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1 Introduction

There has been a great deal of work on characterizing the complexity of the satisfiability and
validity problem for modal logics (see [7; 9; 14; 15] for some examples). In particular, Ladner
[9] showed that the validity (and satisfiability) problem for every modal logic betW€emd

S4 is PSPACE-hard; and isPSPACE-complete for the modal logicK, T, andS4. He also
showed that the satisfiability problem 85 is NP-complete.

What causes the gap betweNR and PSPACE here? We show that, in a precise sense, it
is the negative introspection axiomKy = K- K. It easily follows from Ladner’s proof
of PSPACE-hardness that for any modal logicbetweenK andS4, there exists a family of
formulasy,, all consistent withZ, such that such thatp,| = O(n) but the smallest Kripke
structure satisfyingo has at leasp” states (whereyp| is the length ofy viewed as a string
of symbols). By way of contrast, we show that for all of the (infinitely many) modal logics
containingK5 (that is, every modal logic containing the axiom Ko AK (p = ¢) = Ki—
and the negative introspection axiom, which has traditionally been called axiom 5), if a formula
 is consistent with’, then it is satisfiable in a Kripke structure of size lineafsh Using this
result and a characterization of the set of finite structures consistent with all@gictaining
K5 due to Nagle and Thomason [12], we can show that the consistency (i.e., satisfiability)
problem forL is NP-complete. Thus, roughly speaking, adding negative introspection to any
logic betweerkK andS4 lowers the complexity fronPSPACE-hard toNP-complete.

The fact that the consistency problem for specific modal logics contalKifgs NP-
complete has been observed before. As we said, Ladner already provedi;fan easy
modification (see [6]) gives the result flfD45 andK45.! That the negative introspection
axiom plays a significant role has also been observed before; indeed, Nagle [11] shows that
every formulay consistent with a normal modal logi¢ containingK 5 has a finite model (in-
deed, a model exponential jia|) and using that, shows that the provability problem for every
logic L betweenK andS5 is decidable; Nagle and Thomason [12] extend Nagle’s result to all
logics containingK’5 not just normal logics. Despite all this prior work and the fact that our
result follows from a relatively straightforward combination of results of Nagle and Thomason
and Ladner’s techniques for proving that the consistency proble®5as NP-complete, our
result seems to be new, and is somewhat surprising (at least to us!).

The rest of the paper is organized as follows. In the next section, we review standard notions
from modal logic and the key results of Nagle and Thomason [12] that we use. In Section 3,
we prove the main result of the paper. We discuss related work in Section 4.

2 Modal Logic: A Brief Review

We briefly review basic modal logic, introducing the notation used in the statement and proof
of our result. The syntax of the modal logic is as follows: formulas are formed by starting with

INguyen [13] also claims the result fé€5, referencing Ladner. While the result is certainly trueKos, it is
not immediate from Ladner’s argument.
2A modal logic isnormalif it satisfies the generalization rule RN: frominfer K.
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a setd = {p,q,...} of primitive propositions, and then closing off under conjunctio, (
negation {), and the modal operatdt. Call the resulting languagéX (®). (We often omit

thed if itis clear from context or does not play a significant role.) As usual, we defing and

© = 1) as abbreviations of(~¢ A V) and—¢ V 1, respectively. The intended interpretation

of K varies depending on the context. It typically has been interpreted as knowledge, as
belief, or as necessity. Under the epistemic interpretafiop s read as “the agekhowsy”;

under the necessity interpretatidkip can be read is necessarily true”.

The standard approach to giving semantics to formulaghin®) is by means of Kripke
structures. A tuple? = (5, K) is a(Kripke) frameif S is a set of states and is a binary
relation onS. A situationis a pair(F,s), where’ = (S,K) is a frame ands € S. A
tuple M = (S,KC, ) is aKripke structure (overd) if (S,K) is a frame andr : S x & —
{true, false} is aninterpretation (onS) that determines which primitive propositions are true
at each state. Intuitivelys, ¢) € K if, in states, statet is considered possible (by the agent,
if we are thinking of K’ as representing an agent’s knowledge or belief). For convenience, we
defineC(s) = {t: (s,t) € K}.

