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Abstract

Cox’s well-known theorem justifying the use of probability is shown not to hold in finite
domains. The counterexample also suggests that Cox’s assumptions are insufficient to prove
the result even in infinite domains. The same counterexample is used to disprove a result of
Fine on comparative conditional probability.

1. Introduction

One of the best-known and seemingly most compelling justifications of the use of probability
is given by Cox (1946). Suppose we have a function Bel that associates a real number with
each pair (U, V) of subsets of a domain W such that U # (). We write Bel(V|U) rather than
Bel(U, V), since we think of Bel(V'|U) as the credibility or likelihood of V given U.! Cox further
assumes that Bel(V|U) is a function of Bel(V|U) (where V denotes the complement of V in
W), that is, there is a function S such that

Al. Bel(V|U) = S(Bel(V|U)) if U # 0,

and that Bel(VNV'|U) is a function of Bel(V/|V NU) and Bel(V|U), that is, there is a function
F such that

A2. Bel(V N V/|U) = F(Bel(V![V N U),Bel(V|U)) if VN U # 0.

Notice that if Bel is a probability function, then we can take S(z) =1 — = and F(z,y) =
xy. Cox makes much weaker assumptions: he assumes that F' is twice differentiable, with a
continuous second derivative, and that S is twice differentiable. Under these assumptions, he
shows that Bel is isomorphic to a probability distribution in the sense that there is a continuous
one-to-one onto function g : IR — IR such that g o Bel is a probability distribution on W, and

g(Bel(V|U)) x g(Bel(U)) = g(Bel(V NU)) it U # 0, (1)

where Bel(U) is an abbreviation for Bel(U|W).

Not surprisingly, Cox’s result has attracted a great deal of interest, particularly in the
maximum entropy community and, more recently, in the Al community. For example

1. Cox writes V|U rather than Bel(V|U), and takes U and V to be propositions in some language rather than
events, i.e., subsets of a given set. This difference is minor—there are well-known mappings from propositions
to events, and vice versa. I use events here since they are more standard in the probability literature.



e Cheeseman (1988) has called it the “strongest argument for use of standard (Bayesian)
probability theory”. Similar sentiments are expressed by Jaynes (1978, p. 24); indeed,
Cox’s Theorem is one of the cornerstones of Jaynes’ recent book (1996).

e Horvitz, Heckerman, and Langlotz (1986) used it as a basis for comparison of probability
and other nonprobabilistic approaches to reasoning about uncertainty.

e Heckerman (1988) used it as a basis for providing an axiomatization for belief update.

The main contribution of this paper is to show (by means of an explicit counterexample)
that Cox’s result does not hold in finite domains, even under strong assumptions on S and
F' (stronger than those made by Cox and those made in all papers proving variants of Cox’s
results). Since finite domains are arguably those of most interest in AT applications, this suggests
that arguments for using probability based on Cox’s result—and other justifications similar in
spirit—must be taken with a grain of salt, and their proofs carefully reviewed. Moreover, the
counterexample suggests that Cox’s assumptions are insufficient to prove the result even in
infinite domains.

It is known that some assumptions regarding F' and S must be made to prove Cox’s result.
Dubois and Prade (1990) give an example of a function Bel, defined on a finite domain, that
is not isomorphic to a probability distribution. For this choice of Bel, we can take F(z,y) =
min(z,y) and S(z) =1 — z. Since min is not twice differentiable, Cox’s assumptions block the
Dubois-Prade example.

Other authors have made different assumptions. Aczél (1966, Section 7 (Theorem 1)) does
not make any assumptions about F', but he does make two other assumptions, each of which
block the Dubois-Prade example. The first is that the Bel(V|U) takes on every value in some
range [e, F], with e < E. In the Dubois-Prade example, the domain is finite, so this certainly
cannot hold. The second is that if V' and V' are disjoint, then there is a continuous function
G : IR? — IR, strictly increasing in each argument, such that

A3. Bel(V UV'|U) = G(Bel(V|U), Bel(V!|U)).

With these assumptions, he gives a proof much in the spirit of that of Cox to show that Bel
is essentially a probability distribution. Dubois and Prade point out that, in their example,
there is no function G satisfying A3 (even if we drop the requirement that G be continuous and
strictly increasing in each argument).?

Reichenbach (1949) earlier proved a result similar to Aczél’s, under somewhat stronger
assumptions. In particular, he assumed A3, with G being +.

Other variants of Cox’s result have also been considered in the literature. For example,
Heckerman (1988) and Horvitz, Heckerman, and Langlotz (1986) assume that F' is continuous
and strictly increasing in each argument and S is continuous and strictly decreasing. Since
min is not strictly continuous in each argument, it fails this restriction too.> Aleliunas (1988)

2. In fact, Aczél allows there to be a different function Gy for each set U on the right-hand side of the conditional.
However, the Dubois-Prade example does not even satisfy this weaker condition.

3. Actually, the restriction that F' be strictly increasing in each argument is a little too strong. If e = Bel(),
then it can be shown that F(e,z) = F(z,e) = e for all z, so that F' is not strictly increasing if one of its
arguments is e.



gives yet another collection of assumptions and claims that they suffice to guarantee that Bel
is essentially a probability distribution.

The first to observe potential problems with Cox’s result is Paris (1994). As he puts it,
“Cox’s proof is not, perhaps, as rigorous as some pedants might prefer and when an attempt is
made to fill in all the details some of the attractiveness of the original is lost.” Paris provides
a rigorous proof of the result, assuming that the range of Bel is contained in [0,1] and using
assumptions similar to those of Horvitz, Heckerman, and Langlotz. In particular, he assumes
that F is continuous and strictly increasing in (0,1)? and that S is decreasing. However, he
makes use of one additional assumption that, as he himself says, is not very appealing:

A4. Forall 0 < o, 3,7 <1 and € > 0, there are sets U; D Uy D Uz D Uy such that Us # @), and
each of |Bel(Us|Us) — af, |Bel(Us|Uz) — S|, and |Bel(Ua|U1) — 7| is less than e.

Notice that this assumption forces the range of Bel to be dense in [0,1]. This means that, in
particular, the domain W on which Bel is defined cannot be finite.

