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Abstract

An intelligent agent uses known facts, including sta-
tistical knowledge, to assign degrees of belief to as-
sertions 1t is uncertain about. We investigate three
principled techniques for doing this. All three are
applications of the principle of indifference, because
they assign equal degree of belief to all basic “situa-
tions” consistent with the knowledge base. They dif-
fer because there are competing intuitions about what
the basic situations are. Various natural patterns of
reasoning, such as the preference for the most spe-
cific statistical data available, turn out to follow from
some or all of the techniques. This is an improvement
over earlier theories, such as work on direct inference
and reference classes, which arbitrarily postulate these
patterns without offering any deeper explanations or
guarantees of consistency.

The three methods we investigate have surprising
characterizations: there are connections to the princi-
ple of maximum entropy, a principle of maximal inde-
pendence, and a “center of mass” principle. There are
also unexpected connections between the three, that
help us understand why the specific language chosen
(for the knowledge base) is much more critical in in-
ductive reasoning of the sort we consider than it is in
traditional deductive reasoning.

1 Introduction

An intelligent agent must be able to use its accu-
mulated knowledge to help it reason about the situ-
ation it is currently facing. Consider a doctor who
has a knowledge base consisting of statistical and first-
order information regarding symptoms and diseases,
and some specific information regarding a particular
patient. She wants to make an inference regarding the
likelihood that the patient has cancer. The inference

*The work of Fahiem Bacchus was supported by NSERC
under their operating grants program and by IRIS. The
work of Adam Grove, Joseph Halpern, and Daphne Koller
was sponsored in part by the Air Force Office of Scien-
tific Research (AFSC), under Contract F49620-91-C-0080.
Adam Grove’s work was also supported by an IBM Grad-
uate Fellowship. The United States Government is autho-
rized to reproduce and distribute reprints for governmental
purposes. This paper appears in Proceedings of AAAI-92,
1992, pp. 602-608.

Joseph Y. Halpern
IBM Almaden Research Center

halpern@almaden.ibm.com

Daphne Koller
Computer Science Dept.
Stanford University
Stanford, CA 943005
daphne@cs.stanford.edu

650 Harry Road
San Jose, CA 95120-6099

of such a likelihood, or degree of belief, is an essen-
tial step in decision making. We present here a gen-
eral and principled mechanism for computing degrees
of belief. This mechanism has a number of particu-
lar realizations which differ in the inferences they sup-
port. Through an analysis of these differences and of
the principles which underlie the general mechanism,
we are able to offer a number of important new insights
into this form of reasoning.

To illustrate some of the subtle issues that arise when
trying to compute degrees of belief, suppose that the
domain consists of American males, and that the agent
is interested in assigning a degree of belief to the propo-
sition “Eric (an American male) is (over six feet) tall,”
given some subset of the following database:

A 20% of American males are tall.
B 25% of Californian males are tall.
C Eric is a Californian male.

A traditional approach to assigning a degree of belief
to Tall(Eric) is to find an appropriate class—called the
reference class—which includes Eric and for which we
have statistical information, and use the statistics for
that class to compute an appropriate degree of belief
for Eric. Thus, if the agent’s database consists solely
of item A, then this approach would attach a quite
reasonable degree of belief of 0.2 to Tall(Eric) using
the reference class of American males.

This general approach to computing degrees of belief
goes under the name direct inference, and dates back to
Reichenbach (Rei49), who used the idea in an attempt
to reconcile his frequency interpretation of probability
with the common practice of attaching probabilities to
particular cases. He expounded a principle for direct
inference, but did not develop a complete mechanism.
Subsequently, a great deal of work has been done on
formalizing and mechanizing direct inference (Bac90;
Kyb61; Kyb74; Lev80; Pol90; Sal71).