Depending on the desired interpretation of the formidla, a number of conditions may
be imposed on the binary relatidd K is reflexiveif for all s € S, (s,s) € K; itis transitive
if forall s,t,u € S, if (s,t) € K and(t,u) € K, then(s,u) € K; itis serialif for all s € S
there existg € S such that(s,t) € K; it is Euclideaniff for all s,t,u € S, if (s,t) € K
and(s,u) € K then(t,u) € K. We use the superscripts e, t ands to indicate that theéC
relation is restricted to being reflexive, Euclidean, transitive, and serial, respectively. Thus, for
exampleS™ is the class of all situations where therelation is reflexive and transitive.

We write (M, s) = ¢ if ¢ is true at state in the Kripke structurél/. The truth relation is
defined inductively as follows:

,8) Ep, forp e @,if n(s,p) = true

,8) = pif (M, s) [ ¢

,s) E e ANt (M, s) = pand(M,s) =
)

M
M
M
M,s) E Kpif (M,t) = pforallt € K(s)

(
(
(
(

A formula ¢ is said to besatisfiable in Kripke structuré/ if there existss € S such that
(M, s) = ¢; pis said to bevalid in M, written M = o, if (M, s) = pforalls € S. Aformula
is satisfiable(resp.,valid) in a classN of Kripke structures if it is satisfiable in some Kripke
structure in\V (resp., valid in all Kripke structures ). There are analogous definitions for
situations. A Kripke structurd/ = (S, IC, ) is based ora frameF = (S’ K') if ' = S and
K’ = K. The formulay is valid in situation( £’ s), written (F, s) = ¢, whereF = (S, K) and
s € S,if (M, s) = ¢ for all Kripke structureM based orf'.

Modal logics are typically characterized by axiom systems. Consider the following axioms
and inference rules, all of which have been well-studied in the literature [3; 4; 6]. (We use
the traditional names for the axioms and rules of inference here.) These are aaki@thy
schemeandinference schemgwe consider all instances of these schemes.



Prop. All tautologies of propositional calculus
K. (Ko AN K(p = 1)) = K (Distribution Axiom)
T. Ko = ¢ (Knowledge Axiom)
4. Ko = KKy (Positive Introspection Axiom)
5. =Ky = K-Ky¢ (Negative Introspection Axiom)
D. —K(false (Consistency Axiom)
MP. Fromp andy = ¢ infer¢» (Modus Ponens)

RN. Fromy infer K¢ (Knowledge Generalization)

The standard modal logics are characterized by some subset of the axioms above. All are
taken to include Prop, MP, and RN; they are then named by the other axioms. For exdple,
consists of all the formulas that are provable using Prop, K, 5, MP, and RN; we can similarly
define other systems suchE$45 or KT5. KT has traditionally been call€@i; KT4 has
traditionally been calle®&4; andK'T45 has traditionally been callesls.

For the purposes of this paper, we takeadal logic L to be any collection of formulas
that contains all instances of Prop and is closed under modus ponens (MP) and substitution, so
that if p is a formula inL andp is a primitive proposition, thep[p/v] € L, wherep[p/v] is
the result of replacing all instancesoin by . A logic is normalif it contains all instances
of the axiom K and is closed under the inference rule RN. In terms of this notation, Ladner
[9] showed that ifL is a normal modal logic betwedd andS4 (since we are identifying a
modal logic with a set of formulas here, that just means K&t L C S4), then determining
if ¢ € L is PSPACE-hard. (Of course, if we think of a modal logic as being characterized
by an axiom system, thep € L iff ¢ is provable from the axioms characterizihg) We
say thaty is consistent withl if = ¢ L. Since consistency is just the dual of provability, it
follows from Ladner’s result that testing consistencyPBPACE-hard for every normal logic
betweenK andS4. Ladner’s proof actually shows more: the proof holds without change for
non-normal logics, and it shows that some formulas consistent with logics bekveed S4
are satisfiable only in large models. More precisely, it shows the following:

Theorem 2.1:[9]

(a) Checking consistency is PSPACE complete for every logic bels/eenl S4 (even non-
normal logics).

