
Reasoning About Rationality

Adam Bjorndahl, Joseph Y. Halpern, Rafael Pass

September 22, 2017

Abstract

We provide a sound and complete axiomatization for a class of logics
appropriate for reasoning about the rationality of players in games, and
show that essentially the same axiomatization applies to a very wide class
of decision rules. We also consider epistemic representations of games
in which players may be uncertain as to what decision rules their op-
ponents are using, and define in this context a new solution concept,
D-rationalizability.

1 Introduction

Decision-making in an uncertain environment is a fundamental component of
game theory: players must choose what to do without necessarily knowing what
their opponents will do. Under certainty, decision-making is straightforward:
one simply chooses the course of action that leads to the most preferred outcome.
Under uncertainty, however, a player must evaluate many possible outcomes
in a manner that somehow takes into account her relative degrees of belief.
There are many ways to do this. The maximin decision rule, for example,
focuses entirely on worst-case scenarios. An expected utility maximizer, on the
other hand, weights each outcome according to her (subjective) assessment of its
probability and chooses the course of action that maximizes the corresponding
expected value.

One can argue about which decision rules are reasonable and which are not, and
the word “rational” might be invoked to denote this very divide. However, this
is not the debate that concerns us here. Rather, assuming that we have fixed
a decision rule for a given player, we can ask whether that player is, in fact,
making choices in accordance with it, and call her rational precisely when she
is. In classical game theory, for example, rationality is typically identified with
expected utility maximization: a player is rational if and only if she is acting to
maximize her expected utility.

Rationality in this sense plays a crucial role in the analysis of games; indeed,
many notions of equilibrium require not only that each player is rational, but
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also that each player believes their opponents are rational, believes their oppo-
nents believe their opponents are rational, and so on. Epistemic game theory
concerns itself with models expressive enough to represent the complexities of
higher-order beliefs. Formal logic furnishes a powerful and versatile class of
such models; namely, modal logics of belief and the Kripke structures typically
used to give semantics to these logics. However, while the notion of rationality
has been incorporated into these models both syntactically and semantically, no
axiomatization of the resulting logical systems has been provided. This paper
fills this gap.

We take as our point of departure axioms for rationality in the sense of expected
utility maximization first presented in [Bjorndahl, Halpern, and Pass 2011]. We
then extend these axioms to arbitrary decision rules; this allows us to reason
about other standard rules beyond expected utility maximization, such as max-
imin and minimax regret (see [Halpern 2003] for a discussion of all the decision
rules mentioned in this paper). We also consider the effect of representing un-
certainty by a set of probability measures rather than a single one; this allows
us to capture well-known decision rules such as maxmin expected utility and
minimax expected regret. Finally, we turn our attention to modeling situations
where players might be uncertain about which decision rules their opponents
are using. Endogenizing decision rules in this way broadens not only the notion
of rationality but also that of iterative rationality ; this, we argue, provides a
better epistemic foundation for a number of solution concepts.

The rest of this paper is organized as follows. In Section 2, we define the core
concepts formally: games, modal logics of belief appropriate for reasoning about
games, and the incorporation of rationality into these logics. Section 3 presents
the main axiomatization together with a proof of soundness and completeness;
we also extend these core results to logics in which the players’ uncertainty is
represented by sets of probabilities, and discuss the role of language. In Section
4, we consider logics in which players may be uncertain about the decision rules
used by their opponents, and provide a natural application of this framework in
the form of a new solution concept, D-rationalizability, as well as an axiomatiza-
tion. Section 5 concludes with a discussion of future work. Proofs are collected
in Appendix A.

2 Reasoning about games

Given a tuple (Xi)i∈I over some finite index set I = {1, . . . , n}, we adopt the
usual notational convention of writing

X :=
∏
i∈I

Xi and X−i :=
∏
j 6=i

Xj .

We also write X ′i ×X−i for

X1 × · · · ×Xi−1 ×X ′i ×Xi+1 × · · · ×Xn
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and similarly (x′i, x−i) for (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

A (normal-form) game is a tuple Γ = (I, (Σi)i∈I , (ui)i∈I) where I = {1, . . . , n}
is the set of players, Σi is the (finite) set of strategies available to player i, and
ui : Σ → R is player i’s utility function, where Σ =

∏
i Σi denotes the set of

strategy profiles.

2.1 Syntax

One way of reasoning formally about a game is to build a logical language that
is expressive enough to capture the aspects of play that we are interested in
analyzing. To this end, given a game Γ, we begin by defining a propositional
modal language of belief and then specializing the primitive propositions to
correspond to the strategies available to the players.

Given an arbitrary set Φ of primitive propositions, let LB(Φ) be the language
recursively generated by the grammar

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Biϕ,

where p ∈ Φ and i ∈ I. Here ¬ and ∧ are the usual Boolean connectives
corresponding to logical negation and conjunction, while Biϕ is read “player i
believes ϕ”. We define other connectives such as ∨,→, and↔ as usual in terms
of ∧ and ¬, and write B̂iϕ for ¬Bi¬ϕ (“player i consider it possible that ϕ”).
We also write

E1ϕ ≡ B1ϕ ∧ · · · ∧Bnϕ and

Ekϕ ≡ E1(Ek−1ϕ)

for “everyone believes ϕ” and its k-fold iteration, respectively. Set

ΦΓ := {play i(σi) : i ∈ I, σi ∈ Σi},

where we read play i(σi) as “player i is playing strategy σi”; we write

play(σ) ≡ play1(σ1) ∧ · · · ∧ playn(σn) and

play−i(σ−i) ≡
∧
j 6=i

playj(σj)

for “the players are playing according to the strategy profile σ” and the anal-
ogous statement regarding the players other than i. The language LB(ΦΓ) is
thus appropriate for reasoning about the beliefs of the players with respect to
the strategies they are playing.

2.2 Semantics

A language of belief can be interpreted using Kripke-style possible world seman-
tics, where associated to each world ω and each player i is a probability measure
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on the set of all worlds, used to interpret player i’s beliefs at ω. In the case
of a language like LB(ΦΓ), we also must take care to interpret the primitive
propositions appropriately.

We restrict our attention to finite models. A finite Γ-structure is a tuple
M = (Ω, (Pr i)i∈I , s) satisfying the following conditions:

(C1) Ω is a nonempty, finite set;

(C2) Pr i associates with each ω ∈ Ω a probability measure Pr i(ω) on Ω;

(C3) Pr i(ω)({ω′ ∈ Ω : Pr i(ω
′) = Pr i(ω)}) = 1;

(C4) s : Ω→ Σ satisfies Pr i(ω)({ω′ ∈ Ω : si(ω
′) = si(ω)}) = 1.

Conditions (C1) and (C2) set the stage to interpret player i’s beliefs at ω by
the measure Pr i(ω). Condition (C3) then ensures that at each world ω, each
player is sure of (i.e. assigns probability 1 to) her own beliefs. Finally, condition
(C4) establishes that the strategy function s assigns to each world ω a strategy
profile s(ω) in game Γ—intuitively, the strategy that each player is playing at
ω—and moreover, that each player is sure of her own strategy.

A finite Γ-structure M induces an interpretation [[·]]M : LB(ΦΓ)→ 2Ω defined
recursively as follows:

[[play i(σi)]]M := {ω ∈ Ω : si(ω) = σi}
[[ϕ ∧ ψ]]M := [[ϕ]]M ∩ [[ψ]]M

[[¬ϕ]]M := Ω [[ϕ]]M

[[Biϕ]]M := {ω ∈ Ω : Pr i(ω)([[ϕ]]M ) = 1}.

