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The notion of computational complexity has had a profound effect on the development of
computer science. While imperfect, our ability to classify different computational problems
in terms of their complexity allows us to understand inherent difficulties in solving such
problems. Thus, when a problem can be solved or approximately solved in polynomial time,
we can concentrate on improving algorithms for its solution. Conversely, when a problem
is shown to be a member of (what is believed to be) a more difficult class such as the
class of NP-complete problems, we know that we must look for heuristics and simplifying
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Abstract

In order to successfully perform a task, a situated system requires some information
about its domain. If we can understand what information the system requires, we may
be able to equip it with more suitable sensors or make better use of the information
available to it. These considerations have motivated roboticists to examine the issue of
sensor design, and in particular, the minimal information required to perform a task.
We show here that reasoning in terms of what the robot knows and needs to know to
perform a task is a useful approach for analyzing these issues. We extend the formal
framework for reasoning about knowledge, already used in Al and distributed comput-
ing, by developing a set of basic concepts and tools for modeling and analyzing the
knowledge requirements of tasks. We investigate properties of the resulting framework,
and show how it can be applied to robotics tasks.

Introduction

assumptions when confronting this problem.



Some areas of robotics have benefited from advances in computational complexity. This
is true primarily of certain stylized robotics problems, such as variants of robot motion-
planning (e.g., [Can89, RS85, Rei79]). However, the area of robotics as a whole still lacks
the analog of a Turing machine, a formal device that faithfully quantifies the difficulty of a
robotic task or the capabilities of a robot.! The reason for this is that usually space and
time complexity are not the dominating factors in a robotic task. Rather, issues such as the
sloppiness of controllers, the imprecision of sensors, and the need for communication between
spatially separated components assume major importance. This suggests that a good model
for robotics should revolve around the notions of information and uncertainty. Similar points
have also been made by Erdmann [Erd94] and Donald [Don94].

We propose a formal framework to capture these notions, closely based on that of
[FHMVO95], which makes use of a formal notion of knowledge. We believe that reasoning
in terms of knowledge can form the basis for a general model of informational aspects of
robots and robotic tasks. In our framework, robotic tasks can be characterized in terms of
the knowledge required to perform them, and robots can be characterized in terms of the
knowledge they can acquire. We can therefore assess the ability of a particular robot to
perform a task by comparing its knowledge capabilities to the knowledge requirements of
the task. This is reminiscent of the use of knowledge in distributed systems to characterize
the information needed to perform tasks such as coordinated attack [HM90].

In the coordinated attack problem and other problems of coordination and agreement, it
turns out that common knowledge—the state where everyone knows that everyone knows that
everyone knows ...—plays a crucial role. It is, in a precise sense, a necessary and sufficient
condition for coordination and agreement [FHMV95, HM90]. Moreover, the knowledge before
common knowledge is attained is irrelevant; all that matters is that common knowledge is
eventually attained. In a certain important class of tasks that we consider here, which we
refer to as manipulation tasks, we can say even more. The goal in a manipulation task is
to move an object from some initial configuration to a goal configuration. These are the
types of tasks discussed in the motion-planning literature [Erd94, Lat91]. In a manipulation
task, we can typically find a set of propositional formulas such that, if the agent knows
one of these formulas at every step, then the task can be performed and, moreover, (if
the agent has appropriate sensors) it is possible for the agent always to know one of these
conditions. Intuitively, each of these tests identifies a set of configurations for which a
particular transition exists which would reduce the distance, according to some distance
measure, of the system’s configuration from the goal. This is essentially the approach taken
by Erdmann [Erd94]. As we shall see, thinking in terms of knowledge gives us a high-
level tool to clarify what is going on. We illustrate this point by applying our ideas to a
maze-searching example originally analyzed by Blum and Kozen [BK78]|; see Section 4.

To provide intuition, throughout this paper we will anchor the formal development in
the following example. Although simple, the example embodies two important ingredients—
imprecise sensing, and the need to coordinate the actions of spatially distributed actuators.

Example 1.1: Two horizontal, perpendicular, one-dimensional robotic arms must coordi-
nate as follows. The first arm must push a hot object lengthwise across the table until the

1This observation was made by John Mitchell.



Figure 1: The two-arm system

second arm is able to push it sideways so that it falls into a cooling bin. The length of the
table is marked in feet, from 0 through 10 (for simplicity we ignore the vertical coordinate).
The object is initially placed at position 0 on the table. The second arm is able to push the
object if it is anywhere in the region [3,7].? The second arm cannot hit the object while it
is pushed by the first arm, since this will cause the mechanism to jam; on the other hand,
the object cannot remain motionless for more than an instant or it will burn a hole into the
table. Thus, the second arm must move precisely when the first one stops. This setup is
illustrated in Figure 1. We consider two variants of the problem:

1.1a. The arms share a controller. The controller has access to a sensor reporting the
position of the object with error no greater than 1, i.e., if the object’s current location
is ¢ then the reading can be anywhere in [¢ — 1, ¢ + 1].

1.1b. Same as 1.1a, except the error bound is 4 rather than 1.

It is not hard to see that in case 1.1b, there is no protocol that performs the task,
whereas in cases 1.1a, there is. For example, a centralized protocol that deals with 1.1a is
the following (where r is the current reading):

if 7 < 4 then Move(arm, ) else Move(arm,).

Example 1.1 illustrates the need to analyze several basic issues, such as how much in-
formation the controller needs in order to perform this task and what information each
controller is capable of obtaining. These are the types of issues we consider in this paper.

This example should make apparent that, unlike the planning perspective taken by the
work of Moore [Moo85] and Morgenstern [?] on knowledge, actions, and plans, we take
a design perspective. It is not our goal to provide knowledge representation tools for an
agent that reasons about its knowledge during the course of its planning activities. Rather,
we provide a set of concepts that can aid in the process of designing a situated system

2We use the [a, b] notation to denote the interval of natural numbers between a and b, including a and b.
Thus, [3,7] = {3,4,5,6,7}.



that can perform some given set of tasks. To use the analogy of computational complexity,
we are not considering the task of building agents that must figure out how to solve a
particular computational problem; rather, we attempt to provide tools by which a designer
could characterize the resources needed by a program that solves this problem. Although
both problems are related at some abstract level, different models, assumptions, concepts,
and languages are appropriate in each case. We shall have more to say on this issue in our
discussion of related work (Section 5).

The rest of this paper is organized as follows: In the next section, we describe the
view we take in modeling tasks, agents, and their information requirements. In Section 3,
we use the concept of knowledge to define measures of information requirements of tasks
and information capabilities of agents, and we show some relations that exist among these
measures. In Section 4, we continue with this development, supplying a number of additional
tools, such as control variables and learning. We illustrate these tools with the problem of
maze searching. We discuss related work in Section 5, and conclude in Section 6 with some
directions for further work.

2 The Basic Model

In this section, we describe a basic model of an agent embedded in an environment in which
it must act. We start with an overview of our perspective and our aims, an understanding
of which will help the reader understand the development of this paper and our technical
choices in the rest of this paper. We then formalize these ideas.

2.1 An Overview of our Approach

To investigate issues such as the information complexity of tasks and information-attaining
capabilities of agents, we must first make the notion of a task more precise. Tasks are defined
in some context; for example, the task of getting a robot from point A to point B is defined
in the context of some physical environment in which the robot’s motions take place; the task
of rearranging the furniture in a room is defined in the context of some room description,
some description of the furniture, their initial positions, and their desired final positions.
More abstractly, a task is defined in the context of some set of possible configurations of
the system of interest, called its configuration space. A typical task might involve taking a
system from some initial configuration to some goal configuration, while making sure that
the system’s configuration always satisfies certain conditions. Such a task can be described
abstractly in terms of sets of acceptable sequences of configurations, or in the continuous
case, acceptable functions from [0, 00) to configurations. For example, the task of getting
from an initial configuration ¢y to some goal configuration cy can be defined as the set of
sequences of configurations in which ¢y appears first and c; appears last. Or, using infinite
sequences (as we do in this paper), this task corresponds to the set of sequences which start
with ¢ and stabilize at ¢; from some point on.

So far, we have said nothing about how the task is to be performed, that is, how we get
from the initial to the final configuration. We abstract away from this issue here, and simply
assume that there is a fixed set of changes, or transitions, that an agent can effect. Our



goal is to understand what information an agent capable of these transitions needs in order
to perform its task. This, in turn, affects the design of the agent’s information-gathering
capabilities, such as its sensors and communication channels.

To summarize, we are given (1) a set of possible configurations for a system, (2) a set
of sequences of configurations defining the task, and (3) a set of allowed transitions defining
the changes that can be made to the system’s configuration at each point in time. We must
supply the agent with the information necessary to perform its task, and a program that
uses this information appropriately. As we shall see, using a formal notion of knowledge,
we can analyze the information needs of a task, and provide guidelines for the design of the
agent’s sensory apparatus at an abstract, yet useful level.

The view developed here was strongly influenced by three sources. Erdmann’s discussion
of abstract sensors [Erd94|, which explicitly examines the issue of sensor design, led us to
consider many of the issues discussed in this paper and motivated our choice of semantics.
Donald’s work on information invariants [Don94], which provides a framework for comparing
and evaluating sensor systems, led us to examine the ideas of task and sensor complexity. Fi-
nally, the framework for knowledge in multi-agent systems developed in [FHMV95] provides
a natural tool for capturing and formalizing these ideas, especially given its past use in es-
tablishing lower bounds on message transmission and other resources required for performing
tasks in distributed systems (see, for example, [HM90, CM86]). Indeed, Erdmann’s seman-
tics of abstract sensors leads naturally to the concept of knowledge. Our major contribution
is the formalization and further development of these ideas in the context of robotics. We
discuss the connection between our work and these other papers in more detail in Section 5.

In the remainder of this section, we present enough background to make te technical
development in the paper self contained.