(b) Forevery logicL betweerK andS4, there exists a family of formulas;, n = 1,2, 3, . . .,
such that (i) for alln, ©X is consistent withl,, (ii) there exists a constant such that
|E| < dn, (i) the smallest Kripke structure that satisfigshas at leasp” states.



There is a well-known correspondence between properties df tredation and axioms:
reflexivity corresponds to T, transitivity corresponds to 4, the Euclidean property corresponds
to 5, and the serial property corresponds to D. This correspondence is made precise in the
following well-known theorem (see, for example, [6]).

Theorem 2.2 LetC be a (possibly empty) subset{df, 4, 5, D} and letC' be the corresponding
subset of r, ¢, ¢, s}. Then{Prop, K, MP, RN U C is a sound and complete axiomatization of
the languageC X (®) with respect taS¢ (®).?

Given a modal logid, let S consist of all situation$F, s) such thatp € L implies that
(F,s) = ¢. Animmediate consequence of Theorem 2.2 is 8fathe situations where thé
relation is Euclidean, is a subset8f°.

Nagle and Thomason [12] provide a useful semantic characterization of all logics that con-
tain K5. We review the relevant details here. Consider all the finite situafighdC), s) such
that either

1. Sis the disjoint union of;, S;, and{s} and/C = ({s} x S1) U ((S1US2) x (S1US,)),
whereS, = () if S; = 0; or

2. K=5x8S.

Using (a slight variant of) Nagle and Thomason'’s notationsjgt,, withm > 1 andn > 0
or (m,n) = (0,0), denote all situations of the first type wherg| = m and|Sz| = n, and
let S,,—; denote all situations of the second type whgfe= m. (The reason for taking -1
to be the second subscript for situations of the second type will become clearer below.) It is
immediate that all situations i§,,,, for fixed m andn are isomorphic—they differ only in
the names assigned to states. Thus, the same formulas are valid in any two situafigns in
Moreover, it is easy to check that therelation in each of the situations above in Euclidean, so
each of these situations is &5. It is well known that the situations i§,, ; are all inS¥®
and the situations i5,, _; U S, are all inS¥P45, In fact, S5 (resp.,KD45) is sound and
complete with respect to the situationsSp, _; (resp.,S,, -1 U Si0). Nagle and Thomason
show that much more is true. L&" = (U{S,,, : m > 1,n > —10or (m,n) = (0,0)}) N S*.

Theorem 2.3:[12] For every logicL containingK5, L is sound and complete with respect to
the situations ir7 ~.

The key result of this paper shows that if a formules consistent with a logi€ containing
K5, then there exists:, n, a Kripke structureM = (S, K, ), and a state € S such that

3We remark that soundness and completeness is usually stated with respect to the appropriaté’ adiss
structures, rather than the claS§ of situations. However, the same proof applies without change to show
completeness with respect$’, and usingS® allows us to relate this result to our later results. While for normal
logics it suffices to consider only validity with respect to structures, for non-normal logics, we need to consider
validity with respect to situations.



((S,K),s) € Smm, Smn € TF, andm +n < |p|. Thatis, if ¢ is satisfiable at all, it is
satisfiable in a situation with a number of states that is lineép|in

One more observation made by Nagle and Thomason will be important in the sequel.

Definition 2.4: A p-morphism(short forpseudo-epimorphisydrom situation((S’, K'), s’) to
situation((.S, KC), s) is a functionf : S” — S such that

o f(s)=s
o if (s1,50) € K, then(f(s1), f(s2)) € K;

o if (f(s1),s3) € IC, then there exists someg € S’ such tha(s;, so) € K" andf(s2) = s3.

This notion of p-morphism of situations is a variant of standard notions of p-morphism of
frames and structures [3]. It is well known that if there is a p-morphism from one structure
to another, then the two structures satisfy the same formulas. An analogous result holds for
situations.

Theorem 2.5: If there is a p-morphism from situatigi#”, s’) to (F, s), then for every modal
logic L, if (F',s') € S* then(F, s) € S™.

