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ABSTRACT 

Several new logics for belief and knowledge are introduced and studied, all of which have the 
property that agents are not logically omniscient. In particular, in these logics, the set of beliefs of an 
agent does not necessarily contain all valid formulas. Thus, these logics are more suitable than 
traditional logics for modelling beliefs of humans (or machines) with limited reasoning capabilities. 
Our first logic is essentially an extension of Levesque's logic of implicit and explicit belief, where we 
extend to allow multiple agents and higher-level belief (i.e., beliefs about beliefs). Our second logic 
deals explicitly with "awareness," where, roughly speaking, it is necessary to be aware of a concept 
before one can have beliefs about it. Our third logic gives a model of "local reasoning," where an 
agent is viewed as a "society of minds," each with its own cluster of beliefs, which may contradict 
each other. 

The animal knows, of course. But it certainly does not know that it knows. 

Teilhard de Chardin 

1. Introduction 

T h e r e  has long been  in te res t  in bo th  ph i l o sophy  and  A I  in f inding na tu ra l  
semant ics  for  logics of  k n o w l e d g e  and  bel ief .  The  s t a n d a r d  a p p r o a c h  has been  
the so-ca l led  p o s s i b l e - w o r l d s  mode l .  The  in tu i t ive  idea ,  which goes  back  to 
H i n t i k k a  [17], is tha t  bes ides  the  t rue  s ta te  of  affairs ,  t he re  a re  a n u m b e r  of  
o t h e r  poss ib le  s ta tes  of  affairs ,  or  poss ib le  worlds .  Some  of  these  poss ib le  
wor lds  m a y  be ind i s t ingu i shab le  f rom the  t rue  wor ld  to  an agent .  A n  agen t  is 
then  said to k n o w  or  bel ieve fact  q~ if q) is t rue  in all the  wor lds  he th inks  
poss ib le .  

* A preliminary version of this paper appeared in the Proceedings of the Ninth International Joint 
Conference on Artificial Intelligence (HCAI-85), Los Angeles, CA, 1985. Editor's note: This paper 
won the best paper award for the conference. 
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As has been frequently pointed out in the literature (see, for example, [18]), 
possible-worlds semantics for knowledge and belief do not seem appropriate 
for modelling human reasoning since they suffer from the problem of what 
Hintikka calls logical omniscience. In particular, this means that agents are 
assumed to be so intelligent that they must know all valid formulas, and that 
their knowledge is closed under implication, so that if an agent knows p,  and 
knows that p implies q, then the agent must also know q. 

Unfortunately, in real life people are certainly not omniscient. Indeed, 
possible-worlds advocates have always stressed that this style of semantics 
assumes an "ideal" rational reasoner, with infinite computational powers. But 
for many applications, one would like a logic that provides a more realistic 
representation of human reasoning. 

Various attempts to deal with this problem have been proposed in the 
literature. One approach is essentially syntactic: an agent's beliefs are just 
described by a set of formulas, not necessarily closed under implication [6, 32], 
or by the logical consequences of a set of formulas obtained by using an 
incomplete set of deduction rules [20]. Another  approach has been to augment" 
possible worlds by nonclassical "impossible" worlds, where the customary rules 
of logic do not hold (see, for example, [4, 34, 35]). The syntactic approach 
lacks the elegance and intuitive appeal of the semantic approach. However,  the 
semantic rules used to assign truth values to the logical connectives in the 
impossible-worlds approach have tended to be nonintuitive, and it is not clear 
to what extent this approach has been successful in truly capturing our 
intuitions about knowledge and belief. 

Recently, Levesque [26] has attempted to give an intuitively plausible 
semantic account of explicit and implicit belief (where an agent's implicit beliefs 
include the logical consequences of his explicit belief), essentially by taking 
partial worlds and a three-valued truth function rather than classical two- 
valued logic. While we have a number of philosophical and technical criticisms 
of Levesque's approach (these are detailed in Section 3), it seems to us to be in 
the right spirit. 

Part of the reason that previous semantic attempts to deal with the problem 
of logical omniscience have failed is that they have not taken into account the 
fact that it stems from a number of different sources. Among these are: 

.(1) Lack of awareness: How can someone say that he knows or doesn't  
know about p if p is a concept he is completely unaware of? One can imagine 
the puzzled frown on a Bantu tribesman's face when asked if he knows that 
personal computer prices are going down!" The animal (in the quotation at the 
beginning of the paper) does not know that it knows exactly because it is 
(presumably) not aware of its knowledge. Similarly, a sentence such as 
"You're  so dumb, you don't  even know that you don't  know p ! "  is perhaps 
best understood as saying "You're  not even aware that you don't  know p" .  

(2) People are resource-bounded: They lack the computational resources to 
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deduce all the logical consequences of their knowedge (we still don't  know 
whether Fermat 's  last theorem is true). 

(3) People don' t  always know the relevant rules: As pointed out by 
Konolige [20], a student may not know which value of x satisfies the equation 
x + a = b simply because he doesn't  know the rule of subtracting equal 
quantities from both sides. 

(4) People don' t  focus on all issues simultaneously: Thus, when we say "a  
believes p , "  we more properly mean that in a certain frame of mind (when a is 
focussing on the issues that involve p),  it is the case that a believes p. Even if a 
does perfect reasoning with respect to the limited number of issues on which he 
is focussing in any given frame of mind, he may not put his conclusions 
together.  Indeed, although in each frame of mind agent a may be consistent, 
the conclusions a draws in different frames of mind may be inconsistent. 

