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Abstract

In previous work [BGHK92, BGHK93], we have studied the random-worlds approach—a
particular (and quite powerful) method for generating degrees of belief (i.e., subjective prob-
abilities) from a knowledge base consisting of objective (first-order, statistical, and default)
information. But allowing a knowledge base to contain only objective information is some-
times limiting. We occasionally wish to include information about degrees of belief in the
knowledge base as well, because there are contexts in which old beliefs represent important
information that should influence new beliefs. In this paper, we describe three quite general
techniques for extending a method that generates degrees of belief from objective informa-
tion to one that can make use of degrees of belief as well. All of our techniques are based
on well-known approaches, such as cross-entropy. We discuss general connections between
the techniques and in particular show that, although conceptually and technically quite
different, all of the techniques give the same answer when applied to the random-worlds
method.
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1 Introduction

When we examine the knowledge or information possessed by an agent, it is useful to distin-
guish between subjective and objective information. Objective information is information about
the environment, whereas subjective information is information about the state of the agent’s
beliefs. For example, we might characterize the information of an agent travelling from San
Francisco to New York as consisting of the objective information that the weather is warm in
San Francisco, and the subjective information that the probability that the weather is warm
in New York is 0.2. The important thing to notice here is that although we can in principle
determine if the agent’s objective information is correct (by examining what is actually the case
in its environment ), we cannot so easily say that its subjective beliefs are correct. The truth or
falsity of these pieces of information is not determined by the state of the environment.

Although subjective information could take many different forms, we will concentrate here
on degrees of belief. These are probabilities that are assigned to formulas expressing objective
assertions. For example, the assertion “the weather is warm in New York” is an objective one:
it is either true or false in the agent’s environment. But when we assign a degree of belief to this
assertion, as above, we obtain a subjective assertion: it becomes a statement about the state
of the agent’s beliefs. In the context of probability theory the distinction between subjective
and objective can appear somewhat subtle, because some form of objective information (such
as proportions or frequencies) obey the laws of probability, just as do degrees of belief. Yet
the distinction can be a significant one if we want to use or interpret a probabilistic theory
correctly. Carnap’s work [Car50] is noteworthy for its careful distinction between, and study
of, both statistical probabilities, which are objective, and degree of belief probabilities, which
are subjective.

In order to understand this distinction, it is useful to provide a formal semantics for degrees
of belief that captures the difference between them and objective information. As demonstrated
by Halpern [Hal90], a natural, and very general, way to give a semantics to degrees of belief
is by defining a probability distribution over a set of possible worlds.! The degree of belief in
a formula ¢ is then the probability of the set of worlds where ¢ is true. In this framework we
can characterize objective information as consisting of assertions (expressed as formulas) that
can be assigned a truth value by a single world. For example, in any given world Tweety the
bird does or does not fly. Hence, the formula Fly( Tweety) is objective. Statistical assertions
such as ||Fly(z)|Bird(z)||, ~ 0.8, read “approximately 80% of birds fly”, are also objective.
On the other hand, Pr(Fly(Tweety)) = 0.8, expressing the assertion that the agent’s degree of
belief in Tweety flying is 0.8, is not objective, as its truth is determined by whether or not the
probability of the set of worlds where Tweety flies is 0.8.

Although we cannot easily characterize an agent’s degrees of beliefs as being correct or
incorrect, it is nevertheless clear that these beliefs should have some relation to objective reality.
One way of guaranteeing this is to actually generate them from the objective information
available to the agent. Several ways of doing this have been considered in the literature; for
example, [BGHK92, PV92] each discuss several possibilities. The approaches in [BGHK92]

!Conceptually, this notion of world is just as in classical “possible-worlds semantics”: a complete picture
or description of the way the world might be. Formally, we take a world to be an interpretation (model) for
first-order logic.



are based in a very natural way on the semantics described above. Assume we have a (prior)
probability distribution over some set of worlds. We can then generate degrees of belief from
an objective knowledge base KB by using standard Bayesian conditioning: to the formula ¢
we assign as its degree of belief the conditional probability of ¢ given KB. In [BGHK92] we
considered three particular choices for a prior, and investigated the properties of the resulting
inductive inference systems. In [BGHK93] we concentrated on the simplest of these methods—
the random-worlds method—whose choice of prior is essentially the uniform prior over the set
of possible worlds.

More precisely, suppose we restrict our attention to worlds (i.e., interpretations of an ap-
propriate vocabulary for first-order logic) with the domain {1,..., N}. Assuming we have a
finite vocabulary, there will be only finitely many such worlds. Random worlds takes as the
set of worlds all of these worlds, and uses perhaps the simplest probability distribution over
them—the uniform distribution—thus assuming that each of the worlds is equally likely. This
gives a prior distribution on the set of possible worlds. We can now induce a degree of belief
in ¢ given KB by using the conditional probability of ¢ given KB with respect to this uniform
distribution. It is easy to see that the degree of belief in ¢ given KB is then simply the fraction
of possible worlds satisfying KB that also satisfy ¢. In general, however, we do not know the
domain size N; we know only that it is typically large. We can therefore approximate the degree
of belief for the true but unknown N by computing the limiting value of this degree of belief
as N grows large. This limiting value (if it exists, which it may not) is denoted Prly(¢|KB),
and it is what the random-world method takes to be the degree of belief in ¢ given KB. In
[BGHK93], we showed that this method possesses a number of attractive properties, such as a
preference for more specific information and the ability to ignore irrelevant information.

