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1 Introduction

There has been a great deal of work on characterizing the complexity of the satisfiability and
validity problem for modal logics (see [7; 9; 14; 15] for some examples). In particular, Ladner
[9] showed that the validity (and satisfiability) problem for every modal logic betweenK and
S4 is PSPACE-hard; and isPSPACE-complete for the modal logicsK, T, andS4. He also
showed that the satisfiability problem forS5 is NP-complete.

What causes the gap betweenNP andPSPACE here? We show that, in a precise sense, it
is the negative introspection axiom:¬Kϕ ⇒ K¬Kϕ. It easily follows from Ladner’s proof
of PSPACE-hardness that for any modal logicL betweenK andS4, there exists a family of
formulasϕn, all consistent withL such that such that|ϕn| = O(n) but the smallest Kripke
structure satisfyingϕ has at least2n states (where|ϕ| is the length ofϕ viewed as a string
of symbols). By way of contrast, we show that for all of the (infinitely many) modal logicsL
containingK5 (that is, every modal logic containing the axiom K—Kϕ∧K(ϕ⇒ ψ) ⇒ Kψ—
and the negative introspection axiom, which has traditionally been called axiom 5), if a formula
ϕ is consistent withL, then it is satisfiable in a Kripke structure of size linear in|ϕ|. Using this
result and a characterization of the set of finite structures consistent with a logicL containing
K5 due to Nagle and Thomason [12], we can show that the consistency (i.e., satisfiability)
problem forL is NP-complete. Thus, roughly speaking, adding negative introspection to any
logic betweenK andS4 lowers the complexity fromPSPACE-hard toNP-complete.

The fact that the consistency problem for specific modal logics containingK5 is NP-
complete has been observed before. As we said, Ladner already proved it forS5; an easy
modification (see [6]) gives the result forKD45 andK45.1 That the negative introspection
axiom plays a significant role has also been observed before; indeed, Nagle [11] shows that
every formulaϕ consistent with a normal modal logic2 L containingK5 has a finite model (in-
deed, a model exponential in|ϕ|) and using that, shows that the provability problem for every
logic L betweenK andS5 is decidable; Nagle and Thomason [12] extend Nagle’s result to all
logics containingK5 not just normal logics. Despite all this prior work and the fact that our
result follows from a relatively straightforward combination of results of Nagle and Thomason
and Ladner’s techniques for proving that the consistency problem forS5 is NP-complete, our
result seems to be new, and is somewhat surprising (at least to us!).

The rest of the paper is organized as follows. In the next section, we review standard notions
from modal logic and the key results of Nagle and Thomason [12] that we use. In Section 3,
we prove the main result of the paper. We discuss related work in Section 4.

2 Modal Logic: A Brief Review

We briefly review basic modal logic, introducing the notation used in the statement and proof
of our result. The syntax of the modal logic is as follows: formulas are formed by starting with

1Nguyen [13] also claims the result forK5, referencing Ladner. While the result is certainly true forK5, it is
not immediate from Ladner’s argument.

2A modal logic isnormal if it satisfies the generalization rule RN: fromϕ infer Kϕ.
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a setΦ = {p, q, . . .} of primitive propositions, and then closing off under conjunction (∧),
negation (¬), and the modal operatorK. Call the resulting languageLK1 (Φ). (We often omit
theΦ if it is clear from context or does not play a significant role.) As usual, we defineϕ∨ψ and
ϕ⇒ ψ as abbreviations of¬(¬ϕ∧¬ψ) and¬ϕ∨ ψ, respectively. The intended interpretation
of Kϕ varies depending on the context. It typically has been interpreted as knowledge, as
belief, or as necessity. Under the epistemic interpretation,Kϕ is read as “the agentknowsϕ”;
under the necessity interpretation,Kϕ can be read “ϕ is necessarily true”.

The standard approach to giving semantics to formulas inLK1 (Φ) is by means of Kripke
structures. A tupleF = (S,K) is a (Kripke) frameif S is a set of states andK is a binary
relation onS. A situation is a pair(F, s), whereF = (S,K) is a frame ands ∈ S. A
tupleM = (S,K, π) is a Kripke structure (overΦ) if (S,K) is a frame andπ : S × Φ →
{true, false} is aninterpretation (onS) that determines which primitive propositions are true
at each state. Intuitively,(s, t) ∈ K if, in states, statet is considered possible (by the agent,
if we are thinking ofK as representing an agent’s knowledge or belief). For convenience, we
defineK(s) = {t : (s, t) ∈ K}.