Thus, the primitive propositions are interpreted in the obvious way using the
strategy function (si denotes the ith component function of s), the Boolean
connectives are interpreted classically, and the formula Biϕ holds at all and
only those worlds ω at which Pr i(ω) assigns probability 1 to ϕ. As is standard,
we often write (M,ω) |= ϕ or just ω |= ϕ to indicate that ω ∈ [[ϕ]]M . Similarly,
we write M |= ϕ if [[ϕ]]M = Ω, and when (M,ω) 6|= ϕ, we say that M refutes ϕ
(at ω), or just that ω refutes ϕ.

2.3 Rationality

Informally, a player is rational if the strategy she is playing is a best response
to her beliefs about the outcome of the game, given her preferences. But there
is no single conception of what constitutes a “best response”; a wide variety of
principles of decision-making have been proposed and studied.

One influential notion, particularly in game theory, is that of expected utility
maximization. Given a game Γ and a probability measure µ on Σ−i (thought of
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as representing player i’s beliefs about the strategies her opponents will play),
the expected utility of a strategy σi ∈ Σi is just the expected value of the
function ui(σi, · ) : Σ−i → R with respect to µ:

EU i(σi;µ) :=
∑

σ−i∈Σ−i

ui(σi, σ−i) · µ(σ−i).

A best response for an expected utility maximizer is a strategy that maximizes
this value. Abstractly, we might identify the mandate “maximize expected
utility” for player i (in the game Γ) with a function deui that takes as input a
belief µ on Σ−i and returns as output the set of strategies σi ∈ Σi that maximize
player i’s expected utility given µ:

deui (µ) := {σi ∈ Σi : (∀σ′i ∈ Σi)(EU i(σi;µ) ≥ EU i(σ
′
i;µ))}.

Let ∆(Σ−i) denote the set of all probability measures on Σ−i. Then, generalizing
the above, we define a decision rule for player i (in Γ) to be a function
di : ∆(Σ−i) → 2Σi {∅}. Intuitively, σi ∈ di(µ) just in case σi is a best
response for player i to the belief µ according to the decision rule di. For
another example, the “maximin” mandate for player i, which says to maximize
the worst-case outcome among those considered possible, corresponds to the
decision rule defined as follows: let

WC i(σi;µ) := min{ui(σi, σ−i) : µ(σ−i) > 0},

and set

dmi (µ) := {σi ∈ Σi : (∀σ′i ∈ Σi)(WC i(σi;µ) ≥WC i(σ
′
i;µ))}.

Decision rules can be interpreted in Γ-structures; roughly speaking, for each
world ω, we can define the set of di-best responses for player i at ω, and thus
determine whether or not player i is being di-rational (i.e., acting in accordance
with the decision rule di) at ω. Formally, given a Γ-structure M , for each player i
and each world ω, the probability measure Pr i(ω) induces a probability measure
µi,ω defined on Σ−i as follows:

µi,ω(σ−i) := Pr i(ω)([[play−i(σ−i)]]M ).

In fact, µi,ω is the pushforward of Pr i(ω) by s−i. Since Pr i(ω) is interpreted
as representing player i’s beliefs at ω, it makes sense to apply her decision rule
to µi,ω. This leads us to define the set of di-best responses for player i
at ω to be di(µi,ω). We say that player i is di-rational at ω just in case
si(ω) ∈ di(µi,ω).

Since we wish to reason formally about games using the logic developed above,
and rationality is an important concept for such analyses, we expand the lan-
guage to include primitive propositions denoting rationality of the players.
Given a profile of decision rules d = (di)i∈I , let

Φd
Γ := ΦΓ ∪ {RAT di

i : i ∈ I},

5



where RAT di
i is read “player i is di-rational”. Henceforth, except where noted

otherwise, we work with an arbitrary but fixed profile of decision rules d. For
notational convenience, we omit the di when possible, referring to “best re-
sponses” and “rationality” instead of “di-best responses” and “di-rationality”,
and writing RAT i instead of RAT di

i . We also make use of the syntactic abbre-
viation

RAT ≡ RAT 1 ∧ · · · ∧ RATn

for “everyone is rational”.

Given a Γ-structure M , the interpretation [[·]]M is extended to LB(Φd
Γ) in the

obvious way, by setting

[[RAT i]]M := {ω ∈ Ω : si(ω) ∈ di(µi,ω)}.

When d = deu, so each player’s decision rule is given by expected utility max-
imization, we regain the traditional notion of rationality in game theory. Ra-
tionality so defined can be used to characterize several well-known solution
concepts in terms of Γ-structures. For example, as shown by Tan and Werlang
[1988] and Brandenburger and Dekel [1987], given a game Γ, a strategy σi is
rationalizable if and only if there exists a Γ-structure M and a state ω therein
such that ω |= play i(σi) and for every k ∈ N, ω |= Ek(RAT ) (i.e., it is common
belief that everyone is rational).

It is worth noting that decision rules are general enough to represent processes
that fall outside the traditional purview of “rationality”. For example, suppose
that player i is a computer system and Σi is a collection of actions it can execute.
Suppose also that the system maintains a database consisting of estimates of
the values of certain variables, which can be represented as beliefs about the
strategies of “opponents”. In this context, a decision rule can be thought of
as a (nondeterministic) process that the computer system might use to choose
which action to execute on the basis of the information in its database. In
particular, RAT di

i asserts that the system has executed an action consistent
with the process di.

1

Example 2.1: In order to help solidify the framework just introduced, we
present a simple example. Consider the standard Bach-or-Stravinsky game ΓBoS

[Osborne and Rubinstein 1994], in which each of two players must choose which
of two concerts to attend this evening: one featuring the music of Bach, and
one of Stravinsky. Player 1 prefers to attend the Bach concert, while player two
prefers the Stravinsky; moreover, each much prefers to attend the same concert
as the other. We can represent these preferences with the utility functions
summarized in Table 1.

1In this sense, we can think of a decision rule as a knowledge-based program [Fagin, Halpern,
Moses, and Vardi 1995]. Knowledge-based programs have previously been used to characterize
rationality and solution concepts [Halpern and Moses 2007].
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Bach Stravinsky

Bach 3,2 0,0

Stravinsky 0,0 2,3

Table 1: Bach or Stravinsky?

We now describe a ΓBoS-structure in which we can reason about the beliefs and
rationality of the players. Of course, there are many such ΓBoS-structures, each
representing a different configuration of facts and beliefs; the one we consider
here is chosen simply to provide a concrete illustration of the connection between
the logical formalism and the game.

Let Ω = {ω0, ω1, ω2} and let Pr1(ω0) be the uniform distribution on {ω1, ω2},
so player 1 considers ω1 and ω2 equally likely. Consider a strategy function s
defined such that s2(ω1) = Bach and s2(ω2) = Stravinsky. It is easy to see that
in this case, the induced measure µ1,ω0

assigns probability .5 to Bach and .5 to
Stravinsky. It follows easily that player 1’s expected utility on choosing Bach is
1.5, while his expected utility on choosing Stravinsky is 1. Thus,

ω0 |= RAT
deu
1

1 ↔ play1(Bach).

On the other hand, the worst-case outcome for player 1 on choosing either Bach
or Stravinsky yields a utility of 0, so we have

ω0 |= RAT
dm
1

1 ,

regardless of which strategy player 1 actually chooses at ω0.

3 Axiomatization

Although reasoning formally about beliefs and rationality has long been recog-
nized as important to game theory (see, e.g., [Aumann 1999]), to the best of
our knowledge, rationality has not been axiomatized in a logic of belief. In this
section we provide an axiomatization and prove that it is sound and complete.

While most of the axioms are easy to state and understand, two require some
preliminary definitions. Fix a game Γ and a profile of decision rules d. Given a
subset S ⊆ Σ−i, let

δi,S ≡
∧

σ−i∈S
B̂i play−i(σ−i) ∧

∧
σ−i /∈S

¬B̂i play−i(σ−i).