The random-worlds method can generate degrees of belief from rich knowledge bases that
may contain first-order, statistical, and default information. However, as with any conditioning
process, is limited to dealing with objective information. When we add subjective formulas to
KB, we can no longer simply condition on KB: the conditioning process eliminates those worlds
inconsistent with our information, while the truth of a subjective formula cannot be determined
by a single world.? Hence, we would like to extend the random-worlds method so as to enable
it to deal with both objective and subjective information.

Why do we want to take into account subjective beliefs? There are a number of situations
where this seems to make sense. For example, suppose a birdwatcher is interested in a domain
of birds, and has an objective knowledge base KBy;,4 consisting of the statistical information

|| Cardinal(z)|- Red(z)||, ~ 0.1 A
| Cardinal(z)| Red(z)||» =~ 0.7.

Now the birdwatcher catches a glimpse of a bird b flying by that seems to be red. The bird-
watcher is trying to decide if b is a cardinal. By the results of [BGHK93], if the birdwatcher as-
sumes that the bird is not red, random-worlds gives Pri¥ ( Cardinal(b)|KBj;mq A = Red(b)) = 0.1.
On the other hand, if she assumes that the bird is red, we get Privy(Cardinal(b)|KBgiqa A
Red(b)) = 0.7. But it does not seem appropriate for her to do either; rather we would like to

’In the context of random worlds (and in other cases where the degrees of belief are determined using a
prior on the set of worlds), this problem can be viewed as an instance of the general problem of conditioning a
distribution on uncertain evidence.



be able to generate a degree of belief in Cardinal(b) that takes into account the birdwatcher’s
degree of belief in Red(b). For example, if this degree of belief is 0.8, then we would like to use
a knowledge base such as KBy A Pr(Red(b)) = 0.8. It seems reasonable to expect that the
resulting degree of belief in Cardinal(b) would then be somewhere between the two extremes of
0.7 and 0.1.

As another example, suppose we have reason to believe that two sensors are independent.
For simplicity, suppose the sensors measure temperature, and report it to be either high, A,
or low, [. We can imagine three unary predicates: S7(z), indicating that sensor 1 reports
the value z; S2(z), a similar predicate for sensor 2; and Actual(z), indicating that the actual
temperature is z. That the sensors are independent (given the actual value) can be represented
by the conjunction over all choices for z, 2/, and z” in {/,h} of:

Pr(S1(z") A S2(2")|Actual(z))
= Pr(S1(2')|Actual(z)) x Pr(S2(z")|Actual(z)).

It could be that we have determined that the sensors are independent through the observation
of a number of test readings. Such empirical evidence could be summarized by a statistical
assertion and thus added to our knowledge base without requiring a degree of belief statement
like the above. However, this is not the normal situation. Rather, we are more likely to have
based our belief in independence on other information, such as our beliefs about causality. For
example, the sensors may have been built by different manufacturers. In this case, it seems
most reasonable to represent this kind of information using an assertion about degrees of belief.

How, then, can we incorporate information about degrees of belief into the random-worlds
framework? More generally, given any inference process®> —i.e., a method for generating degrees
of belief from objective information—we would like to extend it so that it can also deal with
subjective information. This is an issue that has received some attention recently [PV92, Jae94b,
Jae94a]. We discuss three techniques here, and consider their application in the specific context
of random worlds. As we shall see, all of our techniques are very closely based on well-known
ideas in the literature. Two make use of cross-entropy, while the third is a generalization of
a method considered by Paris and Vencovska [PV92]. They are conceptually and formally
distinct, yet there are some interesting connections between them. In particular, in the context
of random-worlds they generally yield the same answers (where the comparison makes sense;
the various methods have different ranges of applicability). Many of the results we discuss are,
in general terms if not in specific details, already known. Nevertheless, their combination is
quite interesting.

We now describe the three methods in a little more detail. The first method we examine
is perhaps the simplest to explain. We consider it first in the context of random worlds. Fix
N. Random worlds considers all of the worlds that have domain {1,..., N}, and assumes they
are equally likely, which seems reasonable in the absence of information to the contrary. But
now suppose that we have a degree of belief such as Pr(Red(b)) = 0.8. In this case it is no
longer reasonable to assume that all worlds are equally likely; our knowledge base tells us that
the worlds where b is red are more likely than the worlds where b is not red. Nevertheless,
there is a straightforward way of incorporating this information. Rather than taking all worlds

®The term “inference process” is taken from Paris and Vencovska [PV89]. Our framework is slightly different
from theirs, but we think this usage of the term is consistent with their intent.



to be equally likely, we divide the worlds into two sets: those which satisfy Red(b) and those
which satisfy = Red(b). Our beliefs require that the first set have probability 0.8 and the second
probability 0.2. But otherwise we can make the worlds within each set equally likely. This is
consistent with the random worlds approach of making all worlds equally likely. Intuitively,
we are considering the probability distribution on the worlds that is as close as possible to our
original uniform distribution subject to the constraint that the set of worlds where Red(b) holds
should have probability 0.8.

What do we do if we have an inference process other than random worlds? As long as it
also proceeds by generating a prior on a set of possible worlds and then conditioning, we can
deal with at least this example. We simply use the prior generated by the method to assign
relative weights to the worlds in the sets determined by Red(b) and —Red(b), and then scale
these weights within each set so that the sets are assigned probability 0.8 and 0.2 respectively.
(Readers familiar with Jeffrey’s rule [Jef92] will realize that this is essentially an application of
that rule.) Again, intuitively, we are considering the distribution closest to the original prior
that gives the set of worlds satisfying Red(b) probability 0.8.