Depending on the desired interpretation of the formulaKϕ, a number of conditions may
be imposed on the binary relationK. K is reflexiveif for all s ∈ S, (s, s) ∈ K; it is transitive
if for all s, t, u ∈ S, if (s, t) ∈ K and(t, u) ∈ K, then(s, u) ∈ K; it is serial if for all s ∈ S
there existst ∈ S such that(s, t) ∈ K; it is Euclideaniff for all s, t, u ∈ S, if (s, t) ∈ K
and(s, u) ∈ K then(t, u) ∈ K. We use the superscriptsr, e, t ands to indicate that theK
relation is restricted to being reflexive, Euclidean, transitive, and serial, respectively. Thus, for
example,Srt is the class of all situations where theK relation is reflexive and transitive.

We write(M, s) |= ϕ if ϕ is true at states in the Kripke structureM . The truth relation is
defined inductively as follows:

(M, s) |= p, for p ∈ Φ, if π(s, p) = true

(M, s) |= ¬ϕ if (M, s) 6|= ϕ

(M, s) |= ϕ ∧ ψ if (M, s) |= ϕ and(M, s) |= ψ

(M, s) |= Kϕ if (M, t) |= ϕ for all t ∈ K(s)

A formulaϕ is said to besatisfiable in Kripke structureM if there existss ∈ S such that
(M, s) |= ϕ; ϕ is said to bevalid inM , writtenM |= ϕ, if (M, s) |= ϕ for all s ∈ S. A formula
is satisfiable(resp.,valid) in a classN of Kripke structures if it is satisfiable in some Kripke
structure inN (resp., valid in all Kripke structures inN ). There are analogous definitions for
situations. A Kripke structureM = (S,K, π) is based ona frameF = (S ′,K′) if S ′ = S and
K′ = K. The formulaϕ is valid in situation(F, s), written(F, s) |= ϕ, whereF = (S,K) and
s ∈ S, if (M, s) |= ϕ for all Kripke structureM based onF .

Modal logics are typically characterized by axiom systems. Consider the following axioms
and inference rules, all of which have been well-studied in the literature [3; 4; 6]. (We use
the traditional names for the axioms and rules of inference here.) These are actuallyaxiom
schemesandinference schemes; we consider all instances of these schemes.
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Prop. All tautologies of propositional calculus

K. (Kϕ ∧K(ϕ⇒ ψ)) ⇒ Kψ (Distribution Axiom)

T. Kϕ⇒ ϕ (Knowledge Axiom)

4. Kϕ⇒ KKϕ (Positive Introspection Axiom)

5. ¬Kϕ⇒ K¬Kϕ (Negative Introspection Axiom)

D. ¬K(false) (Consistency Axiom)

MP. Fromϕ andϕ⇒ ψ infer ψ (Modus Ponens)

RN. Fromϕ inferKϕ (Knowledge Generalization)

The standard modal logics are characterized by some subset of the axioms above. All are
taken to include Prop, MP, and RN; they are then named by the other axioms. For example,K5
consists of all the formulas that are provable using Prop, K, 5, MP, and RN; we can similarly
define other systems such asKD45 or KT5. KT has traditionally been calledT; KT4 has
traditionally been calledS4; andKT45 has traditionally been calledS5.

For the purposes of this paper, we take amodal logicL to be any collection of formulas
that contains all instances of Prop and is closed under modus ponens (MP) and substitution, so
that if ϕ is a formula inL andp is a primitive proposition, thenϕ[p/ψ] ∈ L, whereϕ[p/ψ] is
the result of replacing all instances ofp in ϕ byψ. A logic is normal if it contains all instances
of the axiom K and is closed under the inference rule RN. In terms of this notation, Ladner
[9] showed that ifL is a normal modal logic betweenK andS4 (since we are identifying a
modal logic with a set of formulas here, that just means thatK ⊆ L ⊆ S4), then determining
if ϕ ∈ L is PSPACE-hard. (Of course, if we think of a modal logic as being characterized
by an axiom system, thenϕ ∈ L iff ϕ is provable from the axioms characterizingL.) We
say thatϕ is consistent withL if ¬ϕ /∈ L. Since consistency is just the dual of provability, it
follows from Ladner’s result that testing consistency isPSPACE-hard for every normal logic
betweenK andS4. Ladner’s proof actually shows more: the proof holds without change for
non-normal logics, and it shows that some formulas consistent with logics betweenK andS4
are satisfiable only in large models. More precisely, it shows the following:

Theorem 2.1: [9]

(a) Checking consistency is PSPACE complete for every logic betweenK andS4 (even non-
normal logics).

(b) For every logicL betweenK andS4, there exists a family of formulasϕLn ,n = 1, 2, 3, . . .,
such that (i) for alln, ϕLn is consistent withL, (ii) there exists a constantd such that
|ϕLn | ≤ dn, (iii) the smallest Kripke structure that satisfiesϕ has at least2n states.