Is this assumption really necessary? Paris suggests that Aczél needs something like it.
(This issue is discussed in further detail below.) The counterexample of this paper gives further
evidence. It shows that Cox’s result fails in finite domains, even if we assume that the range of
Bel is in [0, 1], S(z) =1 — = (so that, in particular, S is twice differentiable and monotonically
decreasing), G(z,y) =  +y, and F is infinitely differentiable and strictly increasing on (0, 1]2.
We can further assume that F' is commutative, F(0,2) = F(z,0) = 0, and that F(x,1) =
F(1,z) = z. The example emphasizes the point that the applicability of Cox’s result is far
narrower than was previously believed. It remains an open question as to whether there is an
appropriate strengthening of the assumptions that does give us Cox’s result in finite settings.
There is further discussion of this issue in Section 5.

In fact, the example shows even more. In the course of his proof, Cox claims to show that
F must be an associative function, that is, that F(x, F(y,z2)) = F(F(z,y),z). For the Bel of
the counterexample, there can be no associative function F' satisfying A2. It is this observation
that is the key to showing that there is no probability distribution isomorphic to Bel.

What is going on here? Actually, Cox’s proof just shows that F(z, F(y,z2)) = F(F(x,y), 2)
only for those triples (z,y,2) such that, for some sets Uy, Us, Us, and Uy, we have z =
Bel(Us|Us N Uy N Uy), y = Bel(Us|Uy N Uy), and z = Bel(Up|U;y). If the set of such triples
(z,y,z) is dense in [0,1]?, then we conclude by continuity that F is associative. The content
of A4 is precisely that the set of such triples is dense in [0,1]3. Of course, if W is finite, we
cannot have density. As my counterexample shows, we do not in general have associativity in
finite domains. Moreover, this lack of associativity can result in the failure of Cox’s theorem.

A similar problem seems to exist in Aczél’s proof (as already observed by Paris (1994)).
While Aczél’s proof does not involve showing that F' is associative, it does involve showing that
G is associative. Again, it is not hard to show that G is associative for appropriate triples, just
as is the case for F'. But it seems that Aczél also needs an assumption that guarantees that the
appropriate set of triples is dense, and it is not clear that his assumptions do in fact guarantee
this.* As shown in Section 2, the problem also arises in Reichenbach’s proof.

4. I should stress that my counterexample is not a counterexample to Aczél’s theorem, since he explicitly
assumes that the range of Bel is infinite. However, it does point out potential problems with his proof, and



The counterexample to Cox’s theorem, with slight modifications, can also be used to show
that another well-known result in the literature is not completely correct. In his seminal book
on probability and qualitative probability (1973), Fine considers a non-numeric notion of com-
parative (conditional) probability, which allows us to say “U given V is at least as probable as U’
given V'? denoted U|V = U’|V’. Conditions on > are given that are claimed to force the exis-
tence of (among other things) a function Bel such that U|V = U'|V’ iff Bel(U|V') > Bel(U'|V")
and an associative function F satisfying A2. (This is Theorem 8 of Chapter I in (Fine, 1973).)
However, the Bel defined in my counterexample to Cox’s theorem can be used to give a coun-
terexample to this result as well.

Interestingly, this is not the first time a similar error has been noted in the use of functional
equations. Falmagne (1981) gives another example (in a case involving a utility model of choice
behavior) and mentions that he knows “of at least two similar examples in the psychological
literature”.

The remainder of this paper is organized as follows. In the next section there is a more
detailed discussion of the problem in Cox’s proof. The counterexample to Cox’s theorem is
given in Section 3. The following section shows that it is also a counterexample to Fine’s
theorem. Section 5 concludes with some discussion, particularly of assumptions under which
Cox’s theorem might hold.

2. The Problem With Cox’s Proof

To understand the problems with Cox’s proof, I actually consider Reichenbach’s proof, which
is similar in spirit Cox’s proof (it is actually even closer to Aczél’s proof), but uses some
additional assumptions, which makes it easier to explain in detail. Aczél, Cox, and Reichenbach
all make critical use of functional equations in their proof, and they make the same (seemingly
unjustified) leap at corresponding points in their proofs.

In the notation of this paper, Reichenbach (1949, pp. 65-67) assumes (1) that the range of
Bel(+]-) is a subset of [0,1], (2) Bel(V|U) =1if U C V, (3) that if V and V' are disjoint, then
Bel(VUV'|U) = Bel(V|U) + Bel(V'|U) (thus, he assumes that A3 holds, with G being +), and
(4) that A2 holds with a function F' that is differentiable. (He remarks that the result holds
even without assumption (4), although the proof is more complicated; Aczél in fact does not
make an assumption like (4).)

Reichenbach’s proof proceeds as follows: Replacing V' in A2 by Vi U Vs, where V; and V3
are disjoint, we get that

Bel(V N (Vi UV3)|U) = F(Bel(Vi UV2|V NU),Bel(V|U)). (2)
Using the fact that G is +, we immediately get

Bel(V N (V1 UT,)|U) = Bel(V N V4|U) + Bel(V N V,|U) (3)

certainly shows that his argument does not apply to finite domains. Aczél is in fact aware of the problems
with his proof [private communication, 1996]. He later proved results in a similar spirit with the aid of a
requirement of nonatomicity (Aczél & Daroczy, 1975, pp. 5—6), which is in fact a stronger requirement than
A4, and thus also requires the domain to be infinite.



and
FBel(V1 UW|V NTU),Bel(V|U))

_ F(Bel(Vi|V NT) + Bel(Va|V N U), Bel(V|17)) (4)

Moreover, by A2, we also have, for i = 1,2,
Bel(VNV;|U) = F(Bel(VNV;|[VNU),Bel(V|U)). (5)
Putting together (2), (3), (4), and (5), we get that

F(Bel(V A WA|V A U, Bel(V[T)) + F(Bel(V N V3|V N ), Bel(V|T) .
— F(Bel(V N Vi[V N U) + Bel(V N V3|V N T), Bel(V|T7)), (6)

Taking x = Bel(VNV1|[VNU), y =Bel(VNV,2|[VNU), and z = Bel(V|U) in (6), we get the
functional equation
F(z,2) + F(y,2) = F(z +y,2). (7)

Suppose that we assume (as Reichenbach implicitly does) that this functional equation holds
for all (z,y,2) € P = {(z,v,2) € [0,1]* : x + y < 1}. The rest of the proof now follows easily.
First, taking = 0 in (7), it follows that

F(0,2) + F(y,2) = F(y, 2),

from which we get that
F(0,2z) =0.