In this paper we present a number of different approaches to modelling lack 
of logical omniscience. These approaches can be viewed as attempting to 
model different causes for the lack of omniscience, as suggesed by the 
discussion above. Our first approach is essentially an extension of Levesque's 
logic [26] to the multi-agent case, which in addition avoids some of the 
problems we see in Levesque's approach. This approach is one that attempts to 
deal with awareness ((1) above). Our second approach combines the possible- 
worlds framework with a syntactic awareness function. The notion of awareness 
we use in this approach is open to a number of interpretations. One of them is 
that an agent is aware of a formula if he can compute whether or not it is true 
in a given situation within a certain time or space bound. This interpretation of 
awareness gives us a way of capturing resource-bounded reasoning in our 
model. By adding time into the picture, we can extend the second approach to 
one that can capture how knowledge is acquired over time, perhaps through 
the use of a particular (possibly incomplete) set of deduction rules as in [20]. 
Finally, we present an approach that could be called the society-of-minds 
approach [2,5, 31], which attempts to capture the type of local reasoning 
discussed in (4) above (a similar idea has been independently suggested by a 
number of authors, including Levesque [27], Stalnaker [41], and Zadrozny 
[44]). The second and third approaches can easily be combined to give a 
semantics which captures both awareness and local reasoning. 

We do not see any of these approaches as being the unique "right" approach 
to modelling lack of logical omniscience. Rather  our philosophy is somewhat 
more pragmatic. Different notions of knowledge and belief will be appropriate 
for different applications. We believe that one of the contributions of this 
paper is providing tools for constructing reasonable semantic models of notions 
of knowledge with a variety of properties. 

The rest of the paper is organized as follows. In the next section we review 
the "classical" possible-words model of knowledge and belief, to set the stage 
for our work, while in Section 3 we review Levesque's logic and detail our 
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criticisms of it. In Sections 4, 5, and 6 we describe our three approaches to 
modelling lack of logical omniscience. In Section 7, we show how we can 
incorporate time into the picture, allowing us to describe even more situations. 
In Section 8, we give decision procedures and complete axiomatizations for all 
the logics we introduce. We conclude in Section 9 with some discussion of our 
approach and some suggestions for further work. 

2. The Possible-Worlds Model 

In this section we briefly review possible-worlds semantics for knowledge and 
belief. The interested reader  is encouraged to consult references such as [3, 14] 
for more details. 

Recall that the intuitive idea behind the possible-worlds model is that, 
besides the true state of affairs, there are a number  of other possible states of 
affairs, or possible worlds. In order to formalize this situation, we first need a 
language. We stick to propositional logic here, since most of the issues we are 
interested in dealing with already arise at this level. Besides the standard 
connectives such as A, -- ,  and v from propositional logic, we also need some 
way to represent belief. We do this by augmenting the language with modal 
operators  L~ . . . . .  L n. A formula such as Li~ is read "agent  i believes ~."  

Formally, we start with a set • of primitive propositions, a special formula 
true (this is for convenience only), and close off under negation, conjunction, 
and the modal operators  L ~ , . . . ,  L , .  Thus, if ~ and ~ are formulas,  then so 
are - ~ ,  ~ A ~, and Li~, i = 1 . . . . .  n. Of  course, Boolean connectives such as 

and v are defined in terms of ~ and A as usual; we take false to be an 
abbreviation of - t rue .  Note we are considering a multi-agent situation here 
because for many applications we need to reason not only about our own 
beliefs, but those of other agents. From time to time we consider knowledge 
rather than belief; in this case we use Ki rather  than L i. 

Kripke structures [22] provide a useful formal tool for giving semantics to this 
language. A Kripke structure M is a tuple (S, 7r, ~ . . . . .  ~,,) ,  where S is a set 
of states or possible worlds, 7r is an assignment of truth values to the primitive 
propositions for each state s E S (so that ~r(s, p)  E {true, false} for each state 
s), and ~ ,  i = 1 , . . . ,  n, is a binary relation on S which is serial, transitive, and 
Euclidean. A relation R is serial if for each s E S there is some t E S such that 
(s, t) C R; R is transitive if (s, u) E R whenever  (s, t) E R and (t, u) E R; R is 
Euclidean if (t, u) ~ R whenever  (s, t) E R and (s, u) ~ R. Intuitively, (s, t) 
~i  if in state s, agent i considers state t possible (i.e. if s were the actual state of 
the world, agent i would consider t a possible state of the world). As we shall 
see, the conditions on ~i  enforce certain axioms associated with belief. For 
example the fact that ~ is serial means that in all worlds, agent i always 
considers some world possible; f rom this it will follow that he cannot believe in 
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f a l sehood .  By mod i fy ing  these  cond i t ions ,  we can get  d i f fe ren t  ax ioms  for  

bel ief .  
We  now define a r e l a t ion  ~ ,  w h e r e  M,s ~ q~ is r e ad  "~0 is true, or  satisfied, in 

s ta te  s of  s t ruc ture  M " :  

M,s ~ true, 
M,s ~ p, w h e r e  p is a p r imi t ive  p r o p o s i t i o n ,  iff 7r (p ,  s) = t rue ,  

M,s ~ ~q~ iff M,s ~ q~, 
M , s ~  q~ ^ O iff M , s ~  ~p and M , s ~  G 
M,s~L~q~ iff M , t ~ q ~ f o r a l l t s u c h t h a t  ( s , t )  E N i .  

T h e  last  c lause  is des igned  to  c ap tu r e  the  in tu i t ion  tha t  agen t  i be l i eves  q~ 
exac t ly  if q~ is t rue  in all the  wor lds  tha t  i th inks  are  poss ib le .  1 

We say a f o rmu la  q~ is valid in structure M if M,s ~ ~ for  all s ta tes  s in M ;  q~ is 
satisfiable in M if M,s ~ ~ for  some  s ta te  s in M. W e  say q~ is valid if it is val id  
in all K r i p k e  s t ruc tures ;  q~ is satisfiable if it is sat isf iable  in some  K r i p k e  

s t ruc ture .  
This  no t ion  of  be l ie f  can be  c o m p l e t e l y  cha rac t e r i zed  by  the fo l lowing sound 

and  complete ax iom sys tem,  t r ad i t i ona l ly  ca l led  weak $5 or  KD45 (cf. [3]). A l l  
the  ax ioms  given be low are  va l id ,  the  in fe rence  rules  p re se rve  va l id i ty ,  and  
eve ry  va l id  f o r m u l a  can be  p r o v e d  f rom using these  ax ioms  and  in fe rence  rules .  