3



There is a well-known correspondence between properties of theK relation and axioms:
reflexivity corresponds to T, transitivity corresponds to 4, the Euclidean property corresponds
to 5, and the serial property corresponds to D. This correspondence is made precise in the
following well-known theorem (see, for example, [6]).

Theorem 2.2:LetC be a (possibly empty) subset of{T, 4, 5, D} and letC be the corresponding
subset of{r, t, e, s}. Then{Prop, K, MP, RN} ∪ C is a sound and complete axiomatization of
the languageLK1 (Φ) with respect toSC(Φ).3

Given a modal logicL, let SL consist of all situations(F, s) such thatϕ ∈ L implies that
(F, s) |= ϕ. An immediate consequence of Theorem 2.2 is thatSe, the situations where theK
relation is Euclidean, is a subset ofSK5.

Nagle and Thomason [12] provide a useful semantic characterization of all logics that con-
tainK5. We review the relevant details here. Consider all the finite situations((S,K), s) such
that either

1. S is the disjoint union ofS1, S2, and{s} andK = ({s}×S1)∪ ((S1 ∪S2)× (S1 ∪S2)),
whereS2 = ∅ if S1 = ∅; or

2. K = S × S.

Using (a slight variant of) Nagle and Thomason’s notation, letSm,n, withm ≥ 1 andn ≥ 0
or (m,n) = (0, 0), denote all situations of the first type where|S1| = m and |S2| = n, and
let Sm,−1 denote all situations of the second type where|S| = m. (The reason for taking -1
to be the second subscript for situations of the second type will become clearer below.) It is
immediate that all situations inSm,n for fixed m andn are isomorphic—they differ only in
the names assigned to states. Thus, the same formulas are valid in any two situations inSm,n.
Moreover, it is easy to check that theK relation in each of the situations above in Euclidean, so
each of these situations is inSK5. It is well known that the situations inSm,−1 are all inSK5

and the situations inSm,−1 ∪ Sm,0 are all inSKD45. In fact,S5 (resp.,KD45) is sound and
complete with respect to the situations inSm,−1 (resp.,Sm,−1 ∪ Sm,0). Nagle and Thomason
show that much more is true. LetT L = (∪{Sm,n : m ≥ 1, n ≥ −1 or (m,n) = (0, 0)}) ∩ SL.

Theorem 2.3: [12] For every logicL containingK5, L is sound and complete with respect to
the situations inT L.

The key result of this paper shows that if a formulaϕ is consistent with a logicL containing
K5, then there existsm,n, a Kripke structureM = (S,K, π), and a states ∈ S such that

3We remark that soundness and completeness is usually stated with respect to the appropriate classMC of
structures, rather than the classSC of situations. However, the same proof applies without change to show
completeness with respect toSC , and usingSC allows us to relate this result to our later results. While for normal
logics it suffices to consider only validity with respect to structures, for non-normal logics, we need to consider
validity with respect to situations.
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((S,K), s) ∈ Sm,n, Sm,n ⊆ T L, andm + n < |ϕ|. That is, if ϕ is satisfiable at all, it is
satisfiable in a situation with a number of states that is linear in|ϕ|.

One more observation made by Nagle and Thomason will be important in the sequel.

Definition 2.4: A p-morphism(short forpseudo-epimorphism) from situation((S ′,K′), s′) to
situation((S,K), s) is a functionf : S ′ → S such that

• f(s′) = s;

• if (s1, s2) ∈ K′, then(f(s1), f(s2)) ∈ K;

• if (f(s1), s3) ∈ K, then there exists somes2 ∈ S ′ such that(s1, s2) ∈ K′ andf(s2) = s3.

This notion of p-morphism of situations is a variant of standard notions of p-morphism of
frames and structures [3]. It is well known that if there is a p-morphism from one structure
to another, then the two structures satisfy the same formulas. An analogous result holds for
situations.

Theorem 2.5: If there is a p-morphism from situation(F ′, s′) to (F, s), then for every modal
logicL, if (F ′, s′) ∈ SL then(F, s) ∈ SL.

Proof: Suppose thatF = (S,K), F ′ = (S ′,K′), f is a p-morphism from(F ′, s′) to (F, s), and
(F ′, s′) ∈ SL. We want to show that(F, s) ∈ SL. Let Φ be the set of primitive propositions.
Given an interpretationπ on S, define an interpretationπ′ : S ′ × Φ → {true, false} on S ′

by takingπ′(t, p) = π(f(t), p) for all t ∈ S ′ andp ∈ Φ. We now show by induction on the
structure of formulas that for all statest ∈ S ′ and all formulasϕ, we have(F ′, π′, t) |= ϕ iff
(F, π, f(t)) |= ϕ. This is a standard argument [3]; we repeat it here for completeness.