If the database consists only of A, there is only one
reference class to which Eric is known to belong, so ap-
plying direct inference is easy. In general, however, the
particular individual or collection of individuals we are
reasoning about will belong to many different classes.
We might possess conflicting statistics for some of these
classes, and for others we might not possess any sta-
tistical information at all. The difficulty with direct



inference, then, is how to choose an appropriate ref-
erence class. There are a number of issues that arise
in such a choice, but we focus here on three particular
problems.

Specific Information: Suppose the knowledge base
consists of all three items A-C. Now Eric is a member
of two reference classes: Americans and Californians.
Intuition suggests that in this case we should choose
the more specific class, Californians. And indeed, all
of the systems cited above embody a preference for
more specific information, yielding 0.25 as the degree
of belief in Tall(Eric) in this case.

However, we must be careful in applying such a pref-
erence. For one thing, we must deal with the problem
of disjunctive reference classes. Consider the disjunc-
tive class D consisting of Eric and all non-tall Califor-
nian males. Being a subset of Californian males this
is clearly a more specific reference class. If there are
many Californians (and thus many non-tall Californi-
ans, since 75% of Californians are not tall), using D as
the reference class gives a degree of belief for Tall(Eric)
that is very close to 0. The answer 0.25 seems far more
reasonable, showing that we must be careful about how
we interpret the principle of preference for more spe-
cific information. We remark that two of the most
well-developed systems of direct inference, Kyburg’s
(Kyb74) and Pollock’s (Pol90), address this issue by
the ad hoc device of simply outlawing disjunctive ref-
erence classes.

Irrelevant Information: Suppose that the knowl-
edge base consists only of items A and C. In this case
Eric again belongs to two reference classes, but now we
do not have any statistics for the more specific class,
Californians. The standard, and plausible, approach is
to assign a degree of belief of 0.2 to Tall(Eric). That
is, we use the statistics from the superclass, American
males; this amounts to assuming that the extra infor-
mation, that Eric is also Californian, is irrelevant. In
the face of no knowledge to the contrary, we assume
that the subclass has the same statistics as the super-
class.

Sampling: Finally, suppose the knowledge base con-
sists only of B. In this case we have statistical informa-
tion about Californians, but all we know about Eric is
that he is an American. We could assume that Califor-
nians are a representative sample of Americans when
it comes to male tallness and adopt the statistics we
have for the class of Californians, generating a degree

of belief of 0.25 in Tall(Eric).

The process of finding the “right” reference class,
and then assigning degrees of belief using the further
assumption that the individual in question is randomly
chosen from this class, is one way of going from sta-
tistical and first-order information to a degree of be-
lief. But, as we have seen, choosing the right refer-
ence class is a complex issue. It is typically accom-
plished by positing some collection of rules for choos-

ing among competing reference classes, e.g., (Kyb83).
However, such rules are not easy to formulate. More
importantly, they do not provide any general princi-
ples which can help elucidate our intuitions about how
statistics should influence degrees of belief. Indeed, the
whole idea of reference class seems artificial; it does
not occur at all in the statement of the problem we
are trying to solve. We present a different approach
to computing degrees of belief here, one that does not
involve finding appropriate reference classes at all. We
believe it is a more general, high-level approach, that
deals well with the three problems discussed above and,
as we show in the full paper, many others besides.

The essential idea is quite straightforward. We view
the information in the database as determining a set of
situations that the agent considers possible. In order
to capture the intuition that the information in our
knowledge base i1s “all we know,” we assign each of
these possible situations equal probability. After all,
our information does not give us any reason to give any
of them greater probability than any other. Roughly
speaking, the agent’s degree of belief in a sentence such
as Tall(Eric) is then the fraction of the set of situations
where Tall(Eric) is true. The basic idea here is an old
one, going back to Laplace (Lap20), and is essentially
what has been called the principle of insufficient reason
(Kri86) or the principle of indifference (Key21).