Next, fix z and let g,(x) = F(x,z). Since F is, by assumption, differentiable, from (7) we have
that

g.(a) = I (P(o + y,2) - F(r,2)/y) = lim F(y, 2)/y.

It thus follows that ¢’ (z) is a constant, independent of z. Since the constant may depend on
z, there is some function h such that ¢’ (x) = h(z). Using the fact that F(0,z) = 0, elementary
calculus tells us that

9:(x) = F(x,2) = h(z)z.

Using the assumption that for all U, V', we have Bel(V|U) =1if U C V, we get that
Bel(V|U) =Bel(VNV|U) = F(Bel(V|V NU),Bel(V|U)) = F(1,Bel(V|U)).
Thus, we have that
F(1,z) =h(z) = 2.
We conclude that F(z,z) = zz.

Note, however, that this conclusion depends in a crucial way on the assumption that the
functional equation (7) holds for all (z,y,z) € P.5 In fact, all that we can conclude from (6)
is that it holds for all (x,y, z) such that there exist U, V, V4, and V5, with V; and V5 disjoint,
such that z = Bel(V N[V NU), y =Bel(VNV,|VNU), and z = Bel(V|U).

5. Actually, using the continuity of F, it suffices that the functional equation holds for a set of triples which is
dense in P.



Let us say that a triple that satisfies this condition is R-constrained (since it must satisfy
certain constraints imposed by the F' and G functions; the R here is for Reichenbach, to
distinguish this notion from a similar one defined in the next section.) As I mentioned earlier,
Aczél also assumes that Bel(V|U) takes on all values in [e, E], where e = Bel(0|U) and E =
Bel(U|U). (In Reichenbach’s formulation, e = 0 and E = 1.) There are two ways to interpret
this assumption. The weak interpretation is that for each x € [0, 1], there exist U,V such that
Bel(V|U) = z. The strong interpretation is that for each U and z, there exists V' such that
Bel(V|U) = z. It is not clear which interpretation is intended by Aczél. Neither one obviously
suffices to prove that every triple in P is R-constrained, although it does seem plausible that it
might follow from the second assumption.

In any case, neither Aczél nor Reichenbach see a need to check that Equation (7) holds
throughout P. (Nor does Cox for his analogous functional equation, nor do the authors of more
recent and polished presentations of Cox’s result, such as Jaynes (1996) and Tribus (1969).)
However, it turns out to be quite necessary to do this. Moreover, it is clear that if W is finite,
there are only finitely tuples in P that are R-constrained, and it is not the case that all of P
is. As we shall see in the next section, this observation has serious consequences as far as all
these proofs are concerned.

3. The Counterexample to Cox’s Theorem

The goal of this section is to prove

Theorem 3.1: There is a function Bely, a finite domain W, and functions S, F, and G
satisfying A1, A2, and A3 respectively such that

e Belp(V|U) € [0,1] for U # 0,
e S(z) =1—=x (so that S is strictly decreasing and infinitely differentiable),

e G(x,y) =x+vy (so that G is strictly increasing in each argument and is infinitely differ-
entiable),

o F is infinitely differentiable, nondecreasing in each argument in [0,1]?, and strictly in-
creasing in each argument in (0,1]2. Moreover, F is commutative, F(z,0) = F(0,z) = 0,
and F(z,1) = F(1,x) = x.

However, there is no one-to-one onto function g : [0,1] — [0,1] satisfying (1).

Note that the hypotheses on Bely, S, G, and F' are at least as strong as those made in
all the other variants of Cox’s result, while the assumptions on g are weaker than those made
in the variants. For example, there is no requirement that g be continuous or increasing nor
that g o Bely is a probability distribution (although Paris and Aczél both prove that, under
their assumptions, g can be taken to satisfy all these requirements). This serves to make the
counterexample quite strong.



The proof of Theorem 3.1 is constructive. Consider a domain W with 12 points: wi, ..., wia.
We associate with each point w € W a weight f(w), as follows.

flwr) =3 flwg) =5 x 104
flws) =2 f(ws) =6 x 10%
f(ws) =6 f(we) = 8 x 10*
flwr) =3 x 108 f(wyo) =3 x 108
flwg) =8 x 108  f(wyy) =2 x 1018
flwg) =8 x 10%  f(wyy) =14 x 108

For a subset U of W, we define f(U) = >,y f(w). Thus, we can define a probability distri-
bution Pr on W by taking Pr(U) = f(U)/f(W).

Let f’ be identical to f, except that f'(wig) = (3 —6) x 10'8 and f'(wy1) = (2 + §) x 108,
where 6 is defined below. Again, we extend f’ to subsets of W by defining f'(U) = ¥, cp f'(w).
Let W' = {wlo, W11, wu}. IfU # @, define

_ ) ffvnu)/fU) Ew'CU
Belo(V|U) = { f(VvnU)/f(U) otherwise.

Bely is clearly very close to Pr. If U # (), then it is easy to see that |Belo(V|U) — Pr(V|U)| =
If'(VNU)— f(VNU)|/f(U) < 6. We choose § > 0 so that

if Pr(V|U) > Pr(V'|U"), then Belo(V|U) > Belo(V!|U"). (8)

Since the range of Pr is finite, all sufficiently small § satisfy (8).

The exact choice of weights above is not particularly important. One thing that is important
though is the following collection of equalities:

Pr(w1|{w1,w2}) = Pr(w10|{w10,w11}) = 3/5

Pr({w:, wa {{w1, wa, w3}) = Pr(wal{ws, ws}) = 5/11

Pr({wa, ws }{wa, ws, we}) = Pr({wr, ws }[{wr, ws, we}) = 11/19 9)
Pr(ws|{ws, ws, we}) = Pr({wio, w11 }|[{w1o, wi1,wi2}) = 5/19
Pr(wq|{w1,ws,ws}) = Pr(wr|{wr, ws}) = 3/11.

It is easy to check that exactly the same equalities hold if we replace Pr by Bely.

