Clock Synchronization and the Power of Broadcasting®

Joseph Y. Halpern
IBM Almaden Research Center, Dept. K53/802
San Jose, CA 95120

halpern@almaden.ibm.com

Ichiro Suzukif
Department of Electrical Engineering and Computer Science
University of Wisconsin — Milwaukee
P.O. Box 784, Milwaukee, WI 53201

suzuki@cvax.cs.uwm.edu

October 2, 1996

Abstract: We investigate the power of a broadcast mechanism in a distributed network.
We do so by considering the problem of synchronizing clocks in an error-free network,
under the assumption that there is no upper bound on message transmission time, but that
broadcast messages are guaranteed to be received within an interval of size e, for some
fixed constant ¢. This is intended to be an idealization of what happens in multiple access
networks, such as the Ethernet. We then consider tradeoffs between the type and number
of broadcasts, and the tightness of synchronization. Our results include (1) matching upper
and lower bounds of (1 + 7)e on the precision of clock synchronization attainable for n > 3
processes using K (n — 1)-casts, 3 < K < n, (2) matching upper and lower bounds of
(1+ %)e on the precision of clock synchronization attainable for n > 3 processes using an
arbitrary number of (n — 1)-casts, and (3) matching upper and lower bounds of (14 2=2)¢
on the precision attainable using 2-casting.

*This paper is essentially identical to one that appears in Distributed Computing 5:2, 1991, pp. 73-83.
"This author was supported in part by the National Science Foundation under grant CCR-9004346.

1 Introduction

Broadcasting is a basic primitive that is available in many computer networks (such as the
Ethernet [14]). In some cases, the network provides the user with the ability to send an
f-cast, that is, a broadcast message to some subset of size £. In this paper, we investigate the
power of broadcasting—both by comparing broadcasting to point-to-point message trans-
mission and by comparing {-casting to k-casting, for £ # k—in the context of the problem of
synchronizing clocks in a fully-connected, error-free network. (We could, of course, identify
a point-to-point message with a broadcast to one process, but we find it useful to distinguish
broadcasts from point-to-point messages.)

Even in an Ethernet-style network, where all messages can be viewed as broadcast
messages, an f-cast can be viewed as being cheaper than an k-cast for £ < k, since if a
process is not among the recipients of a broadcast, it must do significantly less processing
of the message. In particular, in large networks, we can view a broadcast to a large subset
of processes as being considerably more expensive than a point-to-point message. As Gray
says [7], “Practitioners want architectures which scale to arbitrary size networks. As a
consequence they limit attention to multicast: broadcast to a “small” group of processes
[3]. Multicast scales to large networks ... [whereas broadcast does not, because of its cost].”
Given these observations, it becomes important to understand the tradeoffs between the
use of broadcast messages and the ability to achieve certain goals in distributed systems.

We have taken clock synchronization as a paradigm problem to study in this context
because it has been so well studied, both in the presence of faults (see, for example, [1, 5, 9,
11, 13, 15]) and without faults [8, 10, 12, 16]. The basic problem we consider is the same as
that considered in [8, 12]: we assume that each process has a clock that runs at the rate of
real time, and the problem is to synchronize these clocks as tightly as possible. Of course,
in practice, clocks drift apart. However, the drift is typically small, and by ignoring it here,
we can examine the impact of broadcasting more carefully. In all the papers cited above
with the exception of [1, 16], it is assumed that processes can communicate only by sending
point-to-point messages. Moreover, in all of these papers except [16], it is assumed that
there is a (commonly) known upper bound on the message transmission time. Here we drop
the assumption that there is an upper bound on the message transmission time. Without
further assumptions, it is easy to show that clock synchronization is impossible; i.e., there
is no upper bound on how tightly we can synchronize clocks. (We provide a formal proof of
this fact in the next section.) So, following [16], we assume that the network has a broadcast
primitive, in addition to a facility providing point-to-point message transmission. Although
there is no upper bound on how long it will take for a broadcast message to arrive, we do
assume that all processes receive a broadcast message within a (real time) window of e,
for some (presumably small) constant €. This is meant to be an idealized version of what
actually happens in an Ethernet (when probabilistic considerations are ignored). Processors
can try to broadcast, but if there is a conflict (when two or more processes try to broadcast
at the same time), there must be a retry. There is no upper bound on the number of retry
attempts. Although with high probability a broadcast will succeed after very few attempts,
we cannot place an upper bound on message transmission time. On the other hand, if a
broadcast does succeed, then all the intended recipients receive it within a small window of
time.

In [16], the problem of clock synchronization in this model was considered under the

extra assumption that a process can broadcast to everyone but itself. An upper bound
of (1+ %)e on the precision of synchronization was proved, as well as an almost matching
lower bound of (1+ m)e Here we extend and generalize the results of [16], investigating
in more detail the tradeoffs between the type and number of broadcasts allowed and the
precision of synchronization attainable. Among other results, we show that if precisely K
(n — 1)-casts are allowed, then we can attain a synchronization of (1+ 7)e for 3 < K < n;
if K = 2, then we can only attain a synchronization of 2e. We prove matching lower bounds
in all these cases. Moreover, we show that even with an arbitrary number of (n — 1)-casts,
we can only synchronize to within (1 + %)e; that is, we can get optimal synchronization
with n (n —1)-casts. This result is explained by our observation that what really matters is
not how many (n — 1)-casts are used, but the number of distinct subsets of processes that
are recipients of (n — 1)-casts. Our lower bound of (1 4+ 7)e holds no matter how many
(n — 1)-casts are used (and no matter how much point-to-point communication is used)
as long as there are no more than K distinct subsets of processes that receive broadcast
messages. Since there are n distinct subsets of size (n—1), our lower bound of (1+)¢ holds
with arbitrary (n — 1)-casts. This proves that the upper bound of [16] is in fact optimal.