Our general method, then, revolves around applying
indifference to some collection of possible situations.
The method has a number of different realizations,
as there are competing intuitions involved in defining
a “possible situation.” We focus on three particular
mechanisms for defining situations, each of which leads
to a different method of computing degrees of belief.
The differences between the three methods reflect dif-
ferent intuitions about how degrees of belief should be
generated from statistics. They also point out the im-
portant role of language in this process.

Although the approaches are different, they share
some reasonable properties. For example, as we show
in Section 3, they all generalize deductive inference,
they all agree with direct inference in noncontrover-
sial cases, and they all capture a preference for more
specific information. Furthermore, since our general
method does not depend on finding reference classes,
the problem of digjunctive classes completely disap-
pears.

Despite these similarities, the methods differ in a
number of significant ways (see Section 3). So which
method is “best”? Since all the methods are defined
in terms of assigning equal probability to all possible
situations, the question comes down to which notion
of “situation” is most appropriate. As we show, that
depends on what intuitions we are trying to capture.
Our framework allows us to obtain an understanding
of when each method is most appropriate. In addition,
it gives us the tools to consider other methods, and
hybrids of these methods. Because there is no unique



“best” answer, this is a matter of major importance.

There has been a great deal of work that can be
viewed as attempts to generate degrees of belief given
a database. Besides the work on reference classes men-
tioned above, much of Jaynes’s work on maximum en-
tropy (Jay78) can be viewed in this light. Perhaps the
work closest in spirit to ours is that of Carnap (Carb2),
Johnson (Joh32), and the more recent work of Paris
and Vencovska (PV89; PV92) and Goodwin (G0092).
We compare our work with these others in some detail
in the full paper; here we can give only brief hints of
the relationship.

2 The Three Methods

We assume that the knowledge base consists of sen-
tences written in a formal language that allows us to
express both statistical information and first-order in-
formation. In particular, we use a simplified version of
a probability logic developed in (Bac90) and (Hal90),
which we describe very briefly here.

To represent the statistical information, we augment
first-order logic by allowing proportion formulas of the
form ||3(2)||z, which denotes the proportion of individ-
uals in the domain satisfying 1) when instantiated for z.
Notice that this proportion is well defined in any first-
order model (over an appropriate vocabulary) if the
model’s domain 1s finite; in the following, this will al-
ways be the case. For example, ||Californian(z)||; = .1
says that 10% of the domain elements are Californians,
while ||Tall(z)|Californian(z)||; = .25 says that 25%
of Californians are tall, via the standard abbreviation
for conditional probabilities (and thus represents as-
sertion B from the introduction).!

We want to use the information in the knowledge
base to compute a degree of belief. Note that there is
an important distinction between statistical informa-
tion such as “25% of Californian males are tall” and a
degree of belief such as “the likelihood that Eric is tall
is .25”. The former represents real-world data, while
the latter is attached by the agent, hopefully using a
principled method, to assertions about the world that
are, in fact, either true or false.? Following (Hal90),
we give semantics to degrees of belief in terms of a set
of first-order models or possible worlds, together with
a probability distribution over this set. The degree of
belief in a sentence ¢ is just the probability of the set
of worlds where ¢ is true. For our method the set of

! As pointed out in (PV89; GHK94), we actually want to
use “approximately equals” rather than true equality when
describing statistical information. If we use true equality,
the statement ||Californian (z)||. = .1 would be false if the
domain size were not a multiple of 10. In this paper, we
ignore the subtleties involved with approximate equality,
since they are not relevant to our discussion.

2This distinction between statistical information (fre-
quencies) and degrees of belief has long been noted in stud-
ies of the foundations of probability. See, for instance, Car-
nap’s discussion in (Car50).

possible worlds is easily described: given a vocabulary
® and domain size N, it i1s the collection of all first-
order structures over the vocabulary & with domain
{1,...,N}.

The probability distribution is generated by apply-
ing the principle of indifference to equivalence classes
of worlds (“situations”). We assign equal probability
to every equivalence class, and then, applying the prin-
ciple of indifference again, we divide up the probabil-
ity assigned to each class equally among the individual
worlds in that class.