A l l  ins tances  of  p r o p o s i t i o n a l  t au to log ies .  (A1)  

Liq~ A Li(~o ~ t~) ~ L i~ .  (A2)  

_ Li( false) . (A3)  

Li~p ~ LiLiq~ . (A4)  

~Zi~o ~ Li ~Liq~ . (m5)  

(modus  ponens )  . ( R I )  
4, 

(R2)  
L ~  

(A1)  and  ( R 1 ) ,  of  course ,  a re  ho ldove r s  f rom p r o p o s i t i o n a l  logic. (A2)  says 

We remark that for the notion of belief we are considering here, the structure can be simplified 
if we restrict attention to the one-agent case. Instead of a relation on S, we can simply designate a 
nonempty subset of S, which we also call ~,  to be the set of states that the agent considers 
possible. We can associate with the set ~ the binary relation consisting of {(s, t) ls ~ S, t E ~ }. It 
can easily be checked that this relation is serial, Euclidean, and transitive. All the clauses in the 
definition of ~ remain the same, except now the last clause becomes M,s ~ L¢ (we do not need to 
subscript the L since there is only one agent) iff M,t ~ ~o for all t E ~. 
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that an agent's beliefs are closed under implication. (A3) says that an agent 
cannot believe in falsehood. (A4) and (A5) are axioms of introspection. 
Intuitively, they say that agents are introspective; each agent has complete 
knowledge about his set of beliefs. 

The validity of (A3), (A4), and (A5) is due to the fact that we have taken 
the ~i to be serial, transitive, and Euclidean. In a precise sense, (A3) follows 
from the fact that ~i is serial, (A4) from the fact that it is transitive, and (A5) 
from the fact that it is Euclidean. By modifying the properties of the ~ 
relations, we can get notions of belief that satisfy different axioms. In 
particular, the major characteristic taken to distinguish knowledge from belief 
is that if you know something, then it must be true; i.e., K ~  ~ ~ holds. This is 
a stronger statement than (A3). If we take the 50 relation to be reflexive rather 
than serial, then it turns out that we capture this stronger axiom. (Recall that a 
relation R on S is reflexive if (s, s) E S for all s E S, so that a reflexive relation 
is necessarily serial.) 

The classical modal logic of knowledge, called $5, is characterized by the set 
of axioms above with (A3) replaced by K~q~ ~ ~0 (and all occurrences of L~ 
replaced by Ki). As suggested above, this can be captured by taking ~ to be 
reflexive, transitive, and Euclidean. It is easy to check that a relation is 
reflexive, transitive, and Euclidean iff it is reflexive, transitive, and symmetric, 
i.e., an equivalence relation. (See [3, 14] for a survey of these issues, as well as 
a review of the standard techniques of modal logic which give completeness 
proofs.) 

Note that although in KD45 it is possible to have false beliefs (i.e., it is 
possible that L~¢ and -q~ are simultaneously satisfied), it is not possible to 
believe the negation of a valid formula. Thus, if q~ is valid, then we cannot have 
L~-~.  This follows directly from our assumption that ~ is serial. For some 
applications this is unreasonable (for example, there may be some theorems of 
mathematics that I believe are false); for such applications, we would drop the 
assumption that ~i is serial. We can similarly drop the assumption that ~ is 
transitive and Euclidean in cases where axioms (A4) and (A5) are inappro- 
priate. The major advantage of the possible-worlds approach is its flexibility in 
this regard. 

However,  the possible-worlds approach seems to commit us to (A2) and 
(R2). No matter how we modify the ~ relations, the fact that we say an agent 
knows or believes a fact exactly if that fact is true in all the worlds the agent 
considers possible seems to force us to the situation where an agent knows all 
tautologies and his knowledge is closed under implication. In the remainder of 
this paper, we show that we can retain the basic intuitions of the possible- 
worlds approach and still have a logic that avoids the problem of logical 
omniscience. We present our results in a Kripke-style framework, but we 
remark that we could have also used the modal structures framework of [8, 9]. 
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3. Levesque's Logic of Implicit and Explicit Belief 

Before we describe our models for knowledge and belief, we briefly review 
Levesque 's  logic of implicit and explicit belief, and discuss our criticisms of it. 
(We take the liberty of slightly changing Levesque 's  notation, to make it more  
consistent with our later development . )  

The formulas of the language considered by Levesque are formed in the 
obvious way, using two modal operators  B and L (standing for explicit belief 
and implicit belief respectively; an agent 's  implicit beliefs include all the logical 
consequences of his explicit beliefs). However ,  Levesque restricts the language 
so that no B or L appears  within the scope of another.  Thus,  if ,¢ is a 
propositional formula (does not contain B or L) ,  then B~¢ and L~¢ are also 
formulas. Levesque does not assume his logic contains the formula true. 2 

A structure for implicit and explicit belief is a tuple M = (S, 9 ,  T, F), where S 
is a set of (primitive) situations, ~ is a subset of S (the situations that could be 
the actual ones according to what is believed),  and T and F are functions f rom 

(the set of primitive propositions) to subsets of S. Intuitively, T ( p )  consists 
of all situations that support  the truth of p ,  while F ( p )  consists of all situations 
that support  the falsity of p. We can view this as a modification of the 
possible-worlds approach (for the one-agent  case); instead of possible worlds 
we have possible situations. It is not the case that a primitive proposit ion is 
either true or false in a situation; it may be true, false, both,  or neither. In 
particular, we can have a partial situation s, that supports neither the truth nor 
falsity of some primitive proposit ion p (so that s ~ T ( p ) U  F(p) )  and an 
incoherent situation t that supports both the truth and falsity of some primitive 
proposit ion q (so that t E T (q )  A F(q)) .  