We then turn our attention to f-casting. In the case of n-casting, where a broadcast
reaches all processes in the system including the sender, we can prove a tight bound of €
on the precision of synchronization attainable. For 2 < ¢ < n — 1, we provide an algorithm
using (-casting that synchronizes to within (1 + ”T_Z)G. We conjecture that this is optimal,
although we have only been able to prove this for the case £ = 2 and £ = n — 1. For
2 < { < n—1, we do have a nontrivial lower bound of max(2=L £re, (1 + 1{_'%1)6).

The rest of this paper is organized as follows. In the next section we give the necessary
definitions and show that broadcasts are necessary to achieve synchronization in networks
where there is no upper bound on message transmission time. We consider (n — 1)-casts in
Section 3, proving tight bounds on the synchronization achievable with K (n — 1)-casts. In
Section 4 we consider f-casting. We conclude with some open questions and discussion in
Section 5.

2 Preliminaries

As we mentioned above, the framework we use is essentially that of [8, 12]. Consider a
network with n > 2 processes, say Py, Ps,..., P,. Process P; has a physical clock C; which
is a real-valued function of real time. We assume that the physical clocks run at the rate
of real time and they cannot be reset by the processes; that is, C;(t) = C;(0) 4+ ¢ at all
times t. The processes have no access to the real time. Process P; has a local variable A;
(for adjustment) which provides the difference between the logical and physical clocks of
P;. That is, the logical clock L;(t) of process P; at time ¢ is given by L;(t) = Ci(t) + A;(t),
where A;(1) is the value of A; at t.

We assume that at some fixed real time (say, in response to some external signal) all
the processes wish to synchronize their clocks as tightly as possible. They do so by sending
messages, both point-to-point messages from one process to another process and broadcasts
from some process to a subset consisting of at least 2 processes. There is no upper bound
on the time it takes a message to arrive from the time that it is sent; however, broadcasts
arrive to all their intended recipients within a window of size ¢; i.e., if a broadcast is sent
at time ¢, there is some ¢/ > ¢ such that all recipients receive the broadcast within the

interval [t',t' + €]. We shall be interested in the size of the subset of recipients; an (-cast is
a broadcast from a process to a set of £ processes.

Following [8], we assume that a clock synchronization algorithm is a deterministic al-
gorithm in which the state transition and the action of sending messages of process P; at
time ¢ is determined only by the value of C;(t) and the history of P; at ¢. Here, the history
of P; at t is the sequence consisting of tuples of the forms (P;, m, T, y) for every message P;
has sent or received before ¢, where (P;, m, T, y) represents that message m was either sent
(y = sent) or received (y = received) to or from P; when the value of C; was T.1

An algorithm is said to synchronize the logical clocks to within « if the algorithm
eventually terminates, and when it terminates at time ¢, |L;(t) — L;(t)] < 7 holds for
all 7 # j. Although we do not require that the algorithm enforce monotonicity (i.e., that
Li(t") > Li(t)if t' > t), since this makes our lower bounds stronger, in fact, all our algorithms
do enforce monotonicity.

An execution of an algorithm can be viewed as a function s such that forall 1 <¢<n
and times t, s(¢,t) is the history of P; at ¢ during the execution. This observation leads us
to the following definitions. A function s such that s(7,7) is a pair consisting of a history
of P; and a clock reading T for all 1 <7 < n and times ¢t is called a scenario. A scenario s
is legal with respect to a given algorithm if there exists an execution of the algorithm such
that for all 1 < ¢ < n and times ¢, the history in s(¢,?) is the history of P; at time ¢ and the
clock reading T in s(i,t) is Cy(t).

Let s; be a scenario of a given algorithm. We say that scenario s, is obtained from s
by shifting P; by p; if s3(i,t) = s1(4,t — p;) for 1 <7 < n. Intuitively, state transitions and
sending and receiving of messages of P; occur uniformly p; later in sy than in s;. Using
C;.s(t) (resp. L; (1)) to denote the physical (resp. logical) clock reading of process P; in
scenario s, note that we have C; ;,(t) = C; 4, (t) — p;. Since the clock adjustment made by a
process in an execution of the algorithm depends only on the reading of its physical clock
and its message history, it is easy to see that the following lemma holds.

Lemma 1 Let sy and sy be scenarios which are legal with respect to a given algorithm, where
s9 1s obtained from sy by shifting P; by p; for 1 <1 < n. Lett be any time after the execution
of the algorithm terminates at every process in both s and sy. Then L; 4, (t) = L 5 (1) — pi.

Proof Scenarios s; and s; are indistinguishable in the sense that each process has identical
histories in s; and sy when its physical clock has the same value. Thus for each 1 <17 < n,
the values of A; computed by P; are the same in both scenarios. Since C; 4, (t) = C; 5, (t—p;),
it follows that L;,(t) = L; s, (t — p;) = L; s, (t) — pi. (Since P; has terminated in sg by time
t, it must have also terminated in sy by time ¢ — p;, and hence it does not adjust its logical
clock in sy in the interval [t — p;,?].) O

We conclude this section by proving, as claimed in the introduction, that we really need
to use broadcast messages in order to synchronize clocks at all in our framework, given that
we have no upper bound on message transmission time. In fact, we show something even

We assume that processes are up throughout the running of the algorithm. We could assume instead
that processes either wake up in response to some external signal or as a result of receiving a message. We
have ignored the issue of processes waking up for ease of exposition; all our results hold with essentially no
change in the more complicated model.

stronger, namely, that every process must receive a broadcast message in order to guarantee
synchronization.