Alternate realizations of our method arise from dif-
ferent intuitions as to how to group the worlds into
equivalence classes. We consider three natural group-
ings, which lead to the three methods mentioned in
the introduction. (Of course, other methods are pos-
sible, but we focus on these three for now, deferring
further discussion to the full paper.) Once we have
the probability distribution on the worlds, we com-
pute the degree of belief in ¢ given a database KB by
using straightforward conditional probability: it is sim-
ply the probability of the set of worlds where ¢ A KB
is true divided by the probability of the set of worlds
where KB is true.

In this paper we restrict attention to vocabular-
ies having only constants and unary predicates. Our
methods make perfect sense when applied to richer vo-
cabularies (see the full paper), but the characteriza-
tions of these methods given in Section 3 hold only in
the unary case.

In the first approach, which we call the random-
worlds approach, we identify situations and worlds.
Hence, by the principle of indifference, each world is
assigned equal probability.

In the second approach, which we call the random-
structures approach, we group into a single equivalence
class worlds that are isomorphic with respect to the
predicates in the vocabulary.® The intuition underly-
ing this approach is that individuals with exactly the
same properties are in some sense indistinguishable,
so worlds where they are simply renamed should be
treated as being equivalent.

Suppose, for example, that our vocabulary consists
of a unary predicate P and a constant ¢, and that the
domain size is V. Since P can denote any subset, and ¢
any member, of the domain, there will be N2V possible
worlds, each with a distinct interpretation of the vo-
cabulary. In the random-worlds approach each world
is an equally likely situation with equal probability. In
the random-structures approach, on the other hand,
worlds in which the cardinality of P’s denotation is
the same are isomorphic, and thus will all be grouped
into a single situation. Hence, there are only N + 1

®Note that we only consider the predicate denotations
when deciding on a world’s equivalence class, and ignore the
denotations of constants. This is consistent with Carnap’s
approach (Car52), and is crucial for our results. See the
full paper for further discussion of this point.



equally likely situations, one for each possible size r of
P’s denotation. Each such situation is assigned proba-
bility 1/(N +1) and that probability is divided equally
among the N(Jj) worlds in that situation. So, accord-
ing to random-worlds, it is much more likely that the
number of individuals satisfying P is | N/2| than that
it is 1, whereas for random-structures these two possi-
bilities are equally likely.

More generally, suppose the vocabulary consists of
the unary predicate symbols Py,..., Py and the con-
stants c1,...,c,. We can consider the 2% atoms that
can be formed from the predicate symbols, namely, the
formulas of the form @1 A ... A Qf, where each @Q; is
either P; or —=P;. If we have a domain of size N, there
will be N*(2V)* possible worlds, corresponding to all
choices for the denotations of the ¢ constants and &
predicates. Given two possible worlds w; and ws, 1t
is easy to see that they are isomorphic with respect to
the predicates if and only if for every atom the number
of individuals satisfying that atom in w; is the same
as In wy. This means that a random-structures situ-
ation is completely described by a tuple (di, ..., dax)
with di + -+ - 4+ dox = N, specifying how many domain
elements satisfy each atom. Using standard combina-

NE

torics, it can be shown that there are exactly (
such situations.

The third method we consider, which we call the
random-propensities approach, attempts to measure
the propensity of an individual to satisfy each of the
predicates. If our vocabulary contains the unary pred-
icates Pi,..., P, and the domain has size N, then
a situation in this approach is specified by a tuple
(e1,...,€ex); the worlds contained in this situation are
all those where e; of the domain elements satisfy P;, for
all i.* Intuitively, e; /N is a measure of the propensity
of an individual to have property P;. It is not difficult
to see that there are (N + 1)* distinct situations.