We show that Bely satisfies the requirements of Theorem 3.1 by a sequence of lemmas. The
first lemma is the key to showing that Belg cannot be isomorphic to a probability function.
It uses the fact (proved in Lemma 3.3) that if Bely were isomorphic to a probability function,
then there would have to be a function F satisfying A2 that is associative. Although, as is
shown in Lemma 3.7, the function F' satisfying A2 can be taken to be infinitely differentiable
and increasing in each argument, the equalities in (9) suffice to guarantee that it cannot be
taken to be associative, that is, we do not in general have

F(z,F(y,2)) = F(F(z,y), 2)-

Indeed, there is no associative function F' satisfying A2, even if we drop the requirements that
F' be differentiable or increasing.



Lemma 3.2: For Bely as defined above, there is no associative function F satisfying A2.

Proof: Suppose there were such a function F. From (9), we must have that

F(5/11,11/19)
= F(Belo(w4|{w4,w5}),Belo({w4,w5}|{w4,w5,w6}))
= Belo(w4|{w4,w5,w6}) = 5/19
and that
F(3/5,5/11)
= F(Belo(w1|[{w1,w2}), Belg({w1, w2 }[{w1, w2, ws}))
= Belo(w1|{w1,w2,w3}) = 3/11

It follows that
F(3/5,F(5/11,11/19)) = F(3/5,5/19)
and that
F(F(3/5,5/11),11/19) = F(3/11,11/19).
Thus, if F' were associative, we would have
F(3/5,5/19) = F(3/11,11/19).
On the other hand, from (9) again, we see that

F(3/5,5/19)
= F(Belg(wio[{w1o,w11}), Belo({wio, w11 }[{w1o, w11, wi2}))
= Belo(wio[{w10, w11, w12}) = (3 — §)/19,
while
F(3/11,11/19)
F(Belp(wr|[{wy,ws}), Belg({wr, ws }|{w7, ws, we}))
= Bely(wr|{wr,ws,wg}) = 3/19.

It follows that F' cannot be associative. i

To understand how Lemma 3.2 relates to our discussion in Section 2 of the problems with
Reichenbach’s proof, we say (x,y, z) is a constrained triple if there exist sets U1 D Uy D U3 D Uy
with Us # 0 such that x = Belg(Us|Us), y = Belg(Us|Us), and z = Bely(Ua|Uy). It is easy to
see that A2 forces F' to be associative on constrained triples, since if w = Bely(Us|U;) and
w' = Belg(Uy|Us), by A2, we have F(z, F(y,z2)) = F(x,w) = Bely(Us|U1) and F(F(z,y),2) =
F(w',z) = Belg(Uy,Up). A4 says that the set of constrained triples is dense in [0, 1]3.

We similarly define (z,y) to be a constrained pair if there exist sets U; 2 Us D Us with
U, # 0 such that x = Bely(Us|Us) and y = Bely(Uy|Uy ). We say that (U, Uy, Us) corresponds to
the constrained pair (z,y). (Note that there may be more than one triple of sets corresponding
to a constrained pair.) If (U, Uy, Us) corresponds to the constrained pair (z,y) and F satisfies
A2, then we must have F(z,y) = Belo(Us|U;). Note that both (3/5,5/11) and (5/11,11/19)
are constrained pairs, although the triple (3/5,5/11,11/19) is not constrained. It is this fact
that we use in Lemma, 3.2.

The next lemma shows that Belg cannot be isomorphic to a probability function.



Lemma 3.3: For Bely as defined above, there is no one-to-one onto function g : [0,1] — [0,1]
satisfying (1).

Proof: Suppose there were such a function g. First note that g(Belg(U)) # 0 if U # 0. For if
g(Belp(U)) = 0, then it follows from (1) that for all V' C U, we have

9(Belo(V)) = g(Belo(V|U)) x g(Belg(U)) = g(Belo(V|U)) x 0 = 0.

Thus, g(Belp(V)) = g(Belo(U)) for all subsets V' of U. Since the definition of Bely guarantees
that Belyp(V') # Belp(U) if V is a strict subset of U, this contradicts the assumption that g is
one-to-one. Thus, g(Bely(U)) # 0 if U # 0. It now follows from (1) that if U # @, then

9(Belo(V|U)) = g(Belo(V N U))/g(Belo(U)). (10)

Now define F(z,y) = g '(g9(x) x g(y)). We show that F defined in this way satisfies A2
and is associative. This will give us a contradiction to Lemma 3.2.

To see that F' satisfies A2, notice that, by applying the observation above repeatedly, if
VU #0, we get

F(Belo(V'|V NU),Bely(V|U))

9 ((9(Belo(V'|V N T)) x g(Belo(V|U)
= g ((gBelo(V' NV NT))/g(Belo(V NT))) x (9(Belo(V N U))/g(Belo(U))))
= g7 (g9(Belo(V' NV NU))/g(Belo(V)))

= g7 (g(Belo(V' NV |U)))

= Belo(V' NV|U).

Thus, F' satisfies A2.

To see that F' is associative, note that

F(F(z,y),z) =g 9(y))) x g(2))
9(2))

97 g(y) x 9(2))))

This gives us the desired contradiction to Lemma 3.2. It follows that Bely cannot be
isomorphic to a probability function. il

Despite the fact that Bely is not isomorphic to a probability function, functions S, F', and G
can be defined that satisfy A1, A2, and A3, respectively, and all the other requirements stated
in Theorem 3.1. The argument for S and G is easy; all the work goes into proving that an
appropriate F' exists.

Lemma 3.4: There erists an infinitely differentiable, strictly decreasing function S : [0,1] —
[0,1] such that Belp(V|U) = S(Bely(V|U)) for all sets U,V C W with U # @. In fact, we can
take S(z) =1 — x.

Proof: This is immediate from the observation that Belg(V|U) = 1 — Belo(V|U) for U,V C W.
|



Lemma 3.5: There exists an infinitely differentiable function G : [0,1]2 — [0,1], increasing
in each argument, such that if U, V,V' CW, VNV =0, and U # 0, then Belp(V UV'|U) =
G(Bely(V|U), Bely(V',U)). In fact, we can take G(x,y) =z + y.

Proof: This is immediate from the definition of Bely. I

Thus, all that remains is to show that an appropriate F' exists. The key step is provided by
the following lemma, which essentially shows that there is a well defined F' that is increasing.