Intuitively, the formula δi,S says that player i considers possible all and only
the strategy profiles for his opponents that are elements of S. It is easy to see
that for each player i and any world ω, exactly one of the formulas δi,S holds.
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Given a measure µ on a finite set X, let

supp(µ) := {x ∈ X : µ(x) > 0},

the support of µ. For each player i and each σi ∈ Σi, let S+
i (σi) denote the

collection of all S ⊆ Σ−i such that there exists a probability measure µ with
supp(µ) = S and with respect to which σi is a best response; that is, σi ∈ di(µ).
Similarly, define S−i (σi) to be the collection of all S ⊆ Σ−i such that there exists
a probability measure µ with supp(µ) = S and σi /∈ di(µ).

Consider the following axiom schemes:

G1.
∨

σi∈Σi

play i(σi)

G2. ¬(play i(σi) ∧ play i(σ
′
i)), for σi 6= σ′i

G3. play i(σi)↔ Bi play i(σi)

G4. RAT i ↔ Bi(RAT i)

G5. (play i(σi) ∧ RAT i)→
∨

S∈S+
i (σi)

δi,S

G6. (play i(σi) ∧ ¬RAT i)→
∨

S∈S−i (σi)

δi,S .

G1–G4 are straightforward. G1 and G2 say that, at each state, each player
plays exactly one strategy. G3 and G4 say that each player is certain of her
strategy and of whether or not she is rational. The interesting axioms are G5
and G6. Intuitively, G5 says that if RATi holds and player i is playing σi, then
player i must consider possible a collection of strategy profiles2 on which she
could place a probability that would justify her playing σi. G6 is interpreted
analogously. Notice that player i’s actual (i.e. quantitative) beliefs are not fully
specified. This may be somewhat surprising, given that the semantic interpreta-
tion of RATi is defined in terms of the quantitative probabilities that constitute
player i’s beliefs; we return to this point in Section 3.2.

Let GLdΓ be the axiom system that results from adding G1–G6 to the standard
KD45 axioms and rules of inference of belief logic (see, e.g., [Fagin, Halpern,
Moses, and Vardi 1995]). These axioms completely characterize the logical
properties of rationality as expressible in the language LB(Φd

Γ).

Theorem 3.1: GLdΓ is a sound and complete axiomatization of the language
LB(Φd

Γ) with respect to the class of all finite Γ-structures.

2Note that the sets S+
i (σi) and S−i (σi) could be empty; by convention, we define the empty

disjunction to be ⊥ (or false). If, for example, S+
i (σi) = ∅, this means that σi is not a best

response to any beliefs, in which case the corresponding axiom (playi(σi) ∧ RAT i) → ⊥ is
intuitively correct.
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It bears emphasizing that GLdΓ is parametrized by two variables: the underlying
game Γ that determines the players, their strategies, and their preferences, and
the profile of decision rules d that determines the meaning of “rationality” for
each player. Thus, what we are axiomatizing here is not a single logic but a class
of logics. For each fixed Γ and d, the corresponding axiom system GLdΓ is trivially
decidable (i.e., we can effectively determine whether a formula is an instance of
an axiom scheme) because KD45 is decidable and there are only finitely-many
instances of the axiom schemes G1–G6 (the implicit quantification in these
schemes ranges in some cases over players and in others over strategies, all of
which are finite sets).

3.1 Belief as lower probability

In the above we take for granted that each player’s uncertainty is represented
by a probability measure. While this is a very standard assumption, it is by
no means the only framework that has been considered; see [Halpern 2003] for
an overview of different ways of modeling uncertainty. Here we show that, with
very minor modifications, the axiomatization given above also works in the more
general context where beliefs are represented using sets of probability measures.

Given a set P of probability measures, the lower probability of an event E,
denoted P∗(E), is defined to be the infimum of the probabilities assigned to E
by members of P:

P∗(E) := inf{µ(E) : µ ∈ P}.

Fix a game Γ. A finite lower Γ-structure is a tuple M = (Ω, (PRi)i∈I , s)
satisfying the following conditions:

(L1) Ω is a nonempty, finite set;

(L2) PRi associates to each ω ∈ Ω a set PRi(ω) of probability measures on Ω;

(L3) PRi(ω)∗({ω′ ∈ Ω : PRi(ω
′) = PRi(ω)}) = 1;

(L4) s : Ω→ Σ satisfies PRi(ω)∗({ω′ ∈ Ω : si(ω
′) = si(ω)}) = 1.

These conditions are simply the analogues of conditions (C1) through (C4)
where uncertainty is represented by sets of probability measures and certainty
is identified with lower probability 1. Accordingly, we define the interpretation
[[·]]M as before, except for the clause corresponding to the belief modalities,
which is replaced by the following:

[[Biϕ]]M := {ω ∈ Ω : PRi(ω)∗([[ϕ]]M ) = 1}.

Finally, a decision rule for player i in this context is a function di : 2∆(Σ−i) →
2Σi {∅}, since player i must make her choice based on the uncertainty given
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by a set of probability measures. For example, the “maximin expected utility”
decision rule for player i would be given by the following:

dmeu
i (P) :=

{
σi ∈ Σi : (∀σ′i ∈ Σi)

(
min
µ∈P
{EUi(σi;µ)} ≥ min

µ∈P
{EUi(σ′i;µ)}

)}
.

Other rules, such as minimax expected regret [Hayashi 2008], can also easily be
defined in this setting.

As before, such decision rules makes sense in a Γ-structure M : for each player
i and each world ω, the probability measures in the set PRi(ω) can be pushed
forward by s−i to probability measures on Σ−i. Let Pi,ω denote the set of all
such pushforwards:

Pi,ω := {µi,ω : µ ∈ PRi(ω)}.

Then we can define di-rationality for player i at ω in the obvious way, namely,
by the requirement that si(ω) ∈ di(Pi,ω).

The axiomatization of Section 3 can be generalized as well. First observe that
the dual belief modality, B̂i ≡ ¬Bi¬, is interpreted as positive upper proba-
bility, where the upper probability of an event E with respect to a set P of
probability measures, denoted P∗(E), is given by

P∗(E) := sup{µ(E) : µ ∈ P}.

Accordingly, given a set P of probability measures on a finite space X, we define

supp(P) := {x ∈ X : (∃µ ∈ P)(µ(x) > 0)}.

For each σi ∈ Σi, let S+
i (σi) denote the collection of all S ⊆ Σ−i such that

there exists a set of probability measures P with supp(P) = S and σi ∈ di(P).
Similarly, define S−i (σi) to be the collection of all S ⊆ Σ−i such that there exists
a set P of probability measures with supp(P) = S and σi /∈ di(P). It is not hard
to see that all of these definitions generalize what was presented in Sections
2 and 3; indeed, by considering the special case where all sets of probability
measures are singletons, we recover that framework exactly. Moreover, the
axiom system GLdΓ, interpreted in this more general setting using the definitions
above, remains sound and complete.

Theorem 3.2: GLdΓ is a sound and complete axiomatization of the language
LB(Φd

Γ) with respect to the class of all finite lower Γ-structures.

3.2 The role of language

In this section we focus on the profile of decision rules d = deu, with respect
to which each player is rational precisely if they are playing a strategy that
maximizes their expected utility. As noted, it is somewhat surprising that G5
and G6 are sufficient to capture this notion of rationality. Whether or not a
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player is maximizing their expected utility depends on their quantitative beliefs;
however, while G5 and G6 specify the possible supports for player i’s beliefs,
they say nothing about the actual weights placed on the individual outcomes.
Nor could they—the language LB(Φd

Γ) cannot express anything beyond such
qualitative properties of the measures Pr i(ω).

Expressivity, however, is a double-edged sword: when working with a less ex-
pressive language, though we are more limited in the possible axioms we have
available, there are also fewer validities to worry about proving. This, in essence,
is why GLdΓ can be a complete axiomatization: the properties of rationality it
fails to encode are precisely those properties that are not expressible in the
language at all.