Theorem 1 The logical clocks of n > 2 processes cannot be synchronized by an algorithm
A such that in each execution of A, some process does not receive a broadcast message.

Proof Suppose that there exists an algorithm A which synchronizes the logical clocks to
within v, and in each execution of A, some process does not receive a broadcast message. We
derive a contradiction, using the by-now standard “many scenarios” technique [5, 6, 8, 12].

Choose D > 7. Let s; be a scenario that corresponds to an execution of A in which
the transmission time of every message (both broadcast and point-to-point) is 2D. Suppose
without loss of generality that P, does not receive any broadcast messages in s;. Let
s be the scenario obtained from s; by shifting P; by 2D and all other processes by zero.
Scenario sg is legal, since (1) all messages are received in nonnegative time, and (2) broadcast
messages are received simultaneously. Specifically, the message transmission time in sg is
zero from Py to Py,...,P,, 4D from P,,..., P, to P;, and 2D for all other messages.
Figure 1 shows a broadcast from P, to P, Ps, P, and some point-to-point messages in
scenarios sy and sy, where n = 4. The execution of each process is represented by a
horizontal line. Vertical lines are drawn at intervals of D. Message transmissions are
indicated by an arrow.

P

Py o

P L
. = .
Py o

Figure 1: Scenarios s; and sy in the proof of Theorem 1.

Let t be a real time such that the algorithm terminates at every process in both s; and
sy by time ¢. Let Ly 4 (t) = 17 and Lo, (t) = T5. By Lemma 1, Ly ,,(¢t) = T3 — 2D and
Ly s,(t) = T,. By the assumption on 7, we have

Th<Ty+7y

and
T2 S T1 - 2D + -

By adding the two inequalities we obtain
y2>D.

This is a contradiction. O

3 Optimal clock synchronization using (n — 1)-casting

In this section we focus on optimal clock synchronization using (n — 1)-casting. We assume
n > 3 (since if n = 2, then (n—1)-casting amounts to point-to-point communication, so that
clock synchronization is impossible by Theorem 1). Informally, this is meant to correspond
to the case where a process can broadcast to all processes other than itself (although, in fact,
our arguments hold even in the case where a process can include itself among the recipients
of its broadcast, as long as the list of recipients has no more than n — 1 processes). Since
we assume a broadcast is expensive, we focus here on the tradeoff between the number of
broadcasts and the precision of synchronization.

We know from Theorem 1 that we require at least two (n — 1)-casts in order to achieve
synchronization. If we are allowed no more than two (n — 1)-casts, then we can synchronize
processes to within 2e:

Theorem 2 The logical clocks of n > 3 processes can be synchronized to within 2¢ using
two (n — 1)-casts and one point-to-point message.

Proof Since the algorithm is simple, we only describe it informally. We let P, and P,
broadcast to Pz, Ps,..., P, and Py, Ps, Py, ..., P,, respectively. (The broadcast of P, can
actually be a 2-cast to P; and Ps.) Processes Py, Ps, ..., P, set their logical clocks to zero
upon receipt of the broadcast of Py (that is, P; sets A; = —C;). Then the logical clocks
of Py, ..., P, are synchronized to within e. Ps; then sends a message to P; carrying the
difference D between the times it received P;’s broadcast and Py’s broadcast. If P; received
Py’s broadcast and P3’s message at physical times T and T”, respectively, then P sets its
logical clock to T — T + D when it receives P3’s message (that is, P sets Ay = D —T). It
is easy to show that the logical clocks of P; and P, are now synchronized to within ¢, and
hence the logical clocks of all processes are synchronized to within 2¢. O

It turns out that the one point-to-point message used in our algorithm is necessary. We
return to this issue at the end of the section.

The upper bound of Theorem 2 is tight. The logical clocks of n > 3 processes cannot
be synchronized any more closely than 2¢ by using two (n — 1)-casts, no matter how much
additional point-to-point communication we use. The lower bound is an easy corollary to
the following result, which shows that the lower bound holds even if we allow an arbitrary
number of (n — 1)-casts, as long as they cannot be sent to more than two distinct subsets
of processes of size n — 1.

Theorem 3 The logical clocks of n > 3 processes cannot be synchronized any more closely
than 2¢ by an algorithm A which uses (n — 1)-casting and point-to-point communication,
if, in each execution of A, (n — 1)-casts cannot be sent to more than two distinct subsets of
processes of sizen — 1.

S1

P —
— —
PZ T[T T

Ps

S2
Pl \ | — ¢ /
/
Py < *—
Py

Figure 2: Scenarios s; and sy in the proof of Theorem 3.

Proof Fix an algorithm A which synchronizes the logical clocks to within 4 such that
in each execution of A, no more than two distinct subsets of size n — 1 are recipients of
(n — 1)-casts. Without loss of generality let s; be a scenario of A in which

1. each of Ps,..., P, receives all (n — 1)-casts,
2. the transmission time of every point-to-point message is 4e,

3. the transmission time of the message to P; in every (n — 1)-cast to Py,..., P, is 4e if
t = 2 and 3e otherwise, and

4. the transmission time of the message to P; in every (n — 1)-cast to P1, Ps,..., P, is €
if £ = 1 and 2¢ otherwise.