The base case follows immediately from the definition ofπ′. For conjunctions and nega-
tions the argument is immediate from the induction hypothesis. Finally, ifϕ is of the formKϕ′,
first suppose that(F ′, π′, t) |= Kϕ′. We want to show that(F, π, f(t)) |= Kϕ′. So suppose
that (f(t), u) ∈ K. Sincef is a p-morphism, then there existsu′ ∈ S ′ such that(t, u′) ∈ K′

andf(u′) = u. Since(F ′, π′, t) |= Kϕ′, it must be the case that(F ′, π′, u′) |= ϕ′. By the
induction hypothesis, it follows that(F, π, u) |= ϕ′. Since this argument applies to allu such
that(f(t), u) ∈ K, it follows that(F, π, f(t)) |= Kiϕ

′. For the opposite implication, suppose
that(F, π, f(t)) |= Kϕ′. We want to show that(F ′, π′, t) |= Kϕ′. If (t, u) ∈ K′ then, sincef is
a p-morphism,(f(t), f(u)) ∈ K. Since(F, π, f(t)) |= Kϕ′, it follows that(F, π, f(u)) |= ϕ′.
By the induction hypothesis,(F ′, π′, u) |= ϕ′. It follows that(F ′, π′, t) |= Kϕ′.

To complete the argument, suppose by way of contradiction thatϕ ∈ L and(F, s) 6|= ϕ.
Then there exists an interpretationπ such that(F, π, s) |= ¬ϕ. Sincef(s′) = s, by the argu-
ment above, there exists an interpretationπ′ on S ′ such that(F ′, π′, s′) |= ¬ϕ, contradicting
the assumption that(F ′, s′) ∈ SL.
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Now consider a partial order on pairs of numbers, so that(m,n) ≤ (m′, n′) iff m ≤ m′

andn ≤ n′. Nagle and Thomason observed that if(F, s) ∈ Sm,n, (F ′, s′) ∈ Sm′,n′, and
(1,−1) ≤ (m,n) ≤ (m′, n′), then there is an obvious p-morphism from(F ′, s′) to (F, s): if
F = (S,K), S = S1 ∪ S2, F ′ = (S ′,K′), S ′ = S ′1 ∪ S ′2 (whereSi andS ′i for i = 1, 2 are
as in the definition ofSm,n), then definef : S ′ → S so thatf(s′) = s, f mapsS ′1 ontoS1,
and, ifS2 6= ∅, thenf mapsS ′2 ontoS2; otherwise,f mapsS ′2 to S1 arbitrarily. The following
result (which motivates the subscript−1 in Sm,−1) is immediate from this observation and
Theorem 2.5.

Theorem 2.6: If (F, s) ∈ Sm,n, (F ′, s′) ∈ Sm′,n′, and(1,−1) ≤ (m,n) ≤ (m′, n′), then for
every modal logicL, if (F ′, s′) ∈ T L then(F, s) ∈ T L.

3 The Main Results

We can now state our key technical result.

Theorem 3.1: If L is a modal logic containingK5 and¬ϕ /∈ L, then there existm, n such
thatm + n < |ϕ|, a situation(F, s) ∈ SL ∩ Sm,n, and structureM based onF such that
(M, s) |= ϕ.

Proof: By Theorem 2.3, if¬ϕ /∈ L, there is a situation(F ′, s0) ∈ T L such that(F ′, s0) 6|= ¬ϕ.
Thus, there exists a Kripke structureM ′ based onF ′ such that(M ′, s0) |= ϕ. Suppose that
F ′ ∈ Sm′,n′. If m′+n′ < |ϕ|, we are done, so suppose thatm′+n′ ≥ |ϕ|. Note that this means
m′ ≥ 1. We now construct a a situation(F, s) ∈ Sm.n such that(1,−1) ≤ (m,n) ≤ (m′, n′),
m + n < |ϕ|, and(M, s) |= ϕ for some Kripke structure based onF . This gives the desired
result. The construction ofM is similar in spirit to Ladner’s [9] proof of the analogous result
for the case ofS5.

LetC1 be the set of subformulas ofϕ of the formKψ such that(M ′, s0) |= ¬Kψ, and let
C2 be the set of subformulas ofϕ of the formKψ such thatKKψ is a subformula ofϕ and
(M ′, s0) |= ¬KKψ ∧Kψ. (We remark that it is not hard to show that ifK is either reflexive
or transitive, thenC2 = ∅.)