A richer language—in particular, one with a finer-grained representation of
belief—may not be axiomatizable at all, or at least not using the techniques
in this paper. Consider, for example, a language with belief modalities Bαi for
each α ∈ [0, 1], where Bαi ϕ is interpreted as saying that player i assigns prob-
ability α to ϕ. In this case, GLdΓ (replacing Bi by B1

i ) is sound but certainly
not complete. It can easily happen, for example, that in the game Γ it is only
rational for player i to play σi if she assigns probability 1

2 to σ−i; however, the
corresponding validity

(play i(σi) ∧ RAT i)→ B
1
2
i play−i(σ−i)

is clearly not a theorem of GLdΓ. Moreover, extending GLdΓ to this richer lan-
guage runs into difficulties. The axiom schemes G5 and G6 essentially work by
insisting that the players’ beliefs be compatible with rationality or its negation,
respectively. In the language LB(Φd

Γ), this amounts to specifying the possible
supports for the players’ beliefs, which can be written using finite formulas since
each Σ−i is finite and therefore has only finitely-many subsets. By contrast, in
the language with belief modalities Bαi for every α ∈ [0, 1], the “formula” that
says that player i’s beliefs are compatible with rationality may be infinitely long.

A still richer language, however, can circumvent these difficulties entirely. Fix
a game Γ and consider the language of linear likelihood inequalities defined by
the grammar

ϕ ::= p | ¬ϕ |ϕ ∧ ψ | a1`i(ϕ1) + · · ·+ ak`i(ϕk) ≥ b,

where p ∈ ΦΓ, i ∈ I, k ∈ N, and a1, . . . , ak, b ∈ R. The likelihood terms
`i(ϕ) are meant to be read as “the probability of ϕ according to player i”, and a
likelihood formula a1`i(ϕ1)+· · ·+ak`i(ϕk) ≥ b should be thought of as asserting
the corresponding inequality. More precisely, we interpret such formulas in a
Γ-structure M as follows:

[[a1`i(ϕ1) + · · ·+ ak`i(ϕk) ≥ b]]M := {ω ∈ Ω :
k∑
j=1

ajPr i(ω)([[ϕj ]]M ) ≥ b}.
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For example, the formula `i(ϕ) ≥ 1 says that player i assigns probability at least
(and therefore exactly) 1 to ϕ, while the formula (`i(ϕ) ≥ 1

2 ) ∧ (`i(¬ϕ) ≥ 1
2 )

says that player i assigns probability 1
2 to ϕ. See [Halpern 2003] for a thorough

discussion of this and related logics; a sound and complete axiomatization is
given in [Fagin, Halpern, and Megiddo 1990].

In this language, rationality in the sense of expected utility maximization can
be defined, thus obviating the need for a separate axiomatization. Indeed, if we
let σi � σ′i be an abbreviation for the formula∑
σ−i∈Σ−i

ui(σi, σ−i)`i(play−i(σ−i)) −
∑

σ−i∈Σ−i

ui(σ
′
i, σ−i)`i(play−i(σ−i)) ≥ 0,

which says that the expected value according to player i of playing σi is no less
than the expected value of playing σ′i, then it is easy to see that

RAT
deu
i
i ↔

∨
σi∈Σi

(
play i(σi) ∧

∧
σ′i∈Σi

σi � σ′i
)

is valid. Since rationality is expressible in this language, it is axiomatized as
well.

4 Endogenizing decision rules

In general, we may wish to reason about players who are uncertain about which
decision rules their opponents are using. For example, player i might believe
that if player j is maximizing her expected utility, then she will play σj , but
if she plays σ′j , then she might instead be minimizing the worst-case outcome.
One way to try to model such uncertainty is to expand the logic so that there is
a set Di of decision rules associated with each player i. Consider the collection
of primitive propositions

ΦD
Γ := ΦΓ ∪ {RAT di

i : i ∈ I, di ∈ Di}.

Interpret RAT di
i as before. Then LB(ΦD

Γ ) is a language for reasoning about
the strategies and beliefs of the players i ∈ I as well as their adherence to the
various decision rules di ∈ Di.

In Appendix A.3, we show how to modify G5 and G6 to obtain a sound and
complete axiomatization of LB(ΦD

Γ ) with respect to the class of all finite Γ-
structures. But there is something unsatisfying about using this language to
model players’ uncertainty about decision rules: the propositions RAT di

i say
that player i is playing a di-best-response, but not that player i is actually
using the rule di to decide her strategy. To see the difference, consider a player
i who is trying to maximize her expected utility (i.e. using deui ), and happens
to also play a maximin strategy; contrast this with a scenario in which she is
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actively seeking to maximize the worst-case outcome (i.e. using dmi ), and in so
doing happens to play a strategy that maximizes her expected utility. Although
player i is following different decision rules in these two cases, the language

LB(ΦD
Γ ) cannot express this difference; the formula RAT

deu
i
i ∧ RAT

dm
i
i holds

either way. For instance, in Example 2.1, it is not hard to check that

ω0 |= play1(Bach)→
(
RAT

deu
1

1 ∧ RAT
dm
1

1

)
.

In sum, the propositions RAT di
i do not say anything about how player i is

making her decision, but simply record whether or not the decision she does
make is compatible with the rule di. What we want is a different kind of
proposition, say rulei(di), that says that player i really is using the rule di in
deciding her strategy.

Decision rules interpreted in this sense are particularly relevant in a dynamic
setting. When an opponent does something unexpected and seemingly irra-
tional, there is the question of how to update your beliefs. One option is to
abandon the belief that your opponent is rational, but this is unsatisfying both
conceptually and methodologically. An alternative response is to update your
beliefs about your opponent’s beliefs: what they did actually was rational with
respect to their beliefs, you had just misjudged what those beliefs were (see,
e.g., [Battigalli and Siniscalchi 2002]). But in some cases, this too is unsatisfy-
ing: for example, “continuing” at the second-last stage of the centipede game
(see Example 4.3) is only rational for a player who believes his opponent to be
irrational. When decision rules are present in the model as objects of belief,
however, a third option becomes available: abandon the belief that your oppo-
nent is di-rational, but not that they are behaving rationally with respect to
some other decision rule. Though an analysis of decision rules in extensive-form
games is beyond the scope of this paper, the groundwork for such a study can
be laid by formalizing them in a static context.

Fix a game Γ and a profile D = (Di)i∈I of sets of decision rules for each player
i ∈ I. Expand the set ΦΓ of primitive propositions that we considered earlier
by taking

ΦΓ,D := ΦΓ ∪ {rulei(di) : i ∈ I, di ∈ Di}.
In order to interpret the primitive propositions rulei(di), we must extend the
semantic model so that it associates with each world ω the decision rule that each
player i is using at that world; furthermore, we must constrain the strategies
used at each world so that they are compatible with the corresponding decision
rules. Formally, a (Γ,D)-structure is a tuple M = (Ω, (Pr i)i∈I , s, r) satisfying
(C1) through (C4) as well as the following additional conditions:

(C5) r : Ω→ D satisfies Pr i(ω)({ω′ ∈ Ω : ri(ω
′) = ri(ω)}) = 1;

(C6) si(ω) ∈ ri(ω)(µi,ω).

Condition (C5) says that the decision function r assigns to each world ω a profile
of decision rules r(ω)—intuitively, ri(ω) ∈ Di is the rule that player i is using at
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ω—and moreover, each player is sure of her own decision rule. Condition (C6)
requires that, at each world ω, the strategy si(ω) is an ri(ω)-best response for
player i; in other words, player i really is following the decision rule ri(ω) at ω.

The language LB(ΦΓ,D) can be interpreted in a (Γ,D)-structure M as before,
with the additional clause

[[rulei(di)]]M := {ω ∈ Ω : ri(ω) = di}.

The resulting logic can be axiomatized using essentially the same technique as
in Section 3 (see Section 4.2). But perhaps more interesting than axiomatizing
this logic is the prospect of applying it to the analysis of games.