Proof: Suppose that’ = (5, K), I’ = (S, K’), f is a p-morphism fron{F’, s) to (F', s), and
(F',s") € St. We want to show thatF, s) € St. Let ® be the set of primitive propositions.
Given an interpretatiom on S, define an interpretation’ : S’ x & — {true, false} on S’
by taking~'(t,p) = «(f(t),p) forallt € S” andp € ®. We now show by induction on the
structure of formulas that for all statesc S’ and all formulasp, we have(F', 7', t) = ¢ iff
(F, 7, f(t)) & ¢. This is a standard argument [3]; we repeat it here for completeness.

The base case follows immediately from the definitiontof For conjunctions and nega-
tions the argument is immediate from the induction hypothesis. Finalhisibf the formK ¢/,
first suppose thatl”, 7', t) = K¢'. We want to show thatF, =, f(t)) = K¢'. So suppose
that(f(t),u) € K. Sincef is a p-morphism, then there existsc S’ such that(t,v’) € K’
and f(u') = u. Since(F’,7',t) E K¢/, it must be the case that”, «’,u') = ¢'. By the
induction hypothesis, it follows thdt, 7, u) = ¢’. Since this argument applies to alluch
that(f(t),u) € K, it follows that(F, 7, f(t)) = K;¢'. For the opposite implication, suppose
that(F,w, f(t)) = K¢'. We wantto show thatF”, 7', t) = K¢'. If (t,u) € K’ then, sincef is
a p-morphism(f(¢), f(u)) € K. Since(F,x, f(t)) = K¢/, it follows that(F, 7, f(u)) E ¢’
By the induction hypothesi$F”, ', u) = ¢'. It follows that(F”, 7', t) = K¢'.

To complete the argument, suppose by way of contradictionghatZ and(F,s) [~ ¢.
Then there exists an interpretatiorsuch that 7, 7, s) = —p. Sincef(s’) = s, by the argu-
ment above, there exists an interpretatidron S’ such that 7', 7', ') = -, contradicting
the assumption thadt’, s') € SE. 1



Now consider a partial order on pairs of numbers, so that:) < (m/,n’) iff m < m/
andn < n/. Nagle and Thomason observed that# s) € S,,,, (F',s') € S,, and
(1,—-1) < (m,n) < (m/,n’), then there is an obvious p-morphism fr@#’, s') to (F, s): if
F =(5K),S=5US,F = (5K) S =85 US, (whereS; andS; fori = 1,2 are
as in the definition ofS,, ,,), then definef : S" — S so thatf(s') = s, f mapsS; onto S,
and, if S, # 0, thenf mapsS’, onto S,; otherwise,f mapssS), to S; arbitrarily. The following
result (which motivates the subscriptl in S,, ;) is immediate from this observation and
Theorem 2.5.

Theorem 2.6:If (F,s) € Sy, (F',8") € Sy, @and (1, —1) < (m,n) < (m/,n’), then for
every modal logid_, if (F',s') € TX then(F,s) € TT.

3 The Main Results

We can now state our key technical result.

Theorem 3.1: If L is a modal logic containindg<5 and —¢ ¢ L, then there existz, n such
thatm + n < |¢|, a situation(F,s) € S N S,,.., and structureM based onF' such that

(M, s) F .

Proof: By Theorem 2.3, if~¢ ¢ L, there is a situatiof”, sy) € 7X such tha{ F”, sq) £ —.
Thus, there exists a Kripke structuté’ based on/” such that(M’, sy) = ¢. Suppose that
F' € Sy . I m' +1n' < |g|, we are done, so suppose thét+n’ > |¢|. Note that this means
m’ > 1. We now construct a a situatidit’, s) € S,,,, such that1,—1) < (m,n) < (m/,n’),
m+n < ||, and(M, s) = ¢ for some Kripke structure based @h This gives the desired
result. The construction a¥/ is similar in spirit to Ladner’s [9] proof of the analogous result
for the case 085.

Let C; be the set of subformulas ¢f of the form K+) such that M, s¢) = —~K, and let
Cs be the set of subformulas @f of the form K¢ such thati K is a subformula ofp and
(M',s0) = ~KKy A K. (We remark that it is not hard to show thatifis either reflexive
or transitive, therC’, = 0.)