Unfortunately, the knowledge base is rarely this simple. Our degrees of belief often place
complex constraints on the probability distribution over possible worlds. Nevertheless, we would
like to maintain the intuition that we are considering the distribution “closest” to the original
prior that satisfies the constraints imposed by the KB. But how do we determine the “closest”
distribution? Omne way is by using cross-entropy [KL51]. Given two probability distributions
and 4, the cross-entropy of u’ relative to yu, denoted C'(y, pt), is a measure of how “far” ' is
from g [SJ80, Sho86]. Given an inference method that generates a prior and a set of constraints
determined by the KB, we can then find the distribution on worlds satisfying the constraints
that minimizes cross-entropy relative to the prior, and then use this new distribution to compute
degrees of belief. We call this method CEW (for cross-entropy on worlds).

The next method we consider also uses cross-entropy, but in a completely different way.
Suppose we have the (objective) knowledge base KBy;, given above, and a separate “belief
base” BBy;q = (Pr(Red(b)) = 0.8). As we suggested, if the birdwatcher were sure that b was
red, random worlds would give a degree of belief of 0.7 in Cardinal(b); similarly, if she were sure
that b was not red, random worlds would give 0.1. Given that her degree of belief in Red(b) is
0.8, it seems reasonable to assign a degree of belief of 0.8 X 0.7+ 0.2 x 0.1 to Cardinal(b). In fact,
if we consider any inference process I (not necessarily one that generates a prior probability on
possible worlds), it seems reasonable to define

I( Cardz'nal(b)|KBbM A BB[,M)
= 0.8 x I(Cardinal(b)|KByiq A Red(b))
+ 0.2 x I(Cardinal(b)|KBpyirq A ~Red(b)).

More generally, we might hope that given an inference process I and a knowledge base of the
form KB A BB, we can generate from it a collection of objective knowledge bases KBy, ..., KB,
such that I(¢|KB A BB) is a weighted average of I(¢|KBy),...,I(¢|KB,,), as in the example.
In general, however, achieving this in a reasonable fashion is not so easy. Consider the belief
base BB};,; = (Pr(Red(b)) = 0.8) A (Pr(Small(h)) = 0.6). In this case, we would like to define
I(Cardinal(b)|KBpig A BBY,,;) using a weighted average of I(Cardinal(b)|KByia A Red(b) A
Small(b)), I( Cardinal(b)|KByzq A Red(b) A =.Small(b)), etc. As in the simple example, it seems



reasonable to take the weight of the term I( Cardinal(b)|KBy;q A Red(b) A Small(b)) to be the
degree of belief in Red(b) A Small(b). Unfortunately, while BB}, ,; tells us the degree of belief in
Red(b) and Small(b) separately, it does not give us a degree of belief for their conjunction. A
superficially plausible heuristic would be to assume that Red(b) and Small(b) are independent,
and thus assign degree of belief 0.8 x 0.6 to their conjunction. While this seems reasonable in
this case, at other times it is completely inappropriate. For example, if our knowledge base
asserts that all small things are red, then Red(b) and Small(b) cannot be independent, and we
should clearly take the degree of belief in Red(b) A Small(b) to be the same as the degree of belief
in Small(b), namely, 0.6. In general, our new degree of belief for the formula Red(b) A Small(b)
may depend not only on the new degrees of belief for the two conjuncts, but also on our old
degree of belief I(Red(b) A Small(b)|KBj;q). One reasonable approach to computing these
degrees of belief is to make the smallest change possible to achieve consistency with the belief
base. Here, as before, cross-entropy is a useful tool. Indeed, as we shall show, there is a way of
applying cross-entropy in this context to give us a general approach. We call this method CEF,
for cross-entropy on formulas. Although both CEW and CEF use cross-entropy, they use it in
conceptually different ways. As the names suggest, CEW uses cross-entropy to compare two
probability distributions over possible worlds, while CEF uses it to compare two probability
distributions over formulas. On the other hand, any probability distribution on worlds generates
a probability distribution on formulas in the obvious way (the probability of a formula is the
probability of the set of worlds where it is true), and so we can use a well-known property of
the cross-entropy function to observe that the two approaches are in fact equivalent when they
can both be applied.

It is worth noting that the two approaches are actually incomparable in their scope of ap-
plication. Because CEF is not restricted to inference processes that generate a prior probability
on a set of possible worlds, it can be applied to more inference processes than CEW. On the
other hand, CEW is applicable to arbitrary KB’s while, as we shall see, for CEF to apply we
need to make more restrictions on the form of the KB.

In this paper, we focus on two instantiations of CEF. The first applies it to the random-
worlds method. The second applies it to a variant of the maximum-entropy approach used
by Paris and Vencovska [PV89] (and similar in spirit to the method used by Jaeger [Jae94b]),
which we henceforth call the ME (inference) process. Using results of [GHK92, PV89], we prove
that these two instantiations are equivalent.