Clearly s is legal. Let sy be the scenario obtained from s; by shifting P, by 2¢, P, by —2e,
and all other processes by zero. Scenario s; is legal, since (1) all messages are received in
nonnegative time and (2) broadcast messages are received within an interval of size €. See
Figure 2.

Let ¢ be any time after the algorithm terminates at every process in both s; and s;. Let
Lqs,(t) =1y and Lo (t) =15 By Lemma 1, Lq4,(t) = 11 — 2¢ and Lo, (t) = T + 2e.
Then by the assumption on v we have

Th<Ty+vy

and
To4+2¢ <Ty —2¢+ 7.

By adding the two inequalities we obtain
v 2> 2e.

O

Corollary 1 The logical clocks of n > 3 processes cannot be synchronized any more closely
than 2¢ by using only two (n — 1)-casts and additional point-to-point communication.

We now turn our attention to the case where we allow K (n — 1)-casts, for 3 < K < n.
Again, we can prove tight bounds in this case. We start with the upper bound. Our
algorithm for the upper bound is a generalization of that given in [16] for the case K = n.

Theorem 4 The logical clocks of n > 3 processes can be synchronized to within (1 + %)e
by using K (n — 1)-casts for 3 < K < n.

Proof We describe an algorithm which uses an averaging process much in the same spirit
of the algorithm in [12]. The concept of “view” introduced below is essential in describing
the algorithm.

Let S be an (n— 1)-element subset of {1,2,...,n}. Suppose that a process (n — 1)-casts
to the processes P; such that 7 € 5, and let »; be the value of physical clock C; at the
moment the broadcast is received by FP;. Then the function V from 5 to real numbers such
that V(i) = v; for i € § is called a view. The set S is the domain of the view. Since,
by assumption, messages broadcast by a process are received within an interval of €, the
following lemma is immediate.

Lemma 2 Let V be a view with domain S. There exist some t and a function o : S — [0, €]

such that V(i) = Cy(t) + (i) for each i € S.

The algorithm consists of three phases. It uses K (n — 1)-casts in Phase 1 and n — 1
point-to-point messages in each of Phases 2 and 3.

Phase 1 For 1 < h < K, let S = {1,2,...,n} — {h}. For each 1 < h < K, choose an
arbitrary process and let it (n — 1)-cast to the processes P; such that ¢ € 5.

Phase 2 Each process sends one fixed process, say P, a message containing the times (on
its physical clock) that each of the broadcast messages arrived. From this information

Py computes views Vi, Vs, ..., Vg with domain 51,59, ..., 5k, respectively, and then
computes Ay, Ag,..., A, as follows. For 1 <7 < K,
1
A = I > Dy
1<k<K, k#i

where for 1 < k < K such that k # 1,

Dii= s 3 (Valh) = Vi),

1<h<K, k,i€Sp

For K+1<11<n,
1
A, = Dy ;
K 2 O
1<k<K

where for 1 <k < K,

1 .
Dri= 777 Yo (Valk) = Va()).
. 1<h<K, kESp

Phase 3 lor each 2 < i < n, P, sends P; a message containing A;. (Observe that we can
replace these (n — 1) point-to-point messages by one (n — 1)-cast.)

For k # i, Dy ; is the average of the differences between the physical clock readings of
P and P; observed in views V} such that k,7 € S,. The number of such views is K — 2 if
1<i:< K,and K —1if K+ 1 <14 <n. Conceptually, A; is the average of Dj; over all
1 <k < K,including D;; = 0if 1 <: < K, which is viewed as the difference between the
physical clock readings of P; and P;.

By Lemma 2, for each view V}, there exist ¢; and a function ay : S — [0, €] such that
Vi(i) = Ci(tn) + ap(i) for each ¢ € S,. We now prove that the algorithm does indeed
synchronize to within the required precision, using a sequence of lemmas. In the lemmas
that follow, we fix an execution of the algorithm and take ¢ to be a time after the algorithm
has terminated in that execution.

Lemma 3 Forl1 <:< K,

=g ¥ G0ty XY (ah-a)

1<k<K 1<k<K, k#i 1<h<K, k,i€S),

Proof Since Ci(tn) — Ci(ty) = Ci(t) — Cy(1), for 1 < k < K such that k # i we have

1 .
Dy; = X _2 Z (Vi(k) = Vi(7))
T Y 1<h<K, k€S,

= Kl_ 5 2. ((Cetn) + an(k)) = (Citn) + an(D)))
1<h<K, ki€Sh
CoD) = G+ g X0 (o) — o).

1<h<K, k,i€Sh

= Cilt)+— > Dig

1<k<K, k#i

S Gt — (Gt - Ci()

K &R p

R > (k) - (i)

1<k<K, k#i 1<h<K, k€S

- % > Ck(t)+m 3 S (ank) — an(i).

