consistent subset of Sub™(¢) if w C Sub™(¢), ¢, is consistent with
MEPJin - and for every subformula 9 of ¢, either ¢ or =) is in w. (Note that w cannot
include both ¢ and —, for then ¢, would not be consistent.) Following Makinson
[1966] (see also [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1992]), we
first construct a Kripke structure for knowledge (but not probability) (W, Ky, ..., Ky, 7)
as follows: we take W, the set of worlds, to consist of all maximal consistent subsets
of Sub™(¢). If uw and v are worlds, then (u,v) € K; precisely if u and v contain the
same formulas of the form Cv, K, and pr;(¢y) + -+ - + pri(¢x) > b. We define 7 so
that for a primitive proposition p, we have 7(s)(p) = true iff p is one of the formulas
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in the set s. Our goal is to define a probability assignments PRq,..., PR, such that
M= (S,K1,...,Kn,PR1,...,PR,,m) € MEP (in fact, it will be in MSPA " since W
is clearly finite) and, moreover, for every world w € W and every formula v € Sub™ (y),
we have

(M,w) = iff ¢ € w. (%)

Since ¢ is consistent, we must have ¢ € w for some w € W. Hence, once we show that
there exist PR4, ..., PR, such that M satisfies (*), we are done.

It is easy to see that the formulas ¢, are mutually exclusive for w € W. Moreover,
we can show that AXSP F ¥ & View [yen} o, for all ¥ € Sub®(p). Using these obser-
vations, we can show, using P1-P3 and RP (and propositional reasoning, i.e., Prop and
R1) that AXSP b pri(v) = ¥ iuew |geo) Pri(@w) (cf. [Fagin, Halpern, and Megiddo 1990,
Lemma 2.3]). Using this fact together with I1 and I3, we can show that an i-probability
formula 1 € Sub™ () is provably equivalent to a formula of the form Y=, copti(©y) > b,
for some appropriate coefficients c,.

For each world u and agent 7, we associate a set L,; of linear equalities and inequalities
over variables of the form x;,, for v € K;(u). We can think of z;, as representing Pr,, ;(v),
i.e., the probability of world v under agent ¢’s probability distribution at world u. We
have one inequality in L,; corresponding to every i-probability formula 9 in Sub™(¢).
Assume that 1) is equivalent to Y ,cp copri(9y) > b. If b € u, then the corresponding

inequality is
Z Coip > b.
veEK; (u)

(Note that there are no terms with coefficient z;, for v ¢ IC;(u). Intuitively, this is because
Pr,; is a probability measure on KC;(u), so we can treat Pr,;(v) as 0 for v ¢ K;(u).)
Similarly, if =9 € u, then the corresponding inequality is

Z CoLin < .

vEK;(u)

Finally, we add to L,; the equality

Z iCiq,Zl.

vEK;(u)

Note that if ' € IC;(u), then L,; = L,;, since the set of i-probability formulas in « and
u' is the same.

As shown in [Fagin, Halpern, and Megiddo 1990, Theorem 2.2], since ¢, is consistent,
there exists a probability measure Przﬂ- satisfying (the equation and inequalities in) L,;
(taking x;, = Pr;, ;(v)). If we were not concerned with CP, then we could just define PR,
so that Pr,; = Prj, ;. Since Ly; = L,; for u' € K;(u), we could also assume without loss of
generality that Pr,; = Pr,; for v’ € K;(u). The techniques of [Fagin and Halpern 1994]
(and of [Halpern and Moses 1992] in the case of common knowledge) then show that (*)
holds for the resulting Kripke structure. This suffices to prove Theorem 3.6. However, we
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must work harder to complete the proof of Theorem 3.8, since the probability assignments
do not necessarily satisfy CP.

Note we can identify a probability measure on W with an element of A"/, We can
thus use the tuple (z, : v € W) to denote a generic probability measure on W. We say
that a probability measure Pr = (z, : v € W) is compatible with L,,; if Pr(-|K;(u)) satisfies
L,; as long as Pr(K;(u)) # 0. (More precisely, as long as the tuple (x;, : v € K;(v))
satisfies L,;, where z;, = x,/ Pr(K;(u)).) Let X® consist of all the probabilities measures
on W compatible with L,; for all v € W. If N, X* # (), then we are done: Choose
Pr € N, X" and define PR; so that Pr,; = Pr(:|K;(u)) if Pr(K;(u)) # 0 and Pr,;
is some arbitrary probability measure satisfying L,; if Pr(K;(u)) = 0. As I mentioned
above, with this choice of PR;, (*) holds.