The third method we consider also applies only to certain types of inference processes. In
particular, it takes as its basic intuition that all degrees of belief must ultimately be the result
of some statistical process. Hence, it requires an inference process that can generate degrees
of belief from statistics, like random-worlds. Suppose we have the belief Pr(Red(b)) = 0.8. If
we view this belief as having arisen from some statistical sampling process, then we can regard
it as an abbreviation for statistical information about the class of individuals who are “just
like b”. For example, say that we get only a quick glance at b, so we are not certain it is red.
The above assertion could be construed as being an abbreviated way of saying that 80% of the
objects that give a similar sense perception are red. To capture this idea formally we can view
b as a member of a small set of (possibly fictional) individuals S that are “just like 8” to the
best of our knowledge, and assume that our degrees of belief about b actually represents the
statistical information about S: || Red(z)|S(z)||> = 0.8. Once all degree of belief assertions have



been converted into statistical assertions, we can then apply any method for inferring degrees
of belief from statistical knowledge bases. We call this the RS method (for representative set).
The general intuition for this method goes back to statistical mechanics [Lan80]. It was also
defined (independently it seems) by Paris and Vencovska [PV92]; we follow their presentation
here.

Paris and Vencovska showed that the RS method and the CEF method agree when applied
to their version of the ME process. Using results of [GHK92, PV89], we can show that the
methods also agree when applied to our version of the ME process and when applied to random
worlds. Putting the results together, we can show that all these methods—CEW, CEF, and
RS—agree when applied to random worlds and, in fact, CEW and CEF agree in general. In
addition, the resulting extension of random worlds agrees with the approach obtained when we
apply CEF and RS to the ME process.

The rest of this paper is organized as follows. In the next section we review the formal model
of [Hal90] for degrees of belief and statistical information, and some material from [BGHK93]
regarding the random-worlds method. We give the formal definitions of the three methods we
consider in Section 3, and discuss their equivalence. In passing, we also discuss the connection
to Jeffrey’s rule, which is another very well known method of updating by uncertain infor-
mation. We conclude in Section 4 with some discussion of computational issues and possible
generalizations of these approaches.

2 Technical preliminaries

2.1 A first-order logic of probability

In [Hal90], a logic is presented that allows us to represent and reason with both statistical
information and degrees of belief. We briefly review the relevant material here. We start
with a standard first-order language over a finite vocabulary ®, and augment it with proportion
expressions and belief expressions. A basic proportion expression has the form ||1(z)|6(z)||, and
denotes the proportion of domain elements satisfying 1 from among those elements satisfying
6. (We take ||1p(z)||; to be an abbreviation for ||¢(z)|true(z)||;.) On the other hand, a basic
belief expression has the form Pr(i|f) and denotes the agent’s degree of belief in 7 given 6.
The set of proportion (resp. belief) expressions is formed by adding the rational numbers to
the set of basic proportion (resp. belief) expressions and then closing off under addition and
multiplication.

We compare two proportion expressions using the approximate connective < (“approxi-
mately less than or equal”); the result is a proportion formula. We use £ = ¢’ as an abbreviation
for (£ < &)Y A(E < £). Thus, for example, we can express the statement “90% of birds fly”
using the proportion formula || Fly(z)|Bird(z)||. ~ 0.9.* We compare two belief expressions
using standard <; the result is a basic belief formula. For example, Pr(Red(b)) < 0.8 is a basic
belief formula. (Of course, Pr(Red(b)) = 0.8 can be expressed as the obvious conjunction.)

*We remark that in [Hal90] there was no use of approximate equality (x). We use it here since, as argued
in [BGHK93], its use is crucial in our intended applications. On the other hand, in [BGHK93], we used a whole
family of approximate equality functions of the form ~;, 1 = 1,2,3,.... To simplify the presentation, we use only
one here.



In the full language £ we allow arbitrary first-order quantification and nesting of belief and
proportion formulas. For example, complex formulas like Pr(Vz(|| Knows(z,y)||, < 0.3)) < 0.5
are in L.

We will also be interested in various sublanguages of £. A formula in which the “Pr”
operator does not appear is an objective formula. Such formulas are assigned truth values
by single worlds. The sublanguage restricted to objective formulas is denoted by £°%. The
standard random-worlds method is restricted to knowledge bases expressed in £°%. The set
of belief formulas, £, is formed by starting with basic belief formulas and closing off under
conjunction, negation, and first-order quantification. In contrast to objective formulas, the
truth value of a belief formula is completely independent of the world where it is evaluated.
A flat formula is a Boolean combination of belief formulas, such that in each belief expression
Pr(¢), the formula ¢ is a closed (i.e., containing no free variables) objective formula. (Hence we
have no nesting of “Pr” in flat formulas nor any “quantifying in”.) Let £/ be the language
consisting of the flat formulas.

To give semantics to both proportion formulas and belief formulas, we use a special case of
what were called in [Hal90] type-3 structures. In particular, we consider type-3 structures of
the form (Wn, 1), where Wy consists of all worlds (first-order models) with domain {1,..., N}
over the vocabulary ®, and p is a probability distribution over Wy.?> Given a structure and
a world in that structure, we evaluate a proportion expression ||1)(z)|f(z)||. as the fraction of
domain elements satisfying /(2 ) among those satisfying §(z). We evaluate a belief formula using
our probability distribution over the set of possible worlds. More precisely, given a structure
M = (Wn,u), a world w € Wy, a tolerance 7 € (0, 1] (used to interpret =~ and <), and a
valuation V' (used to interpret the free variables), we associate with each formula a truth value
and with each belief expression or proportion expression ¢ a number [(]as,v,-. We give a few
representative clauses here:

o If ( is the proportion expression ||¢(z)|1(z)||5, then [(Jarw, v, is the number of domain
elements in w satisfying ¢ A 7 divided by the number satisfying 1». (Note that these
numbers may depend on w.) We take this fraction to be 1 if no domain elements satisfies

,w X

o If ( is the belief expression Pr(p|v), then

oy, = B0 (L0 Vi) o )
Moo Vor = 7 (M,w',V,7) |= b}

Again, we take this to be 1 if the denominator is 0.

e If ( and ¢’ are two proportion expressions, then (M, w,r,V) = ¢ < (" iff

[C]M,w,T,V < [CI]M,w,T,V + 7.