2.2 The Model

Our formal model is based on the notion of system, as defined in [FHMV95], with modi-
fications appropriate for our context. We start by defining the space in which agents act
and a set of possible transitions on that space. We shall confine ourselves to discrete do-
mains. While a knowledge-level analysis can be carried out in continuous domains, (e.g., see
[BLMS]), the technical issues raised by continuous domains would needlessly complicate this
exposition.

Definition 2.1: Let £ be the environment’s set of states, also referred to as the configura-
tion space. The set A of transitions over € consists of functions from € to 2¢ \ ). We assume
that the identity mapping /d is contained in A.

A task is simply a set of a sequences of configurations, which we call C-histories. One
can view the C-histories defining a task as the set of desirable behaviors.

Definition 2.2: A C-history C (over £) is an infinite sequence of configurations in £. We
use C(n) (n > 0) to denote the n'* element of this sequence. A task (over &) is a set of
C-histories (over &).



An agent is defined in the context of a fixed environment £ and a set A of possible
transitions. The state of the environment, or the configuration, describes the state of the
external world, i.e., all the relevant aspects of the world not belonging to the robot’s internal
state. This is the world which the agent is to manipulate. The agent itself has a set of local
states and actions, where each action transforms the local state of the agent and the external
state of the world. These actions need not be deterministic, and it is possible for an action
to change only the local state of the agent, as, in fact, is the case for sensing actions. We
make two requirements. The first is that the effects of an action on the environment depend
only on the current state of the environment. This guarantees that the local state of the
agent represents only its internal state. The second is that the effects an action can have
on the environment conform to the set of possible transitions. Hence, agents defined have
the same abilities to transform the state of the external world (environment); they differ
only in the structure of their local states (that is, in the information that they have) and
in the effect of actions on these local states. Although the actions “implement” a fixed set
of transitions, actions implementing the same transition may have different effects on each
agent’s local state. We note that although we often refer to an agent as a “robot,” there is
no requirement that its sensors and effectors make for a contiguous piece of equipment or
that they are otherwise related to one another.

As the discussion above suggests, we assume that agents have local states. The global
state of the system is a pair consisting of the configuration and the agent’s local state.

Definition 2.3: If £ is the set of configurations and L is the set of local states, then

G = £ x L is the set of global states (based on £ and L). The projections of a global

state g = (c,l) € G to £ and L are defined as proj,,,z,((c,!)) ' ¢ and proj,,.((c, 1) € 1.

Projections of sets and sequences of global states are similarly defined, e.g., proj,(S) €ef

Usesproj,(s).

Definition 2.4: An agent A situated in (£, A) is a pair (L, Actions), where L is the set of

local states of the agent, and Actions is a set of functions from G = € x L to 29 \ 0 satisfying
the following conditions:

1. For all a € Actions, c € £, and [,I' € L, we have proj,,,q,(a(c,1)) = proj oz, (alc,1'))-

2. For a € Actions, let 7, be the transition defined by 7,(c) & Proj consig (@(c; 1)) for some
[ € L2 Then for all a € Actions, we must have 7, € A. Moreover, for all 7 € A, there
exists some a € Actions such that 7 = 7,.

We call 7, the transition induced by a € Actions.

J,From now on, we assume we are working with a fized configuration space £ and set A
of possible transitions. All agents discussed will be situated in (£, A). Therefore, all agents
we discuss have the same physical capabilities but may differ in their information-attaining
capabilities.

3The choice of the local state in the definition of 7, is inconsequential because for all [,!’ € L we require
that projconﬁg(a(cvl)) = projconﬁg(a’(cv ll))



Example 2.5: The configuration space for example 1.1a consists of all possible positions
of the hot object: £ = [0,10] x { Table, Bin}.* The set A of possible transitions, consists of
Move(arm; ), Move(arm,), and the identity mapping, where Move(arm;) transforms (g, z)
to (¢ + 1,z) when = Table and ¢ < 9, while Move(arm,) transforms (gq,z) to (g, Bin).
Otherwise, these transitions do not change the configuration. We model the controller 1.1a
as the agent A, = (L14, Actionsy,), where Ly, = [0,10], so that the controller’s local state
consists of its position reading, and Actions;, = {Move;, Move, }, where

Mo (g.0.1) { gg ))”:),; ¢ —7'|<1,¢=q+1if¢<9,¢ =qif ¢>9} Ezi gz;gze
Movey((q, z),7) = {((q, Bin),7") : |¢ — 7’| < 1} (where x € { Table, Bin}).

Finally, let Task,;, consist of all trajectories that lead us from the initial configuration
(0, Table) to one of the goal configurations [3,7] x {Bin}. 1

Global states provide us with an instantaneous description of a system. To characterize
the system, we need to consider how the global state changes over time. The following
definitions are taken from [FHMV95]

Definition 2.6: A run is a function 7 from N (the natural numbers) to the set of global
states G. A run 7 is consistent with respect to agent A = (L, Actions) if for every n € N, it
is the case that r(n + 1) € a(r(n)) for some a € Actions. A system is a set of runs.

According to this definition, we are identifying a system with its possible behaviors.
Typically, systems are generated by protocols.

Definition 2.7: A protocol for an agent A = (L, Actions) is a function P : L — 24¢tons \ ().
A run r is an ezecution of a protocol P if for every n € N it is the case that r(n + 1) €
P(projjpear(r(n)))(r(n)). If I C G is a set of (initial) global states, then the system R[], A]
consists of every run r consistent with respect to A such that r(0) € I. If P is a protocol
for A, then system R[I, A, P| consists of every execution r of P by A such that r(0) € I.

A protocol describes the agent’s program, allowing for non-deterministic behavior whenever
more than one action is assigned at a local state. Its executions are the set of runs in which
the agent’s action at each point is consistent with the assignment of the protocol.

Finally, we say that an agent can perform a task if it has a protocol all of whose executions
are in the task.

Definition 2.8: A protocol P for agent A performs Task from I if proj,,,s,(R[I, A, P]) C
Task. An agent can perform Task from I if it has a protocol that performs Task from 1.

Example 2.9: Consider Example 1.1a, and let I = {((0, Table),0)}. The system Z[I, A]
consists of all runs starting in I in which the object is moved forward for some number of
steps (possibly 0) and is eventually moved to the cooling bin. At all points, the local state
indicates the current position with an error no greater than 1. In addition, this system

“Recall that [0,10] denotes all natural numbers between 0 and 10.

7



contains all runs in which the object reaches position (10,Table) and remains there forever,
with similar constraints on the local state.

Let protocol P assign the action Move; when the controller’s local state is in [0, 3] U[7, 10]
and Movey when its local state is in [4, 6]. The system R[], A, P] consists of all runs in which
the object moves forward until a reading in [4, 6] occurs for the first time. Given the above
restrictions on sensing error, this could be anywhere in [3,5]. At this point the object is
pushed to the cooling bin. Since all such runs are in T'ask,.,, P performs Task... 1

2.3 A Language for Reasoning about Knowledge

Having set up a model, we would like to have a formal language that will allow us to ex-
press properties of particular systems. Epistemic logic, first introduced by Hintikka [Hin62],
provides a particularly suitable tool for this purpose. We start with set ® of primitive
propositions. We can think of these primitive propositions as statements like “the robot is
at position 2”7 or “the temperature is high”. The language £ contains ®, and is closed under
the standard boolean connectives and the knowledge operator K. Thus, if oy and «ay are
formulas, then so are a; A a, -, and Ka. We want to assign truth values to formulas in
L at points in some system R, where a point is a pair (r,m), consisting of a run r and a
time m. To do this, we first need a way of deciding when the primitive propositions in ¢
are true. Given a set G of global states, an interpretation function m over G assigns to each
proposition p € ® a truth value at each global state in G. A pair Z = (R, 7) consisting
of a system R of runs over set G and an interpretation m over G is called an interpreted
system. In an interpreted system, we can define the semantics of propositional formulas in
a straightforward way. Intuitively, a formula of the form K« is true at a point (r,m) if ¢
is true at all points (r',m’) that the agent cannot distinguish from (r,m). An agent cannot
distinguish two points if it has the same local state in both. These intuitions are formalized
in the following definition (where Z,r,m |= « is read “a is true at the point (r,m) in the
interpreted system Z7):

e Z,r,mEp for pe ®if n(r(m),p) = true;

Z,r,mpE-a if Zr,mpE a;

I,rrmiEaAp if Z,r,mEaand Z,r,m = .

Z,r,m = Ka if Z,r",m’' = « for all points (7', m') in R such that proj,,.,,(r(m)) =
projlocal(rl(ml))'

It is easy to check that whether Z, 7, m = «a depends only on the global state r(m); that
is, if 7/(m’) = r(m), then for all formulas «, we have Z,r,m = « iff Z,7/,m' = a. Thus,
if s is a global state, we often abuse notation and write Z,s = a. (We remark that this
would not be true if we used a richer language that included explicit temporal operators.)
Moreover, whether a formula of the form K« is true depends only on the agent’s local state.
Thus, we further abuse notation and write Z,! = K;a«, if [ is a local state. This notation
emphasizes the fact that the knowledge operator allows us to express correlations between
the local state of the agent and the external world. Finally, we assume for the rest of this



paper that the interpretation function depends only on the configuration component of the
global state. That is, for all propositions p, if the system’s configuration in s and s’ are the
same, then m(s,p) = 7(s’,p). This is reasonable for our intended applications, since tasks
are defined in terms of the external world only. Thus, for a propositional formula « (one
with no occurrences of the modal operator K), we often abuse notation and write Z, ¢ = a,
where c is a configuration.

For the remainder of the paper, fix an interpretation function 7 that depends only on the
configuration. We use Z[I,.A] and Z[I, A, P] to denote the interpreted system (R[I,.A|, )
and (R[I, A, P], ), respectively. We write Z = « if Z,r,m = « for every point (r,m) in Z.