Suppose thatM ′ = (S ′,K′, π′). For each formulaKψ ∈ C1, there must exist a state
sC1
ψ ∈ K′(s0) such that(M ′, sC1

ψ ) |= ¬ψ. Note that ifC1 6= ∅ thenK′(s0) 6= ∅. Define
I(s0) = {s0} if s0 ∈ K′(s0), andI(s0) = ∅ otherwise. LetS1 = {sC1

ψ : Kψ ∈ C1} ∪ I(s0).
Note thatS1 ⊆ K′(s0) = S ′1, so |S1| ≤ |S ′1|. If Kψ ∈ C2 thenKKψ ∈ C1, so there must
exist a statesC2

ψ ∈ K′(sC1
Kψ) such that(M ′, sC2

ψ ) |= ¬ψ. Moreover, since(M ′, s0) |= Kψ, it
must be the case thatsC2

ψ /∈ K′(s0). Let S2 = {sC2
ψ : Kψ ∈ C2}. By construction,S2 ⊆ S ′2,

so |S2| ≤ |S ′2|, andS1 andS2 are disjoint. Moreover, ifS1 = ∅, thenC1 = ∅, soC2 = ∅ and
S2 = ∅.

Let S = {s0} ∪ S1 ∪ S2. Define the binary relationK on S by takingK(s0) = S1 and
K(t) = S1 ∪ S2 for t ∈ S1 ∪ S2. To show thatK is well defined, we must show that (a)
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s0 /∈ S2 and (b) ifs0 ∈ S1, thenS2 = ∅. For (a), suppose by way of contradiction thats0 ∈ S2.
Thus, there existss ∈ S1 such thats0 ∈ K′(s). By the Euclidean property, it follows that
s0 ∈ K′(s0), a contradiction sinceS2 is disjoint fromK′(s0). For (b), note that ifs0 ∈ S1, then
s0 ∈ K′(s0). It is easy to see that ifs, s′ ∈ K′(s0), thenK′(s) = K′(s′). For if s, s′ ∈ K′(s0)
then, by the Euclidean property,s′ ∈ K′(s). Thus, if t ∈ K′(s), another application of the
Euclidean property shows thatt ∈ K′(s′). Hence,K′(s′) ⊆ K′(s). A symmetric argument
gives equality. But now suppose thatt ∈ S2. Then, as we have observed, there exists some
s ∈ S1 such thatt ∈ K′(s)−K′(s0). But if s0 ∈ S1, thenK′(s)−K′(s0) = ∅. Thus,S2 = ∅ if
s0 ∈ S1.

A similar argument shows thatK is the restriction ofK′ toS. For clearlyS2 is disjoint from
K′(s0), soK(s0) = K′(s0)∩S. Now suppose thats ∈ S1∪S2. It is easy to see that there exists
somes′ ∈ S1 such thats ∈ K′(s′). This is clear by construction ifs ∈ S2. And if s ∈ S1, then
s ∈ K′(s0) and, by the Euclidean property,s ∈ K′(s). If t ∈ S1 ∪ S2, we want to show that
t ∈ K′(s). Again, there exists somet′ such thatt′ ∈ S1 andt ∈ K′(t′). Sinces′, t′ ∈ K′(s0),
by the Euclidean property,s′ ∈ K′(t′). Sinces′, t ∈ K′(t′), the Euclidean property implies
that t ∈ K′(s′). Sinces, t ∈ K′(s′), yet another application of the Euclidean property shows
that t ∈ K′(s). Thus,K(s) ⊆ K′(s) ∩ S. To prove equality suppose thatt ∈ K′(s) ∩ S. If
t ∈ S1 ∪ S2, then by definitiont ∈ K(s). If t = s0, then by the Euclidean property it follows
thats0 ∈ K′(s0), sos0 ∈ S1 ⊆ K(s). Thus,t ∈ K(s), as desired.

LetM = (S,K, π), whereπ is the restriction ofπ′ to {s0} ∪ S1 ∪ S2. It is well known [6]
(and easy to prove by induction onϕ) that there are at most|ϕ| subformulas ofϕ. SinceC1 and
C2 are disjoint sets of subformulas ofϕ, all of the formKψ, and at least one subformula ofϕ
is a primitive proposition (and thus not of the formKψ), it must be the case that|C1|+ |C2| ≤
|ϕ| − 1, giving us the desired bound on the number of states.