That is, approximate less than or equal allows a tolerance of 7.

°In general, type-3 structures additionally allow for a distribution over the domain (in this case, {1,..., N}).
Here, we always use the uniform distribution over the domain.



Notice that if ( is a belief expression, then its value is independent of the world w. Moreover,
if it is closed then its value is independent of the valuation V. Thus, we can write [(]as - in this
case. Similarly, if ¢ € £ is a closed belief formula, its truth depends only on M and 7, so we
can write (M, 7) |= ¢ in this case.

2.2 The random-worlds method

Given these semantics, the random-worlds method is now easy to describe. Suppose we have a
KB of objective formulas, and we want to assign a degree of belief to a formula ¢. Let u%; be the
unif(.)rm distribution over Wy, al.ld let My = (WN,,u“N) Let Pry " (¢|KB) = [1.31’(99|KB)]M;§,T-
Typically, we know only that N is large and that 7 is small. Hence, we approximate the value
for the true N and 7 by defining
Pri¥(o|KB) = lin%]\}im Pri™(¢|KB),

assuming the limit exists. Priy(¢|KB) is the degree of belief in ¢ given KB according to the
random-worlds method.

2.3 Maximum entropy and cross-entropy

The entropy of a probability distribution p over a finite space Q is — 3" cq p(w)In(p(w)). It
has been argued [Jay78] that entropy measures the amount of “information” in a probability
distribution, in the sense of information theory. The uniform distribution has the maximum
possible entropy. In general, given some constraints on the probability distributions, the dis-
tribution with maximum entropy that satisfies the constraints can be viewed as the one that
incorporates the least additional information above and beyond the constraints.

The related cross-entropy function measures the additional information gained by moving
from one distribution g to another distribution u’:

N o 1)
C(u,u)—gu( o

Various arguments have been presented showing that cross-entropy measures how close one
probability distribution is to another [SJ80, Sho86]. Thus, given a prior distribution g and a
set S of additional constraints, we are typically interested in the unique distribution g’ that
satisfies S and minimizes C'(p/, ). It is well-known that a sufficient condition for such a unique
distribution to exist is that the set of distributions satisfying 5 form a convex set, and that
there be at least one distribution u” satisfying S such that C'(x”, i) is finite. These conditions
often hold in practice.

3 The three methods

3.1 CEW

As we mentioned in the introduction, our first method, CEW, assumes as input an inference
process I that proceeds by generating a prior gy on a set of possible worlds W; and then



conditioning on the objective information. Given such an inference process I, a knowledge base
KB (that can contain subjective information) and an objective formula ¢, we wish to compute
CEW(I)(¢|KB), where C EW(I)is a new degree of belief generator that can handle knowledge

bases that can include subjective information.

We say that an inference process I is world-based if there is some structure M; = (W, piy)and
a tolerance 7 such that I(¢|KB) = [Pr(¢|KB)]ar,,-. Notice that Pry™ is world-based for each
N (where the structure corresponding to Pry™ is My ). PrLy, on the other hand, is not world-

based; we return to this point shortly.

Given a world-based inference process I, we define CEW([) as follows: Given a knowledge
base KB which can be an arbitrary formula in the full language L, let ,uf"B be the probability
distribution on Wy such that C(uX®, pur) is minimized (if a unique such distribution exists)
among all distributions p such that Wy, i/, 7) |= Pr(KB) = 1. Intuitively, uf? is the proba-
bility distribution closest to the prior py that gives KB probability 1. Let jVIIKB = (W[,uf"B).

We can then define CEW(I)(¢|KB) = [Pr(9)],,kB -
I )

The first thing to observe is that if KB is objective, then standard properties of cross-entropy
can be used to show that uf® is the conditional distribution u;(:|KB). We thus immediately
get:

Proposition 3.1: If KB is objective, then CEW(I)(¢|KB) = I(¢|KB). Thus, CEW(I) is a
true extension of I.

Another important property of CEW follows from the well-known fact that cross-entropy
generalizes Jeffrey’s rule [Jef92]. Standard probability theory tells us that if we start with a
probability function g and observe that event F holds, we should update to the conditional
probability function u(:|F). Jeffrey’s rule is meant to deal with the possibility that rather
than getting certain information, we only get partial information, such as that £ holds with
probability a. Jeffrey’s rule suggests that in this case, we should update to the probability
function p’ such that

W(A) = op(AlE) + (1 - a)p(ATE),

where F denotes the complement of E. This rule uniformly rescales the probabilities within £
and (separately) those within E so as to satisfy the constraint Pr(E) = a. Clearly, if a = 1,
then g’ is just the conditional probability u(:|E).

This rule can be generalized in a straightforward fashion. If we are given a family of
mutually exclusive and exhaustive events F1,..., F; with desired new probabilities aq,..., ax
(necessarily Y, a; = 1), then we can define:

W(A) = arp(AlEr) + - -+ ag p( Al Eg).

Suppose our knowledge base has the form (Pr(¢;) = a3) A -+ A (Pr(¢r) = o), where the
;’s are mutually exclusive and exhaustive objective formulas and a7 + ---+ a = 1. The
formulas ¢1, ..., @ correspond to mutually exclusive and exhaustive events. Thus, Jeffrey’s
rule would suggest that to compute the degree of belief in ¢ given this knowledge base, we
should compute the degree of belief in ¢ given each of the ; separately, and then take the
linear combination. Using the fact that cross-entropy generalizes Jeffrey’s rule, it is immediate
that CEW in fact does this.