Suppose, for example, that the vocabulary consists
of the unary predicates P and @} and that the do-
main consists of three elements {a,b,c}. There are
(23)% = 64 distinct possible worlds, one for each choice
of denotation for P and (. In the random-worlds ap-
proach each of these worlds will be assigned probabil-
ity 1/64. In the random-structures approach there are

(3;2j11) = (g) = 20 distinct situations. Each will be
given probability 1/20 and that probability will then
be divided equally among the worlds in the situation.
For example, the world w that assigns P the denota-
tion {a} and @ the denotation {a,c} belongs to the
situation in which the atom P A =@ has size 0 and all
other atoms have size 1. There are 6 worlds in this sit-

uation, so w will be assigned probability ﬁ. In the

random-propensities approach there are (3 + 1) = 16
distinct situations. Each will be given probability 1/16

*Note that again we consider only the predicate deno-
tations when deciding on a world’s equivalence class.

to be divided equally among the worlds in the situa-
tion. For example, one of these situations is specified
by the tuple (1,2) consisting of all those worlds where
one element satisfies P and two satisfy (). This situ-
ation contains 9 worlds, including the world w spec-
ified above. Hence, under random-propensities w is
assigned probability ﬁ.

We remark that two of our three methods—the
random-worlds method and the random-structures
method—are not original to us. They essentially date
back to Laplace (Lap20), and were investigated in
some detail by Johnson (Joh32) and Carnap (Car50;
Car52). (These two methods correspond to Carnap’s
state-description and structure-description techniques,
respectively.) We believe that the random-propensities
method is new; as we shall show, it has some quite at-
tractive properties.

If KB is a formula describing the knowledge base, ¢
is a first-order sentence, and N 1s the domain size, we
denote by Priy(¢|KB), Pry(¢|KB), and Pri (¢|KB)
the degree of belief in ¢ given knowledge base KB ac-
cording to the random-worlds, random-structures, and
random-propensities methods, respectively. We write
Pry(¢|KB) in those cases where the degree of belief is
independent of the approach.

We often do not know the precise domain size N, but
do know that it is large. This leads us to consider the
asymptotic behavior of the degree of belief as N gets
large. We define Priy (¢|KB) = limy_o Priv(¢|KB);
Pr:,, PrZ, and P17, are similarly defined.’

Our methods can also be viewed as placing differ-
ent priors on the set of first-order structures. Viewed
in this way, they are instances of Bayesian inference,
since we compute degrees of belief by conditioning on
this prior distribution, given our database. But the
deepest problem when applying Bayesian inference is
always finding the prior distribution, or, even more
fundamentally, finding the appropriate space of possi-
bilities. This is precisely the problem we address here.

3 Understanding the Methods

As a first step to understanding the three techniques,
we look for general properties characterizing their be-
havior. Then we examine some specific properties
which tell us how the techniques behave in various
paradigmatic reasoning situations.

3.1 Characterizing the Methods

Recall that when the vocabulary consists of k unary
predicates, these predicates define 2% mutually exclu-
sive and exhaustive atoms, A1, ..., Asx. Every possible
world defines a tuple (p1, ..., psr) where p; is the pro-
portion of domain individuals that satisfy the atom A;.

®There is no guarantee that these limits exist; in com-
plex cases, they may not. As our examples suggest, in
typical cases they do (see (GHK94)).



Given a database KB we can form the set of tuples de-
fined by the set of worlds which satisfy KB; this set
can be viewed as the set of proportions consistent with
KB. Let S(KB) denote the closure of this set.

We can often find a single point in S(KB) that will
characterize the degrees of belief generated by our dif-
ferent methods. In the random-worlds method this is
the mazimum entropy point of S(KB) (see (GHK94;
PV89)). In the random-structures method, the charac-
teristic point is the center of mass of S(KB). Finally,
in the random-propensities method, the characteris-
tic point maximizes the statistical independence of the
predicates in the vocabulary. We formalize these lat-
ter two characterizations and describe the conditions
under which they hold in the full paper.® When appli-
cable, the characteristic point determines the degree of
belief in ¢ given KB; we construct a particular prob-
ability structure (described also in (GHK94)) whose
proportions are exactly those defined by the charac-
teristic point. The probability of ¢ given KB is ex-
actly the probability of ¢ given KB in this particular
structure.