A complete situation (called a possible world in [26]) is one that supports 
either the truth or falsity of every primitive proposit ion and is not incoherent 
(i.e.,  s is a mem ber  of exactly one of T ( p )  and F ( p )  for each primitive 
proposit ion p).  A complete  situation s is compatible with a situation s '  if s and 
s '  agree wherever  s' is defined; i.e. if s '  E T ( p )  then s E T ( p ) ,  and if s '  ~ F ( p )  
then s ~ F (p ) ,  for each primitive proposit ion p. Let ~ * consist of all complete  
situations in S compatible  with some situation in 9 .  

We can now define the support relations ~T and ~ v between situations and 
formulas. Intuitively, M,s ~T 9 when situation s in structure M supports the 
truth of 9, while M,s ~ v ~ when s supports the falsity of ~. The definition is: 

M,s ~T P, where p is a primitive proposition, iff s ~ T ( p ) ,  
M,s ~ v P, where p is a primitive proposit ion,  iff s ~ F (p ) ;  

2 We remark that in the "classical" logic described in the previous section, we could have 
replaced true by p v --p throughout, where p is any primitive proposition. However, this is not 
true for Levesque's logic, nor for the logics we present in Sections 4 and 5. 
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M , S ~ T - - ¢  iff M , s ~ v ~ ,  
M , S ~ F - - ~  iff M , S ~ T ~  ; 

M,S ~ T q~ 1 ̂  ~02 iff M,S ~ T ~pl and M,S ~ T ~p2 , 
M,S ~ v ~P~ A ¢2 iff M,s ~ v ¢~ or M,s ~ F ~2 ; 

M , S ~ T B ~  iff M , t ~ T q ~ f o r a l l t E ~ ,  
M,S~FBq~ iff M,S~TBq~ ; 

M , s ~ T  Lq~ iff M , t ~ T ¢  for all t ~  ~*  , 
M,s ~ v Lq~ iff M,S ~ T Lq~ . 

We say that the formula ~p is true, or is satisfied, at situation s if M,s ~ z  q~ 
holds. Levesque defines a formula ~p to be valid, written ~ ~p, if ~p is true at s 
for all structures M -- (S, ~ ,  T, F), and all complete situations s E S. 

As Levesque points out, it is easy to see that with this semantics 
(B~p ~ Lq~), i.e., explicit belief implies implicit belief. It is also easy to see 

that implicit belief is closed under implication and that all valid propositional 
formulas are implicitly believed. Thus we have 

(1) ~ (L¢ ^ L(q~ ~ 0)) ~ Lq,, and 
(2) if ~ ¢ (where ~p is propositional), then ~ L~p. 
Explicit belief does not seem to suffer from the problems of logical omni- 

science. Before we go on, let us discuss what we mean by "logical omni- 
science." An agent is logically omniscient if whenever he believes all of the 
formulas in a set ,Y, and ,~ logically implies the formula ¢, then the agent also 
believes ~p. There are three cases of special interest: (1) what we have been 
calling closure under implication (namely, whenever both ¢ and ~p ~ ~0 are 
believed, then ~b is believed), (2) closure under valid implication (if q~ ~ q, is 
valid, and if q~ is believed, then ~O is believed), and (3) belief of valid formulas 
(if q~ is valid, then ~ is believed). Explicit belief has none of these three 
properties. Thus, explicit beliefs are not closed under implication (for example, 
Bp A B(p ~ q ) ^ - - B q  is satisfiable), nor under valid implication (although 
p ~ ( p  ^ (q v --q)) is valid, Bp/x - -B(p  ^ (q v ~q))  is satisfiable), and valid 
formulas are not necessarily believed ( - B ( p  v --p) is satisfiable). Moreover, it 
is also possible to explicitly believe simultaneously unsatisfiable statements 
(Bp ^ B - p  is satisfiable, as, for that matter, is B(p /x  - p ) ) .  

A closer examination of Levesque's semantics shows that the lack of closure 
under implication and the possibility of believing unsatisfiable statements both 
stem from the presence of incoherent situations. Indeed, as Levesque points 
out in [27], while 

Bq~ ^ B(q~ ~ O) ~ B~b 

is not a valid formula, it is easy to check that 

B~ /~ B ( q ~  O) ~ B(O v (q~ ^ ~q~)) 
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is valid. Thus,  either the agent 's  beliefs are closed under implication, or else 
some situation he believes possible is incoherent.  ( If  all the situations that the 
agent believed possible were coherent ,  then q~ ^ -q~ would not hold in any of 
them,  so qJ would hold in all of them and B~O would be true.) Similarly, since 
B~ ^ B(--~p) =- B(q~/x - q 0 ,  inconsistent beliefs are only possible if every situa- 
tion the agent believes possible is incoherent (since ~o ^ - -~  must be true in 
every situation the agent believes possible). However ,  to the extent that ~ is 
viewed as the set of situations that the agent considers possible, it seems 
unreasonable to allow incoherent  situations. It is hard to imagine an agent that 
woud consider an incoherent situation possible. As Levesque notes in [27], 
there is a big difference between believing both p and ~ p ,  and believing 
p ^ ~ p .  

On the other hand, in Levesque 's  logic, an agent 's  lack of knowledge of valid 
formulas is not due to incoherent situations, but is rather  due to the lack of 
"awareness"  on the part  of the agent of some primitive propositions; similar 
reasons hold for the lack of closure under valid implication, Let  us say that an 
agent is aware of a primitive proposit ion p ,  which we abbreviate Ap, if 
B(p  v - p )  holds. Thus Ap is true in exactly those situations that support  
either the truth or falsity of p (they may of course support  both the truth and 
falsity of p).  Intuitively, this means that p is somehow relevant to the situation 
and that the agent is " aware"  of p in that situation. In the following discussion 
we use the word "aware"  both in the precise mathematical  sense just defined, 
and in the more usual English sense. The reader  should be warned,  however,  
that although our mathematical  definition does seem to capture some of the 
propert ies  of the English word, there are several connotations that are 
certainly not captured by the definition. Indeed,  in Section 5 we discuss a 
number  of other possible interpretat ions for the notion of awareness. 