Proposition 3.2: Suppose that I is a world-based inference process and that KB’ is of the form
KB A BB, where KB is objective and BB has the form (Pr(p1) = a1) A - A (Pr(er) = ax),
where the @;’s are mutually exclusive and exhaustive objective formulas and ay + -+ -+ ap = 1.

Then
k

CEWI)(¢|KB') = >~ a; I(¢|KB A ;).

=1

As we observed above, CEW as stated does not apply directly to the random-worlds method
Prl¥, since it is not world-based. It is, however, the limit of world-based methods. (This is also
true for the other methods considered in [BGHK92].) We can easily extend CEW so that it
applies to limits of world-based methods by taking limits in the obvious way. In particular, we
define

CEW(PE)(£|KB) = lim lim CEW(Pri™)(£|KB).

provided the limit exists. For convenience, we abbreviate CEW(PrY) as Pr¢EW.

It is interesting to note that the distribution defined by CEW(Pr}y) is the distribution of
maximum entropy that satisfies the constraint Pr(KB) = 1. This follows from the observation
that the distribution that minimizes the cross-entropy from the uniform distribution among
those distributions satisfying some constraints 5, is exactly the distribution of maximum en-
tropy satisfying 5.6 This maximum-entropy characterization demonstrates that PrgoEW extends
random worlds by making the probabilities of the possible worlds “as equal as possible” given

the constraints.

3.2 CEF

Paris and Vencovska [PV89] consider inferences processes that are not world-based, so CEW
cannot be applied to them. The method CEIF we now define applies to arbitrary inference
processes, but requires that the knowledge base be of a restricted form. For the remainder
of this section, we assume that the knowledge base has the form KB A BB, where KB is an
objective formula and BB (which we call the belief base) is in £f**.

First, suppose for simplicity that BB is of the form Pr(i;) = 1 A --- A Pr(¢p) = B If
the ;’s were mutually exclusive, then we could define C EF(I)(¢|BB) so that Proposition 3.2
held. But what if the ;’s are not mutually exclusive?

Consider the K = 2% atoms over i1, ..., 1y, i.e., those conjunctions of the form 1 A. . AP,
where each 9! is either 1¥; or =7);. Atoms are always mutually exclusive and exhaustive; so,
if we could find appropriate degrees of belief for these atoms, we could again define things
so that Proposition 3.2 holds. A simple way of doing this would be to assume that, after
conditioning, the assertions ; are independent. But, as we observed in the introduction,
assuming independence is inappropriate in general.

Our solution is to first employ cross-entropy to find appropriate probabilities for these
atoms. We proceed as follows. Suppose I is an arbitrary inference process, BB € £/t and

®We remark that in [GHK92, PV89] a connection was established between random worlds and maximum
entropy. Here maximum entropy is playing a different role. It is being used here to extend random worlds rather
than to characterize properties of random worlds as in [GHK92, PV89].
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Y1, ..., are the formulas that appear in subexpressions of the form Pr() in BB. We form
the K = 2* atoms generated by the v;, denoting them by Aq,..., Ax. Consider the probability
o defined on the space of atoms via u(A;) = I(A;|KB).” There is an obvious way of defining
whether the formula BB is satisfied by a probability distribution on the atoms Aq,..., Ag
(we defer the formal details to the full paper), but in general BB will not be satisfied by the
distribution p. For a simple example, if we take the inference procedure to be random worlds
and consider the knowledge base KBjjq A (Pr(Red(b)) = 0.8) from the introduction, it turns
out that Pri¥ (Red(b)|KBy;rq) is around 0.57. Clearly, the distribution g such that p(Red(b))
is around 0.57 does not satisfy the constraint Pr(Red(b)) = 0.8. Let p’ be the probability
distribution over the atoms that minimizes cross-entropy relative to y among those that satisfy
BB, provided there is a unique such distribution. We then define

CEF(I)(¢|KB A BB) =
P(ADI(QIKBA A) + -+ /(A ) (0| KB A Ag).

It is immediate from the definition that CEF(/) extends I. Formally, we have
Proposition 3.3: If KB, ¢ € £, then CEF(I)(p|KB) = I(p|KB).

Both CEW and CEF use cross-entropy. However, the two applications are quite different. In
the case of CEW, we apply cross-entropy with respect to probability distributions over possible
worlds, whereas with CEF, we apply it to probability distributions over formulas. Nevertheless,
as we mentioned in the introduction, there is a tight connection between the approaches, since
any probability distribution over worlds defines a probability distribution over formulas. In fact
the following equivalence can be proved, using simple properties of the cross-entropy function.

Theorem 3.4: Suppose I is a world-based inference process, KB, o € £, and BB € £/,
Then CEW(I)(¢|KB ABB) = CEF(I)(¢|KB A BB).

Thus, CEF and CEW agree in contexts where both are defined.
By analogy to the definition for CEW, we define

PriFF(o|KB A BB) = lim lim CEF(Pry™)(¢|KB A BB).
It immediately follows from Theorem 3.4 that

Corollary 3.5: If KB, € £, and BB € £, then Pr<®W (p|KB A BB) = Pr&EF (¢|KB A
BB).