3 Knowledge as an Analysis and Specification Tool

3.1 Skeletal Knowledge-Based Programs

Work in distributed systems has shown that the formal notion of knowledge is a powerful tool
for analyzing traditional protocols. Knowledge is also useful for design purposes too; it allows
one to design high-level protocols, called knowledge-based programs [FHMV95],° that focus
on the informational aspects of a task without drowning in implementation details. Roughly
speaking, knowledge-based programs describe what actions the agent should perform as a
function of its knowledge. In this paper, we use a slightly more general notion, that of
skeletal knowledge-based programs (SKBPs). An SKBP describes what transition an agent
should bring about as a function of its knowledge. Hence, an SKBP can be used by different
agents with different actions that implement similar sets of transitions. This is particularly
useful in our context, where all agents considered implement a fixed set of transitions.

Definition 3.1: An SKBP is a set of pairs of the form (Ka, ), where Ko € £ and 7 € A.

An SKBP can be viewed as a big case statement of the form
case of
if Koy then 7q;
if Koy then 7;

if Ko, then 7,;

Each condition of the case statement is a test on the knowledge of the agent. The inter-
pretation of this protocol is that the agent non-deterministically performs an action that
implements the transition corresponding to a condition that is satisfied.®

We refer to Kay, ..., Ka, as the (knowledge) conditions of this SKBP. If ¢; is a propositional
formula (i.e., it contains no occurrences of the K operator), we call Kq; positive. In the
remainder of this paper, we restrict our attention to positive SKBPs. The fact that we do

5The similarity in names between knowledge-based program and knowledge-based (or expert) systems in
AT is coincidental.

6Hence, unlike the case statement in certain programming languages, the order of appearence of the
conditions does not matter.



not allow nested K’s is not a serious restriction in the case of a single agent—every formula
can be denested so that there are no nested K’s However, the fact that we do not allow tests
of the form —Kq, which means that an agent cannot perform an action based on lack of
knowledge, is a nontrivial restriction in some applications. We return to this issue when we
discuss learning in Section 4.2. Nevertheless, as we shall see, positive SKBPs still allow us
to capture many intuitions of interest for our intended application. Moreover, the restriction
to positivity makes it much easier to capture the notion of knowledge complexity, defined in
Section 3.2.

Intuitively, a protocol P for agent A implements Pg = {(Kw;, 1) | i = 1,...,n} if, at
every local state [ in which the agent’s knowledge is Ka;, P assigns an action a that imple-
ments 7;. However, recall that an agent’s knowledge in a local state is defined with respect
to some system that determines its set of possible worlds. Hence, in order to determine
which local states should be substituted for each knowledge condition, we must first specify
the system with respect to which the agent’s knowledge is defined. Formally, we adopt a
semantics similar to that of [FHMV95| for knowledge-based programs, modified so as to
handle our use of transitions rather than actions.

Definition 3.2: The standard translation of SKBP Pg with respect to interpreted system
7 and agent A = (L, Actions) is the protocol Pg”, where PgZ(l) & {a, € Actions : T,l =
Ka, (Ka,7) € Pg, and a, implements 7}. If this latter set is empty, then PgZ(l) % {asq},
where arq is the identity action, which maps a global state to itself. A protocol P for

A = (L, Actions) implements Pg from I if, for every [ € L that occurs in Z[I, A, P|, we have
that P (1) C PgrHAPI()).

Example 3.3: Consider the following SKBP for the controller of Example 1.1a:
Pg={If Kg then Move(arm,); If K¢ then Move(arm)},

where ¢ holds when the object’s position is in [0,4] U [7,10] and g holds in the goal region.
Consider the systems Z[I,.A] and Z[I, A, P] described in Example 2.9. In Z[I, A], the local
states in which Kg holds are [5, 6], while in Z[I, A4, P|, K¢ holds in [5,6,7]. The local state
in which the controller’s position reading is 7 occurs within the runs of Z[I, A, P] only when
the actual position is 6. However, in the system Z[I, A], this local state can occur when the
robot’s position is anywhere in [6, 8].

The standard translation of Pg with respect to Z[1, A] is {(]0, 4]U[6, 10], Move; ), ({5}, Moves }).
However, the standard translation of Pg with respect to Z[1, A, P] is {([0, 4],Move, ), ([5, 7],Move,) }.
Notice that certain global states that occur in some runs of Z[I, A], such as ((7, Table), 8),
do not occur in any run of Z[I, A,P] 1

Our notion of implementation leads to a natural notion of correctness: a an SKBP is
correct if all protocols consistent with it satisfy the given task. This notion is referred
to as strong correctness in [FHMV95]. Adapting their definitions to our presentation, we
would say that P represents Pg if P(l) = Pg*P(1), and that P is consistent with Pg
if P(1) € Pg?m4Pl(]). Notice that the set of protocols consistent with an SKBP Pg is (in
general a strict) superset of the protocols that represent Pg. Moreover, a protocol consistent
with a given SKBP is guaranteed to exist (see Lemma 7.1), although there may not be

10



any protocol that represents it [FHMV95]. We have defined implementation in terms of
consistency, rather than representation, because, in our context, strong correctness seems
more appropriate than just requiring that all protocols that represent the SKBP satisfy the
task. We are willing to accept a protocol as long as its behaviors are compatible with the
SKBP, even if it does not generate all the behaviors of the SKBP. which are not represented
by or consistent with any protocol.)

In this paper, we are interested in a particular class of implementations of skeletal
knowledge-based programs.

Definition 3.4:  Protocol P for agent A is a good implementation of Pg from I if
I[I,A,PlE Koy V---V Ka,, where Kay, ..., Ka, are the knowledge conditions of Pg.

By restricting our attention to the good implementations of SKBPs, we transform SKBPs
from abstract program specifications to abstract knowledge specifications. Now, a skeletal
knowledge-based program not only specifies what an agent should do, via the notions of
standard translations and implementations, it also specifies a class of agents that are qualified
to execute this specification. These agents have an implementation of the SKBP in which
they always know enough so that one of the tests for knowledge holds at every global state.
The importance of this property will become clearer when we present our definition of upper
bound on the knowledge complexity of a task. From now on, unless otherwise noted, by an
implementation of a SKBP Pg, we always mean a good implementation.

Note that an agent may have a good implementation of an SKBP with conditions
Ky, ..., Ky, even though it can reach local states in Z[I,.A] in which it knows none of
the above conditions. If this happens, the SKBP must be preventing the agent from reach-
ing such states. Intuitively, this can be due to one of two reasons: actions leading to states
of relative ignorance are avoided and/or actions that lead to an increase of knowledge are
taken.

The notion of performs can now be generalized to SKBPs.

Definition 3.5: A set I of global states (for agent A) is to-consistent with task Task if
Projeonsg (1) = {C(0) | C € Task}. Pg performs Task if all its good implementations from
every set I to-consistent with Task perform Task from I, and it has a (good) implementation
from some I ty-consistent with Task.

Notice that, in defining the notion of an SKBP Pg performing Task, we restrict attention
to sets I of initial states that are ty-consistent with Task. Clearly, if we start Pg in an initial
state that is not the initial state of some configuration in Tusk, it will generate an execution
that is not in 7Task. Thus, we must restrict to initial states that are ty-consistent with Task
in order to get a reasonable notion of implementation.

In practice, it may be difficult to transform an SKBP to a standard protocol. However,
we believe that, as has been the case in distributed systems, using knowledge-based analysis
and design gives a useful methodology by allowing us to leverage the ability of SKBPs to
abstract away the idiosyncrasies of local state. Thus, for example, rather than discuss the
content of the frame buffer of a robot’s vision system, an SKBP allows us to talk about the
robot knowing that there is an obstacle in front of it.
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3.2 Knowledge Complexity

We now wish to define a formal concept of informational complexity of a task that can serve
to quantify the amount of knowledge an agent must attain in order to perform the task.
Typically, the type of statement we want to make is that an agent must eventually come to
know a certain fact (or one of a set of facts) in order to perform the task. For example, in
[HM90], it was shown that to perform coordinated attack, the agents needed to eventually
have common knowledge of the fact that at least one message was delivered.

Recall from the introduction that we are interested in manipulation tasks, where the
goal is to move an object from some initial configuration to a goal configuration. We hope
to find a set of propositional formulas such that can be thought of as describing sets of
configurations such that, if the agent knows one of these formulas at every step, then the
task can be performed by an SKBP that uses these tests. Intuitively, moving from one set
of configurations to another gets the agent closer to its goal.

Keeping these intuitions in mind, we define a notion of informational upper bound ap-
propriate for manipulation tasks.

Definition 3.6: If ¢q,..., ¢, are propositional formulas, we say that {¢1,...,¢x} is an
upper bound on the knowledge complexity of a task Task, or just Taskis O({e1,...,¢x}), if
there exists an SKBP Pg with conditions Ky, ..., K¢, that performs Task.

Notice that, in this definition, we are implicitly assuming that there is a fixed interpreta-
tion 7 on the configuration space £, and we are restricting attention to interpreted systems
7 that use this interpretation. This definition should also make it clear why we are partic-
ularly interested in good implementations of a knowledge-based program. Suppose that we
require all the implementations of an SKBP Pg (including the non-good ones) to perform
Task. Unless some of the conditions in Pg are tautologies, there will be an agent that does
not know any of the tests of Pg at any state. This agent will have an implementation P of
Pg which has an execution in which it constantly performs the identity transition. Typically,
the projection of this execution will not be in Task, and under the stronger definition, Pg
would not perform Task. To avoid this problem, we restrict to good implementations. By
doing so, we are, in fact, saying that an SKBP comes with some minimal requirements for
its execution: the ability to know one of its knowledge conditions at each state.

Of course, if we are to use sets of (propositional) formulas as a measure of knowledge
complexity, we must define an ordering on such sets, to allow us to say when the information
characterized by one set is more difficult to attain than the information characterized by
another set.

Definition 3.7: Given a configuration space £, and sets A and B of propositional formulas,
we say that B dominates A (with respect to £), and write A <¢ B, if for every formula ¢ € B,
there is a formula ¢ € A such that &€ = = ¢.