1<k<K 1<k<K, k#i 1<h<K, k,i€S),

Lemma 4 For K +1 < < n,

T 2 Gl A_l S > (an(k) - (i),

1<k<]x 1<k<]x 1<h<K, k€S

Proof The proof is essentially identical to that of the previous lemma. We now have a
factor of (K — 1) in the denominator of the second term rather than (K — 2); this difference
is due to the different definitions of Dy ; depending on whether 1 <7 < Kor K4+1 <17 <n.
We leave details to the reader. O

Lemma 5 For any 1 <i,j < K such that i # j, |L;i(t) — L;(t)] < (1+ %)e

Proof By Lemma 3 and elementary manipulation of the double summation,

1 . .
Li(t) = Z Ck m(Z (ah(J)—Oéh(l))
1<k<Ix 1<h<K,i,j€S)
+ > > an(k) + (k) — o a()]]
1<k<K, k#i,j \1<h<K, k,i,j€S), 1<h<K, kji€S),
Similarly,

Li(t) = Z Cr(t ﬁ (> (en(i) —an(d))

CShek 1<h<K,i,j€S
+ > > an(k) + ai(k) — > an(j) | | -
<K<K, ki \1Sh<EK, ki, jeSh 1<h<, b, jES)

Taking into account that the two expressions given above have common terms, we obtain

1
L(t)—-L:t)= ———(X -Y
0= L,0) = =g (X =)
where
X=2 > a()+ > a;(k) + > anl(y)
1<h<K,i,jESy 1<k<LK, k#i,j 1<h<K, k,jESy
and

Y =2 Z Ozh(i) + E (az(k) + Z Oéh(i)) .

1<h<K,4,5€S} 1<k<K, k#i,j 1<h<K, kji€Sy
Since 0 < ap(k) < eforany 1 < h < K and k € 53,

0<X,) Y <(2K-2)+(K-2) 1+ (K -2)))e= (K —-2)(K+ 1)e.
Therefore we have

[Li(t) = Li(t)] < (K =2)(K + 1)e

l
—~~

—_
-+
~—

[a)

Lemma 6 Forany1<i< K and K +1<j<mn, |Li(t)— Lj(t) < (14 #)e.

Proof The proof is essentially the same as that of Lemma 5, using Lemma 4 instead of
Lemma 3; we leave details to the reader. O

Lemma 7 For alli,j such that K +1 < t,7 <n and i # j, we have |L;(t) — L;(t)| < e.

Proof By Lemma 4,

Li(t) = Lj(t) = oo &= > Yo (an(d) = an(d)).

1<k<Ix 1<h<K, keSy
Since 0 < ap(k) < eforany 1 < h < K and k € 53,

1

|Li(t) = Li(t)| < K(K—1)

K(K—-1)e=

This completes the proof of Theorem 4. O

We now prove a matching lower bound. Again, it turns out that the key issue is not
how many (n — 1)-casts are actually sent, but the number of distinct subsets of processes
of size n — 1 that receive (n — 1)-casts.

Theorem 5 The logical clocks of n > 3 processes cannot be synchronized any more closely
than (14 7)€ by using (n—1)-casts and additional point-to-point communication, if (n—1)-
casts cannot be sent to more than K distinct subsets of processes of sizen—1, for 3 < K < n.

Proof The proof again uses the many-scenario technique, although we have to work a bit
harder to construct the scenarios in this case. Fix an algorithm which synchronizes the
logical clocks to within v without sending (n — 1)-casts to more than K distinct subsets of
processes of size n — 1. Without loss of generality let sq be a scenario in which

1. each of Pg41,..., P, receives all (n — 1)-casts,
2. the transmission time of every point-to-point message is (1 + %)e, and

3. the transmission time of broadcast messages is as given below.

Think of processes Py, ..., Px as being on a ring, and define the “distance” from F; to
P; (1 <14,j < K) on the ring by:
N B | ifi<y
d(”)—{ Ktj—i ifi>j

For each 1 < i < K, let 5; be the set of all processes other than P;. Then in sg, for each
1 <4< K, the transmission time 7g, ; of the message to P; (j # ¢) in every (n — 1)-cast to
the processes in 5; from any process is:

- i1<j<Kandj#i
Sird % HK+1<j<n

10

ot|e

P

P
Py

Ps
Py

Py

" :
Ps
Py
P
Pe
P;

Figure 3: A broadcast of P, to Py, P5,..., Pz in sg and s; in the proof of Theorem 5, where
n=7and K = 5.

Note that 75, ; > (14 #)€ for any 7 # j. Clearly s is legal.
Let s; be the scenario obtained from sy by shifting each P; by p; ;, where:

0 ifj=1
(1+ %) ifj=2
p1i =19 i1 Fa< i< K
€ ift3<3<K
0 fK+1<j5<n
Figure 3 shows a broadcast of P, to Py, Ps,..., Pr in s and s, where n = 7 and K = 5.

The messages are sent at ‘e’ and received at ‘o’.

Now we show that sq is legal. First, note that |p; ;—p1 x| < (1—|—%)€ forany 1 < 7,k < n.
This, together with the fact that the transmission time of every message in sq is at least
(14 %)e, ensures that all messages have nonnegative transmission time in s;. Next, suppose
that for some 1 < ¢ < K, a process (n — 1)-casts to the processes in S; at time ¢ in sg. By
the definition of sy and the construction of sq, the messages are received by P; (j # 7) at

11

t+ 7s,; + p1,; in 51, where by elementary analysis we have the following. For i = 1:

TS0 PLIT Y 9 if3<j<n
For 7 = 2:
(14 %) ifj=1
T8t =13 2+ 3%)e f3<j<K
2¢ fK+1<j<n
For 3 <1 < n: '
(1+5)e ifj=1
(24 F)e ifj=2
s tpi=9 (I+ 5) if3<j<i—1
(2+5%2)e ifi+1<j<K