As the notation suggests, we view PrSOEF as the extension of Pry} obtained by applying

CEF. Why did we not define Pr?®F as CEF(Pr™")? Clearly CEF(Pr") and PrSEF are closely
related. Indeed, if both are defined, then they are equal.

Theorem 3.6: If both CEF(PT™Y)(|KB A BB) and PrFF (o|KB A BB) are defined then they
are equal.

"Since BB € £/ by assumption, and Pr cannot be nested in a flat belief base, the v¥’s are necessarily
objective, and so are the atoms they generate. Thus, I(A4;|KB) is well defined.

11



It is quite possible, in general, that either one of PrgoEF and CEF(PrLY) is defined while the
other is not. The following example demonstrates one type of situation where PrSOEF is defined
and CEF(PrLY) is not. The converse situation typically arises only in pathological examples.

In fact, as we show in Theorem 3.8, there is an important class of cases where the existence of
CEF(PY) guarantees that of PrFF.

Example 3.7: Suppose KB is || Fly(z)|Bird(z)||, & 1 A Bird( Tweety) and BB is Pr( Fly( Tweety) =
0) A Pr(Red( Tweety) = 1). Then, just as we would expect, PrSEF( Red( Tweety) KB ABB) = 1.
On the other hand, CEF(PrLY )( Red( Tweety)| KB A BB) is undefined. To see why, let u be the
probability distribution on the four atoms defined by Fly( Tweety) and Red( Tweety) determined
by Priy(-|KB). Since Priy ( Fly( Tweety) KB) = 1, it must be the case that p( Fly( Tweety)) = 1
(or, more accurately, u( Fly( Tweety) A Red( Tweety))+ p( Fly( Tweety) A= Red( Tweety)) = 1). On
the other hand, any distribution u over the four atoms defined by Fly( Tweety) and Red( Tweety)
that satisfies BB must be such that p/( Fly( Tweety)) = 0. It easily follows that if 4/ satisfies BB,
then C'(y/, ) = co. Thus, there is not a unique distribution over the atoms that satisfies BB
and minimizes cross-entropy relative to g. This means that CEF(PrLY )( Red( Tweety) KB ABB)
is undefined. I

We next consider what happens when we instantiate CEF with a particular inference process
considered by Paris and Vencovska that uses maximum entropy [PV89]. Paris and Vencovska
restrict attention to rather simple languages, corresponding to the notion of “essentially propo-
sitional” formulas defined below. When considering (our variant) of their method we shall make
the same restriction.

We say that i(z) is an essentially propositional formula if it is a quantifier-free first-order
formula that mentions only unary predicates (and no constant or function symbols), whose only
free variable is z. A simple knowledge base KB about ¢ has the form ||pq(2)|61(2)||s < a1 A
o Aer(2)|0k(2)]]2 = arAt(c), where @1, ..., ¢, 01,...,0k, 1 are all essentially propositional.®
The ME inference process is only defined for a simple knowledge base about ¢ and an essentially
propositional query ¢(c) about ¢. Let KB = KB’A#(¢) be an essentially propositional knowledge
base about ¢ (where KB’ is the part of the knowledge base that does not mention c). If the
unary predicates that appear in KB are P = {Py,..., P;}, then KB’ can be viewed as putting
constraints on the 2% atoms over P.2 The form of KB’ ensures that there will be a unique
distribution g, over these atoms that maximizes entropy and satisfies the constraints. We
then define ME(¢(c)|KB' A 9(¢)) to be pume(¢|?). Intuitively, we are choosing the distribution
of maximum entropy over the atoms that satisfies KB’, and treating ¢ as a “random” element
of the domain, assuming it satisfies each atom over P with the probability dictated by pime.

To apply CEF to ME, we also need to put restrictions on the belief base. We say that
BB € £ is an essentially propositional belief base about ¢ if every basic proportion expression
has the form Pr(¢(c)|6(c)), where ¢ and @ are essentially propositional. (In particular, this
disallows statistical formulas in the scope of Pr.) A simple belief base about ¢ is a conjunction of
the form Pr(¢1(c)|f1(c)) < aq A---Pr(pr(c)|0k(c)) < ag, where all of the formulas that appear

8 Notice that |¢(z)|8(z)|| = o is expressible as ||[=@(z)]|8(z)|lz = 1 — «; this means we can also express .
However, because of the fact that we disallow negations in a simple KB, we cannot express strict inequality.
This is an important restriction.

%An atom over P is an atom (as defined above) over the formulas Py(z),..., Pr(z).
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are essentially propositional. We can only apply CEF to ME if the knowledge base has the form
KB A BB, where KB is a simple knowledge base about ¢ and BB is a simple belief base about
c. It follows from results of [GHK92, PV89] that random worlds and ME give the same results
on their common domain. Hence, they are also equal after we apply the CEF transformation.
Moreover, on this domain, if CEF(P1™Y) is defined, then so is Pr¢¥F. (The converse does not
hold, as shown by Example 3.7.) Thus, we get

Theorem 3.8: If KB is a simple knowledge base about ¢, BB is a simple belief base about c,
and ¢ is an essentially propositional formula, then

CEF(ME)(¢(c)[KB A BB) = CEF(Pr2Y)(0(c)|KB A BB).

o0

Moreover, if CEF(ME)(¢(c)|KB A BB) is defined, then

CEF(ME)(¢(c)|KB A BB) = Prd (o(c)|KB A BB).