Notice that if A <¢ B, then for every formula 7 € B, there is a formula ¢ € A such that
knowing 1 implies knowing . It is easy to see that <g defines a partial order (that is, a
reflexive, transitive relation) on sets of formulas. As the following result shows, this ordering
does capture a reasonable notion of hardness.

12



Proposition 3.8: If A <¢ B, Task is O(A), and £ = Vyepyp, then Task is O(B).

Proof: Intuitively, if Task is O(A), there is an SKBP Pg with appropriate knowledge
conditions that performs 7Task. Since A <¢ B, for each condition ¢; € A in this SKBP there
is a stronger condition ;) € B such that ¢ implies ¢. As we show in the Appendix, the
SKBP obtained by replacing each ¢; in Pg by ¥ ;) performs Task. Moreover, the requirement
that £ = V,epy suffices to ensure that there is a good implementation of some SKBP Pg that
performs Task. Although this requirement can be weakened, something like it is necessary.
For example, it is easy to see that A <¢ false, but there is no good implementation of a
protocol whose only test is K false. See the Appendix for further details. |

Example 3.9: Consider Examples 1.1a and 1.1b again. Recall that in both variants a
central controller is in charge of a two-armed robot, which must switch between horizontal
and vertical motions when the object is in the goal region [3,7] x {Side}. It is easy to see
that Task,. is O({—g, g}): the SKBP {(K—g,Move(arm,)), (K g, Move(arm,))}, according
to which the agent moves arm; if he knows —g and moves arm, if he knows g, performs
Task,,;- However, we can get a better bound. Let ¢ denote being in [0, 4] U [6,10] and let
9 denote being in [3,10]. Clearly {¢1, p2} =<¢ {—g,g}. Moreover, it is easy to verify that
the following SKBP performs Task,.;: {(K¢1, Move(arm,;)), (K¢9,Move(arm,))}. There is
yet another upper bound for Task,,;, incomparable to the two we have just presented. Let ¢}
denote being in [0, 6]. It is easy to see that {¢], ¢2} is incomparable to {¢1, ¢2} and {g, g}.
Moreover, it is not hard to show that the SKBP {(K ¢}, Move(arm, )), (/K ¢9,Move(arm,))}
also performs Task,,,. For suppose that protocol P for agent A is a good implementation
of this SKBP from {(0, Table)}. Let r be a run of Z = Z[{(0, Table)}, A, P]. Consider
the first time m that Z,r,m = Ky,. Notice that there must be such a time, since .4
performs Move(arm;) until K¢, holds. If Ky, never holds, then A must eventually reach
position 7, at which point K¢; cannot hold, contradicting our assumption that P is a good
implementation. Our argument also shows that at the point (r,m), the configuration must
be in [3,7]. Hence, when the agent performs Move(arms), it gets into the goal region. |

We can define a notion of lower bound that corresponds to our notion of upper bound.

Definition 3.10: We say that the set A of propositional formulas is a lower bound on
the K-complexity of Task, or Task is Q(A), if, for every set of formulas B such that Task is
O(B), we have that A <¢ B.

Notice that {true} is a lower bound for the K-complexity of any task. Obviously, this
lower bound does not give much insight. Ideally, we would like a tight bound: a lower bound
that is also an upper bound. Unfortunately, it seems difficult to get tight bounds. For
example, we can show that Task,; has no tight bound.

Proposition 3.11:  There is no set A of primitive propositions such that Task,.., is Q(A)
and O(A).
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Proof: Suppose Tasky,p is Q2(A) and O(A). Then A <¢ {¢1, 92} and A <¢ {¢], p2}. Thus,
A must contain formulas v and ] such that &€ £ ¢1 = ¢, and € = @] = 9}. Since
Taskyop is O(A), there must be an SKBP Pg that performs Task,,, and has conditions K1)y
and K1);. Clearly, neither the pair (K1, Move(arm,)) nor the pair (K], Move(arm,)) can
be in Pg. To see this, consider an agent that has perfect sensors, and knows exactly what
location it is in. In particular, for this agent, both K4 and K% hold in the initial position,
where the transition Move(arm,) is clearly inappropriate. Thus, both (K1, Move(arm;))
and (K1}, Move(arm;)) must be in Pg. But since ¢; V ¢/ holds in every location, so does
11 V 1y, Thus, the agent with perfect sensors always performs the transition Move(arm; )
according to Pg, so Pg does not perform Task,.,. |

Although we cannot provide a tight bound for Task,,,, we might still hope to provide
useful (nontrivial) lower bounds. While this can be done, we have found it more useful to
use a different notion of lower bound, that is closer to our original intuition of the agent
eventually needing to know one of a collection of facts.

Definition 3.12: We say that {¢1,..., ¢} is a weak lower bound on the K-complexity
of Task, or Taskis Q,({p1,...,¢r}), if, for every I ty-consistent with Task, every agent A,
every protocol P for A that performs Task from I, and every run r in Z[I, A, P|, there exists
some time m such that Z[I, A, P],r,m = Ko1 V...V Kg,.

We can use this notion of lower bound to prove that the controller in Example 1.1b cannot
perform Task,,p-

Theorem 3.13: Task.p 15 Qw({g})-

Proof: Suppose that P is a protocol for agent A that performs Task,,, from {(0, Table)}.
Let 7 be a run in Z = Z[{(0, Table)}, A, P|. Since proj,,,q,(r) is in Task,, there must be
some time m such that proj,,,q,(r,m) € [3,7] x {Side}. Let mg be the earliest such time.
It follows that at the point (r,mg — 1), agent A must perform the action Move(arm,). We
claim that Z,r,mo — 1 E Kg. For suppose not. Then there must be some point (r',m’)
such that proj, .., (1, Mo — 1) = projeq (r'sm’) and Z, 7', m' = —g. Since proj;,pq (r,mo — 1) =
Proj;pea: (1, m'), it follows that the agent performs the same action at the points (r,mg — 1)
and (r',m’), namely, Move(arm,). It follows that 7’ is not in Task,,, a contradiction. |

Corollary 3.14: The controller in Example 1.1b cannot perform Task,op.

Proof: Suppose P is a protocol for the controller of Example 1.1b that performs Task,.»
starting from {(0, Table)}. Since the controller’s error bound is 4, its local state could

be any one of 0,...,4 while it is in the initial configuration (0, Table). It clearly must
perform the action Move(arm;) when it is in the initial configuration, thus we must have
P(0) = --- = P(4) = Move(arm, ). It follows that there is a run r of P in which the agent

reaches (8, Table) while its local state is always in [0,4]. Clearly, Kg cannot hold at any
point in 7: it cannot hold up to the time the agent reaches (8, Table), since it does not hold
in any local state in [0,4]. It also cannot hold after the agent reaches (8, Table), since g does
not hold. It follows from Theorem 3.13 that P does not perform Task,,,. |
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Actually, we can prove Corollary 3.14 without appealing to Theorem 3.13. We simply
observe that the run r constructed in the proof of the corollary is not in Task,.,. However,
we feel that the appeal to Theorem 3.13 explains why this controller cannot perform Task,,:
its sensing capability is too weak to allow it to gain the appropriate knowledge. A similar
argument can be used to show that a controller with an error bound of 3 also cannot perform
Task,.,. However, a controller with an error bound of 2 can perform Task,., since it can
implement the SKBP with tests for ¢} and ¢, discussed in Example 3.9.

3.3 Knowledge Capability

Having defined the notions of upper and lower bounds on the K-complexity of a task, we
turn to the capabilities of an agent.

Definition 3.15: Let A = {¢1,...,¢x} be a set of propositional formulas. Agent A is
K-capable of A with respect to initial global states I if Z[I, A] = K1 V...V K.

That is, an agent is K-capable of {p1,...,¢r} if it always knows one of ¢1,..., @y,
although not necessarily the same one. Notice that this does not imply that the agent has
the same knowledge in different runs or in different points along a single run. It may know
4 initially, then, after performing some action, it will know 7, and forget about ¢,.

This definition embodies the notion that sensing is nondeterministic. The robot may be
able to guarantee that it will come to know one of several facts, but not any one of them in
particular. For example, given a position sensor with 1 error, sensing the position when in
location 4 will yield knowledge of one of the following three facts: “the location is between
2 and 4”7, “the location is between 3 and 5", and “the location is between 4 and 6”. Yet,
knowledge of any one particular statement is not guaranteed. Notice that K-capability, like
our notions of upper and lower bound (and unlike the notion of weak lower bound) requires
the agent to know one of ¢, ..., @, at every point in the system. However, this requirement
is made for the system Z[I, A], not systems of the form Z[I, A, P]. But this difference is not
a significant one, as the following lemma shows.

Lemma 3.16: Let ¢1,. .., be propositional formulas. Then Z[I, Al = Koy V...V Ky
iff I, A, P = Koy V...V Koy for every protocol P for agent A.

Proof: See Appendix. |

We could have also defined a notion of K-capability with respect to I and P, for a protocol
P, but this does not seem to be quite so useful a notion. The following result illustrates how
we intend to use K-capability.

Theorem 3.17: If Task = O({®1,---,¢r}), and A is K-capable of {1, - - ., pr} with respect
to I, where I is to-consistent with Task, then A can perform Task from I.
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Proof: If Tausk = O({p1,...,¢r}) then there exists an SKBP Pg with knowledge conditions
Ko, ..., Ky that performs Task. It follows from Lemma 7.1 (see Appendix) that Pg has
a good implementation from I. Since Pg performs Task and I is ty-consistent with Task, by
definition, any good implementation of Pg from I performs Task. This implies that .4 can
perform Task. |

Theorem 3.17 suggests a useful methodology for determining whether an agent can per-
form a particular task: If we are able to show that the K-complexity of Taskis O({¢1, ..., vr}),
and that agent A is K-capable of {1, ..., pr} with respect to I, then we can conclude that
A can perform Task from 1.