Suppose that the vocabulary consists only of {P, ¢},
and the database KB is simply [|P(z)||s € [e, 5]
What does the above tell us about the degree of be-
lief in P(c) under the three methods? In this case,
there are only two atoms, P and —P, and S(KB)
consists of all pairs (p1,p2) such that p; € [a, ]
Since the random-worlds method tries to maximize
entropy, it focuses on the pair (p1,p2) where p; is
as close as possible to 1/2. The random-structures
method considers the center of mass of the region of
consistent proportions, which is clearly attained when
p1 = (a+3)/2. Since there is only one predicate in the
vocabulary, the “maximum independence” characteri-
zation of the random-propensities method gives no use-
ful information here. However, it can be shown that for
this vocabulary, the random-propensities method and
the random-structures method give the same answer.
Thus, we get Pre, (P(c)| KB) = v, where v € [, 8] min-
imizes |y — 1|, and Pr’_ (P(c)|KB) = Pr?_(P(c)|KB) =
atp 7

2

Notice also that we were careful to say that the vo-
cabulary is {P,c} here. Suppose the vocabulary were
larger, say {P,Q,c,d}. This change has no impact
on the random-worlds and the random-propensities

5The conditions required vary. Roughly speaking, the
maximum-entropy characterization of random-worlds al-
most always works in practice; the center-of-mass tech-
nique finds degrees of belief for a smaller class of formu-
las, although there are few restrictions on KB; maximum-
independence works for most formulas, but is not sufficient
to handle the fairly common case where S(KB) contains
several points that maximize independence equally.

TAll of our methods give point-valued degrees of be-
lief. In examples like this is may be desirable to allow
interval-valued degrees of belief; we defer discussion to the
full paper.

method; we still get the same answers as for the smaller
vocabulary. In general, the degree of belief in ¢ given
KB does not depend on the vocabulary for these two
methods. As shown in (?), this is not true in the case
of the random-structures method. We return to this
point in the next section.

3.2 Properties of the Methods

As we mentioned in the introduction, all of our meth-
ods share some reasonable properties.

1) Deductive inference: All three methods general-
ize deductive inference; any fact that follows from the
database is given degree of belief 1.

Proposition 1: If|= KB = ¢ then Pri (¢|KB) = 1.

2) Direct inference: All three methods agree with
direct inference in noncontroversial cases. To be pre-
cise, say the reference class C is specified by some for-
mula 1(z); we have statistical information about the
proportion of C’s that satisfy some property ¢, e.g., the
information ||¢(2)|¥(2)||s € [a, 8]. All we know about
a constant ¢ is that it belongs to the class C, i.e., we
know only #(e¢). In this case we have only one refer-
ence class, and direct inference would use the statistics
from this class to generate a degree of belief in ¢(c).
In such cases, all three of our methods also reflect the
statistics we have for C.

Proposition 2: Let ¢ be a constant, and let
e(z),¥(z) be formulas that do not mention c. Then

Pres (p(o)] lle(@)[$(2)lle € [, B] A t(c)) € [a, B].

Therefore, in the example from the introduction, if the
database consists only of A, then we will obtain a de-
gree of belief of 0.2 from all three methods.

3) Specific Information: Suppose we have statistics
for ¢ relative to classes C; and Cs. If C; is more specific,
then we generally prefer to use its statistics.

Proposition 3: Suppose KB has the form
(@) [v1(2)le € [on, Sr] A lle(@)|2(2)]|e € [az, F2] A

P1(e) AVz(1(z) = Ya(z)), where @, 1, and P2 do
not mention c. Then P (¢(c)|KB) € [a1, A1].