Although not every valid formula is believed, it is the case that a valid 
formula is believed provided that an agent is aware of all the primitive 
proposit ions that appear  in it. In order  to make this precise, given a formula q~, 
let Pr im(~)  be the set of primitive propositions appearing in ~0, and let Aq~ be 
an abbreviat ion for the conjunction of Ap over all p E Prim(q~). 

Proposition 3.1. I f  ~o b a valid propositional formula, then ~ Aq~ ~ Bq~. 

Proof. See Appendix.  3 [] 

Proposit ion 3.1 suggests that Levesque 's  semantics may be appropriate  for 
capturing the lack of logical omniscience that arises through lack of awareness,  

3 We remark that the formula ~Aq~--Bq~ is not valid. For example, if we take ¢ to be 
(p v up) v (q v ~q), then ~A~0 ̂  Bq~ is satisfiable in a structure where ~ consists of two states, 
say s and t, such that the agent is aware of only p at s and only q at t. 
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but not for capturing the type that arises due to lack of computational 
resources. There may well be a very complicated formula whose truth is hard 
to figure out, even if you are aware of all the primitive propositions that appear 
in it. 

We have a number of other criticisms, both philosophical and technical, of 
Levesque's logic: 

(1) Although truth (i.e. the ~ .  relation) is defined for all situations, only 
complete situations are considered when checking for validity. This means that 
there are "valid" formulas q~ of Levesque's logic (for example, p v - p )  such 
that M,s ~T q~ for some situation s. While restricting to complete situations 
ensures that all propositionally valid formulas continue to be valid in Leves- 
que's logic, it seems inconsistent with the philosophy of looking at situations. 

(2) As usual with nonclassical worlds, while the intuitions behind ~ seem 
fairly clear for primitive propositions, they are not so clear for the proposition- 
al connectives. For example, suppose that the agent is unaware of the primitive 
proposition p, so that neither M,s ~v P nor M,s ~v P hold. Thus, by the 
semantic definitions given above, M,s ~ m (P =-- P) does not hold either. Yet we 
can still imagine an agent that is unaware of p but is aware of some 
propositional tautologies, in particular ones like p -= p. It is interesting to note 
that in the classical three-valued logic of Lukasiewicz [28], ~ is usually taken 
to be a primitive along with /x and - ,  and the semantics is defined so that 
p =-p is a tautology, even though p v - p  is not. Even though Levesque's 
semantics could be redefined in this way, the question of motivating the 
semantics of the connectives still remains. 

(3) As Vardi observes [42], although an agent in Levesque's model does not 
know all the logical consequences of his beliefs (if we understand "logical 
consequence" to mean "consequence of classical propositional logic"), it 
follows from Levesque's results [26] that agents in Levesque's logic are perfect 
reasoners in relevance logic [1]. Unfortunately,  it seems no more clear that 
people can do perfect reasoning in relevance logic than that they can do perfect 
reasoning in classical logic! 

Besides the criticisms mentioned above, the current presentation of Leves- 
que's logic suffers from another serious drawback: namely, it deals with only 
depth-one formulas and with only one agent. But a viable logic of knowledge 
or belief should be able to capture--within the logic (!)--meta-reasoning about 
one's own beliefs and reasoning about other agents' beliefs. Meta-reasoning is 
crucial for planning and goal-directed behavior, since one has to reason about 
the knowledge that one has and needs to acquire. And a knowledge represen- 
tation utility that does not have certain information may need to reason about 
where that information is located, and thus about the knowledge of other 
systems. Such reasoning can quickly get quite complicated, and it is not 
immediately obvious how to extend Levesque's model to deal with it. 

In the next three sections we present three other approaches to dealing with 
the problem of logical omniscience, each of which attempts to solve aspects of 
the problem. All of them deal with the multi-agent case and nested beliefs. 
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4. A Logic of  Awareness  

The first logic we consider, a logic to reason about awareness, is essentially an 
extension of Levesque's logic. It allows multiple agents and nested beliefs, both 
implicit and explicit, while still maintaining many of the properties of Leves- 
que's logic; in particular, it is still the case that explicit belief implies implicit 
belief. However ,  we dispense with both partial and incoherent situations. 
Formally, we proceed as follows. Since we wish to deal with the multi-agent 
case, we have operators B 1 , . . . ,  B,,, L 1 , . . . ,  L n. We allow arbitrary nesting 
of the B i and Lj in formulas. A Kripke structure for awareness is a tuple 
M = (S, ~-, ~ 1 , . - - ,  ~n,  ~ . . . . .  ~n) ,  where, as in the "classical" possible- 
worlds model, S is a set of states, 7r is a truth assignment to the primitive 
propositions for each state s E S, and ~3 i is a serial, transitive, Euclidean 
relation on S for i = 1 . . . . .  n. We again assume that there is a special formula 
true. The new feature here is ~i  which is a function that associates with each 
state s a set of primitive propositions. Intuitively, ~i(s) consists of the primitive 
propositions of which agent i is aware at state s. 