2¢ fK+1<j57<n
Thus the messages are received within an interval of €. Therefore s; is legal.
We construct scenarios sg, ..., Sk in a completely symmetrical manner; for 2 < m < K,
Sy, is the scenario obtained from sy by shifting each P; by p,, ;, where:

ﬂ%’jle if1<j<m

(1—|—%)e fj=m+1

Prod =\ dlmile ifmy2<j<K

0 fTK+1<5<n
We omit the proof of the legality of ss,..., sk, since the argument is similar to that for ;.
Let t be any time after the algorithm terminates at every process in sq, s1,...,Sk. Let

Lig(t)=T;for 1 <i< K. By Lemma 1, for 1 <m < K — 1 we have L, ,, (t) =T, and
Lyt1,5,(t) = Thgr — (1 + %)e, while Lg s, (1) = Tk and Ly, =11 — (1 + %)e By the
assumption on v, we have

1
T, < Tm+1 - (1‘|' ,)€+7
K
for1<m< K -1 and
1
Tk <Ty = (1+ K)€+7.

By adding the K inequalities we obtain

1
~ > (1 .
/_(JrK)€

Of course, from Theorem 5, we immediately obtain:

Corollary 2 The logical clocks of n > 3 processes cannot be synchronized any more closely
than (1 + %)e by using K (n — 1)-casts and additional point-to-point communication, for
3<K <mn.

Corollary 3 The logical clocks of n > 3 processes cannot be synchronized any more closely
than (1 + L)e by using (n — 1)-casts and additional point-to-point communication.

12

Proof Since there are only n distinct subsets of size » — 1, the result follows immediately
from Theorem 5. O

We remark that Corollary 3 improves the lower bound of (1 + m)e proved in [16].

The theorems we have proved so far completely characterize the precision of synchro-
nization achievable as a function of the number of (n — 1)-casts. In our analysis, we have
essentially ignored the point-to-point communication required, since we have viewed point-
to-point communication as being essentially free compared to the cost of an (n — 1)-cast.
In the case of K = 2, our algorithm uses one point-to-point message in addition to the two

(n — 1)-casts. As we now show, this point-to-point transmission is essential.

Theorem 6 The logical clocks of n > 3 processes cannot be synchronized using two (n—1)-
casts and no point-to-point messages.

Proof Suppose that A is an algorithm that synchronizes the processes to within v and uses
no more two (n — 1)-casts and no point-to-point communication in every execution. Choose
D > v, and consider an execution where message transmission time for all messages is 2D.
Let s1 be the scenario corresponding to this execution. Clearly every process must be the
recipient of at least one broadcast message. (If not, suppose that P; did not receive any
broadcast messages and shift P; by 2D to obtain an easy contradiction.) Since there are
only two (n — 1)-casts altogether, this means that two of the processes, say P; and Ps, are
the recipients of only one (n — 1)-cast each. For definiteness, suppose that P; is a recipient
of a broadcast by P; and P, is the recipient of a broadcast by P;. Without loss of generality
assume further that in s;, process P; sent its broadcast at or before the time that P; sent its
broadcast, which means that P; sent its broadcast before P;’s broadcast was received. Now
let sy be the scenario where (a) P is shifted by 2D, (b) if ¢ # 1, then the broadcast from P;
that is received by P; takes time 4D to be delivered to each process, and (c) if j = 1, then
the broadcast from P; that is received by P, takes time 0 to be delivered to each process.
Clearly s; is legal. Since P; sent its broadcast in sy before receiving P;’s broadcast, it must
be the case that P; sends the same broadcast at the same time in sy and sq; i.e., the delay in
receiving P;’s broadcast in s; does not affect P;’s sending its broadcast. As a consequence,
it is not hard to see that P; and P, cannot distinguish s; and s3. The other processes
may be able to distinguish s; from sy, but since there is no further communication, they
cannot tell P, and P, about it. Thus P, and P, perform the same adjustments in s; and
s2. We can now conclude by a similar argument to that of Theorem 1 that v > D, giving
us contradiction. We leave details to the reader. O

In our algorithm that synchronized to within (1+)¢ using K (n — 1)-casts, we used
2n — 2 point-to-point transmissions (n — 1 in each of phases 2 and 3). We do not know
to what extent this number can be reduced. As we observed, we can replace the (n — 1)
point-to-point transmissions used in phase 3 by one (n—1)-cast. We leave the minimization
of the number of point-to-point transmissions as an open problem.

4 Clock synchronization using (-casting

In this section, we consider the tradeoffs that arise if we allow {-casting, for arbitrary values
of £, rather than restricting attention to (n — 1)-casts. We start by considering the case of
n-casting.

13

Theorem 7 The logical clocks of n processes can be synchronized to within € using one
n-cast. They cannot be synchronized any closer than ¢ using any number of broadcasts and
point-to-point transmissions.

Proof The upper bound is trivial. One process, say P; sends an n-cast. All processes set
their logical clocks to 0 on receipt of the n-cast. Clearly they are synchronized to within e.

For the lower bound, fix an algorithm which synchronizes the logical clocks to within 7.
Let s1 be a scenario in which

1. the transmission time of every message (both broadcast and point-to-point) to P,
t# 1,1s 2¢, and

2. the transmission time of every message to Py is .