Lemma 3.6: If Uy NU; # 0 and Vo N'Vy # 0, then

(a) if Bel()(V3|V2 M Vl) < Bel()(U3|U2 M Ul) and Belo(V2|V1) < Bel()(UQ‘Ul), then Belo(VE; n
V2|V1) S BCIQ(U:; n U2|U1),

(b) if Belo(V3|V2 N Vl) < BGZO(UP,‘UQ N Ul), Bel()(‘/z“/i) < BCZO(UQ‘Ul), BGZO(UP,‘UQ N Ul) >0,
and Bel()(U2|U1) > 0, then Bel()(V;J, N V2|V1) < Bel()(Ug n U2|U1),

(C) if Belo(V3|V2 N Vl) < BGZO(UP,‘UQ N Ul), Bel()(‘/z“/i) < BCZO(UQ‘Ul), BGZO(UP,‘UQ N Ul) >0,
and Bel()(U2|U1) > 0, then Bel()(V;J, N V2|V1) < Bel()(Ug N U2|U1),

Proof: First observe that if Belo(V3|V2ﬂV1) < Belo(U3|U2ﬂU1) and Belo(V2|V1) < Belo(U2|U1),
then from (8), it follows that Pr(Vs|Vo NnVy) < Pr(Us|Us N Uy) and Pr(Va|Vi) < Pr(Us|Uy). If
we have either Pr(V3|VoNVi) < Pr(Us|Us N Uy ) or Pr(V2|Vi) < Pr(Us|Us), then we have either
Pr(V3 n VQ‘Vl) < PI"(U3 n U2|U1) or PI"(U3|U2 N U1) =0 or PI'(UQlUl) = 0. It follows that
either Belg(Vz N V5|V1) < Belg(Us N Us|Uy) (this uses (8) again) or that Bely(Vs N V3|Vy) =
Belg(Us N U2|Uy) = 0. In either case, the lemma holds.

Thus, it remains to deal with the case that Pr(V3|VoNVy) = Pr(Us|UaNUy) and Pr(Va|Vy) =
Pr(Us|U1), and hence Pr(V3 N V3|Vy) = Pr(Us N Us|Uy). The details of this analysis are left to
the appendix. I

Lemma 3.7: There exists a function F : [0,1]> — [0,1] satisfying all the assumptions of
Theorem 3.1 (with respect to Bely).

Proof: Define a partial function F’ on [0,1]? whose domain D consists of all constrained pairs.
For a constrained pair, we define F’ in the unique way required to satisfy A2. A priori, F' may
not be well defined; it is possible that there exist triples (U, Uy, Us) and (V1, Vs, V3) that both
correspond to (z,y) (i-e., x = Belg(Us|Us) = Bely(V3|V2) and y = Bely(Uz|U1) = Bely(V2|V1))
such that Bely(Us|Uy) # Belg(V3|V1). If this were the case, then F'(z,y) would not be well
defined. However, Lemma 3.6 says that this cannot happen. Moreover, Lemma 3.6 assures
us that F” is increasing on D, and strictly increasing as long as one of its arguments is not 0.
Indeed, if there is a triple (U1, U, Us) corresponding to (x,y) such that {wio, w11, w12} € Uy,
then we must have F'(z,y) = zy.

The domain D of F’ is finite. Let D’ be the commutative closure of D, so that D’ consists of
D and all pairs (y, x) such that (z,y) is in D. Extend F’ to a commutative function F” on D’ by
defining F"'(y,z) = F'(z,y) if (z,y) € D. F" is well defined because, as can easily be verified, if
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(z,y) and (y, z) are both in D, one of z or y must be 1, and F'(x,1) = F'(1,z) = z. Clearly F”
is commutative. It is also increasing. For suppose (z,y), (z',y') € D',z < z',and y < ¢'. If both
(z,y) and (2, y') are in D, we must have F"(z,y) < F"(2',y'), since F' is increasing. Similarly,
if both (y,z) and (y',z') are in D, we must have F"(z,y) = F'(y,z) < F'(y',2") = F"(z', ).
Finally, if (z,y) and (y/,2') are in D, a straightforward check over all possible elements in D
shows that this can happen only if the triples (Uy, Uy, Us) and (Vi, Vs, V3) corresponding to
(z,y) and (y', 2’) are such that {w1g, w11, w12} is not a subset of either Uy or V3. It follows that
F'(z,y) = xzy and F'(y',2') = 'y, so again we get that F"” is increasing. A similar argument
shows that F" is strictly increasing as long as one of its arguments is not 0.

It is straightforward to extend F" to a commutative, infinitely differentiable, and increasing
function F defined on all of [0, 1], which is strictly increasing on (0, 1]2, and satisfies F(x,1) =
F(1l,z) = x and F(z,0) = F(0,z2) = 0. We proceed as follows. We first extend F” so that it
is defined for all pairs (z,y) € [0,1]% such that = > y so that it has the required properties.
If < y, we then define so that F(z,y) = F(y,z). Since F” is commutative, this definition
agrees with F”(z,y) for x < y. Clearly F' is commutative and infinitely differentiable. To see
that F' is increasing, suppose that z < 2’ and y < g’. Just as in the case of F", it is immediate
that F' is increasing if both z > y and 2’ > ¢’ or both x < y and 2’ < 3. Otherwise, suppose
x >y and y' > 2’. Then we have y < x < 2/ < y'. Since F is increasing on {(z,y) : x > y},
we have F(z,y) < F(2',y) < F(2',2') < F(y',2') = F(2',y'). A similar argument shows that
F is strictly increasing unless one its arguments is 0. Finally, F' clearly satisfies A2, since (by
construction) F’ does, and A2 puts constraints only on the domain of F’. I

Theorem 3.1 now follows from Lemmas 3.3, 3.4, 3.5, and 3.7.

4. The Counterexample to Fine’s Theorem

Fine is interested in what he calls comparative conditional probability. Thus, rather than associ-
ating a real number with each “conditional object” V|U, he puts an ordering > on such objects.
As usual, V|U = V'|U’ is taken to be an abbreviation for V|U > V'|U’ and not(V'|U’ = V|U).

Fine is interested in when such an ordering is induced by a real-valued belief function with
reasonable properties. He says that a real-valued function P on such objects agrees with > if
P(V|U) > P(V'|U") iff V|U > V'|U’. Fine then considers a number of axioms that > might
satisfy. For our purposes, the most relevant are the ones Fine denotes QCC1, QCC2, QCC5,
and QCCT.