Now suppose, by way of contradiction, that N?_, X = ). Since X1,..., X" are defined
by linear equations and inequalities with rational coefficients, by Lemma A.4, there exist
h <|W|, * € {1,...,n}, and vectors dy, i = 1,...,n, k =1,..., h, satisfying (2) (from
Lemma A.4) such that the coordinates of @;; are all rational. Denote by f* the inequality
formula obtained by using these particular vectors @, in (2), and taking the vectors z;
to be (x;, : v € W). Let L, consist of all the equations and inequalities in L,; together
with the equations z;, = 0 for all v ¢ K;(u). Note that if (x;, : v € W) satisfies L},
for all w € W, then it is in X*. Let A"_,L*, denote the inequality formula that is the
conjunction of the linear inequalities in L7, 2 = 1,...,n. By Lemma A.4, A?_,L¥. = f*
is a valid inequality formula, for each u € W.

Let o, be the formula in £X#" obtained by replacing each occurrence of z;, in AT, L%,
by pri(¢,); similarly, let o* be the formula obtained by replacing each occurrence of x,
in f* by pri(¢,)- As I mentioned earlier, by results of [Fagin, Halpern, and Megiddo
1990], the formula o, = ¢* is provable using I1-16, Prop, and R1, and hence provable in
AXg P Let ow be Vyewou. By straightforward propositional reasoning, we have

AXEP o = (ow A d¥). (3)
As shown in [Halpern and Moses 1992, pp. 344-345], we have
AXCP & o = E(ow). (4)

(In fact, all we need for this proof are the axioms for reasoning knowledge and common
knowledge; the axioms for probability and inequalities play no role.) Moreover, using
(3), Prop, K1, R1, and R2, it is straightforward to show that

AXEP F E(ow) = E(ow A o). (5)
From (4), (5), and propositional reasoning, we get that
AXEP - o = E(ow A o). (6)
Thus, from (6) and RC, we have that
AXCP - oy = C(0%). (7)
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Propositional reasoning and (7) tells us that
AXEP o, = C(o"), (8)

for all w € W. But note that C(¢*) is the negation of an instance of CP!. This says
that o, is inconsistent, for each w € W. But this contradicts the assumption that w is
a (maximal) consistent set.

This contradiction completes the proof, since it shows that N7, X* # 0. 1

Using Theorem 3.8, we can now prove Theorem 3.5.

Theorem 3.5: For all k > 2, there is no set Ay of formulas in L1°F" that distinguishes
FEY from F, — FEL.

Proof: First suppose £ = 2 and, by way of contradiction, that there is some set A,
of formulas that distinguishes F{* from F, — FLF. By part (a) of Definition 3.1, A,
must be a subset of the set of formulas valid in FF¥. Now consider the frame F* of
Example 3.4. Since F* € F, — FFT | there must be a formula in A, that is not valid in
F*. Thus, to get a contradiction, it suffices to show that every formula valid in F{7 is
also valid in F*. By Theorem 3.8, it suffices to show that every instance of an axiom of
AXSP is valid in F*. By Theorem 3.6, it is immediate that every axiom other than CP),
is valid in F™*. The proof that CP), is valid in F™* proceeds along the same lines as the
proof that CPj is valid in F* so I omit details here.

Finally, in the case that k > 2, define F} = (W, K,..., Ky, PRy,..., PRy), where
W, K:l, ICQ, PRl, and PRQ are as in F*, and ’Cg =...= ’Ck, PRQ =...= PRk Again,
it is straightforward to show that every instance of CP}, is valid in F}'. This suffices for
the proof, just as in the case k = 2. 11

Theorem 3.9: A formula in LXCP" is valid with respect to MET (resp., M,,) iff it is
valid with respect to MZPF™ (resp., Mfm).

Proof: I start by considering the case of MST and MEPin. Clearly if ¢ is valid with
respect to MST . it is also valid with respect to MSF+i". For the converse, it suffices to
show that if ¢ is satisfied in MET | then it is satisfied in MEP/"; that is, if ¢ is satisfiable
at all, it is satisfied in a finite structure. This follows from Theorem 3.8 and its proof.
If ¢ is satisfied in MCP then, by Theorem 3.8, ¢ must be consistent with AXS¢?. The
proof of Theorem 3.8 then shows how to construct a structure in MEP" satisfying .
(In fact, the structure has at most 2/¢! worlds, where || is the length of ¢, viewed as a
string of symbols, since it is not hard to show by induction on |¢| that |Sub(p)| < |¢]).
I provide an alternate proof of this result here, since it gives further insight into what is
going on.