We now show that for all statess ∈ S and for all subformulasψ of ϕ (includingϕ itself),
(M, s) |= ψ iff (M ′, s) |= ψ. The proof proceeds by induction on the structure ofϕ. The only
nontrivial case is whenψ is of the formKψ′. If (M ′, s) |= Kψ′, then(M ′, t) |= ψ′ for all
t ∈ K′(t). SinceK is the restriction ofK′ to S, this implies that(M ′, t) |= ψ′ for all t ∈ K(s).
Thus, by the induction hypothesis,(M, t) |= ψ′ for all t ∈ K(s); that is,(M, s) |= Kψ′. For
the converse, suppose that(M ′, s) |= ¬Kψ′. If it is also the case that(M ′, s0) |= ¬Kψ′,
thenKψ′ ∈ C1. By the construction ofM and the induction hypothesis,(M, sC1

ψ′ ) |= ¬ψ′.
Thus,(M, s) |= ¬Kψ′. If (M ′, s0) |= Kψ′, then standard arguments using the fact thatK′ is
Euclidean can be used to show(M ′, s0) |= ¬KKψ′. Thus,Kψ′ ∈ C2, and(M, sC2

ψ′ ) |= ¬ψ′
by the induction hypothesis. Again, it follows that(M, s) |= ¬Kψ′.

By construction,(F, s) ∈ Sm,n, wherem = |S1| andn = |S2|. We have already observed
thatm + n < |ϕ|, |S1| ≤ |S ′1|, and|S2| ≤ |S ′2|. Thus,(m,n) ≤ (m′, n′). It follows from
Theorem 2.6 that(F, s) ∈ T L ⊆ SL. This completes the proof.

The idea for showing that the consistency problem for a logicL that containsK5 is NP-
complete is straightforward. Given a formulaϕ that we want to show is consistent withL,
we simply guess a frameF = (S,K), structureM based onF , and states ∈ S such that
(F, s) ∈ Sm,n with m + n < |ϕ|, and verify that(M, s) |= ϕ andSm,n ⊆ T L. Verifying that
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(M, s) |= ϕ is themodel-checking problem. It is well known that this can be done in time
polynomial in the number of states ofM , which in this case is linear in|ϕ|. So it remains to
show that, given a logicL containingK5, checking whetherSm,n ⊆ T L can be done efficiently.
This follows from observations made by Nagle and Thomason [12] showing that that, although
T L may includeSm′,n′ for infinitely many pairs(m′, n′), T L has a finite representation that
makes it easy to check whetherSm.n ⊆ T L.4

Say that(m,n) is amaximal indexof T L if m ≥ 1, Sm,n ⊆ T L, and it is not the case that
Sm′,n′ ⊆ T L for some(m′, n′) with (m,n) < (m′, n′). It is easy to see thatT L can have at
most finitely many maximal indices. Indeed, if(m,n) is a maximal index, then there can be at
mostm+ n− 1 maximal indices, for if(m′, n′) is another maximal index, then eitherm′ < m
or n′ < n (for otherwise(m,n) ≤ (m′, n′), contradicting the maximality of(m,n)). Say that
m ≥ 1 is an infinitary first indexof T L if Sm,n ⊆ T L for all n ≥ −1. Similarly, say that
n ≥ −1 is aninfinitary second indexof T L if Sm,n ⊆ T L for all m ≥ 1. Note that it follows
from Theorem 2.6 that if(1,−1) ≤ (m,n) ≤ (m′, n′), then ifm′ is an infinitary first index
of T L, then so ism, and ifn′ is an infinitary second index ofT L, then so isn. Suppose that
m∗ is the largest infinitary first index ofT L andn∗ is the largest infinitary second index ofT L,
where we takem∗ = n∗ = ∞ if all first indices are infinitary (or, equivalently, if all second
indices are infinitary), we takem∗ = −1 if no first indices are infinitary, and we taken∗ = −2
if no second indices are infinitary. It follows from all this thatT L can be represented by the
tuple(i,m∗, n∗, (m1, n1), . . . , (mk, nk)), where

• i is 1 if S0,0 ∈ T L, and 0 otherwise;

• m∗ is the largest infinitary first index;

• n∗ is the largest infinitary second index; and

• ((m1, n1), . . . , (mk, nk) are the maximal indices.

Given this representation ofT L, it is immediate thatSm,n ⊆ T L iff one of the following
conditions holds:

• (m,n) = (0, 0) andi = 1;

• 1 ≤ m ≤ m∗;

• −1 ≤ n ≤ n∗; or

• (m,n) ≤ (mk, nk).

4The representation that we are about to give is similar in spirit to, although not the same as, that of Nagle and
Thomason. (We find ours both easier to present and easier to work with.)
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We can assume that the algorithm for checking whether a formula is consistent withL is “hard-
wired” with this description ofL. It follows that only a constant number of checks (independent
of ϕ) are required to see ifSm,n ⊆ T L.5

Putting all this together, we get our main result.

Theorem 3.2: For all logicsL containingK5, checking whetherϕ is consistent withL is an
NP-complete problem.