Example 3.18: We return to the scenario of Example 1.1. We have seen that Task,,; is
O({g, ¢}), where ¢ denotes being in [1,4] U[6,10]. To show that controller of Example 1.1a,
can perform this task, it suffices to show that it is K-capable of {g, ¢} with respect to
{(0, Table)}. This is easily verified. For example, in position 3, its possible readings are
2,3, 4, each of which makes it know ¢ or makes it know . We conclude that this controller
can perform Task,,y.

On the other hand, the controller of Example 1.1b, whose error bound is 4, is easily seen
not to be K-capable of {g, p}. For example, a reading of 5 can be obtained from anywhere
within [1,9], and this region is contained neither in g nor in ¢. However, this does not
imply that the controller cannot perform Task,,, (although, as Corollary 3.14 shows, in fact
it cannot). |1

We end this section with a result that complements Theorem 3.17, and shows that if a
task can be performed by every agent that is K-capable of {¢1, ..., ¢x}, there is an SKBP
for this task with conditions { K1, ..., K@i}

Theorem 3.19: Suppose that (1) for all I ty-consistent with Task, if A is K-capable of
{¢1, ..., 0K} with respect to I, then A can perform Task from I, and that (2) some agent is K-
capable of {1, ..., o} from some I ty-consistent with Task. Then Task = O({p1, ..., or})-

Proof: The idea is to identify one particular agent A that is K-capable of {¢y,...,¢x}. In
a sense, this agent knows one of {1, ..., ¢r} at each local state, and no more than that. We
use the protocol of this agent to construct an SKBP that performs Task. We can then show
that any execution of a good implementation of this SKBP is identical (when projected to
&) to some execution of A’s protocol (which we know performs Task). The details can be
found in the Appendix. |

4 Control Variables and Learning

The concepts developed in the previous sections form the core of an approach to the analysis
of information aspects of tasks. There are a number of extensions that add to the flexibility
and power of this approach. Here, we examine two such extensions: (1) adding flexibil-
ity to SKBPs through the use of control variables and (2) relaxing knowledge attainment
requirements to allow for learning.
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4.1 Using Control Variables

Suppose that I want to paint my wall green, but I have at my disposal only blue and yellow
paint. Intuitively, I should first paint the wall blue, and then paint it yellow. That is, we
should execute a program like

while K (wall is not blue) apply blue paint;

while K (wall is not green) apply yellow paint.
Unfortunately, this is not an SKBP. Nor is there any obvious way to implement the se-
quential control embodied by this program using SKBPs as we have defined them. As most
programmers know, constructs such as while and sequential execution are often implemented
using a number of control variables, or program counters, which control program execution
(although most programmers are not—and should not be!l-—concerned with the implementa-
tion details). In their present form, skeletal knowledge-based programs do not support such
convenient and natural constructs. This stems from our insistence that the interpretation
function depend only on the configuration. No tests on control variables can appear in the
SKBP, because the value of a control variable does not depend on the configuration. More-
over, an SKBP cannot perform the action of setting the value of a control variable, because
such an action is not a transition. This renders SK BPs limited in their ability to describe
constructs such as sequential execution.

There are several solutions for this problem. One approach, which we formalize here, is
to allow for additional control bits. An SKBP extended to allow control bits would also need
to allow tests on the values of the control bits, and actions that change the value of the bits.
We could similarly allow (program) counters (which could take arbitrary nonnegative integer
values, not just the values 0 and 1), tests on the value of the program counter, and increment
and decrement operations. Additional data structures could also be allowed; whatever choice
is made, it is important to specify the additional tests and actions that are allowed.

We can easily describe the program above using an SKBPwith one control bit (i.e.,,
Boolean variable) b, which we assume is initially 0 (false). Roughly speaking, it would sim-
ply be

if K(—=bA wall is not blue) then apply blue paint;
if K(—bA wall is blue) then b :=1;
if K(bA wall is not green) then apply yellow paint.

We formalize the addition of control bits to SKBPs as follows. An m-bit system is a
system in which the local state of the agent is made up of two disjoint components: an
element of an arbitrary set L of local states (corresponding to our standard concept of a
local state) and a tuple in {0, 1} (describing the values of the m bits). We extend the set ®

of primitive propositions by adding m new propositional symbols, by, ..., b,. Let £, be the
result of starting with ®,, and closing off under conjunction, negation, and knowledge. The
proposition b; (for i =1,...,m) is assigned true when the 7th bit is 1. The propositions in

® depend only on the environment state, as before.
Definition 4.1: An m-bit system is a system in which the agent’s set of local states has

the form {0,1}™ x L. An m-bit SKBP is an SKBP consisting of pairs (K«, 7) where a € L,,
and 7 = (7, S), where 7/ € A and S : 2™ — 2™ assigns values to by, ..., b, based on their
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old values.

It is now straightforward to generalize the notions of “implementation”, “good implementa-
tion”, “can execute”, and “can perform Task” to m-bit SKBP. There is one minor subtlety.
To ensure correct flow of control, we must assume that the control bits are initialized when
the execution of an m-bit protocol commences. We have arbitrarily chosen 0 as the initial
value. Thus, when it comes to defining what it means for an SKBP to perform Tusk, we
restrict to initial global states of where the agent’s local state has the form (0,...,0,1).

Definition 4.2: If I is a set of global states, define I, = {(c, ((0,...,0),0)) : (¢,l) € I}.
The m-bit SKBP Pg performs Task if all its good implementations from every set I,
to-consistent with Task perform Task from I.,,, and it has a (good) implementation from
some [, to-consistent with Task.

Definition 4.3:  Let ¢1,...,0r € L; {¢1,...,9r} is an m-bit upper bound on the K-
complexity of a task Task, written Task = Op,({¢1, - .., ¢r}), if there exists an m-bit SK BP
Pg with knowledge conditions K (@1 AfB1),..., K(pkAB), where By, ..., B are propositional
formulas that mention only the primitive propositions by, ..., b,,, that performs Task.

Notice that our old O notation is equivalent to Oy.
It is straightforward to generalize Theorem 3.17 using the O,, notation.

Definition 4.4: Given an agent A = (L x Actions), define agent A, as A,,, % ({0,1}™ x

L, Actions x Set,,), where Set,, is the set of functions from 2™ to 2.

Theorem 4.5: If Task = O,,({¢o,-..,¢r}) and A = (L, Actions) is K-capable of {q, . .., or}
in Z[I, A] for I ty-consistent with Task, then A, can perform Task from I ,.

Proof: With slight modification to accommodate the m additional control bits, the proofs
of Lemma 7.1 and Theorem 3.17 generalize to this case. |

4.2 Learning

If Taskis O(¢1, ..., ¢k), we know that there is an SKBP that performs Task using only the
tests Ky, ..., Ky,. Hence, if an agent always knows one of ¢4, ..., ¢, it can perform Task;
this is the essence of Theorem 3.17. In practice, however, it may be unreasonable to expect
that we can build an agent that always knows one of ¢1,...,¢. For example, suppose our
agent must assemble some device which requires using a wrench. A high-level protocol for
this task would probably call for knowledge of the location of this wrench. The agent may
not always know this location. However, it can always learn it by examining the contents of
the tool box and the drawer. More generally, although the agent may not always know one
of ¢1,..., ¢k, it may be able to learn one of these formulas.

This example suggests a useful methodology for designing agents: First, try to understand
the knowledge requirements of the task. Then, see if you can build an agent that can learn
these requirements. Roughly, we say that an agent can learn {1, ..., ¢} if it can execute a
learning protocol that terminates with the agent knowing one of these formulas. For technical
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reasons, we require the learning program to have no side effects on the environment, so that
if the agent begins execution of the learning program in configuration c, it ends in the same
configuration (although the configuration may change during the execution of the learning
program).

Definition 4.6: Agent A = (L, Actions) can learn {p1,...,pr} in Z[I, A] if there exist a
set Ly C L and a protocol P for A such that for all runs r of P, there exists some m € N
such that (1) projz, (7(m)) = Pr0jupuz, (1(0)); (2) projpoe(r(m)) € Lis (3) ZIL. Al r,m |-
Kp1V...VKpyg; (4) for all m' < m, we have that proj;,..;(r(m’)) € L. Let P(c,1) = {(c,l') :
I' € Ly and there exists a run 7 of P and time m such that 7(0) = (¢, 1), r(m) = (¢, '), and
for all m' < m we have proj;,.,(r(m’)) & Lr}.

Hence, in order to be able to learn {¢1, ..., ¢} in Z[I, A], agent A needs a learning program
P and a termination condition such that (1) any execution of P eventually terminates, and
(2) upon termination A knows one of {y1,..., ¢} and the environment is restored to its
initial configuration.

It may seem that if knowledge of one of @1, ..., suffices to perform Task, and agent A
can always learn one of these formulas, then 4 will be able to perform Task. Unfortunately,
this is not always the case. For example, consider a task that requires reaching some goal
configuration in a bounded period of time. We may have an SKBP for performing this task
that requires knowledge of one of ¢y, ..., ¢, at each point in time, but if we employ lengthy
subroutines to learn these formulas, we may not be able to meet the time constraints of the
task. However, when the task is flexible in terms of execution time, we can combine the
learning subroutines with the main protocol.

Definition 4.7: Task is said to be elastic if for every C; and Cy (where C; is a finite
sequence of configurations and C, is a C-history) such that C; - Cy € Task, it is the case that
Ci-c-Cy € Task as well. (Where ¢ € £ and - is the concatenation operator.)

The following result illustrates the role we envision for learning results. Whereas in
Theorem 4.5 we showed that, under appropriate conditions, an agent that is K-capable of
{©0, - --,pr} can perform O({¢o,-..,¢r}) tasks, we now show that an agent that can learn
{©0, - - -, ¢} can perform such tasks.