This result demonstrates that if the knowledge base
consists of items A—C from the introduction, then all
three methods generate a degree of belief of 0.25 in
Tall(Eric), preferring the information about the more
specific class, Californians.

4) Irrelevant information: Often, databases con-
tain information that appears to be irrelevant to the
problem at hand. We usually want the computed de-
gree of belief to be unaffected by this extra informa-
tion. This turns out to be the case for the random-
worlds and the random-propensities methods, but not
for the random-structures method. The proposition
below formalizes one special case of this phenomenon.



Proposition 4: Let ¢(z) be a formula not mention-
ing ¢ or P, let KB be (||[P(2)|¢(2)||ls € [a,8]) A
¥(c), and let 6 be a formula not mentioning P. Then
Pry (P(c)|KB) = Pre (P(c)|KBAy) = PrE (P(c)|KB)
= P (P(¢)|KBA @) € [, f].

This result demonstrates that if our knowledge base
consists of items A and C from the introduction, then
we obtain a degree of belief of 0.2 in Tall(Eric) using
either random-worlds or random-propensities; these
methods allow us to inherit statistics from superclasses,
thus treating subclasses for which we have no special
statistical information as irrelevant. In contrast, the
random-structures method assigns a degree of belief of
0.5 to Tall(Eric) in this example. This can be quite
reasonable in certain situations, since if the subclass is
worthy of a name, it might be special in some way, and
our statistics for the superclass might not apply.

5) Sampling: Suppose ||Q(z)l = £ and
[|P(2)|Q(z)||z = @. Intuitively, here we want to think
of 3 as being small, so that ) defines a small sample
of the total domain. We know the proportion of P’s
in this small sample 1s @. Can we use this information
when the appropriate reference class is the entire do-
main? In a sense, this is a situation which is dual to the
previous one, since the reference class we are interested
in is larger than that for which we have statistics (@).
One plausible choice in this case is to use the statistics
from the smaller class; 1.e., treat it as sample data from
which we can induce information relevant to the super-
set. This is what is done by the random-propensities
method. The random-worlds method and the random-
structures method enforce a different intuition; since
we have no information whatsoever as to the overall
proportion of P’s satisfying =@, we assume by default
that it is 1/2. Thus, on a fraction @ of the domain,
the proportion of P’s is «, on the remaining fraction
(1 — B) of the domain, the proportion of P’s is 1/2.
This says that the proportion of P’sis af + (1 — 3)/2.
Formally:

Proposition 5:  Let KB be [|[P(2)|Q(z)||l: = «
A Q)| = B. Then Pr2 (P(c¢)|KB) = a and
Pre (P(c)|KB) = Pri,(P(c)|KB) = af + (1 — B)/2.

There are reasonable intuitions behind both answers
here. The first, as we have already said, corresponds
to sampling. For the second, we could argue that since
the class @ is sufficiently distinguished to merit a name
in our language, it might be dangerous to treat it as a
random sample.

These propositions are just a small sample of the
patterns of reasoning encountered in practice. But
they demonstrate that the issues we raised in the in-
troduction are handled well by our approach. Further-
more, in those cases where the methods differ, they
serve to highlight competing intuitions about what the
“reasonable inference” is. The fact that our techniques
automatically give reasonable answers for these basic

problems leads us to believe that our approach is a
useful way to attack the problem.

4 Understanding the Alternatives

How do we decide which, if any, of our three tech-
niques is appropriate in a particular situation? We do
not have a universal criterion. Nevertheless, as we now
show, the different methods make implicit assumptions
about language and the structure of the domain. By
examining these assumptions we can offer some sug-
gestions as to when one method might be preferable to
another.