QCC1 just says that > is a linear order:
QCCL1. VIU = V'|U" or V'|U' = V|U.
QCC2 says that > is transitive:
QCC2. If V1|Uy = V3|Uy and Va|Us = V3|Us, then Vi |U; = V3|Us.
QCC5 is a technical condition involving notions of order topology. The relevant definitions

are omitted here (see (Fine, 1973) for details), since QCCS5, as Fine observes, holds vacuously
in finite domains (the only ones of interest here).
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QCC5. The set {V|U} has a countable basis in the order topology induced by >.
Finally, QCCT essentially says that > is increasing, in the sense of Lemma 3.6.

QCCT.

(a) If V3|V2 nv, = U3|U2 NU; and V2|V1 >~ U2|U1 then V3 ﬂV2|V1 > Us ﬂUQ‘Ul.
(b) If V3‘V2 nv, = U2|U1 and ‘/2“/1 > U3‘U2 N U; then V3 ﬂ‘/‘?“/l > Us; ﬂUQ‘Ul.

(C) If V3|V2 aRZ U3|U2 N Ul, V2|V1 > U2|U1, and V2|V1 - @|W, then V3 N V2|V1 -
UgﬂUQ‘Ul.

Fine then claims the following theorem:

Fine’s Theorem: (Fine, 1973, Chapter II, Theorem 8) If = satisfies QCC1, QCC2, QCC5,
then there exists some agreeing function P. There exists a function F of two variables such
that

2. F(z,y) = F(y,x),

3. F

4. F
5

x,y) is increasing in x for y > P(O|W),

x,F(y,2)) = F(F(z,9),2),

6. F(P(OU),y) = PO|U).
off = also satisfies QCC7T.

The only relevant clauses for our purposes are Clause (1), which is just A2, and Clause
(4), which says that F' is associative. As Lemma 3.2 shows, there is no associative function
satisfying A2 for Bely. As I now show, this means that Fine’s theorem does not quite hold
either.

Before doing so, let me briefly touch on a subtle issue regarding the domain of >. In the
counterexample of the previous section, Bely(V|U) is defined as long as U # 0. Fine does
not assume that the > relation is necessarily defined on all objects V|U such that U,V C W
and U # (. He assumes that there is an algebra F of subsets of W (that is, a set of subsets
closed under finite intersections and complementation) and a subset ' of F closed under finite
intersections and not containing the empty set such that > is defined on conditional objects
V|U such that V € F and U € F'. Since F' is closed under intersection and does not contain
the empty set, F' cannot contain disjoint sets. If W is finite, then the only way a collection
F' can meet Fine’s restriction is if there is some nonempty set Uy such that all elements in F’
contain Uy. This restriction is clearly too strong to the extent that comparative conditional
probability is intended to generalize probability. If Pr is a probability function, then it certainly

6. Fine assumes that P(V N V'|U) = F(P(V|U), P(V'|V N U)). I have reordered the arguments here for

consistency with Cox’s theorem.
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makes sense to compare Pr(V|U) and Pr(V'|U’) even if U and U’ are disjoint sets. Fine [private
communication, 1995] suggested that it might be better to constrain QCC7 so that we do not
condition on events U that are equivalent to § (where U is equivalent to 0 if @ > U and U > 0).
Since the only event equivalent to () in the counterexample of the previous section is 0 itself,
this means that the counterexample can be used without change. This is what is done in the
proof below. I show below how to modify the counterexample so that it satisfies Fine’s original
restrictions.

Theorem 4.1: There exists an ordering > satisfying QCC1, QCC2, QCC5, and QCC7, such
that for every function P agreeing with >, there is no associative function F of two variables
such that P(V N VNH|U) = F(P(V'|VNU),P(V|U)).

Proof: Let W and Bely be as in the counterexample in the previous section. Define > so that
Bely agrees with >=. Thus, V|U > V'|U’ iff Belp(V|U) > Bely(V'|U’). Clearly = satisfies QCC1
and QCC2. As was mentioned earlier, since W is finite, > vacuously satisfies QCC5. Lemma 3.6
shows that > satisfies parts (a) and (c) of QCC7. To show that > also satisfies part (b) of QCC?,
we must prove that if Belg(V3|Vo N V1) > Bely(Uz2|U;) and Belyg(Va|Vi) > Bely(Us|Us NUL), then
Belg(V3NV4|V7) > Belg(UsNU;z|Uy ). The proof of this is almost identical to that of Lemma 3.6;
we simply exchange the roles of Pr(V5|V1) and Pr(V3|Va N Vi) in that proof. I leave the details
to the reader. Lemma 3.2 shows that there is no associative function F' satisfying A2 for Bely.
All that was used in the proof was the fact that Bely satisfied the inequalities of (9). But these
equalities must hold for any function agreeing with >. Thus, exactly the same proof shows
that if P is any function agreeing with >, then there is no associative function F' satisfying
PV NV'|U)=FPWV'IVNnU),P(V|U)) I

I conclude this section by briefly sketching how the counterexample can be modified so that
it satisfies Fine’s original restriction. Redefine W by adding one more element wy. Redefine f
and f’ so that f(wg) = f'(wg) = 107°; in addition, redefine f and f’ on w3, we, wy, and wys,
so as to decrease their weight by 107°, the weight of wg. Thus,

o f(ws) = f'(ws) =6—10"2,
o f(wg) = f'(wg) =8 x 10* — 1075,
o f(wg) = f'(wy) =8 x 108 — 1075, and

o f(wi) = f'(wyz) = 14 x 108 —1072.

Finally, redefine W’ to be {wg,w1g, w11, wi2}. The definition of Bely in terms of f, f’, and
W' remains the same. With these redefinitions, the proofs of the previous section go through
essentially unchanged. In particular, the equalities in (9) now hold if we add wq to every set. Let
F' consist of all subsets of W containing wq. Notice that F’ is closed under intersection and does
not contain the empty set. The lack of associativity in Lemma 3.2 can now be demonstrated
by conditioning on sets in F’. As a consequence, we get a counterexample to Fine’s theorem
even when restricting to conditional objects that satisfy his restriction.
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5. Discussion

Let me summarize the status of various results in the light of the counterexample of this paper:

e Cox’s theorem as originally stated does not hold in finite domains. Moreover, even in
infinite domains, the counterexample and the discussion in Section 2 suggest that more
assumptions are required for its correctness. In particular, the claim in his proof that F'
is associative does not follow.

e Although the counterexample given here is not a counterexample to Aczél’s theorem, his
assumptions do not seem strong enough to guarantee that the function G is associative,
as he claims it is.

e The variants of Cox’s theorem stated by Heckerman (1988), Horvitz, Heckerman, and
Langlotz (1986), and Aleliunas (1988) all succumb to the counterexample.

e The claim that the function F' must be associative in Fine’s theorem is incorrect. Fine has
an analogous result (Fine, 1973, Chapter II, Theorem 4) for unconditional comparative
probability involving a function G as in Aczél’s theorem. This function too is claimed to
be associative, and again, this does not seem to follow (although my counterexample does
not apply to that theorem).