Suppose thatl/’ = (S’,K', 7). For each formulak'yy € ), there must exist a state
st € K'(so) such that(M’,s') = —p. Note that ifC; # @ thenK'(so) # 0. Define
I(s0) = {so} if s € K'(s0), andI(sy) = 0 otherwise. LetS; = {si* : K1) € C1} U I(s0).
Note thatS; C K'(sg) = 57, so|Si| < |91]. If K¢ € Cy then KK € C, so there must
exist a states(? € K'(s{2,) such that{M’, s0%) |= —. Moreover, sincgM’, so) = K, it
must be the case thaf2 ¢ K'(so). LetSy = {sg2 : K¢ € Cy}. By constructionS, C S5,
so|S,| < |53, andS; andS, are disjoint. Moreover, itt; = (), thenC; = ), soC, = () and
Sy = 0.

Let S = {so} U S, U S,. Define the binary relatioiC on S by takingK(sy) = S; and
K(t) = S;USy fort € S;U Sy, To show thatkC is well defined, we must show that (a)
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so & So and (b) ifsy € S, thenS, = (). For (a), suppose by way of contradiction that S.
Thus, there exists € S; such thats, € K'(s). By the Euclidean property, it follows that
sp € K'(s0), a contradiction sincé, is disjoint from’(sy). For (b), note that i, € 5, then

sop € K'(sp). Itis easy to see that i, s’ € K'(sg), thenk'(s) = K'(s'). Forif s, s’ € K'(so)
then, by the Euclidean property, € K'(s). Thus, ift € K'(s), another application of the
Euclidean property shows thate K'(s"). Hence,KL'(s') C K'(s). A symmetric argument
gives equality. But now suppose that S;. Then, as we have observed, there exists some
s € Sy suchthat € K'(s) — K/(so). Butif s € Sy, thenK'(s) — K'(sg) = 0. Thus,S, = () if

So € Sl.

A similar argument shows thét is the restriction ofC’ to S. For clearlyS, is disjoint from
K'(s0), SOK(s0) = K'(s9) NS. Now suppose that € S; U S;. Itis easy to see that there exists
somes’ € S; such thats € K'(s'). This is clear by construction i € S,. And if s € S;, then
s € K'(s9) and, by the Euclidean property,c K'(s). If ¢ € S; U Sy, we want to show that
t € K'(s). Again, there exists somésuch that’ € S; andt € K'(t'). Sinces’,t' € K'(so),
by the Euclidean property’ € K'(¢'). Sinces’;t € K'(t'), the Euclidean property implies
thatt € K'(s’). Sinces,t € K'(s'), yet another application of the Euclidean property shows
thatt € K'(s). Thus,K(s) C K'(s) N'S. To prove equality suppose that K'(s) N S. If
t € 51 U S, then by definitiont € K(s). If t = sy, then by the Euclidean property it follows
thats, € K'(sg), S0sg € S1 C K(s). Thus,t € K(s), as desired.

Let M = (S, K, ), wherer is the restriction ofr’ to {so} U S; U Ss. Itis well known [6]
(and easy to prove by induction @) that there are at mogp| subformulas ofy. SinceC; and
C, are disjoint sets of subformulas ¢f all of the form K+, and at least one subformula of
is a primitive proposition (and thus not of the forf)), it must be the case that, | + |Cs] <
|¢| — 1, giving us the desired bound on the number of states.

We now show that for all statese S and for all subformulag of ¢ (including ¢ itself),
(M, s) E o iff (M',s) = 1. The proof proceeds by induction on the structureofhe only
nontrivial case is when is of the formK<v’. If (M',s) = K/, then(M',t) |= ¢ for all
t € K'(t). SincelC is the restriction ofC’ to S, this implies that{ M’ t) |= ¢’ for all t € K(s).
Thus, by the induction hypothesig)/, t) = ' for all t € K(s); thatis,(M, s) = Kv'. For
the converse, suppose th@at/’, s) &= —Kv'. If it is also the case that\M’, sy) = —Kv/,
then K¢/’ € (4. By the construction of\/ and the induction hypothesis)/, si}) = -
Thus, (M, s) E ~Kvy'. If (M’ sy) E Kv', then standard arguments using the fact tiais
Euclidean can be used to sheW’, s,) = =K Kv/'. Thus,K¢' € Co, and(M, s3?) = —/
by the induction hypothesis. Again, it follows th@t/, s) = —=K1'.