Recall that random-structures groups isomorphic
worlds together, in effect treating the domain ele-
ments as indistinguishable. If the elements are distin-
guishable, random-worlds may be a more appropriate
model. We remark that this issue of distinguishabil-
ity 1s of crucial importance in statistical physics and
quantum mechanics. However, there are situations
where it is not as critical. In particular, we show in
(?) and in the full paper that, as long as there are
“enough” predicates in the vocabulary, the random-
worlds method and the random-structures method are
essentially equivalent. “Enough” here means “suffi-
cient” to distinguish the elements in the domain; in
a domain of size N, it turns out that 3log N unary
predicates suffice. Hence, the difference between dis-
tinguishability and indistinguishability can often be ex-
plained in terms of the richness of our vocabulary.

The random-propensities method gives the language
an even more central role. It assumes that there is in-
formation implicit in the choice of predicates. To
illustrate this phenomenon, consider the well-known
“grue/bleen” paradox (Goo55). A person who has seen
many emeralds, all of which were green, might place a
high degree of belief in “all emeralds are green.” Now
suppose that, as well as the concepts green and blue, we
also consider “grue”—green before the year 2000, and
blue after—and “bleen” (blue before 2000, and green
after). All the evidence for emeralds being green that
anyone has seen is also evidence for emeralds being
grue, but no one believes that “all emeralds are grue.”
Inferring “grueness” seems unintuitive. This suggests
that inductive reasoning must go beyond logical ex-
pressiveness to use judgements about which predicates
are most “natural.”

This intuition 1is captured by the random-
propensities approach. Consider the following sim-
plified version of the “grue/bleen” paradox. Let the
vocabulary @ consist of two unary predicates, G (for
“green”) and B (for “before the year 2000”), and
a constant ¢. We identify “blue” with “not green”
and so take “Grue” to be (G A B) V (=G A =B).®
The domain elements are observations of emeralds.

8This does not capture the full complexity of the para-
dox, since the true definition of “grue” requires the emerald
to change color over time.



If our database KB is ||G(z)|B(z)|l: = 1, then it
can be shown than Prf_ (G(c)|KBA =B(c)) = 1 and
Pr2 (Grue(c)|KB A =B(c)) = 0. That is, the method
“learns” natural concepts such as “greenness” and not
unnatural ones such as “grueness”. By way of contrast,
Pry (G(c)|KBA—B(c)) = Prio,(Grue(c)|KBA=B(e)) =
Prl (G(c)|KBA—B(c)) = Pri (Grue(c)|KBA—=B(c)) =
0.5. To understand this phenomenon, recall that the
random-worlds and random-structures methods treat
“grue” and “green” symmetrically; they are both the
union of two atoms. The random-propensities method,
on the other hand, gives “green” special status as a
predicate in the vocabulary.

The importance of the choice of predicates in the
random-propensities approach can be partially ex-
plained in terms of an important connection between
it and the random-worlds approach. Suppose we are
interested in the predicate Tall. A standard approach
to defining the semantics of Tall is to order individu-
als according to height, and choose a cutoff point such
that an individual is considered “tall” exactly if he
is taller than the cutoff. It turns out that if we add
this implicit information about the meaning of Tall to
the knowledge base, and use the random-worlds ap-
proach, we obtain the random-propensities approach.
Intuitively, the location of the cutoff point reflects the
propensity of a random individual to be tall. Many
predicates can be interpreted in a similar fashion, and
random-propensities might be an appropriate method
in these cases. However, many problems will include
different kinds of predicates, requiring different treat-
ment. Therefore, in most practical situations, a combi-
nation of the methods would almost certainly be used.

In conclusion, we believe that we have offered a new
approach to the problem of computing degrees of belief
from statistics. Our approach relies on notions that
seem to be much more fundamental than the tradi-
tional notion of “choosing the right reference class.”
As should be clear from our examples, none of the
three methods discussed here is universally applicable.
Instead, they seem to represent genuine alternative in-
tuitions applicable to different situations. We feel that
the elucidation of these alternative intuitions is in itself
a useful contribution.
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