4.1 D-rationalizability

It is quite natural in certain strategic contexts for players to reason not only
about their opponents’ strategies and beliefs, but also the decision-making pro-
cess that they might be using. A decision rule like minimax regret, for instance,
can lead to very different behaviour in games like the centipede game or the
traveler’s dilemma [Halpern and Pass 2012]; as such, it is reasonable in such
contexts to wonder, for example, whether an opponent is motivated to maxi-
mize utility or to avoid regret.

Recall that strategies that are consistent with common belief of rationality are
called rationalizable. Common belief of rationality in games—the requirement
that every player is rational, believes their opponents are rational, believes their
opponents believe their opponents are rational, and so on—is often conceived of
as a kind of “minimal” condition for equilibrium. But games like the traveler’s
dilemma, where the rationalizable strategies are far from optimal and quite dis-
tinct from the typical strategies employed by human players [Capra, Goeree,
Gomez, and Holt 1999], belie this intuition of minimality. However, by decou-
pling the meaning of rationality from expected utility maximization, the notion
of “rationalizability” can be expanded to other decision rules, thereby providing
what is arguably a better epistemic foundation for equilibrium theory.

More precisely, generalizing the traditional epistemic characterization of ratio-
nalizability, we define a strategy σi to be D-rationalizable (in Γ) just in case
there exists a (Γ,D)-structure in which σi is played at some state. Of course,
the standard notion arises as the special case where each Di = {deui }. It is
easy to see (via a straightforward iterated deletion argument3) that when the
strategy sets are finite, D-rationalizable strategies must exist. Moreover, if for
each player i we have Di ⊆ D′i, then clearly every (Γ,D)-structure is also a
(Γ,D′)-structure; this immediately establishes the following:

3Set Σ
(0)
i = Σi, and inductively define Σ

(k+1)
i =

⋃
di∈Di

{σi : (∃µ ∈ ∆(Σ
(k)
−i ))(σi ∈ di(µ))}.

Then Σ(0),Σ(1), . . . is a nested decreasing sequence that cannot include the empty set, so it
must stabilize if Σ is finite. From such a stable Σ(K), it is easy to construct a (Γ,D)-structure

in which each σi ∈ Σ
(K)
i is played at some state.
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Proposition 4.1: For each player i, let Di ⊆ D′i. Then if σi is D-rationalizable,
it is also D′-rationalizable.

We illustrate these concepts with two examples. It will be useful first to formally
define the minimax regret decision rule in our setting. Given a game Γ and
probability measure µ on Σ−i, let

MRi(σi;µ) := max{max
σ′i∈Σi

ui(σ
′
i, σ−i)− ui(σi, σ−i) : µ(σ−i) > 0},

corresponding to the maximum “regret” player i might feel having played σi,
where “regret” is interpreted as the difference between the best-case payoff and
the actual payoff (with respect to the strategy profiles σ−i that player i considers
possible). The minimax regret decision rule dri seeks to minimize this value:

dri (µ) := {σi ∈ Σi : (∀σ′i ∈ Σi)(MRi(σi;µ) ≤ MRi(σ
′
i;µ))}.

Example 4.2: Consider the traveller’s dilemma: each of two players must
name an amount in Σ1 = Σ2 = {2, 3, . . . , 100}, which is the reimbursement they
are requesting for luggage that was damaged by their airline. The airline will
reimburse them both by the minimum amount requested, with one catch: the
person who asks for less receives a $2 bonus, while the person who asks for more
receives a $2 penalty (if they ask for the same amount, no bonuses or penalties
are applied). Thus, payoffs are defined as follows:

ui(σ) =


σi if σi = σ−i
σi + 2 if σi < σ−i
σ−i − 2 if σi > σ−i.

Clearly the best payoff is achieved by undercutting one’s fellow traveler by 1 if
possible, and otherwise (if the other traveler plays 2), playing 2. It is easy to
see that playing 100 is never a deui -best response; an iterative deletion argument
then shows that the only rationalizable strategy is to play 2. By contrast, when
each Di = {dri }, playing 100 is D-rationalizable. To prove this, by definition,
it suffices to exhibit a (Γ,D)-structure in which 100 is played at some state.
Consider the structure presented in Figure 1:
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Figure 1: A (Γ,D)-structure for the traveler’s dilemma

Each of the four states of this structure is labeled with the strategy profile being
played at that state, while the edges labeled i represent which states player i
considers possible (i.e., assigns positive probability to) from which other states
(numerical probabilities are irrelevant for this analysis and so are suppressed).
We must show that each player is playing according to minimax regret. Take
player 1’s perspective (the argument for player 2 is analogous); observe first that
she considers 96 and 100 to be the only possible plays her opponent might make.
Given this, player 1’s maximum regret on playing σ1 > 96 must be at least 3,
since u1(σ1, 96) = 94, whereas u1(95, 96) = 97. Similarly, player 1’s maximum
regret on playing σ1 ≤ 96 must be at least 3, since u1(σ1, 100) = σ1 + 2 ≤ 98,
whereas u1(99, 100) = 101. Moreover, it is straightforward to check that player
1’s maximum regret on playing either 96 or 100 is exactly 3. It follows that each
of 96 and 100 constitutes a dr1-best response.

Example 4.3 : Consider the normal-form version of the centipede game
[Rosenthal 1982] depicted in Figure 2: each player must choose whether to quit
at some stage or play to the end. Let Σ1 = {Q1, Q3, Q∗} and Σ2 = {Q2, Q4, Q∗},
where Qk stands for quitting at stage k and Q∗ stands for playing to the end.
Payoffs are determined by the the minimal stage that some player quit at, as
shown in Figure 2. For instance: u(Q1, Q2) = u(Q1, Q4) = (1, 0), since in either
case player 1 quits at the first stage (making player 2’s choice irrelevant); on
the other hand, u(Q∗, Q4) = (2, 8), since player 1 never quits and player 2 quits
at the fourth stage.
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Figure 2: The centipede game

It is well known that all pure strategies in this game are rationalizable; how-
ever, the only strategy that is rationalizable for player 1 under conservative
beliefs—namely, beliefs that ascribe positive probability to the actual state—is
Q1, quitting immediately [Halpern and Pass 2013]. By contrast, we now show
that when each Di = {deui , dri }, all strategies are D-rationalizable even under
conservative beliefs.

It is easy to see that Q1 and Q2 are D-rationalizable with conservative beliefs:
indeed, the structure with exactly one state ω where s(ω) = (Q1, Q2) is a (Γ,D)-
structure because each player i must be sure of the actual state, and is easily seen
to be playing a deui -best response to this belief. This observation is an instance
of Proposition 4.1 applied to the fact that Q1 and Q2 are rationalizable (with
conservative beliefs) in the traditional sense of rationalizability.

To show that the remaining strategies are D-rationalizable under conservative
beliefs, it suffices to construct a (Γ,D)-structure at which each of these strategies
is played and all beliefs are conservative. Consider the structure presented in
Figure 3:

Figure 3: A (Γ,D)-structure for the centipede game

As in Figure 1, each of the four states ω1, ω2, ω3, and ω4 of this structure
is labeled with the strategy profile being played at that state, while the edges
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labeled i represent which states player i considers possible (i.e., assigns positive
probability to) from which other states. In addition, the fractions adjacent
to the arrowheads specify the numeric probability of each state; for example,
the fractions 2

3 and 1
3 indicate that Pr1(ω1)({ω1}) = Pr1(ω2)({ω1}) = 2

3 and
Pr1(ω1)({ω2}) = Pr1(ω2)({ω2}) = 1

3 , respectively.