Note that a state corresponds to a complete situation or possible world. 
There are no partial states. However,  we get some of the effects of taking 
partial states by defining support relations ~ and ~ relative to each set 1/* of 
primitive propositions. Intuitively, the effect of ~ and ~ is to restrict every 
state to a partial situation where only the primitive propositions in ~ are 
defined. The awareness functions come into play when we consider the 
semantics of a formula such as Bi~. A state s supports the truth of Bi~ relative 
to ~ if all the states agent i considers possible in s support the truth of ~v 
relative to ~ A ~i(s) ,  i.e., ~ further restricted to the set of primitive proposi- 
tions of which i is aware in state s. We define the set of worlds that agent i 
considers possible in state s via the ~i relation, just as in the classical logic of 
belief. We also define a standard two-valued truth relation ~ .  We define Bi~ to 
be true in state s (i.e., M,s ~ Bi~ ) exactly if s supports the truth of Bi~ relative 
to ~i(s). Implicit belief differs from explicit belief in that for implicit belief we 
do not take the awareness function into account; all that is relevant is the set of 
possible worlds. 

We now formally define the support relations ~ and ~ ' ,  and the two- 
valued notion of truth ~ :  

M,s ~ T true , 
M,s ~ ~v true, 
M,s ~ true ; 

M,s ~ v  P, where p is a primitive proposi t ion,  
iff 7r(s, p) = t r u e  and p @ ~ ,  

M,s ~ p, where p is a primitive proposi t ion,  
iff ~-(s, p) = false and p E ~ ,  

M,s ~ p, where p is a primitive proposi t ion,  
iff 7r(s, p) = true ; 
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M,s ~ v - 9  iff 
M,s ~ F ~  iff 
M,s ~ - 9  iff 

IF 
M,S~T 9~ Age 
M,s ~ ~ q~, A ~2 
m,s ~ 91 A 92 

qt 
M , S  ~ T B i 9  i f f  

M,s ~ F Bi~ iff 
M,s ~ B~9 iff 

M,s ~ T Li9 iff 

M,,  9 ,  
M , s ~ 9  ; 

aF 
iff M,s ~T qh and M,s ~ T 92 , 
iff M,s ~ ~v qh or M,s ~ ~ q~2 , 
iff M,s ~ 9~ and M,s ~ q)2 ; 

M,t ~,~n,~,(s) q~ for all t such that (s, t) E ~ ,  
M,t ~fn,~(.~)q~ for some t such that (s, t ) E  Ni ,  
M,s ~ B~9, where • is the set of all primitive 

propositions ; 

M,t ~T ~ for all t such that (s, t) E ~ i ,  
M,s~vL,q~ iff M , t ~ v g f o r s o m e  t such  that ( s , t ) E N , ,  
M,s~L~9 iff M , t ~ g f o r  all t such that (s , t )  E N i .  

Again, we say that 9 is valid if M,s ~ q~ for all structures M and all states s in M. 
We note a number of properties of this definition. 

Proposition 4.1. 
(1) ~ is complete, i.e., for each M,s,9, either M,s ~ ~ or M,s ~ ~9. 

lit 
(2) (a) If ~ C_ ~ '  and if M,s ~x q~, then M,s ~T' 9 .  

(b) If ~ C ~ '  and if M,s ~ ~v" 9, then M,s ~ ~' 9. q~ 
(3) (a) For each set ~ of primitive propositions, if M,s ~x 9 then M,s ~ 9. 

(b) For each set ~ of primitive propositions, if M,s ~ ~ 9 then M,s ~ ~9. 
(4) B,9 t 9. 

Proof. Part (1) is immediate from the definition since M,s ~ 9  iff M,s ~ 9. 
The proof for parts (2) and (3) proceeds by a straightforward induction on the 
structure of 9. Part (4) follows easily from 3(a). [] 

Thus we see that, just as in Levesque's logic, explicit belief implies implicit 
belief. As we mentioned above, our logic shares a number of other properties 
with Levesque's. As before, agent i implicitly believes all valid formulas and all 
the logical consequences of his beliefs. Not all valid formulas are necessarily 
explicitly believed; in particular, -Bi (  p v - p )  is still satisfiable. Neither are 
an agent's explicit beliefs closed under valid implications; for example, 
Bip A --B~(p A (q V --q)) is satisfiable. Indeed, all of the axioms of Leves- 
que's logic are still sound in our system. (A complete axiomatization for our 
system is presented in Section 8.) However, because we do not have incoherent 
situations, our notion of explicit belief differs from Levesque's in that (a) for 
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us, an agent's set of explicit beliefs is closed under implication, and (b) in our 
system, an agent cannot hold inconsistent beliefs; thus, a formula such as 
Bi( p ^ -p)  is not satisfiable. 

Unlike Levesque's logic, our logic allows nested beliefs. As expected, 
(nested) implicit beliefs satisfy all the axioms of weak $5 described in Section 
2. We also have ~ (BiLiq~ ~ BiqQ, so that agent i explicitly believes that he 
implicitly believes ~0 exactly if he explicitly believes q~. Thus, our semantics 
extends to nested formulas in a reasonable way. 

The careful reader will have also noticed one more difference between our 
logic and Levesque's: namely, the t reatment  of ~v* for formulas of the form 
Bgq~ and L~0. For Levesque,  M,s ~v B~o iff M,s ~ Bq~, so that a situation 
supports the falsity of explicit belief exactly if it does not support its truth. For 

,/., 
us, M,s ~v B~ iff M,t I=~n~(~)q~ for some t such that (s, t) E ~ .  Thus, for us, 
a situation supports the falsity of Bi~¢ iff there is a situation that agent i believes 
possible that supports the falsity of ~. Essentially this means that the agent has 
to have positive evidence supporting the falsity of Bi~, rather than just no 
evidence to support the truth of B ~ .  It turns out that this change has no effect 
on the valid depth-one formulas (which is why we did not mention it above), 
but does affect nested formulas. If we had extended Levesque's semantics for 
M,s hE B~¢ in the obvious way, then it would turn out that a formula such as 
Bi(Bjp v ~Bjp) would be valid. Our formulation allows a formula such as 
--Bi(Bjp v - B j p )  to be satisfiable (for example, if i is not aware of p).  
However ,  since it is not possible for a situation to support the falsity of p v ~ p  
in our formulation (although it can fail to support its truth), it must be the case 
that for all sets qt of primitive propositions, M,s ~'~B~(p v--p). Thus it 
follows that ~Bj--B~(p v ~p) is a valid formula in our logic of awareness. 
Intuitively, this says that no agent can have positive evidence that an agent is 
not aware of p. While certainly this may be an unreasonable property for some 
applications, it might be quite reasonable for others. We remark that the logic 
of general awareness presented in the next section does not have this property.  4 