Clearly s is legal. Now let sy be the result of shifting P; by 2¢ and not shifting the other
processes at all. It is easy to check that in s, we have

1. the transmission time of every message to P;, ¢ # 1, is 2,

2. the transmission time of every message from P; to P is e,

3. the transmission time of every message from P; to Py, ¢ # 1, is 3¢, and
4. the transmission time of every message from P; to P;, ¢,7 # 1, is 2e.

Thus s; is a legal scenario. By using the same arguments as in the proof of Theorem 1, we
can now show that v > €. This gives us the desired lower bound. O

We now turn our attention to {-casting with 2 < £ < n — 1. We again restrict attention
to n > 3, since otherwise, with { < n — 1, we do not have any broadcast messages, so
we know by Theorem 1 we cannot synchronize at all. Using C(n,{) to denote n choose £
(i.e., (n_”i;)!ﬂ), we can generalize the upper bound argument of Theorem 4 to get:

Theorem 8 The logical clocks of n > 3 processes can be synchronized to within (1+ ”T_f)e
by using C(n, L) L-casts and 2n — 2 point-to-point messages, for 2 < { <n — 1.

Proof The proof is similar to that of Theorem 4, so we just sketch the details here.
Again, the algorithm consists of three phases. It uses C(n,f) (-casts in Phase 1 and
n — 1 point-to-point messages in each of Phases 2 and 3.

Phase 1 Let S1,S59,..., 9 be the distinct {-element subsets of {1,2,...,n}, where M =
C(n,L). For each 1 < h < M, choose an arbitrary process and let it {-cast to the
processes P; such that ¢ € 5}.

Phase 2 Each process sends one fixed process, say P;, a message containing the times (on
its physical clock) that each of the broadcast messages arrived. From this information
P; computes a view V, with domain 5} for each 1 < h < M, and then computes
A, Ay, ..., A, as follows. For 1 <1< n,

A= — Z Dy

T <k<n, ket

14

where for 1 < k < n such that k # 1,

1
Dy,

i Cm=2.40-9) Do (Valk) = Va(d).

1<h<M, ki€S)
Phase 3 For each 2 <7 < n, P, sends P; a message containing A;.

Again, by Lemma 2, for each view V} there exist ?; and a function a; : S — [0,¢€]
such that V(i) = C(1r) + ap(i) for each i € S3. In order to prove the correctness of the
algorithm, we again use a sequence of lemmas analogous to those used in Theorem 4. Fix
an execution of the algorithm and take ¢ to be a time after the algorithm has terminated
in that execution.

Lemma 8 For1 <1 < n,

L =0 Y O ey X Y (el - i)

1<k<n 1<k<n, k#i 1<h<M, ki€S),

Proof The proof of this lemma is very similar to that of Lemma 3, so again we leave details
to the reader. O

Lemma 9 For any 1 < i,j < n such that i # j, |L:(t) — L;(1)] < (1 + =5)e.

Proof This lemma is a generalization of Lemma 5. The details of the proof are essentially
the same; so we omit them here. O

This completes the proof of Theorem 8. O

We conjecture that the upper bound attained in Theorem 8 is tight, but we have only
been able to prove this thus far for the case £ = 2 and £ = n — 1. The case £ = n — 1 follows
from Theorem 5. The case ¢ = 2 follows from the following theorem.

Theorem 9 The logical clocks of n processes cannot be synchronized any closer than
(1+ ”n;z)e using 2-casting and any number of point-to-point transmissions.

Proof Fix an algorithm which synchronizes the logical clocks to within 7. Let so be a
scenario in which

1. in every 2-cast to P; and P; where 7 < j, the transmission time of the messages to P;
and P; is 2¢ and 3¢, respectively, and

2. the transmission time of every point-to-point message is 2e.

Clearly sqg is legal. Now for each 1 < m < n — 1, let s, be the scenario obtained from sq
by shifting each of Py,..., P, by 2¢ and not shifting the other processes at all. It is easy
to check that in s,,, 1 < m < n — 1, we have

1. the transmission time of every message (both broadcast and point-to-point) is non-
negative,

15

2. in every 2-cast to P; and P; where 1 <i < j<morm+1<1i<j<n, P receives
the message € earlier than P;, and

3. in every 2-cast to P; and P; where 1 < ¢ < m and m+ 1 < j < n, P; receives the
message € later than P;.

Thus s,, is a legal scenario.

Let ¢ be any time after the algorithm terminates at every process in sg, $1,...,8,-1. Let
Lig(t)=T; for 1 <i¢<mn. By Lemma 1, for 1 < m < n—1 we have L, , (t) =1, — 2¢
and Ly,41,5,,(t) = Tput1. By the assumption on 7, we have

and
Tm+1 <T, —2e+ v
for 1 < m < n — 1. By adding the n inequalities we obtain
n—2
n

72 (14 Je.

Although we cannot prove a matching lower bound to the upper bound of Theorem 8
for 2 < £ < n — 1, we can prove some nontrivial lower bounds.

Theorem 10 For 2 < £ < n — 1, the logical clocks of n processes cannot be synchronized
any closer than max(”nl E 6 (1+ £+1) €) using (-casting and any number of point-to-point
transmissions.