Suppose that ¢ is satisfied in some structure M = (W, Ky, ..., K,, PR4,...,PR,,7) €
MEF . Since M € MEP | there is some probability Pry on W as required by CP. Define
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an equivalence relation ~ on the worlds in M by taking w ~ w’ if w and w’ agree on all
formulas in Sub(y). That is, if (M, w) = ¢ iff (M,w") = 4 for all ¥ € Sub(p). Let [w]
be the equivalence class of w according to ~; that is, [w] = {w’ : w ~ w'}. Note that
there are at most 215¢(¥) (< 2/¢l) equivalence classes.

Define a structure M’ = (W', K, ..., K., PR}, ..., PR, ,«") as follows:
o W ={[w]:weW},

o Kl([w]) ={[w] : [w] and [w'] agree on all formulas in Sub(y) of the form K;1, C,
and a;pri(¢1) + - - + ampri(Pm) > b},

o PRY([w]) = (K;i([w]), 25D, Prpy,i), where Pryy,; = Pryy (-|Ki([w])) if Pry (K([w]) >

0, while if Pry (KC;([w]) = 0, then Pry,; is a probability measure on K;([w]) that
satisfies all the constraints in L,,;,

o 7'([w])(p) = true iff p € Sub(y) and 7 (w)(p) = true.

Now a straightforward proof by induction on the structure of shows that (M’, [w]) | v
iff (M, w) =1, for all w € W and ¢ € Sub(y). The ideas are standard (see, for example,
the completeness proofs in [Halpern and Moses 1992)), so I leave details to the reader.
Thus, if ¢ is satisfied at some world in M, say wo, then (M’, [wy]) = ¢. Moreover, Pry
defines a common prior on W'. Hence, M’ € MSP/in. This completes the proof.

The argument in the case of M,, and M is almost identical, and is also left to the
reader. 1

Theorem 3.10: AXXP" is a sound and complete aziomatization for LXP™ with respect
to both MET and MEPF™ (and hence also both FCF and FCFfn),

Proof: Clearly AXXP" is sound with respect to MSF and MSEPFn | since it is already
sound with respect to M,,. We want to show that every formula in £EX?" that is valid in
MEP (vesp., MEPfin) is provable in AXX?". As in the proof of Theorem 3.8, it suffices
to show that every formula in £X?" consistent with AX'P" is satisfied in some structure
in MEPFn Since AXXP" is complete with respect to M,,, we know that every formula
consistent with AX'P" is satisfied in some structure in M,,. By Theorem 3.9, we can
assume without loss of generality it is satisfied in a structure in M#". Thus, it suffices
to show that every formula that is satisfied in some structure in M/ is also satisfied in
some structure in M SEfim.

Define the depth of a formula ¢ in £LE?" denoted d(y), as follows:
e d(p) = 0 for a primitive proposition p,

o d(—¢) =d(¥),

o d(Y A9)') = max(d(v),d(¢")),
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o d(Kiyp) =1+ d(),
o d(aypr;(¥r) + -+ arpri(ve) > b) = 1 + max(d(wq), . .., d(Ur)).

Let a situation be a pair (M, w) consisting of a structure M and a world w in M. Two
situations (M, w) and (M’ w') are equivalent up to depth k, denoted (M,w) =F (M’ w'),
if, whenever ¢ is a formula with d(¢) < k, then (M, w) | ¢ ift (M',w’) = ¢.

The proof depends on two key observations, which I state informally here and then
make more precise.

1. If a formula o, € LEP" is satisfiable at all, it is satisfied at the root of a “treelike”
structure of height at most d(¢y).

2. Adding worlds to the leaves of this treelike structure that are “distance” greater
than d(yg) away from the root does not affect the truth of ¢, at the root.

To make this precise, I use a standard idea from modal logic of “unwinding” a struc-
ture to a tree. Given a structure M = (W,Ky,..., K, PRy,...,PR,,7) € M we
define a “treelike” structure T3, ,, for each world w € W and k£ > 0, such that
(Trtwn>) =* (M, w), where 7 is the “root” of T}, ,, as follows: The first step is to
define (rooted, labeled, directed) trees Thru 4, by induction on k. The tree Ty, 0 just
consists of a single node 7, labeled w. (In general, nodes will be labeled by worlds in W,
but more than one node may be labeled with the same world, and edges will be labeled
by agents.) Tarwi+1 consists of a root node r labeled by w and, for each agent ¢ and
world w' # w such w' € K;(w), a directed edges labeled by i leading from r to the root
' of Ti;, x, where Ti, . is the result of removing all the i-successors of 7 in Tz k
(and all the nodes reachable from these i-successors). We can easily show by induction
on k that this construction guarantees that there is no path in T/, 41 that contains
two consecutive i-edges, for any agent i.