Theorem 4.8: If Task = O,,({v0,-..,¢r}), Task is elastic, and A = (L, Actions) can
learn {@o, ..., o} in Z[1, A] for some ty-consistent I, then Ay(m41y can perform Task from

Iimyny-

Proof: Intuitively, we show that A can perform Task by behaving as though it is K-capable

of {¢o, .., ¢r}. Whenever it reaches a state in which it does not have sufficient information,
it employs an appropriate learning subroutine. The details can be found in the Appendix.
|

Roughly, an agent that employs a learning subroutine can be viewed as running an
implementation of the following SKBP:
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Figure 2: A maze

case of
if Koy then 7q;
if Koy then 7;

if Ko, then 7,;
else learn one of Kay, ... Kay;

This is a special class of SKBPs in which not all conditions are positive. In general, we
believe that negative conditions play precisely this role, acting as learning subroutines.

The concepts introduced so far, together with results such as Theorems 3.17,4.5, and 4.8,
suggest the following methodology for task and agent analysis: (1) Characterize the knowl-
edge complexity of a task; (2) Characterize the knowledge capabilities of the agent; (3)
Understand what the agent is capable of learning; (4) Combine these results to understand
whether an agent can perform the task. In addition, answers to the first question provide nec-
essary insight for the design of agents capable of performing a particular task. We illustrate
these ideas in the following example.

Example 4.9: We examine the problem of maze searching. This domain, which has
received considerable attention in the past (e.g., [Bud75, BK78]), allows us to illustrate the
use of our formal language in a nontrivial application. More importantly, we shall show
that existing work in this area, due to Blum and Kozen [BK78|, can be best understood
as performing a knowledge-complexity analysis of this domain that naturally fits within the
above methodology. This perspective was not explicitly taken by the original work. The first
author to adopt such an information-analytic perspective of Blum and Kozen’s results was
Donald [Don94], in the context of his theory of information invariants. This work, in turn,
led us to attempt to provide a general language and methodology, based on the concept of
knowledge, for capturing such information complexity analysis.

A magze is a finite, two-dimensional, obstructed checkerboard (see Figure 2). To search a
maze, a robot, started on any cell, must eventually visit every reachable cell without passing
through any of the obstacles. At each time step, the robot can move one unit in any one of
the directions north, east, south, or west, as long as the target cell is not part of an obstacle.
Budach [Bud75] has shown that a finite-state robot cannot search all mazes. Later, Blum
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Figure 3: GREEN and Green

and Kozen showed that two finite-state robots can search all mazes, and that a single robot
with a counter can search all mazes as well. We shall show that Blum and Kozen’s work can
be interpreted as characterizing the knowledge complexity of maze-searching for agents and
the knowledge capabilities of a number of agents.

In this domain, the configuration space consists of pairs of the form

(maze, non-obstructed cell of that particular maze).

Each such state can be a possible initial state, i.e., the robot may start at any cell in any
maze. The physical capabilities of the robot are such that it can move to any non-obstructed
cell to its immediate north, east, south, or west.

The task description corresponds to the set of trajectories in which all non-obstructed
cells within the maze are visited. That is, the robot is thrown into some random cell in some
random finite maze and must visit all non-obstructed cells in this maze. Clearly, this is an
elastic task.

Assume that the language contains the following propositions: b-north, b-east, b-south,
b-west, Green, and GREEN. A state satisfies b-north, b-east, b-south, or b-west when
the adjacent north/east/south/west cell is obstructed. A state satisfies the proposition
Green when one or more of the four vertices of the cell is green. A vertex is green if
it is the unique point (zg,yy) of some boundary BDRY (i.e., either the boundary of the
whole maze or the boundary of one of the obstacles) such that for all (z,y) € BDRY,
[yo <y or (yo =y & zo < x)]. In particular, if this unique point lies at the southwest corner
of the cell, GREEN is satisfied (see Figure 3).

Blum and Kozen prove that a robot with an infinite counter that always knows the value
of the propositions b-north, b-east, b-south, and b-west can search all finite mazes. What is
interesting from our perspective is the manner in which this result is proved.

First, we can conclude from Blum and Kozen’s work that maze searching is O3(CON({GREEN, Green,
north, b-east, b-south, b-west}), where CON ({a, ..., ax}) consists of all the formulas of the
form Gy A ... A Br, where [3; is either «; or —«;. That is, any robot that always knows the
value of the propositions GREEN, Green, b-north, b-east, b-south, b-west can search all fi-
nite mazes. In fact, Blum and Kozen provide a conditional plan for searching all finite mazes
in which the only conditions refer to the value of these propositions. Control of execution of
this plan requires no more than three extra bits.
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Blum and Kozen also show that an agent with an infinite counter that always knows
the value of the propositions b-north,b-east,b-south,b-west can learn the value of Green and
GREEN. Because maze searching is an elastic task, these results can be combined, a manner
similar to Theorem 4.8, to show that such a robot can search all finite mazes. 1

5 Related Work

We have attempted here to unify work on knowledge in multi-agent systems in the distributed
systems community with work on information and sensing in the robotics community. As
we mentioned earlier, we were particularly influenced by the earlier work of Donald [Don94]
and Erdmann [Erd94] on the robotics side, and the work of Fagin et al. [FHMV95] on the
distributed systems side. We briefly discuss the connection between our results and related
work in this section.

5.1 Erdmann’s Abstract Sensors

In [Erd94], Erdmann argues that the role of sensors is to provide sufficient information to
choose “good” actions, and that they should be constructed to fulfill this task. An action
is good if it makes progress towards attaining the goal state according to some progress
measure. Hence, given a progress measure, we can assess the sensing requirements of a task
by examining which actions make progress in which states. Erdmann shows how we can
obtain a progress measure for a task from an algorithm for that task.

Erdmann’s description of sensors is abstract, given in terms of the sets of states they
can distinguish between. Formulas, too, are given semantics in terms of the set of states in
which they hold. An abstract sensor is a sensor that tells the agent that it is within some
set S. This is naturally captured by our concept of knowledge: if S is the set of states in
which ¢ holds then we can say that, given the sensor reading, the agent knows ¢. Hence,
we see that the semantics of Erdmann’s abstract sensors is closely related to the semantics
of knowledge.

Our work can be viewed as formalizing some of Erdmann’s ideas using the concept of
knowledge. While we have added new concepts to those discussed by Erdmann, it would have
been possible to develop essentially similar ideas using a purely set-theoretic framework, as in
Erdmann’s work.” However, the logical framework we provide is more suitable for extending
these ideas to multi-agent systems in which the issue of information requirements arises
naturally (e.g., in the problem of task distribution [DJR93]). In this context, a set-theoretic
representation of an agent’s information is quite cumbersome and opaque, while the epistemic
language used here is much more transparent and intuitive. Indeed, we believe this is true
even in the single-agent case. In addition, suggests other tools for describing and analyzing
the capabilities of agents such as the notions of K-capability and learning we have introduced
here.

"Indeed, this is true of most applications of knowledge theory. More generally, one could do away with
any formal logical language (that has an adequate semantics) reasoning with its model theory directly.

22



5.2 Donald’s Capability Classes

Donald [Don94] attempted to classify sensors into capability classes, to quantify the infor-
mation capabilities of sensor systems, and to characterize the relationship between different
capability classes. This work motivated many of the questions we are concerned with, leading
us to adopt a more “complexity-theoretic” approach, as well as our notion of K-capability.

There are, however, significant differences between Donald’s framework and our frame-
work. In its aim and its semantics, our work is much closer to Erdmann’s work. Like
Erdmann, we emphasize the sensing requirements of tasks. Donald, on the other hand,
emphasizes the sensing capabilities of system. Donald’s notion of capability of systems is
more detailed than our notion of K-capability, and its definition is less abstract and more
geometric. Because his concepts are defined with respect to a lower, more detailed system
description than ours, many of them have no analogues in our framework.

5.3 Knowledge in Multi-Agent Systems

Logics of knowledge were introduced into the study of distributed systems by Halpern and
Moses [HM90] and into artificial intelligence by Moore [Moo85] and Rosenschein [Ros85].
The semantics of knowledge we have adopted is based on [HM90, Ros85], but much of the
formal development, e.g., the concepts of runs, systems, and knowledge-based programs
is essentially taken from [FHMVO95|, although there are some differences, as we discussed
earlier.

Previous work in distributed systems has used knowledge as a tool for analyzing and
reasoning about the information requirements of tasks. Lower bounds on the information
requirements of certain basic tasks in distributed systems have also been established. For
example, as we mentioned earlier, Halpern and Moses [HM90] show that common knowledge
is required to perform coordinated attack and that it cannot be attained in many systems of
interest. Chandy and Misra [CM86] consider a system of n processors in which the property
of mutual exclusion with respect to some critical section is maintained, and show that under
certain assumptions on this system, a process must have certain knowledge when it enters
the critical section. Then they establish a lower bound on the number of messages that
must be sent for this knowledge to be attained. Consequently, one can deduce that at least
this number of messages must be passed among processors if the critical section is to be
maintained. These results provide important motivation for the approach we have taken to
the analysis of tasks.

5.4 Knowledge, Actions, and Plans

Epistemic logic has played an important role in formalizing the process of planning under
uncertainty. Most notably, the work of Moore [Moo85] and Morgenstern [?] is concerned
with supplying appropriately expressive knowledge representation tools for agents that must
reason about their knowledge in the course of their planning activities. Such work considers
the issue of knowledge preconditions for plans and the conditions under which an agent
knows how to perform an action (where that last term is quite broadly defined). While there
are many similarities between these concerns and the concerns of our paper, they differ in
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terms of their goal and viewpoint. Whereas Moore and Morgenstern are concerned with
formalizing the task of planning from the perspective of the agent, we are concerned with
supplying tools to designers of agents. Hence, their perspective is internal, taking the point
of view of the planning agent, and our perspective is external, taking the point of view of an
external analyst or designer. With these distinct objectives come different assumptions. We
assume that our designer has an accurate model of the domain and of the robot’s actuators.
The designer’s task is to choose appropriate sensors and software that will allow the robot
to perform its tasks. She is not constrained to have some particular amount of knowledge;
rather, she will attempt to discover the amount of knowledge needed for performing the task.
Moore and Morgenstern, on the other hand, consider planning agents who lack knowledge
of the precise effects of their actions and may need to actively plan in order to learn this
information. Having taken the design perspective and relying on an accurate model of the
domain, the need for greater expressive power and realistic modeling of the agent’s knowledge
that motivates some of the developments of Moore and of Morgenstern is less of an issue for
us.