We must show that at each state, each player i is playing according to either deui
or dri . First we show that player 1 is maximizing expected utility in states ω1

and ω2. In these states player 1 quits at stage 3, which yields an expected utility
of 4 (since player 1 is sure that player 2 will not quit beforehand). Playing Q1

has an expected utility of 1, so Q1 is strictly dominated by Q3. Finally, playing
Q∗ results in a 2

3 chance of a utility of 2, and a 1
3 chance of a utility of 7, for an

expected utility of 11
3 , so Q∗ is dominated by Q3.

Next we show that player 1 is minimizing her maximum regret in states ω3 and
ω4. In these states, player 1 plays Q∗ and believes that player 2 will play either
Q4 or Q∗. In the first case, player 1’s payoff is 2, but it could have been as high
as 4 had she played Q3; in the second case, her payoff is 7, but it could have
been as high as 8 had she played Q4. Thus her maximum regret is 2. How does
this compare to her maximum regret on choosing an alternative strategy? If she
plays Q3, her maximum regret is 3, which arises when player 2 plays Q∗: in this
case, her payoff is 4 but it could have been 7 had she played Q∗ instead. Even
worse, her maximum regret on playing Q1 is 7 (arising as above when player 2
plays Q∗). This shows that Q∗ is indeed a dr1-best response in states ω3 and ω4.

Similar arguments show that Q4 is a deu2 -best response in states ω1 and ω3, and
Q∗ is a dr2-best response in states ω2 and ω4. Thus, we can set

r(ω1) = (deu1 , deu2 )

r(ω2) = (deu1 , dr2)

r(ω3) = (dr1, d
eu
2 )

r(ω4) = (dr1, d
r
2)

to make Figure 3 into a (Γ,D)-structure, which proves that each of the strategies
played therein is D-rationalizability under conservative beliefs.

4.2 Axiomatization

Consider the following axiom schemes:

P1.
∨

σi∈Σi

play i(σi)

P2. ¬(play i(σi) ∧ play i(σ
′
i)), for σi 6= σ′i

P3. play i(σi)↔ Bi play i(σi)
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P4.
∨

di∈Di

rulei(di)

P5. ¬(rulei(di) ∧ rulei(d
′
i)), for di 6= d′i

P6. rulei(di)↔ Bi rulei(di)

P7. (play i(σi) ∧ rulei(di))→
∨

S∈S+
i (σi)

δi,S .

Here, as before, S+
i (σi) denotes the collection of all S ⊆ Σ−i such that there

exists a probability measure µ with supp(µ) = S and such that σi ∈ di(µ).
Note that there is no need for a symmetric axiom involving S−i (σi) for this
logic, because the formula ¬rulei(di), unlike ¬RAT i, does not say that σi is
incompatible with player i’s beliefs and the decision rule di; it simply says that
player i did not use the rule di to help choose her strategy σi (though she may,
coincidentally, have beliefs with respect to which σi is a di-best response).

Let GLΓ,D be the axiom system that results from adding P1–P7 to the KD45
axioms and rules of inference of belief logic. Then we have the following re-
sult, the proof of which proceeds analogously to that of Theorem A.1 given in
Appendix A.1.

Theorem 4.4: GLΓ,D is a sound and complete axiomatization of the language
LB(ΦΓ,D) with respect to the class of all finite (Γ,D)-structures.

5 Discussion

Almost all solution concepts in game theory are grounded in the idea of rational-
ity and best responding. Thus, one natural application of a logic of rationality
is to the analysis of solution concepts. But doing so raises a number of research
issues.

One subtlety involves the use of mixed strategies. The language LB(ΦΓ) has
formulas that represent pure strategy choices, but not mixed strategies. In the
context of Nash equilibrium, this difference turns out to be (at least formally)
innocuous: one can view a mixed strategy `i ∈ ∆(Σi) either as a conscious
randomization on the part of player i, or as the common conjecture of the play-
ers j 6= i about what pure strategy i will choose—either way, the set of mixed
strategy Nash equilibria stays the same. However, this insensitivity is, in part,
dependent on that fact that rationality in the sense of expected utility maxi-
mization “plays well” with mixing: `i ∈ ∆(Σi) maximizes player i’s expected
utility (with respect to some fixed beliefs) if and only if every pure strategy σi
in the support of `i maximizes expected utility. But this correspondence breaks
down when “expected utility maximization” is replaced with the generalized
notion of rationality presented in Section 2.3: in the context of an arbitrary
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decision rule di : ∆(Σ−i) → 2Σi ∅, there is no principled way to extend the
notion of “best response” from Σi to ∆(Σi). This suggests that further research
into the interaction between pure and mixed strategies under general decision
rules may be fruitful.

A second issue involves reconsidering what happens to various solution concepts
when we replace maximizing expected utility by another decision rule. Consider,
for example, Nash equilibrium. In principle, it makes sense to consider “d-Nash
equilibria”, defined by replacing deu with an arbitrary profile of decision rules
d in the definition of Nash equilibrium. It is certainly too much to hope that
Nash’s famous existence theorem applies in full force to this wider concept;
however, properties of d that suffice to guarantee the existence of equilibria are
of interest, and potentially admit a logical characterization. Such questions are
the subject of ongoing research.

Yet another issue involves understanding the implications for computability of
using various decision rules. In Section 3, we observed that the axiom sys-
tems GLdΓ are finite extensions of the KD45 system and thus trivially decidable.
Thus, we can, for example, compute whether a formula is a logical consequence
of rationality in any given axiom system GLdΓ. But there is arguably a more
interesting question as far as decidability goes. Up to now we have considered
decision rules as functions defined with respect to some fixed game. But rules
like expected utility maximization, maximin, or minimax regret can be applied
in all games in a uniform way. To capture this, define a decision paradigm
to be a function that maps each game Γ to a decision rule in Γ. Suppose that
we are given decision paradigms Di for each player associating with each game
Γ a decision rule Di(Γ) for that player in Γ. We might want to know, given the
profile D = (Di)i∈I , whether the mapping

Γ 7→ GL
D(Γ)
Γ

is decidable; in other words, given as input a game Γ, can we effectively de-

termine whether a formula belongs to the axiom system GL
D(Γ)
Γ ? For each

game Γ, this requires determining membership in the sets S+
i (σi) and S−i (σi),

which are defined by existential quantification over simplices ∆(Σ−i), subject
to constraints based on the decision rules Di(Γ). In the case of familiar deci-
sion paradigms like maximin or expected utility maximization, computing the
sets S+

i (σi) and S−i (σi) boils down to solving systems of linear inequalities. In
general, however, we must impose certain computability requirements on the de-
cision paradigms in order to be able to decide whether a formula is an instance
of an axiom. To take an extreme example: we could define Di(Γ) depending on
whether the number of players in Γ lies in the halting set.

This kind of example suggests that we want to be more restrictive in the form
that Di can take. In particular, we may be able to get more traction on this
problem if we restrict attention to decision paradigms that can be expressed in
some limited language. All the standard decision rules—maximizing expected
utility, minimax regret, maximin, and so on—are of the form “choose strategy
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σi only if γ”, where γ is a collection of constraints expressible in some simple
language involving quantification over strategies, linear inequalities, etc. We
believe that by identifying appropriate languages and limiting the constraints
that can be used to define decision paradigms to those expressible in these
languages, we may well be able to establish general decidability results that
apply to decision paradigms rather than merely decision rules.

Finally, through the introduction D-rationality in this paper, we hope to initiate
a broader research program investigating the representational power of endoge-
nous decision rules. Belief update in strategic scenarios is widely recognized as a
foundational issue in modern game theory; the additional structure of decision
rules associated to each state allows a player to learn not just about her op-
ponents’ strategy choices and beliefs, but about the mechanism by which they
make decisions under uncertainty. As we have already suggested, this kind of
belief update is particularly relevant in a dynamic setting. Thus, a natural ex-
tension of the present work would be to formulate an extensive-form version of
D-rationalizability and investigate its relationship with standard extensive-form
solution concepts and methods of belief update.