What about the relationship between belief and awareness? Suppose we 
again define Aip to be an abbreviation for Bi( p v ~p). Note that M,s ~ Aip 
iff p E ~/i(s). Again let A~q~ be an abbreviation for the conjunction of A~p 
taken over all the primitive propositions p that appear in ~0. Then it is easy to 
see that the analogue to Proposition 3.1 holds: if ~o is a valid propositional 
formula, then ~ A~q~ ~ Biq~. (The proof  is straightforward. The key step is to 
show, by induction on the structure of ~0, that if all the primitive propositions in 

4 Lakemeyer [24] has recently presented another extension to Levesque's logic which deals with 
nested beliefs. He has two types of possibility relations, ~ and 5 ,  to deal with positive beliefs and 
negative beliefs. Lakemeyer's logic can be extended to deal with multiple agents in such a way that 
--Bi--B,( p v ~p)  is not valid. 
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the propos i t ional  fo rmula  q~ a p p e a r  in qt, then M,s ~ q~ iff M,s ~ q~ iff 
qt 

M,s ~ z  q~. The  result  easily follows.)  
The re  is actually a much  deepe r  re la t ionship be tween  awareness ,  implicit  

belief,  and explicit belief. For  example ,  it is not hard  to show that  

Bi( p v q) 
=-[(Aip A Lip  ) v (A M ^ Liq ) v ( A i p  A Aiq  A L i (  p v q))] 

and that  

b BiBjp =~ ( A i p / x  Li(Ajp A L/p)). 

Note  that  in both  these  cases we were  able to capture  explicit bel ief  using a 
combina t ion  of implicit  bel ief  and awareness .  This can always be done .  In fact 
we have:  

Proposition 4.2. Given a formula O, we can effectively f ind a formula ~b* such 
that ~ b  =- ~b* and B i occurs in g,* only in the context Bi( p v - p ) ,  where p is a 
primitive proposition. 

Proof .  See Append ix .  [] 

5. A Logic of General Awareness 

The  logic defined in the previous  sect ion limits awareness  to pr imit ive proposi -  
tions. This prevents  it f rom captur ing  genera l  r e sou rce -bounded  reasoning.  We 
now presen t  a logic that  gives us more  f ine-grained control  over  an agent ' s  
explicit belief. In par t icular ,  in this logic an agent ' s  explicit bel ief  is not  closed 
under  implicat ion.  The  main fea ture  of  this logic is an (essentially syntactic) 
awareness opera tor .  Thus ,  in addi t ion to the moda l  ope ra to r s  B i and L i of  the 
previous  logic, we also have a moda l  o p e r a t o r  A i for  each agent  i. We can give 
the fo rmula  A i ~  a n u m b e r  of  in terpre ta t ions :  " i  is aware  of  ,~," " i  is able to 
figure out the t ruth of  ~ , "  or even (when reasoning  abou t  knowledge  bases) " i  
is able to c o m p u t e  the truth of  ~ within t ime T."  

A Kripke structure for general awareness is a tuple M = (S, 7r, ~ . . . . .  ~ , , ,  
~ . . . . .  ~n ) ,  where ,  as before ,  S is a set of  states,  ~-(s, • ) is a t ruth ass ignment  
for  each state s E S, and '~i is a serial,  t ransi t ive,  Eucl idean relat ion on S for  
each agent  i. 5 H o w e v e r ,  we now take ~i(s)  to be an arbitrary set of  formulas  
(not just pr imit ive formulas) .  We do not (yet)  place any restrict ions on ~li(s ). 

Again, to capture knowledge rather than belief, we would take .~, to be an equivalence relation 
on S. 
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In particular, it is possible for both q~ and ~ p  to be in ~/~(s) (so that the set of 
formulas an agent is aware of can be inconsistent), for only one of ~p and ~ p  to 
be in ~/~(s), or for neither one of ~p and ~q~ to be in ~/~(s). It is also possible, 
for example, that q~ ^ ~b is in sgi(s ) but ~0 ^ q~ is not in ~/~(s). The formulas in 
~/i(s) are those that the agent is "aware of ,"  not necessarily those he believes. 

We have not yet discussed exactly what "awareness" really is, and indeed, 
we do not intend to do so here at all! The precise interpretation we give to the 
notion of awareness will depend on the intended application of the logic. By 
placing various restrictions on the awareness function, we can capture a 
number of interesting distinct notions. We discuss some interesting restrictions 
below. 

This logic does not have support relations, just a standard two-valued truth 
relation ~ ,  defined inductively as follows: 

M,s ~ true, 
M,s ~ p, where p is a primitive proposition, iff 7r(s, p) = t r u e ,  
M,s ~ - ¢  iff M,s [¢ ~ , 
M,s ~ % ^q~2 iff M,s ~ q~l and M,s ~ ~p2 , 
M,s~Aiq~ iff ~pEM~(s), 
M,s~L,q~ iff M,t~q~for all t such that ( s , t )  E ~ i ,  
M,s~Bgq~ iff ~ p ~ / / ( s )  a n d M , t ~ p f o r a l l t s u c h t h a t ( s , t ) E ~ i .  

Note that in this logic, agent i explicitly believes ~ iff (1) agent i implicitly 
believes q~ (i.e., ~p is true in all the worlds he considers possible) and (2) agent i 
is aware of q~; thus Bi~ -= Liq~ ^ Ai~p. You cannot have explicit beliefs about 
formulas you are not aware of! If we assume that agents are aware of all 
formulas, then explicit belief reduces to implicit belief. 