6 Future Work

We have shown how formal measures of informational complexity and capability can be used
to analyze robotic systems. We have only scratched the surface here. There are a number
of interesting issues that are worth exploring further. We briefly list a few of them here:

e We have focused on the problems where we can discuss what must be known at ev-
ery step of the computation. As we mentioned earlier, there are times when we are
interested only in what must be known eventually. It would be of great interest to
extend our notions of knowledge complexity and knowledge capability so that they can
deal with this. Notice that, among other things, this would mean extending our no-
tions so that we can use a richer language, involving temporal connectives, to express
complexity and capability.

e The notion of K-complexity differs from those of time and space complexity in that K-
complexity values are not totally ordered. However, there appears to be an interaction
between K-complexity on the one hand and time and space complexity on the other.
Intuitively, while a robot with minimal knowledge might be able to perform a task,
with more knowledge it might be able to perform the task more efficiently in terms of
computation time or space. As we have seen, allowing the agent additional control bits
can enable the agent to gain knowledge. It would be interesting to understand better
the tradeoffs between time/space complexity and K-complexity.

e We have implicitly assumed that an agent can use all the information implicit in its local
state. In general, it may be quite difficult for an agent to compute what it knows, as
a function of its internal state. For example, there may be a great deal of information
encoded in the local state of a vision system. Getting a computational notion of
knowledge that deals with this information is an interesting and difficult problem (see
the discussion of logical omniscience and algorithmic knowledge in [FHMV95]).
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e Once we allow the agent to learn, we can explore the possibility of knowledge reductions.
Roughly speaking, we can say that a set A of propositional formulas is reducible to
B if knowing the formulas in B suffices for learning the formulas in A. For example,
consider a robot in an obstacle-free maze that can move in any direction. Suppose
the robot is equipped with a touch sensor, allowing it to detect if it is adjacent to
the boundary. Hence, this robot is K-capable of {Side, ~Side}, where Side is true if
the robot is immediately adjacent to the boundary. Suppose the proposition near is
true if the robot is one step away from the boundary. The robot is not K-capable of
{near, —near}, but clearly the robot can learn {near, —near} (perhaps with the aid of
a few control bits). In this case, we can say that near is K-reducible to {Side, ~Side}.
Using K-reducibility together with learning could enhance our general methodology
of designing programs top-down, starting with knowledge and then implementing the
knowledge tests.

e We are particularly interested in applying our ideas to the problem of task distribution,
in which information plays a crucial role. In task distribution, a central controller for
the system must be replaced by a set of distributed controllers. In order to succeed,
the distributed controllers must have sufficient information about the state of the
other components of the system as well as about the state of the external world.
However, we would like them to have this information with as little additional overhead
of communication.

The concept of knowledge, on which the formalism introduced in this paper rests,
extends naturally to such multi-agent settings. Subscripted knowledge operators can
be used to denote information of a particular agent. Intuitively, K, says that agent
a knows ¢, and Ky says that agent b knows ¢. Moreover, using nested knowledge
operators, we can describe knowledge one agent has about another agent’s knowledge.
For example, Ky, K, says that agent b knows that agent a knows .

Conceptually, designing a centralized controller is easier than designing a set of dis-
tributed controllers. Yet sometimes, a distributed solution is desirable or essential.
An intermediate approach would be to design, or synthesize, a centralized controller,
or SKBP, for a task, and use it to derive a distributed SKBP; this distributed SKBP
would tell us what information each agent requires. For example, the following dis-
tributed SKBP performs the task discussed throughout this paper:

Pg(arm;)={If K;g then Stop; If K;¢o A =K;g then Move},

Pg(arms)={If K>;K;g then Move; If K,—K;g then Stop}.
An examination of this SKBP? shows that the second arm is always required to know
whether the first arm knows g or not. In designing a distributed controller for this sys-
tem, we must take care to provide such knowledge to the second arm, whether directly,
via communication, or indirectly, via some observation. An algorithm for automatically
transforming an SKBP for a centrally controlled system to a distributed SKBP was
presented in [BS95]. While the applicability of this algorithm is still unclear, we hope
that pursuing these ideas will lead us to a better understanding of decentralization.

8This is a more general form of SKBP in which a negative knowledge condition appears.
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e Our approach (as well as Donald’s and Erdmann’s) holds the capabilities of the robots
fixed and measures only sensing complexity. However, we would also like to understand
whether it is possible to combine our measure of informational complexity with a
measure of actuation complexity to obtain a better characterization of the information
complexity of tasks and capabilities of robots.

More generally, we view our work as continuing a tradition of attempting to understand
some basic and difficult issues in the design of situated systems. There seems to be quite a
way to go until all the current ideas in this area converge to a single accepted model. We
believe that the framework presented here makes some progress towards this goal.

7 Appendix: Proofs

Proposition 3.8: If A <¢ B, Task is O(A), and € |= V,epy, then Task is O(B).

Proof: Suppose A = {p1,..., ¢k}, and B = {41,..., 9%, }. Because Task = O(A), there
exists some SKBP Pg = {(K;,7:) | i € {1,...,k}} that performs Task. Because A <¢ B,
there is a function f : {1,...,m} — {1,...,k} such that & = 9; = ¢y;). Let Pg’ be the
SKBP {(Ks,7¢6)) | i € {1,...,m}}. Clearly its knowledge conditions are { K1, ..., Kt/ }.
We claim that it performs Task, and that, therefore, Task = O(B). In order to prove this
claim, it suffices to show that (1) any good implementation of Pg’ is a good implementation
of Pg and (2) there is a good implementations of Pg'.

To prove (1), suppose that P is a good implementation of Pg’ for some agent A =
(L, Actions) from some ty-consistent I. At each local state | € L, agent A performs
some action ¢; that implements some transition 7f; such that (K wi,Tf(i)) € Pg’ and
I[I,A,P|,l = Ki;. Since £ = 1 = @), the properties of the K operator guarantee
that Z[I, A, P],l = K¢, — Kyju. Thus, at each local state [ € L, agent A performs
some action g; that implements some transition 77 such that (K¢sq), 7s)) € Pg and
I[I,A,P],l = K. This implies that P is an implementation of Pg from I. To see that
P is a good implementation of Pg from I, notice that, since P is a good implementation of
Pg' from I, we have Z[I, A, P| = K9y V...V Kt,,. By the arguments above, it follows that
I[I,LA P E Koy V...V Kpgay. Thus, I[I, A, Pl = Ko V..., Ky, as desired.

To see that (2), there is a good implementation of Pg' starting from some ty-consistent
I, let A* = (L*, Actions™) be the agent, that, intuitively, has perfect information. More
precisely, let L* = &; for each transition 7, let a, be the action defined by a.(c,c) =
({(d,d) : d € 7(c)}. Let Actions = {a, : 7 € A}. Let I* = {(¢,c) : ¢ is the initial
configuration of some C-history in Task}. Let P* be the protocol for agent A* defined
via P*(c) = {ar, : ¢ & ¢;,1 <1 < m}. Clearly, the only global states that arise in
runs in Z[I*, A*,P*] have the form (c,c) for ¢ € £. It easily follows that if ¢ = ¢ for
some propositional formula ¢, then Z[I*, A*,P*],¢ = K. Since we have assumed that
EE Y1 V...V, it follows that Z[I*, A*, P*] = K V...V Ki,. It is also easy to see
that P* implements Pg’ from I*. Thus, there is a good implementation of Pg’ from some
to-consistent set of initial states. |1
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Lemma 3.16: Let ¢1,..., ¢ be propositional formulas. Then Z[I, Al = Ko1 V...V Ky
i I, APl = Ke1 V...V Ko for every protocol P for agent A.

Proof: First suppose that Z[I, A] = K¢1 V...V Kgi. By definition, S[I,.4,P] C S[I, A].
It easily follows that for every propositional formula ¢ and every point (r,m) in Z[I, A, P], if
I[I, A],r,m = Ko then Z[I, A, P],r,m = Kp. Thus, we have that Z[I, A,P] E Kp1 V...V
K. For the converse, suppose A = (L, Actions). Let P* be the protocol that allows the
agent to perform every possible action at every local state; that is, P(l) = 24¢%ns\ () for each
l € L. It is easy to see that Z[I, A, P*] =Z[I, A]. Hence, if Z|I, A,P*| = K1 V...V Kgy,
then surely Z[I, A = K1 V...V Kgp. 1

The following lemma is used in the proof of Theorem 3.17, and is also of interest in its
own right, since it shows an important special case where an implementation is guaranteed
to exist.

Lemma 7.1: If Pg is an SKBP with positive knowledge conditions K1, ..., Ky, and A is
K-capable of {¢1, ..., o} with respect to I, then Pg has a good implementation from I.

Proof: Let P = Pg’ (14l We claim that P is a good implementation of Pg. In order to prove
this, we have to show that P(1) C Pg?"4%)(1), and that Z[I, A, P] = K¢y V...V K¢;. The
latter fact follows immediately from Lemma 3.16, since A is K-capable of {¢1, ..., ¢r} with
respect to I. The former also follows along much the same lines as the proof of Lemma 3.16.
Since S[I, A,P] C S[I,A], it follows that for every propositional formula ¢ and run r
in Z[I, A, P], it Z|I, Al,r,m = K¢ then Z[I, A, P,],r,m = K¢. Thus, every knowledge
condition that holds at the local state [ in the system Pg” [AP] also holds at [ in the system
Pg?Al Thus, PgZHAPI(1) D PgTHA() = P(1). 1

Theorem 3.17: If Task= O({¢1,...,¢r}) and A is K-capable of {1, ..., o} with respect
to I, where I is to-consistent with Task, then A can perform Task from I.