A Proofs

A.1 Axiomatizing LB(Φd
Γ)

Theorem A.1: GLdΓ is a sound axiomatization of the language LB(Φd
Γ) with

respect to the class of all finite Γ-structures.

Proof: Soundness of the axioms and rules of KD45 can be proved as usual. It
therefore suffices to show that G1–G6 are valid in all finite Γ-structures.

Fix a finite Γ-structure M = (Ω, (Pr i)i∈I , s). Soundness of G1 and G2 is an
immediate consequence of the fact that s is a (total) function. Soundness of
G3 is a straightforward consequence of condition (C4), while soundness of G4
follows easily from the combination of conditions (C3) and (C4).

Now suppose that ω |= play i(σi) ∧ RAT i; then σi ∈ di(µi,ω). Set S :=
supp(µi,ω), and observe that S ∈ S+

i (σi). For each σ−i ∈ S, it is easy to

see that ω |= B̂i play−i(σ−i); therefore, we must have

ω |=
∧

σ−i∈S
B̂i play−i(σ−i).

Similarly, for each σ−i /∈ S, we have ω |= ¬B̂i play−i(σ−i), so

ω |=
∧

σ−i /∈S

¬B̂i play−i(σ−i).
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In other words, ω |= δi,S ; this establishes the soundness of G5.

Finally, suppose that ω |= play i(σi) ∧ ¬RAT i, which implies that σi /∈ di(µi,ω).
Set S := supp(µi,ω); then S ∈ S−i (σi) and, as above, we have ω |= δi,S , which
establishes soundness of G6.

We prove completeness by what is essentially the canonical model method, a
standard method for proving completeness of modal logics (see, e.g., [Fagin,
Halpern, Moses, and Vardi 1995] or any standard text on modal logic). Of
course, the full canonical model is not finite (for n > 1), so we modify the
construction by restricting attention to finite sub-languages. More precisely,
given a formula ϕ ∈ LB(Φd

Γ), we identify a finite sub-language of LB(Φd
Γ) such

that the corresponding canonical model refutes ϕ just in case GLdΓ 6` ϕ. This
technique is sometimes called filtration.

Fix a formula ϕ ∈ LB(Φd
Γ). Let SubΓ(ϕ) denote the collection of all subformulas

of ϕ together with all subformulas of instances of the axiom schemes G1 through
G6. Define

Sub+Γ (ϕ) := SubΓ(ϕ) ∪ {¬ψ : ψ ∈ SubΓ(ϕ)}.
Note that there are only finitely many instances of G1 through G6, and there-
fore Sub+Γ (ϕ) is finite.

Let Ωϕ be the collection of all maximal, consistent (with respect to GLdΓ) subsets
of Sub+Γ (ϕ). Clearly Ωϕ is a finite set. Given X ⊆ LB(Φd

Γ), set

XBi := {ψ : Biψ ∈ X};

and, for F ∈ Ωϕ, define

Beli(F ) := {G ∈ Ωϕ : G ⊇ FBi and GBi = FBi}.

For each i ∈ I and each F ∈ Ωϕ, we will define a probability measure Prϕi (F ) on
Ωϕ such that the support of this measure is precisely Beli(F ). Loosely speaking,
Beli(F ) is the set of all G ∈ Ωϕ that are compatible with the beliefs of player i
in F . More precisely, G ∈ Beli(F ) if and only if:

(a) Biψ ∈ F implies ψ ∈ G, and

(b) Biψ ∈ F iff Biψ ∈ G.

Condition (a) just says that everything player i believes in F is true in G;
condition (b) says that player i’s beliefs in F are the same as her beliefs in G,
which is reasonable in light of the fact that we are working in a system with
positive and negative introspection. (In the full canonical model, (b) follows
from (a); here we must impose this condition explicitly because of the way the
language has been restricted.)

Since our aim is to define probability measures with the sets Beli(F ) as their
supports, we must show that these sets are never empty.
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Lemma A.2: For each i ∈ I and F ∈ Ωϕ, Beli(F ) 6= ∅.

Proof: Given F ∈ Ωϕ, set

Λ := {ψ : Biψ ∈ F} ∪ {Biψ : Biψ ∈ F} ∪ {¬Biψ : ¬Biψ ∈ F}.

It is easy to see that Λ ⊂ Sub+Γ (ϕ). In addition, we show that Λ is consistent.
For suppose not; then

GLdΓ ` ¬
∧
ξ∈Λ

ξ =⇒ GLdΓ ` Bi¬
∧
ξ∈Λ

ξ

=⇒ GLdΓ ` ¬Bi
∧
ξ∈Λ

ξ

=⇒ GLdΓ ` ¬
∧
ξ∈Λ

Biξ,

which is a contradiction, since each formula Biξ with ξ ∈ Λ is logically equivalent
to a formula in F , and F is consistent.

From this we can conclude that there exists a G ∈ Ωϕ such that G ⊇ Λ. It
follows immediately that G ⊇ FBi and that GBi ⊇ FBi . Moreover, if ψ ∈ GBi ,
then Biψ ∈ G and so certainly ¬Biψ /∈ G, from which it follows that ¬Biψ /∈ Λ
and thus ¬Biψ /∈ F . Maximality of F then guarantees that Biψ ∈ F , whence
ψ ∈ FBi , and so GBi ⊆ FBi . This establishes that G ∈ Beli(F ), as desired.

In the classical canonical model construction, it is sufficient to define Prϕi (F )
to be the uniform distribution on Beli(F ). In the present context, however,
we need to be more careful, since Prϕi (F ) is used not only to interpret the
belief modalities Bi, but also the primitive propositions RAT i. In essence, we
must define Prϕi (F ) in a manner that agrees with whether or not player i is
best responding to her beliefs at F ; not surprisingly, this is precisely where the
axiom schemes G5 and G6 come into play. At the same time, we have to define
Prϕi on Ωϕ in a systematic way so as to preserve the introspection condition
(C3). What follows is a formalization of this basic recipe, for which several more
lemmas and definitions are needed.

Lemma A.3: Let F ∈ Ωϕ. If B̂iψ ∈ F , then there exists a G ∈ Beli(F ) with

ψ ∈ G; if ¬B̂iψ ∈ F , then for all G ∈ Beli(F ) we have ψ /∈ G.

Proof: First suppose that B̂iψ ∈ F , and set

Λ := {χ : Biχ ∈ F} ∪ {Biχ : Biχ ∈ F} ∪ {¬Biχ : ¬Biχ ∈ F}.

Assume for contradiction that Λ ∪ {ψ} is inconsistent. We then have

GLdΓ `
∧
ξ∈Λ

ξ → ¬ψ,
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from which it follows that

GLdΓ `
∧
ξ∈Λ

Biξ → Bi¬ψ. (1)

As observed in Lemma A.2, each Biξ is equivalent to a formula in F , and
therefore (1) implies that Bi¬ψ ∈ F , contradicting our assumption that B̂iψ ∈
F . Thus Λ ∪ {ψ} is consistent, and so can be extended to some G ∈ Ωϕ;
moreover, as we saw in Lemma A.2, G ∈ Beli(F ). This proves the first statement
of the Lemma. The second statement follows immediately from the definition
of Beli(F ): if ¬B̂iψ ∈ F , then also Bi¬ψ ∈ F , and so for all G ∈ Beli(F ) we
have ¬ψ ∈ G, whence ψ /∈ G.

For each σ−i ∈ Σ−i, define

Beli(F ;σ−i) := {G ∈ Beli(F ) : play−i(σ−i) ∈ G}.