We can actually improve Theorem 3.2 slightly. In Theorem 3.2, the logicL is viewed as
fixed; the algorithm gets as input just the formulaϕ. We now show that, given as input a logic
L containing K5 and a formulaϕ, it is NP-complete to decide ifϕ is sastifiable inL. We
need to be a little careful here; the logicL consists of an infinite number of formulas, so we
must present it in an appropriate way. One way to do this is simply to describeL as above, by a
tuple of the form(i,m∗, n∗, (m1, n1), . . . , (mk, nk)). With this representation, the result clearly
holds, since it is easy to check, after guessing a situationSm,n that satisfiesϕ, whether it is in
L. We use a slightly different representation, but one which quickly leads to the same result.
As shown by Nagle and Thomason [12], each logicL containing K5 is finitely axiomatizable;
thus, we describeL by giving as input its axiomatization. In fact, the axiomatization, which
we now describe, closely follows the finite representation ofL given above.

Form ≥ 0, letσm be the formula

m+1∧
i=1

¬K¬pi ⇒
m+1∨
i=1

m+1∨
j=i+1

¬K¬(pi ∧ pj),

(wherep1, . . . , pm+1 are distinct primitive propositions). Note that ifm = 0, then the right-
hand side of the implication inσ0 is the empty disjunction, which we identify with the formula
false. It easily follows thatσ0 is equivalent toK¬p1. Intuitively, σm is valid in situation(F, s)
if there are at mostm states considered possible ats. Since there are at mostm states, the
formulasp1, . . . , pm+1 cannot all be true at different states; there must be some state where two
of these formulas are true. (It is easy to see thatσ0, i.e.,K¬p1, is valid in (F, s) iff Kfalseis
valid in (F, s).)

Similarly, form ≥ 0, let τm be the formula

m+1∧
i=1

¬KK¬pi ∧
m+1∧
i=1

K¬pi ⇒
m+1∨
i=1

m+1∨
j=i+1

¬KK¬(pi ∧ pj).

It is straightforward to check thatτ0 is equivalent toK¬p1 ⇒ KK¬p1. Finally, we defineτ−1

to be the formulaKp⇒ p, σ∞ = τ∞ = true, andσ−1 = τ−2 = false.

The following lemma is straightforward to check.

5Here we have implicitly assumed that checking whether inequalities such as(m,n) ≤ (m′, n′) hold can
be done in one time step. If we assume instead that it requires time logarithmic in the inputs, then checking if
Sm,n ⊆ T L requires time logarithmic inm + n, since we can take all ofm∗, n∗,m1, . . . mk, n1, . . . , nk to be
constants.
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Lemma 3.3: Suppose that(F, s) ∈ Sm,n for somem,n with m ≥ 1, n ≥ −1 or (m,n) =
(0, 0):

(a) If k ≥ 0, then(F, s) |= σk iff 0 ≤ m ≤ k.

(b) If k ≥ −1, then(F, s) |= τk iff −1 ≤ n ≤ k.

It easily follows from Lemma 3.3 that ifL is characterized by the tuple

R = (0,m∗, n∗, (m1, n1), . . . , (mk, nk)),

thenL is characterized by the axiom

ϕR = σm∗ ∨ τn∗ ∨ (σm1 ∧ τn1) ∨ . . . ∨ (σmk
∧ τnk

)

(in addition to the axioms K and 5, and the rules of inference MP and RN).

If L is characterized by the tupleR = (1,m∗, n∗, (m1, n1), . . . , (mk, nk)), thenϕR has the
additional disjunctσ0.6

Theorem 3.4: Given as input a logicL containingK5 (where, ifL is characterized by the
tupleR, then the input is actually the formulaϕR) and a formulaϕ, the problem of deciding
whetherϕ is consistent withL is NP-complete.

Proof: The argument is essentially identical to that of Theorem 3.2. We simply guess a
frame (F, s) in Sm,n for somem,n with m + n < |ϕ| and an interpretationπ and check
that(F, π, s) |= ϕ and that(F, s) |= ϕR. The key point is that checking whether(F, s) |= ϕR
does not require checking that(F, π′, s) |= ϕR for all interpretationsπ′, since the validity of
ϕR depends only onm andn.

4 Discussion and Related Work

We have shown that, in a precise sense, adding the negative introspection axiom pushes the
complexity of a logic betweenK andS4 down from PSPACE-hard toNP-complete. This
is not the only attempt to pin down theNP-PSPACE gap and to understand the effect of the
negative introspection axiom. We discuss some of the related work here.