By construction( £, s) € S,,,,, Wherem = |S;| andn = |S;|. We have already observed
thatm +n < |p], [S1| < |S7], and|Sy| < |S5|. Thus,(m,n) < (m/,n’). It follows from
Theorem 2.6 thatF, s) € 7" C S*. This completes the prodi.

The idea for showing that the consistency problem for a Idgtbat containgK5 is NP-
complete is straightforward. Given a formufathat we want to show is consistent with
we simply guess a fram& = (5, K), structureM based on/’, and states € S such that
(F,s) € S With m +n < |¢|, and verify that(M, s) = ¢ andS,,,, € T*. Verifying that

7



(M, s) = ¢ is themodel-checking problemit is well known that this can be done in time
polynomial in the number of states 8f, which in this case is linear ify|. So it remains to
show that, given a logi¢ containingK5, checking whethes,, ,, C 7* can be done efficiently.
This follows from observations made by Nagle and Thomason [12] showing that that, although
7' may includeS,, . for infinitely many pairs(m’, n’), 7' has a finite representation that
makes it easy to check whethsy, , C 7.2

Say that(m, n) is amaximal indeof 7% if m > 1, S,,,, C 7%, and itis not the case that
Sy C TE for some(m’, n’) with (m,n) < (m/,n’). Itis easy to see thaf’ can have at
most finitely many maximal indices. Indeed(ifi, n) is a maximal index, then there can be at
mostm +n — 1 maximal indices, for ifm’, n’) is another maximal index, then either < m
orn’ < n (for otherwise(m,n) < (m’,n’), contradicting the maximality ofm, n)). Say that
m > 1 is aninfinitary first indexof 7% if S,,,, C 7" for all n > —1. Similarly, say that
n > —1is aninfinitary second indenf 77 if S,,,, C 7' for all m > 1. Note that it follows
from Theorem 2.6 that ifl, —1) < (m,n) < (m/,n’), then ifm’ is an infinitary first index
of 71, then so isn, and if»n’ is an infinitary second index af “, then so is». Suppose that
m* is the largest infinitary first index &f andn* is the largest infinitary second index 8¥,
where we taken* = n* = oo if all first indices are infinitary (or, equivalently, if all second
indices are infinitary), we takex* = —1 if no first indices are infinitary, and we také = —2
if no second indices are infinitary. It follows from all this tH&f can be represented by the
tuple (i, m*, n*, (my,n1), ..., (mg,ng)), Wwhere

e iis1lifSyo € 71, and O otherwise;
e m* is the largest infinitary first index;
e n* is the largest infinitary second index; and

e ((my,n1),...,(myg,ng) are the maximal indices.

Given this representation &f”, it is immediate thatS,,,, C 7* iff one of the following
conditions holds:

e (m,n)=(0,0) andi = 1;
o 1 <m<m*
o —1 <n<n*or

[ ] (m,n) S (mk,nk)

4The representation that we are about to give is similar in spirit to, although not the same as, that of Nagle and
Thomason. (We find ours both easier to present and easier to work with.)



We can assume that the algorithm for checking whether a formula is consisterit iwithard-
wired” with this description of.. It follows that only a constant number of checks (independent
of o) are required to see &,,,,, C T-.5

Putting all this together, we get our main result.

Theorem 3.2: For all logics L containingK5, checking whethep is consistent with. is an
NP-complete problem.

We can actually improve Theorem 3.2 slightly. In Theorem 3.2, the lagg viewed as
fixed; the algorithm gets as input just the formylaWe now show that, given as input a logic
L containing K5 and a formula, it is NP-complete to decide if is sastifiable inL.. We
need to be a little careful here; the logdicconsists of an infinite number of formulas, so we
must present it in an appropriate way. One way to do this is simply to dedcasabove, by a
tuple of the form(i, m*, n*, (my,n1), ..., (mg, ng)). With this representation, the result clearly
holds, since it is easy to check, after guessing a situéljpp that satisfies, whether it is in
L. We use a slightly different representation, but one which quickly leads to the same result.
As shown by Nagle and Thomason [12], each lagicontaining K5 is finitely axiomatizable;
thus, we describé by giving as input its axiomatization. In fact, the axiomatization, which
we now describe, closely follows the finite representatioh gfven above.