3.3 RS

The last method we consider, RS, is based on the intuition that degree of belief assertions must
ultimately arise from statistical statements. This general idea goes back to work in the field
of statistical mechanics [Lan80], where it has been applied to the problem of reasoning about
the total energy of physical systems. If the system consists of many particles then what is, in
essence, a random-worlds analysis can be appropriate. If the energy of the system is known
exactly no conceptual problem arises: some possible configurations have the specified energy,
while others are impossible because they do not. However, it turns out that it is frequently more
appropriate to assume that all we know is the ezpected energy. Unfortunately, it questionable
whether this is really an “objective” assertion about the system in question,'® and in fact the
physicists encounter a problem analogous to that which motivated our paper. Like us, one
response they have considered is to modify the assumption of uniform probability and move to
maximum entropy (thus using, essentially, an instance of our CEW applied to a uniform prior).
But another response is the following. Physically, expected energy is appropriate for systems
in thermal equilibrium (i.e., at a constant temperature). But in practice this means that the
system is in thermal contact with a (generally much larger) system, sometimes called a heat
bath. So another approach is to model the system of interest as being part of a much larger
system, including the heat bath, whose total energy is truly fixed. On this larger scale, random-
worlds is once again applicable. By choosing the energy for the total system appropriately,
the expected energy of the small subsystem will be as specified. Hence, we have converted
subjective statements into objective ones, so that we are able to use our standard techniques.
In this domain, there is a clear physical intuition for the connection between the objective
information (the energy of the heat bath) and the subjective information (the expected energy
of the small system).

A more recent, and quite different, appearance of this intuition is in the work of Paris
and Vencovska [PV92]. They defined their method so that it has the same restricted scope as

191f it is objective, it is most plausibly a statement about the average energy over time. While this is a
reasonable viewpoint, it does not really escape from philosophical or technical problems either.
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the ME method. We present a more general version here, that can handle a somewhat richer
set of knowledge bases, although its scope is still more restricted than CEF. It can deal with
arbitrary inference processes, but the knowledge base must have the form KBABB, where KB is
objective and BB is an essentially propositional belief base about some constant ¢. The first step
in the method is to transform BB into an objective formula. Let S be a new unary predicate,
representing the set of individuals “just like ¢”. We transform BB to KBpp by replacing all
terms of the form Pr(w(c)|6(c)) by [|[¥(z)|6(z) A S(z)||», and replacing all occurrences of <
by <. We then add the conjuncts [|S(z)||; = 0 and S(c), since S is assumed to be a small
set and ¢ must be in 5. For example, if BB is Pr(Red(c)) < 0.8 A Pr(Small(c)) = 0.6, then
the corresponding KBpg is (|| Red(z)|S(z)||s < 0.8) A (||Small(z)|S(z)||l. = 0.6) A (||S(2)]]- =
0) A S(c). We then define RS(1)(¢(c)|KBABB) = I(¢(c)|KBA KBgg). It is almost immediate
from the definitions that if BB is a simple belief base about ¢, then RS(PrLy )(¢(c)| KBABB) =
lim; — lim N —oo RS(PTY™)(¢|KB). We abbreviate RS(PrY) as Pri>.

In general, RS and CEF are distinct. This observation follows from results of [PV92]
concerning an inference process CM, showing that RS(CM) cannot be equal to CEF(CM). On
the other hand, they show that, in the restricted setting in which ME applies, RS(ME) =
CEF(ME). Since ME = Pr} in this setting, we have:

Theorem 3.9: If KB is a simple knowledge base about ¢, BB is an essentially propositional
knowledge base about ¢, and v is an essentially propositional formula, then

CEF(P1™)(¢(¢)|KB A BB) = CEF(ME)(¢(¢)| KB A BB)
= RS(ME)((c)| KB A BB) = Pr%(5(¢)| KB A BB).

4 Discussion

We have presented three methods for extending inference processes so that they can deal with
degrees of belief. We view the fact that the three methods essentially agree when applied to
the random-worlds method as evidence validating their result as the “appropriate” extension
of random worlds.

Since our focus was on extending the random-worlds method here, there were many issues
that we were not able to investigate thoroughly. We mention two of the more significant ones
here:

o Our definitions of CEF and RS assume certain restrictions on the form of the knowledge
base, which are not assumed in CEW. Is it possible to extend these methods so that
they apply to more general knowledge bases? In this context, it is worth noting that
RS has quite a different flavor from the other two approaches. The basic idea involved
seems to be to ask “What objective facts might there be to cause one to have the beliefs
in BB?”. Given an answer to this, we add these facts to KB in lieu of BB; we can then
apply whatever inference process we choose. We do not see any philosophical reason that
prevents application of this idea in wider contexts than belief bases about some constant
¢. The technical problems we have found trying to do this seem difficult but not deep or
intractable.
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o We have essentially assumed what might be viewed as concurrent rather than sequential
updating here. Suppose our knowledge base contains two constraints: Pr(p1) = a1 A
Pr(¢2) = az. Although we cannot usually apply Jeffrey’s rule to such a conjunction, we
can apply the rule sequentially, first updating by Pr(¢1) = a1, and then by Pr(p2) = as.
We have described our methods in the context of updating by any set of constraints at
once, but they can also be defined to update by constraints one at a time. The two
possibilities usually give different results. Sequential updating may not preserve any but
the last constraint used, and in general is order dependent. Whether this should be seen
as a problem depends on the context. We note that in the very special case in which we
are updating by objective facts (i.e., conditioning) sequential and concurrent updating
coincide. This is why this issue can be ignored when doing Bayesian conditioning in
general, and in ordinary random-worlds in particular. We have only considered concurrent
updates in this paper, but the issue surely deserves deeper investigation.
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