Given F ∈ Ωϕ, it is easy to see, using G1 and G2, that there is a unique σi ∈ Σi
with play i(σi) ∈ F . If, in addition, RAT i ∈ F , then by G5 we know that for
some S ∈ S+

i (σi), δi,S ∈ F (or, in the case where S+
i (σi) = ∅, we know that no

such F exists). Otherwise, if RAT i /∈ F , then by G6 we know that for some
S ∈ S−i (σi), δi,S ∈ F (or again, in the case where S−i (σi) = ∅, that no such
F exists). Thus, for each i ∈ I, there is a unique set Si(F ) ⊆ Σ−i such that
δi,Si(F ) ∈ F , and moreover, Si(F ) ∈ S+

i (σi) if RAT i ∈ F , and Si(F ) ∈ S−i (σi)
if RAT i /∈ F .

Lemma A.4: The collection {Beli(F ;σ−i) : σ−i ∈ Σ−i} partitions Beli(F );
moreover, Beli(F ;σ−i) 6= ∅ if and only if σ−i ∈ Si(F ).

Proof: The first statement is a straightforward consequence of G1 and G2,
while the second is an immediate corollary of Lemma A.3 together with the fact
that

δi,Si(F ) ≡
∧

σ−i∈Si(F )

B̂i play−i(σ−i) ∧
∧

σ−i /∈Si(F )

¬B̂i play−i(σ−i) ∈ F.

For each σi ∈ Σi and S ∈ S+
i (σi), let µ+

σi,S
be a fixed probability measure

witnessing the fact that S ∈ S+
i (σi); that is, supp(µ+

σi,S
) = S and σi ∈ di(µ

+
σi,S

).

Likewise, for each σi ∈ Σi and S ∈ S−i (σi), let µ−σi,S
be a fixed probability

measure witnessing the fact that S ∈ S−i (σi).

Let F ∈ Ωϕ, and suppose that play i(σi) ∈ F . In light of Lemma A.4, we can
define Prϕi (F ) to be the unique probability measure on Beli(F ) such that, for
all σ−i ∈ Σ−i,

Prϕi (F )(Beli(F ;σ−i)) =

{
µ+
σi,Si(F )(σ−i) if RAT i ∈ F
µ−σi,Si(F )(σ−i) if RAT i /∈ F ,

24



and which is uniform within each (nonempty) set Beli(F ;σ−i).

Proposition A.5: Prϕi satisfies the following:

(a) Prϕi (F )(G) > 0 iff G ∈ Beli(F ), and

(b) GBi = FBi implies Prϕi (G) = Prϕi (F ).

Proof:

(a) The forward implication is immediate from the definition. For the reverse
implication, suppose that G ∈ Beli(F ); then, by Lemma A.4, we know
that G ∈ Beli(F ;σ−i) for some σ−i ∈ Si(F ), from which it follows that
Prϕi (F )(G) > 0 by definition.

(b) If GBi = FBi then Beli(G) = Beli(F ). Moreover, axioms G3 and G4
guarantee that playi(σi) ∈ F if and only if playi(σi) ∈ G, and likewise
RATi ∈ F if and only if RATi ∈ G. Finally, it is not difficult to see that
Si(F ) is completely determined by Beli(F ), so Si(F ) = Si(G). Therefore,
by definition of Prϕi , we can deduce that Prϕi (G) = Prϕi (F ).

Finally, we define a strategy function sϕ : Ωϕ → Σ by assigning to each F ∈ Ωϕ

the unique strategy profile σ ∈ Σ such that play(σ) ∈ F .

Lemma A.6: The tuple Mϕ := (Ωϕ, (Prϕi )i∈I , s
ϕ) is a Γ-structure.

Proof: Conditions (C1) and (C2) have already been established. By Lemma
A.5(b), in order to see that (C3) holds it suffices to observe that Prϕi (F )(G) >
0 implies that GBi = FBi , which follows from Lemma A.5(a). This same
observation also establishes (C4), since by G3 we know that GBi = FBi implies
sϕi (G) = sϕi (F ).

Lemma A.7: For all formulas ψ, for all F ∈ Ωϕ, if ψ ∈ Sub+Γ (ϕ) then F ∈
[[ψ]]Mϕ if and only if ψ ∈ F .

Proof: The proof proceeds by induction on the structure of ψ. We prove here
the base cases corresponding to the primitive propositions; the inductive steps
can be proved in the standard way (see, e.g., [Fagin, Halpern, Moses, and Vardi
1995]).

First consider the primitive proposition play i(σi). We have

F ∈ [[play i(σi)]]Mϕ iff sϕi (F ) = σi

iff play i(σi) ∈ F,
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as a direct consequence of the definition of sϕ. Next consider the primitive
proposition RAT i; we have

F ∈ [[RAT i]]Mϕ iff sϕi (F ) ∈ di(µi,F )

iff RAT i ∈ F,

the last equivalence being a consequence of the definition of Prϕi , which ensures
that sϕi (F ) is a best response to (the pushforward of) Prϕi (F ) precisely when
RAT i ∈ F . This completes the proof.

Theorem A.8: GLdΓ is a complete axiomatization of the language LB(Φd
Γ) with

respect to the class of all finite Γ-structures.

Proof: Suppose that GLdΓ 6` ϕ. Then {¬ϕ} is consistent and so can be extended
to a maximal consistent set F ∈ Ωϕ. By Lemma A.7, this implies that F /∈
[[ϕ]]Mϕ and so, in particular, that Mϕ 6|= ϕ, as desired.

A.2 Belief as lower probability

Theorem A.9: GLdΓ is a sound and complete axiomatization of the language
LB(Φd

Γ) with respect to the class of all finite lower Γ-structures.

Proof: The proof given in Appendix A.1 works here as well, modulo the obvious
minor alterations in keeping with the generalized definitions given in Section 3.1.
In particular, for each σi ∈ Σi and S ∈ S+

i (σi), we define P+
σi,S

to be a fixed set

of probability measures such that supp(P+
σi,S

) = S and σi ∈ di(P
+
σi,S

); likewise,

for each σi ∈ Σi and S ∈ S−i (σi), define P−σi,S
to be a fixed set of probability

measures witnessing the fact that S ∈ S−i (σi). Then, given F ∈ Ωϕ with
play i(σi) ∈ F , define PR

ϕ
i (F ) as follows: for each µ ∈ P+

σi,S
∪ P−σi,S

, let µ̃ be
the unique probability measure on Beli(F ) such that, for all σ−i ∈ Σ−i,

µ̃(Beli(F ;σ−i)) = µ(σ−i),

and which is uniform on each set Beli(F ;σ−i); then set

PR
ϕ
i (F ) :=

{
{µ̃ : µ ∈ P+

σi,S
} if RAT i ∈ F

{µ̃ : µ ∈ P−σi,S
} if RAT i /∈ F .

A.3 Axiomatizing LB(ΦD
Γ )

To obtain a complete axiomatization of this language, it is not sufficient to sim-
ply let G4–G6 range over all decision rules di ∈ Di for each player i; in general,
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this system is sound but not complete. Roughly speaking, this is because it

is possible for both play i(σi) ∧ RAT di
i and play i(σi) ∧ RAT

d′i
i to be consistent

with δi,S for some S ⊆ Σ−i, yet no measure µ with supp(µ) = S is such that
σi ∈ di(µ) ∩ d′i(µ). In this case, the formula

play i(σi) ∧ RAT di
i ∧ RAT

d′i
i ∧ δi,S

is not satisfiable, but there is no way to prove its negation from the axioms.
However, provided that each set Di is finite, we can deal with this problem by
replacing G5 and G6 with the following collection of axioms for each player i,
each strategy σi ∈ Σi, and every subset D ⊆ Di:(

play i(σi) ∧
∧

di∈D
RAT di

i ∧
∧

di /∈D

¬RAT di
i

)
→

∨
S∈SD

i (σi)

δi,S ,

where SDi (σi) is the collection of all S ⊆ Σ−i such that there exists a probability
measure µ on S such that supp(µ) = S and for every di ∈ D, σi ∈ di(µ), and for
every di /∈ D, σi /∈ di(µ). G5 and G6 are special cases occurring when |Di| = 1,
corresponding to D = Di and D = ∅, respectively.
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