Form > 0, leto,, be the formula

m+1 m+1 m+1

/\ —Kop; = \/ \/ —~K—(p; Apj),
i=1 i=1 j=i+l
(wherepy, ..., pn.1 are distinct primitive propositions). Note thatriif = 0, then the right-
hand side of the implication if, is the empty disjunction, which we identify with the formula
false It easily follows that is equivalent tak'—p; . Intuitively, o,, is valid in situation(F, s)
if there are at mositn states considered possiblesat Since there are at most states, the
formulaspy, . .., p.,.1 cannot all be true at different states; there must be some state where two
of these formulas are true. (It is easy to see thai.e., K—p,, is valid in (F, s) iff Kfalseis
valid in (F, s).)
Similarly, form > 0, let ,,, be the formula

m—+1 m—+1 m+1 m+1

N\ ~KEK-piA N\ K-pi= \/ \/ —~KK=(p; \pj)-

i=1 i=1 i=1 j=i+1
It is straightforward to check that is equivalent tak —p; = K K—p;. Finally, we definer_,
to be the formulasp = p, 0o = 7, = true, ando_; = 7_, = false
The following lemma is straightforward to check.

®Here we have implicitly assumed that checking whether inequalities su¢h.as) < (m’,n’) hold can
be done in one time step. If we assume instead that it requires time logarithmic in the inputs, then checking if
Sm.n € TL requires time logarithmic im» + n, since we can take all ofi*, n*,m1,...mg, n1,...,n; to be
constants.



Lemma 3.3: Suppose thatF, s) € S, for somem,n withm > 1, n > —1 or (m,n) =
(0,0):

(@) Ifk > 0,then(F,s) E o iff 0 <m < k.
(b) Ifk > —1,then(F,s) E r. iff =1 <n < k.
It easily follows from Lemma 3.3 that if is characterized by the tuple
R = (0,m"*,n*, (my,nq1),...,(mg,ng)),
thenL is characterized by the axiom
VR = Omx V Typx V (O ATy ) Voo oV (O, A Ty

(in addition to the axioms K and 5, and the rules of inference MP and RN).

If L is characterized by the tuple = (1, m*, n*, (my,nq), ..., (mg, ng)), thenpg has the
additional disjunct.

Theorem 3.4: Given as input a logid. containingK5 (where, if L is characterized by the
tuple R, then the input is actually the formulag) and a formulay, the problem of deciding
whethery is consistent with. is NP-complete.

Proof: The argument is essentially identical to that of Theorem 3.2. We simply guess a
frame (F,s) in S,,,, for somem,n with m + n < |¢| and an interpretatiom and check
that(F, 7, s) E ¢ and that(F, s) = ¢r. The key point is that checking wheth@r, s) & ¢r

does not require checking th@t, 7', s) = ¢g for all interpretationst’, since the validity of

wr depends only om andn. I

4 Discussion and Related Work

We have shown that, in a precise sense, adding the negative introspection axiom pushes the
complexity of a logic betweeldK and S4 down from PSPACE-hard to NP-complete. This

is not the only attempt to pin down théP-PSPACE gap and to understand the effect of the
negative introspection axiom. We discuss some of the related work here.

A number of results showing that large classes of logics havéracomplete satisfiability
problem have been proved recently. For example, Litak and Wolter [10] show that the satisfi-
ability for all finitely axiomatizatble tense logics of linear timeN&-complete, and Bezhan-
ishvili and Hodkinson [2] show that every normal modal logic that properly ext8ad$where
S52 is the modal logic that contains two modal operatisisand K, each of which satisfies the

SBecause our representationfofs somewhat different than that of Nagle and Thomason, our axiom is some-
what different, although similar in spirit.
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axioms and rules of inference 86 as well as the axionk'; K»,p < K, K p) has a satisfiability
problem that iSNP-complete. Perhaps the most closely related result is that of Hemaspaandra
[14], who showed that the consistency problem for any normal logic contaurg) is also
NP-complete. S4.3 is the logic that results from adding the following axiom, known in the
literature as D1, t&4:

D1. K(Kyp = )V K(K¢ = ¢)

D1 is characterized by thonnectednegsroperty: it is valid in a situatio(.S, ), s) if for all

S1, 52,83 € S, if (s1,s2) € K and(sy,s3) € K, then eithel(sq, s3) € K or (s3,s2) € K. Note

that connectedness is somewhat weaker than the Euclidean property; the latter would require
thatboth (sq, s3) and(ss, s2) be inkC.

As it stands, our result is incomparable to Hemspaandra’s. To make the relationship clearer,
we can restate her result as saying that the consistency property for any normal logic that
containsK and the axioms T, 4, and D1 iSP-complete. We do not require either 4 or T
for our result. However, although the Euclidean property does not imply either transitivity or
reflexivity, it does implysecondary reflexivitgndsecondary transitivityThat is, if C satisfies
the Euclidean property, then for all statess,, ss, s4, If (s1,52) € K, then(sy, s2) € K and
if (s9,s3) and(ss,sy4) € K, then(sy,s4) € K; roughly speaking, reflexivity and transitivity
hold for all states;, in the range ofC. Secondary reflexivity and secondary transitivity can be
captured by the following two axioms:

T. K(Kp = )
4. K(Kp= KK)

Both T and 4 follow from 5, and thus both are sound in any logic that extelds Clearly

T’ and 4 also both hold in any logic that exten®gt.3, sinceS4.3 contains T, 4, and the
inference rule RN. We conjecture that the consistency property for every logic that extends
K and includes the axioms', T4, and D1 isNP-complete. If this result were true, it would
generalize both our result and Spaan'’s result.

Vardi [15] used a difference approach to understand the semantics, rather than relational
semantics. This allowed him to consider logics that do not satisfy the K axiom. He showed
that some of these logics have a consistency problem thdPisomplete (for example, the
minimal normal logic, which characterized by Prop, MP, and RN), while other®$PaCE-
hard. In particular, he showed that adding the axiim A K¢ = K(p A ) (which is
valid in K) to Prop, MP, and RN gives a logic that BSPACE-hard. He then conjectured
that this ability to “combine” information is what leads RSPACE-hardness. However, this
conjecture has been shown to be false. There are logics that lack this axiom and, nevertheless,
the consistency problem for these logicPEPACE-complete (see [1] for a recent discussion
and pointers to the relevant literature).

All the results for this paper are for single-agent logics. Halpern and Moses [7] showed
that the consistency problem for a logic with two modal operaforand K, each of which
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satisfies the&85 axioms, iISPSPACE-complete. Indeed, it is easy to see thakif satisfies the
axioms ofL; for some normal modal logi€; containingK5, then the consistency problem for
the logic that includeg(; and K; must bePSPACE-hard. This actually follows immediately
from Ladner’s [9] result; then it is easy to see thati,, viewed as a single operator, satisfies
the axioms ofiK. We conjecture that this result continues to hold even for non-normal logics.

We have shown that somewhat similar results hold when we add awareness to the logic (in
the spirit of Fagin and Halpern [5]), but allow awareness of unawareness [8]. In the single-
agent case, if thél operator satisfies the axioms K, 5, and some (possibly empty) subset of
{T, 4}, then the validity problem for the logic is decidable; on other hanH, does not satisfy
5, then the validity problem for the logic is undecidable. With at least two agents, the validity
problem is undecidable no matter which subset of axidmsatisfies. We conjecture that,
more generally, if thé< operator satisfies the axioms of any logicontainingK5, the logic
of awareness of unawareness is decidable, white shatisfies the axioms of any logic between
K andS4, the logic is undecidable.

All these results strongly suggest that there is something about the Euclidean property (or,
equivalently, the negative introspection axiom) that simplifies things. However, they do not
quite make precise exactly what that something is. More generally, it may be worth under-
standing more deeply what is about properties ofithelation that makes things easy or hard.

We leave this problem for future work.
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