Now let the structure Ty, ,, , = (WMwk jg10wF L CMwk pRIWE PR wE gMwk)
be defined as follows:

o WMk consists of the nodes in Ty k-

e K;7"" is the smallest equivalence relation such that if n’ is an i-successor of n in
M,w,k
Trtwk, then (n,n') € I;7".

o PRMWE(pY = (KM™Wk(nh), 2k ), Pr,;), where if n is not a leaf in T, 4 or if

n is a leaf in Ty, 4 and is the i-successor of some (non-leaf) node, then for all
n' € K" (n), we have Pr,;(n') = Prjwm):(f(n')), where f is the function that
associates with each node in T, the world that labels it; if n is a leaf in T/ .k
and is not the i-successor of some non-leaf node, then Pr,;(n) = 1. (In this case,

it is easy to see that KM™*(n) = {n}.)
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o 70k (n)(p) = 7(f(n))(p)-

It is easy to check that Pr, ; is indeed a probability measure on KM wk(n) for each agent
i and n € WMwk,

Lemma A.5: (M, w) =" (Tx;,, 1, 1), where v is the 100t of Tayu k-

Proof: For each node n € WM®* et dist(r,n) be the distance from r to n in Ty -
A straightforward induction on d(¢), which I leave to the reader, can be used to show
that if d(¢) + dist(r,n) < k, then (T}, 1) = ¥ iff (M, f(n)) = ¢. Since d(r,r) =0
and f(r) = w, this gives us the desired result. 1

Lemma A.5 actually shows proves both of the informal observations above. It shows
that if a formula ¢ is satisfiable at all, it is satisfied in a treelike structure of height at
most d(yqg), since if g is satisfied at the situation (M, w), then Ty, , is the required
treelike structure. Moreover, it shows that making changes in this treelike structure
by adding worlds to leaves does not affect the truth of ¢, since if M’ is the resulting
structure, we will still have 7%, = T3y, - The remainder of the argument uses this
second point (and makes it more precise).

Let n be a leaf of T, x and suppose that n is the i-successor of some node n'. We
construct a structure M* that is almost identical to 7%, ;- Informally, we add a new

world n* which is the i'-successor of n for some i’ # i, and assume that all agents assign
n* probability 1. More precisely, let M* = (W* Kf,..., K, PRY, ..., PR, 7*), where

o W* = WM,w,k: U {n*}’
o Kf = IC;-V[’"”’c U{(n*,n*)} for j #£4; Ky = ICfV[’"”'c U {(n,n*), (n*,n), (n*,n*)},

e PRi(n') = ()C;(n'),QK;("'),PrZ,’j), where Pr), . = Pr,y; if n' # n* and (n',j) #
(n,7'), and Pr, ; is the unique probability measure such that Pr, ;j(n*) = 1 if
n' =n*or (n,j) = (n,7),

o m(n') =7w(n') if ' # n* (the definition of 7*(n*) is irrelevant).

Our construction guarantees that (a) T3, = Ths+ . (since the way we changed
T3t w k1 t0 get M* involved only the addition of a node k + 1 away from the root) and
(b) M* € MEPm_ To see (b), note that there is a common prior that gives probability
1 to n*.

We can now easily complete the proof of Theorem 3.10. Suppose g is a formula satis-
fied in some situation (My, wy), where M € M#™ and d(p,) = k. Using the construction
above, we get a structure M* € MPfim guch that Trpwr = Ty Thus, if r is the
root of M*, we have (M*,7) = ¢o. I

’wik‘
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Theorem 3.11:  For all n, no set A of formulas in LXP" distinguishes FCT" from
Flin _ FOPsn,

Proof: Suppose A distinguishes 7" from Ffin — FCP.fin et F € Flin — FCP.fin By
part (b) of Definition 3.1, there must be some formula ¢ € A that is not valid in F. But
by part (a) of Definition 3.1, A must be a subset of the set of formulas valid in F,¢Ffin.
By Theorem 3.10, it follows that the formulas in A are also valid in F/". Thus, ¢ must
also be valid in F', giving us a contradiction. N
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