Proof The lower bound of (1 + g_'%l)e follows using essentially the same proof as the lower
bound for (n — 1)-casts in Theorem 5 with K = n. The only difference is that we treat
processes Ppi1,..., P, as one process, and then use the lower bound for ¢-casting with {41
processes. If an {-cast is sent to a subset that includes k processes among FPpiq,..., Py,
messages to all these processes take exactly the same amount of time as it would take a
message to reach process Ppyq if there were exactly £ + 1 processes in the system. The
scenario ends up looking as if an (¢ — k 4 1)-cast were sent instead of an (-cast. We leave
details to the reader. The proof of the lower bound of 2 Tﬂe is similar to that of the
lower bound for 2-casts in Theorem 9. The only difference is that we start with a scenario

$o in which

1. in every f-cast to P, P;,,..., P, where 1y < i3 < ... < iy, the transmission time of

the message to P;;, 1 < j < ﬁ, is f";ille, and

.. Y
2. the transmission time of every point-to-point message is =16

and then for each 1 < m < n — 1, we let s, be the scenario obtained from sq by shifting
each of P;,..., P, by %6 and not shifting the other processes at all. The legality of the
scenarios sg, S1,...,3,—1 is immediate, and the rest of the argument is basically the same
as that in the proof of Theorem 9. We leave details to the reader. O

16

5 Concluding remarks

We have investigated the power of broadcasting in the context of clock synchronization. We
have not solved (and, in fact, have not closely investigated) all the questions in the area. For
example, one question we have not considered in the context of £-casting is the number of /-
casts and point-to-point transmissions required in order to achieve optimal synchronization.
Notice that the algorithm in Theorem 8 required C(n,{) {-casts. We conjecture that these
{-casts are all required.

However, our primary goal has not been to solve all the problems that can be solved in
the area, but rather to demonstrate the tradeoffs between the type and number of broad-
casting, and the precision of synchronization attainable. Our results suggest, for example,
that for values of £ for which (n — 1)-casting is not much more expensive than (-casting,
(n—1)-casting is preferable for achieving clock synchronization. If broadcasting is expensive,
then our results suggest that 2-casting might be the method of preference.

There have been other recent papers considering tradeoffs in the presence of k-casting.
Dolev and Dwork have observed tradeoffs in the context of Byzantine agreement [4]. They
consider a primitive they call a conference call of size k, where for any set S of k participants,
whenever any one participant p utters a message m, the statement “p sent m” becomes
common knowledge among the members of 5. Thus, a conference call of size k is essentially
a k-cast where all messages are guaranteed to arrive simultaneously. Dolev and Dwork
show that more faults can be tolerated by using conference calls of size k£ than by using
conference calls of size £ for k > £. Other tradeoffs are considered in [2]; roughly speaking,
this paper shows that if we restrict to omission failures (where a process may be faulty by
omitting to send a message), then if there are up to ¢ faulty processes, Byzantine agreement
can be achieved in t — k + 3 rounds using k-casting, for 2 < k < t 4 1. Moreover, they prove
a matching lower bound. Finally, in [1] it is shown (at least for the particular algorithm
they consider), the same precision of clock synchronization using k-casting is achievable in
the presence of failures, independent of the k, for all £ < n. It would be interesting to
understand these tradeoffs for other application areas.

Acknowledgments: We would like to thank Vassos Hadzilacos for his helpful comments on
an earlier version of this paper. We are also grateful to the anonymous referees for their
helpful comments and Fred Schneider for bringing [1] to our attention.

References

[1] O. Babaoglu and R. Drummond, “(Almost) no cost clock synchronization,” Proc. of
the 17th International Symposium on Fault-Tolerant Computing, 1987, pp. 42-47.

[2] 0. Babaoglu, P. Stephenson and R. Drummond, “Reliable broadcast and communi-
cation models: tradeoffs and lower bounds,” Distributed Computing 2:4, 1988, pp.
177-189.

[3] D. Cheriton, “The V distributed system,” Communications of the ACM 31:3, 1988,
pp- 314-332.

[4] D. Dolev and C. Dwork, “On-the-fly generation of names and communication primi-

tives,” unpublished manuscript, 1990.

17

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Dolev, J. Halpern and R. Strong, “On the possibility and impossibility of achieving
clock synchronization,” J. Computer and System Sciences 32, 1986, pp. 230-250.

M. J. Fischer and N. A. Lynch and M. Merritt, “Easy impossibility proofs for dis-
tributed consensus problems,” Distributed Computing 1:1, 1986, pp. 26-39.

J. N. Gray, “The Cost of Messages,” Proc. of the 7th ACM Symp. on Principles of
Distributed Computing, 1988, pp. 1-7.

J. Halpern, N. Megiddo and A. Munshi, “Optimal precision in the presence of uncer-
tainty,” Journal of Complexity 1, 1985, pp. 170-196.

J. Halpern, B. Simons, R. Strong and D. Dolev, “Fault-tolerant clock synchronization,”
Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada, 1984, pp. 89-102.

L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munications of the ACM 21:7, 1978, pp. 558-565.

L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the presence of faults,”
Journal of the ACM 32:1, 1985, pp. 52-78.

J. Lundelius and N. Lynch, “An upper and lower bound for clock synchronization,”
Information and Control 62, 1984, pp. 190-204.

J. Lundelius and N. Lynch, “A new fault-tolerant algorithm for clock synchronization,”
Information and Computation 77, 1988, pp. 1-36.

R. Metcalf and D. Boggs, “Ethernet: distributed packet switching for local computer
networks,” Communications of the ACM 19:7 1976, pp. 395-404.

T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal of the ACM
34:3, 1987, pp. 626-645.

K. Sugihara and I. Suzuki, “Nearly optimal clock synchronization under unbounded
message transmission time,” Proc. 1988 International Conference on Parallel Process-
ing I11, St. Charles, Illinois, 1988, pp. 14-17.

18