Of course, the interesting question now is what it would take to recover Cox’s theorem.
Paris’s assumption A4 suffices, as does the stronger assumption of nonatomicity (see Footnote
4). As we have observed, A4 forces the domain of Bel to be infinite, as does the assumption
that the range of Bel is all of [0,1]. We can always extend a domain to an infinite—indeed,
uncountable—domain by assuming that we have an infinite collection of independent fair coins,
and that we can talk about outcomes of coin tosses as well as the original events in the domain.
(This type of “extendibility” assumption is fairly standard; for example, it is made by Savage
(1954) in quite a different context.) In such an extended domain, it seems reasonable to also
assume that Bel varies uniformly between 0 (certain falsehood) and 1 (certain truth). If we
also assume A4 (or something like it), we can then recover Cox’s theorem. Notice, however,
that this viewpoint disallows a notion of belief that takes on only finitely many gradations.

Another possibility is to observe that we are not interested in just one domain in isolation.
Rather, what we are interested in is a notion of belief Bel that applies uniformly to all domains.
Thus, even if (U, V') and (U’, V') are pairs of subsets of different (perhaps even disjoint) domains,
if Bel(V|U) and Bel(V’/|U’) are both 1/2, then we would expect this to denote the same relative
strength of belief. In this setting, an analogue of A4 seems more reasonable. That is, we can
assume that for all 0 < a,8,7 < 1 and € > 0, there is some domain W and subsets Uy, U,
Us, and Uy of W such that the conclusion of A4 holds. If we further assume that the functions
F, G, and S are also uniform across domains (that is, that A1, A2, and A3 hold for the same
choice of F, G, and S in every domain), then we can again recover Cox’s theorem.”

The idea of having a notion of uncertainty that applies uniformly in all domains seems
implicit in some discussion in that Jaynes’ recent book on probability theory (1996). Jaynes
focuses almost exclusively on finite domains.® As he says “In principle, every problem must

7. This point was independently observed by Jeff Paris [private communication, 1996].
8. Actually, Jaynes assigns probability to propositions, not sets, but, as noted earlier, there is essentially no
difference between the two.
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start with such finite set probabilities; extensions to infinite sets is permitted only when this
is the result of a well-defined and well-behaved limiting process from a finite set.” To make
sense of this limiting process, it seems that Jaynes must be assuming that the same notion of
uncertainty applies in all domains. Moreover, one can make arguments appealing to continuity
that when we consider such limiting processes, we can always find subsets Uy, U, U3z, and Uy
in some sufficiently rich (but finite) extension of the original domain such that A4 holds.

While this seems like perhaps the most reasonable additional assumptions required to get
Cox’s result, it does require us to consider many domains at once. Moreover, it does not allow
a notion of belief that has only finitely many gradations, let alone a notion of belief that allows
some events to be considered incomparable in likelihood.?

Suppose we really are interested in one particular finite domain, and we do not want to
extend it or consider all other possible domains. What assumptions do we then need to get
Cox’s theorem? The counterexample given here could be circumvented by requiring that F' be
associative on all tuples (rather than just on the constrained triples). However, if we really are
interested in a single domain, the motivation for making requirements on the behavior of F
on belief values that do not arise is not so clear. Moreover, it is far from clear that assuming
that F' is associative suffices to prove the theorem. For example, Cox’s proof makes use of
various functional equations involving F' and S, analogous to the equation (7) that appears in
Section 2. These functional equations are easily seen to hold for certain tuples. However, as we
saw in Section 2, the proof really requires that they hold for all tuples. Just assuming that F’
is associative does not appear to suffice to guarantee that the functional equations involving S
hold for all tuples. Further assumptions appear necessary.

Nir Friedman [private communication]| has conjectured that the following condition, which
says that essentially all beliefs are distinct, suffices:

e ifCcUCV,0cU CV' and (UV) # (U, V'), then Bel(U|V) # Bel(U'|V").

Even if this condition suffices, note that it precludes, for example, a uniform probability distri-
bution, and thus again seems unduly restrictive.

Another possibly interesting line of research is that of characterizing the functions that
satisfy Cox’s assumptions. As the example given here shows, the class of such functions includes
functions that are not isomorphic to any probability function. I conjecture that in fact it
includes only functions that are in some sense “close” to a function isomorphic to a probability
distribution, although it is not clear exactly how “close” should be defined (nor how interesting
this class really is in practice).

So what does all this say regarding the use of probability? Not much. Although I have
tried to argue here that Cox’s justification of probability is not quite as strong as previously
believed, and the assumptions underlying the variants of it need clarification, I am not trying
to suggest that probability should be abandoned. There are many other justifications for its
use.

9. Interestingly, Jaynes (1996, Appendix A) admits that having plausibility values be elements of a partially-
ordered lattice may be a reasonable alternative to traditional probability theory. Nir Friedman and I (1995,
1996, 1997) have recently developed such a theory and shown that it provides a useful basis for thinking
about default reasoning and belief revision.
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Appendix: Proof of Lemma 3.6

Recall that all that remains in the proof of Lemma 3.6 is to deal with the case that Pr(V3|V2 N
Vl) = PI"(U3|U2 n Ul) and PI‘(V2|V1) = PI‘(U2|U1), and hence PI‘(V3 N V2|V1) = PT(Ug N U2|U1)

Before proceeding with the proof, it is useful to collect some general facts about Pr. A set
U is said to be standard if U is a subset of one of {w1,wy,ws}, {wy,ws,we}, {wr,ws, we}, or
{w10, w11, w12}. A real number a is said to be relevant if there exists some standard U and some
arbitrary V such that a = Pr(V|U). Notice that even if U # @ is nonstandard, then, taking U’
to be the standard subset of U which has the greatest weight, then | Pr(V|U)—Pr(V|U’)| < .002.
(This is the reason that the weights are multiplied by factors such as 10%, 10®, and 10*®.) Thus,
for any subsets V and U of W, we have that Pr(V|U) is close to a relevant number (where
“close” means “within .002”).