Proof: If Task = O({¢1,...,pr}) then there exists an SKBP Pg with knowledge conditions
Koy, ..., Ky that performs Task. It follows from Lemma 7.1 that Pg has a good implemen-
tation from I. Since Pg performs Task and I is ty-consistent with Task, by definition, any
good implementation of Pg from I performs 7Task. This implies that A can perform Task.

Theorem 3.19: Suppose that (1) for all I ty-consistent with Task, if agent A is K-capable of
{©1, ..., 0K} with respect to I then A can perform Task from I, and that (2) some agent is K-
capable of {@1,..., o} from some I ty-consistent with Task. Then Task = O({p1, ..., or})-

Proof: We must find an SKBP Pg with conditions K, ..., Ky that performs Task. We
do this as follows: We first define a particular agent A that can perform Task. We use the
program P4 it uses to perform Task to define the required SKBP Pg. Then we show that
any execution of Pg is identical (when projected to £) to an execution of P,. Since Py
performs Tusk, all of its executions are in the task, and hence, we will have shown that all
executions of Pg are in the task.
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Agent A = (L, Actions) is constructed as follows. Let L = {ly,...,lx}. For each
configuration ¢, let Holds(c) = {l; : ¢ = ¢;,7 = 1,...,k} if ¢ = ¢1 V...V ¢, and
let Holds(c) = {lop} otherwise. For a transition 7 € A, let a, be an action defined by
ar(c,1) = Ugerey({c'} x Holds(c')). We define Actions = {a. : 7 € A}.

Let I4 be {(C(0),])|C € Task, | € Holds(C(0))}. We claim that A is K-capable of
{¢1,.-.,pr} with respect to I4. It is easy to see that our construction guarantees that
T[4, A],l; = Ky;. Thus, it suffices to show that the local state Iy does not arise in Z[14, .A].

To see this, first notice that if I and I’ are sets of initial states to-consistent with Task,
and A and A’ are two agents situated in (£, A), then the set of configurations that arise
in Z[I, A] and Z[I', A'] must be the same, since this set of configurations depends only on
the possible initial configurations (given our assumption that for every transition 7 € A,
there is an action that each of A and A’ can perform that agrees with 7 when projected
to configurations). Next, observe that assumption (2) in the theorem guarantees that there
is some agent A’ and some initial set I’ of global states tg-consistent with Task such that
A’ is K-capable of {¢1,...,¢r} with respect to I'. Thus, Z[I' A'] = K¢ V ...V Kgy.
It follows that Z[I', A'] = @1 V ...V ¢i. Since the same configurations arise in Z[I', A']
and Z[I4, A], and the truth of a propositional formula depends only on the configuration,
it follows that Z[I4, A] = @1 V...V ¢r. Thus, Holds(c) # {lp} for any configuration ¢
that arises in Z[[4, . A]. Hence, the local state Iy does not arise in Z[I4, A]. It follows that
T[Ia, Al = K1 V...V Ky, as desired.

It now follows from assumption (1) that A can perform Task from I4, and there must
be a protocol Py for A that performs Task from I 4. Define the SKBP Pg = {(Ky;,7) € P :
ar € Py(l;),i=1,...,}. We claim that Pg performs Task. In order to prove this, we must
show that if B is an agent and Pg is a good implementation of Pg from some set of initial
states Ig that is typ-consistent with Task, then Pg performs Task from Iz. Since Pg is a good
implementation of Pg from Iz, we have that Z[Iz, B, Ps| E Kp1 V ---V Ky, and that if
a € Pg(l), then there is some j such that (Ky,,7,) € P and Z[Ig, B, Pg|,l = K¢;. Suppose
that r is an execution of Pg from (c¢,l) € I, and let C denote the C-history defined by r
(i.e., C = Teonfig()). We complete this proof by showing that there is an execution of Py
from some global state (c,l’) € I4 that defines precisely the same C-history C. This implies
that C € Task, because P4 performs Task. Therefore, we have that Pgz performs Task from
I5.

Let af,d?, ... be the sequence of actions performed by B along the run r, and let 7¢, 71, . . .
be the transitions that a5,a?,... implement. Let ;,,¢;,,... be a sequence of formulas

(each of which belongs to {¢1,...,¢r}) such that (K¢; ,7,) € P and C(n) = ¢;,. That
such formulas exists follows from the fact that Pz implements P: By definition, the action
assigned by Pp at a state (c,l) implements a transition assigned by P to some knowledge
condition K¢ that holds at (¢, [); thus, ¢ = .

We define 74 by taking r 4(n) = (C(n), ;,) for all n. Obviously, proj,,.m, (7.4) = Projeoug, (7)-
It remains to show that r4 is an execution of P4. In order to prove this we have to show
that for all n: (1) r4(n+ 1) € a,, (ra(n)), and (2) a,, = Pa(li,) (where a,, is the unique
action of A implementing 7,,.)

Proof of (1): By definition, (c,l;) € a,,(C(n),;,) iff ¢ € 7,,(C(n + 1)) and ¢, holds at c.
But by construction, C(n+1) € 7,,(C(n)) (since this configuration was obtained by applying
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7. to C(n)) and ¢, ,, holds at C(n+1)). Hence, (C(n+1),l,,,) = ra(n+1) € a,, (C(n),1;,) =
ar, (ra(n)).

Proof of (2): The action taken at time n by A is the (only) action that implements the
transition 7,, that B’s action at time n implements. Recall that P was obtained by adding a
pair (¢;, 7m) whenever a. is assigned to /;. Hence, it must be the case that Pa(l;,) = a-,,
which is what we wanted to show. |

Theorem 4.5: If Task = O,,({¢1,---,¢r}) and A = (L, Actions) is K-capable of {1, ..., ok}
in Z[I, A] for I ty-consistent with Task, then A.,, can perform Task from I,,.

Proof: With slight modification to accommodate the m additional control bits, the proofs
of Lemma 7.1 and Theorem 3.17 generalize to this case. |

Theorem 4.8: If Task = O,,({p1,...,¢x}), Task is elastic, and A = (L, Actions) can
learn {1, ..., o} in Z[1, A] for some ty-consistent I, then Ay (m41y can perform Task from

I—I—(m—f—l) -

Proof: First, recall that by Theorem 4.5, if A is K-capable of {¢1, ..., ¢}, it can perform
Task with the aid of m additional bits from I,,. Thus, an m-bit SKBP Pg exists that
performs Task.

In order to show that A, (m41) can perform Task, we must provide a program for it
that performs Tuask. Intuitively, this is done as follows: we describe an agent similar to
A that is K-capable of {¢1, ..., ¢} from I. Consequently, we know that this agent has an
implementation P of Pg that performs Task from I,,. We let A execute this implementation.
However, this implementation is not defined on all states of A. In particular, it is not defined
on those state in which A does not know any of the conditions {¢1, ..., ¢x}. In those states,
we let A learn these conditions. After learning one of these conditions, A will reach a local
state on which the given implementation is defined. Notice that this approach requires A to
switch between P and the learning subroutines. Thus, an additional bit is needed to keep
track of whether P is being executed or the learning program, and m additional bits are
needed to execute P itself; A (,11) has these additional bits. Finally, although learning may
take a while, because the task is elastic, we do not mind the detours the learning subroutine
may cause.

We proceed as follows. Let Py, be the protocol for A that learns {¢1,...,¢r} in Z[I, AJ.
Let A" = (L', Actions'), where

o '={leL|ZI[[LA,l=EKp V...V Kg}
o Actions' = {ao Py | a € Actions} where a o Py(c, 1) & Pp(a(c,1)).

Notice that A’ is well defined, and implements the same transitions that A implements. This
follows from the fact that for every global state s in Z[I, A], it is the case that proj .z, Pr(s) =
Projeong(s). (Here is where we are using the fact that a learning program has no side effects
on the configuration.) Moreover, we know that proj,,.,PL(s) € L', since Py is a learning
program for A. Moreover, A’ is K-capable of {1, ..., ¢} in Z[I', A'], where I' = Use Pr(s).
(Notice that proj,,,z, (1) = Proj.,.m,(I'), and so I' is to-consistent with Task.) In order to see
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this, note that the set of global states that arise in Z[I’, A] is a subset of the global states that
arise in Z[I, A]. This follows from the fact that (1) L' C L, (2) I' € Z[I, A], and (3) for all
a' € Actions’ and global states s in Z[I, A], we have a/(s) € Z|s, A]. Next, we note that, by
definition, if proj,,.;(s) € L', then Z[I, A],s = K1 V...V K. Because Z[I', A'] C Z[I, A]
and the formulas ¢; are propositional, we conclude that Z[I', A'],s = K¢; V...V Ky as
well.

We have shown that A’ is K-capable of {1, ..., ¢x}. Therefore, A’ . has an implemen-
tation P’ of Pg that performs Task from I,,. We define a protocol P for A 41y that acts
as follows: when the first bit is 0, it emulates the behavior of P’ whenever possible. When
this is not possible, it switches the first bit to 1, indicating that the learning program should
be executed, and it executes the learning program. Once it finishes the execution of the
learning program, it switches the first bit back to 0 and resumes emulation of P':

e If/le L' and d; = 0, then 7)(0, dy, ..., dm+1, l) = Pl(dz, R ,dm+1, ll)
o 1t/ ¢ I and dy = 0, then P(0,ds, ..., dps1, 1) = Set(ds = 1).
o Ifl € Ly and d; 75 0, then P(l,dg, .. .,dm+1,l) = Set(d1 = 0)

o If | & Ly and dy # 0, then P(1,ds, ..., dmni1,1) = (Pr(l), Idmy1)
where (P (1), Id,,+1) is identical to P (l) on €x L, and Id,, ;1 is the identity assignment
on dl, ey dm—|—1-

As should be apparent from its definition, every execution of P from I(;,41) corresponds
to some execution of P’ into which some finite subsequences are inserted, corresponding to
the (terminating) executions of P. We know that every execution of P’ from I, is in Task
and that Tusk is elastic. We conclude that every execution of P must also be in Task. |
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