A number of results showing that large classes of logics have anNP-complete satisfiability
problem have been proved recently. For example, Litak and Wolter [10] show that the satisfi-
ability for all finitely axiomatizatble tense logics of linear time isNP-complete, and Bezhan-
ishvili and Hodkinson [2] show that every normal modal logic that properly extendsS52 (where
S52 is the modal logic that contains two modal operatorsK1 andK2, each of which satisfies the

6Because our representation ofL is somewhat different than that of Nagle and Thomason, our axiom is some-
what different, although similar in spirit.
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axioms and rules of inference ofS5 as well as the axiomK1K2p⇔ K2K1p) has a satisfiability
problem that isNP-complete. Perhaps the most closely related result is that of Hemaspaandra
[14], who showed that the consistency problem for any normal logic containingS4.3 is also
NP-complete.S4.3 is the logic that results from adding the following axiom, known in the
literature as D1, toS4:

D1. K(Kϕ⇒ ψ) ∨K(Kψ ⇒ ϕ)

D1 is characterized by theconnectednessproperty: it is valid in a situation((S,K), s) if for all
s1, s2, s3 ∈ S, if (s1, s2) ∈ K and(s1, s3) ∈ K, then either(s2, s3) ∈ K or (s3, s2) ∈ K. Note
that connectedness is somewhat weaker than the Euclidean property; the latter would require
thatboth(s2, s3) and(s3, s2) be inK.

As it stands, our result is incomparable to Hemspaandra’s. To make the relationship clearer,
we can restate her result as saying that the consistency property for any normal logic that
containsK and the axioms T, 4, and D1 isNP-complete. We do not require either 4 or T
for our result. However, although the Euclidean property does not imply either transitivity or
reflexivity, it does implysecondary reflexivityandsecondary transitivity. That is, ifK satisfies
the Euclidean property, then for all statess1, s2, s3, s4, if (s1, s2) ∈ K, then(s2, s2) ∈ K and
if (s2, s3) and(s3, s4) ∈ K, then(s2, s4) ∈ K; roughly speaking, reflexivity and transitivity
hold for all statess2 in the range ofK. Secondary reflexivity and secondary transitivity can be
captured by the following two axioms:

T′. K(Kϕ⇒ ϕ)

4′. K(Kϕ⇒ KKϕ)

Both T′ and 4′ follow from 5, and thus both are sound in any logic that extendsK5. Clearly
T′ and 4′ also both hold in any logic that extendsS4.3, sinceS4.3 contains T, 4, and the
inference rule RN. We conjecture that the consistency property for every logic that extends
K and includes the axioms T′, 4′, and D1 isNP-complete. If this result were true, it would
generalize both our result and Spaan’s result.

Vardi [15] used a difference approach to understand the semantics, rather than relational
semantics. This allowed him to consider logics that do not satisfy the K axiom. He showed
that some of these logics have a consistency problem that isNP-complete (for example, the
minimal normal logic, which characterized by Prop, MP, and RN), while others arePSPACE-
hard. In particular, he showed that adding the axiomKϕ ∧ Kψ ⇒ K(ϕ ∧ ψ) (which is
valid in K) to Prop, MP, and RN gives a logic that isPSPACE-hard. He then conjectured
that this ability to “combine” information is what leads toPSPACE-hardness. However, this
conjecture has been shown to be false. There are logics that lack this axiom and, nevertheless,
the consistency problem for these logics isPSPACE-complete (see [1] for a recent discussion
and pointers to the relevant literature).

All the results for this paper are for single-agent logics. Halpern and Moses [7] showed
that the consistency problem for a logic with two modal operatorsK1 andK2, each of which
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satisfies theS5 axioms, isPSPACE-complete. Indeed, it is easy to see that ifKi satisfies the
axioms ofLi for some normal modal logicLi containingK5, then the consistency problem for
the logic that includesK1 andK2 must bePSPACE-hard. This actually follows immediately
from Ladner’s [9] result; then it is easy to see thatK1K2, viewed as a single operator, satisfies
the axioms ofK. We conjecture that this result continues to hold even for non-normal logics.

We have shown that somewhat similar results hold when we add awareness to the logic (in
the spirit of Fagin and Halpern [5]), but allow awareness of unawareness [8]. In the single-
agent case, if theK operator satisfies the axioms K, 5, and some (possibly empty) subset of
{T, 4}, then the validity problem for the logic is decidable; on other hand, ifK does not satisfy
5, then the validity problem for the logic is undecidable. With at least two agents, the validity
problem is undecidable no matter which subset of axiomsK satisfies. We conjecture that,
more generally, if theK operator satisfies the axioms of any logicL containingK5, the logic
of awareness of unawareness is decidable, while ifK satisfies the axioms of any logic between
K andS4, the logic is undecidable.

All these results strongly suggest that there is something about the Euclidean property (or,
equivalently, the negative introspection axiom) that simplifies things. However, they do not
quite make precise exactly what that something is. More generally, it may be worth under-
standing more deeply what is about properties of theK relation that makes things easy or hard.
We leave this problem for future work.
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