Call a triple (U, V, V') of subsets of W good if Bely(V'NV|U) = Belg(V'|VNU) x Belp(V|U).
Clearly if both (Uy,Us,Us) and (Vi,Vs,V3) are good, then the lemma holds. Notice that
if (U,V,V') is not good, then U D {wig,w11,w12} and f(V N {wig,w11,w12}) # f(V N
{w10,w11,w11}), which means that V N {w1g, w11, w12} must contain one of wiy and wi, but
not both, and thus must be one of {wig}, {wi1}, {wi0, w12}, or {wi1,wi2}.

Thus, we may as well assume that at least one of (U, Uy, Us) or (V1,V;, V3) is not good. In
that case, I claim that one of the following must hold:

[ ] Belo(V?, N VQ|V1) = Bel(V3|V2 N Vl) = Belo(U3|U2 N Ul) = Belo(Ug N U2|U1) =0
e UsNUsNU1 =UsNU; and VaNVonVi =Von'V
e f(U1) =f(W) and f(U1N0) = f(ViNV2)

In the first case, we have already seen that the lemma holds. In the second case, we have
Belo(Vg n V2|V1) = Bel()(V2|V1), Belo(Ug n U2|U1) = Bel()(U2|U1), and Belo(Vg‘Vz N Vl) =
Bely(Us|U;NUy) = 1, so the lemma is easily seen to hold. Finally, in the third case, notice that
since Pr(Us NU3|Uy) = Pr(VaNV3|Vi), we must also have that f(U;NU2NUs) = f(ViNVaNVs).
Moreover, it is easy to see that all these equalities must hold if f is replaced by f’. Again, the
lemma immediately follows.

To prove the claim, for definiteness, assume that (Ui, Us,Us) is not good (an identical
argument works if (V1,V5,V3) is not good). From the characterization above of triples that
are not good, it follows that f(U; NUs) = a x 10'® + b and f(Uy) = 19 x 10*® + ¢, where
a € {2,3,16,17} (depending on Uy N {wyg, w11, w12}), and both b,c < 20 x 108, Clearly, the
relevant number closest to Pr(Us|Uy) is a/19. Since Pr(V4|Vy) = Pr(Uz|U;) by assumption,
Pr(V4|V1) is also close to a/19. Thus, we must have that f(Vi N Vy) = a x 10F 4+ ¢’ and
f(V1) =19 x 10¥ + ¢/, where k € {0,4,8,18}. In fact, it is easy to see that k is either 8 or 18,
since there are no relevant numbers of the form a/19 (for a € {2,3,16,17}) that are close to
Pr(V|U) if U C {w1,ws, w3, ws,ws,wg}. In addition, if & = 18, then ¥’, ¢/ < 20 x 108, while if
k =8, then v/, ¢ < 20 x 10*. By standard arithmetic manipulation, we have that

10'8(acd’ — 19b') 4+ 10%(19b — ac) + (b’ — b'c) = 0.
If £ = 8, then it is easy to see that we must have

ac — 19V =0, 19b —ac = 0 and bc’ — b'c =0, (11)
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while if £ = 18, then we must have
19(b =)+ a(d —¢) =0 and b’ — b'c = 0. (12)

Now comes a case analysis. First suppose that & = 8. Then we must have b’ = ¢’ = 0, since
if ¢ # 0, then from (11) we have that &'/c’ = a/19, and it is easy to see that there do not exist
sets 71 and T3 such that f(71) = b, f(T3) = ¢, and ¥’ /¢’ = a/19, with &', ¢’ < 20 x 10%. Thus,
it follows that Pr(U;|U;) = Pr(V5|V1) = a/19. Moreover, we must have V; = {wr, ws,wq}
and Vo N V; either {wr} or {ws,wy}, depending on a. It follows that Pr(V3|Vy N V1) must be
one of {0,1/2,1}. Since Pr(Us|U; NU;) = Pr(V3|V2 N Vi), we must have that Pr(Us|U; NUY) €
{0,1/2,1}. Since UsNU; contains exactly one of wyg and w1, it is easy to see that Pr(Us|UsNU7)
cannot be 1/2. IfPI‘(Ug‘UQﬂUl) = PI‘(V3|V2 ﬂVl) =0, then UsNUy;NU; = V3NVoNV = @, and
we must have Belg(UsNUz|Up) = Belg(V3aNV,|Vy) = 0, so the claim follows. On the other hand,
if Pr(U3|U2 N Ul) = PI‘(V3|V2 ﬂVl) =1,then UsNUsNU; = Uy NU; and VaNVo NV =V NV,
and the claim again follows.

Now suppose £ = 18. If ¢ = ¢/, then by (12), we must have that b = ¥'. It immediately
follows that f(U1) = f(Vi) and f(Uir NUy) = f(Vi N V3), so the claim holds. Thus, we can
suppose ¢ # ¢’. Suppose that ¢ # 0 (an identical argument works if ¢ # 0). Then there exists
some = # 1 such that ¢ = zc. Since bc — b'c = 0, it follows that b = xd’. Substituting zbt’
for b and xc for ¢ in (12), we get that (1 — z)b'/(1 — z)c’ = a/19, from which it follows that
b'/d = a/19. Moreover, we also get that either b = ¢ = 0 or b/c = a/19. It is easy to check
that a must be either 3 or 16. If b/c = a/19, then we must have b =¥ and ¢ = . As we have
seen, this suffices to prove the claim. Thus, we can assume that b = ¢ = 0. But this means
that Uy = {wyg, w11, w12}, and that Uy N Uy is either {wig} or {wi1,wia}. It follows that the
only possibilities for Pr(Us|U; N Uy) are 0, 1/8, 7/8, or 1. It is easy to see that Pr(V3|Va nVh)
cannot be 1/8 or 7/8, while the cases where it is either 0 or 1 are easily taken care of, as above.

This completes the proof of the claim and of the lemma. 1
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