It is easy to see that Li acts like the classical belief operator.  Of course, B~ 
does not. Just as for our previous logic, agents still do not explicitly believe all 
valid formulas; for example, --Bi( p v--p)  is satisfiable because the agent 
might not be aware of the formula p v - p .  However,  unlike the previous logic, 
an agent's explicit beliefs are not necessarily closed under implication; B~p ^ 
B~(p: f fq)^-B~q is satisfiable, since i might not be aware of q. Since 
awareness is essentially a syntactic operator ,  this approach does suffer from all 
the shortcomings of the syntactic approach mentioned by Levesque [26]. For 
example, there is no reason to suppose that Bi(q~ ̂  to)=-Bi(to ^ ~o), since 
A~(q~ ^ to) might hold without A~(to ^ q~) holding. But in fact, people do not 
necessarily identify formulas such as to ^ q~ and ~p ^ tO. Order  of presentation 
does seem to matter. And a computer  program that can determine whether 
q~ ^ tO follows from some initial premises in time r might not be able to 
determine whether tO ^ ~p follows from those premises in time ~-. 

Up to now we have placed no restrictions on the set of formulas that an 
agent may be aware of. Once we have a concrete interpretation in mind, we 
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may well want to add some restrictions to the awareness function to capture 
certain properties of "awareness ."  Because of the clean separation in our 
f ramework between belief (captured by the binary relation ~ i )  and awareness 
(captured by the syntactic functions Mi), this is quite easy to do. Some typical 
restrictions we may want to add to ~/~ include: 

(1) If  order of presentation of conjuncts is irrelevant, we could have 
9~ ^ q' E ~/i(s) iff ~b ^ ~ E ,ff~(s). Similarly, we could decide that an agent is 
aware of a formula iff he is aware of its negation, so that q~EM~(s) iff 

(2) Awareness could be closed under subformulas; i.e., if q~ E ~ff~(s) and ~b is 
a subformula of ~, then ~b E ~/~(s). Note that this makes sense if we are 
reasoning about a knowledge base that will never compute the truth of a 
formula unless it has computed the truth of all its subformulas. But it is also 
easy to imagine a program that knows that ~0 v - ~  is true without needing to 
compute the truth of q~. Perhaps a more reasonable restriction is simply to 
require that if ~0/x ~b E ~qi(s) then both ~p, ~b E sC~(s). 6 

(3) Agent i might only be aware of a certain subset of the primitive 
propositions, say qz. In this case we could take ~/~(s) to consist of exactly those 
formulas which only mention primitive propositions that appear  in ~.  This type 
of awareness function gives a logic in somewhat  the same spirit as Levesque 's  
logic or the logic of awareness presented in Section 4, but there are some 
crucial differences. For example,  in the awareness logic, the formula 
Biq) ~ Bi( ~ V ~ )  is valid, whether  or not i is aware of ~b; but this formula is not 
valid in the logic we have just described. 

(4) We can allow awareness of agents as well as primitive propositions, so, 
for example,  agent j might not be aware of any formula that mentioned agent i. 

(5) A self-reflective agent will be aware of what he is aware of. Semantical- 
ly, this means that if ~0 ~ Mi(s), then A~o E Mi(s). This corresponds to the 
axiom A ~  ~ AiAi¢ #. 

(6) Similarly, an agent might know what formulas he is aware of. Semanti- 
cally, this means that if (s, t) E ~ then ~ ( s )  = ~ ( t ) .  This corresponds to the 
axioms A i ~ ~ LiA ~¢p and - A ~¢ ~ L ~ -  A ~q~. This restriction seems particularly 
appropriate  when awareness is generated by a subset of primitive propositions 
or a subset of agents, as discussed above. 

(7) The elements of ~/i(s) could be exactly those formulas such that agent i 
can determine in some specified time or space bound whether or not they 
follow from his information in state s. (See the example at the end of this 
section for a worked-out  example using this notion of awareness.) This type of 
"awareness"  should enable us to provide an abstract model for the notions of 

As was pointed out to us by Peter van Emde Boas, without this latter restriction the 
"pragmatically paradoxical" formula Bi( p A --B~p) ("agent i believes both that p is true and that 
he doesn't believe it") is satisfiable in the logic (at a state s where p A--B,pE.~l,(s), but 
p ~'~,(s)). 
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polynomial-time knowledge used in [33]. It might also provide a tool for 
formalizing the recent advances in cryptography theory. Here  the problem is in 
making sense out of what it means that an adversary does not know how to 
read a message which is encoded using a public-key cryptosystem (cf. 
[10, 30, 36]). Such a system is completely insecure from an information- 
theoretic point of view, but is deemed to be difficult to break in a reasonable 
amount of time for complexity-theoretic reasons. 

We now turn to examining the properties of belief in this logic. First observe 
that since the semantics of implicit belief (Li) is identical in the logic of general 
awareness and in the classical possible-worlds model discussed in Section 2, it is 
clear that the classical axioms still hold. Indeed, using standard techniques of 
modal logic, it is easy to show that we can obtain a complete axiomatization of 
the logic of general awareness simply by adding the axiom Biq~ -= L ~  ^ A~q~ to 
the axioms of KD45 discussed in Section 2 (cf. Section 8). However,  these 
axioms do not give us much insight into the properties of explicit belief. In fact, 
despite the syntactic nature of the awareness operator ,  explicit belief retains 
many of the same properties as implicit belief, once we relativize to awareness. 
For example, corresponding to the axiom L~q~ ̂  Li(q~ ~ $ ) ~  Lgt0 we have: 

BF¢ A Bi(q~ ~ ~b) A A~$ ~ Bi$ . 

Thus, if you explicitly believe q~ and q~ ~ ~, then you will explicitly believe 
provided you are aware of O. Similarly, corresponding to the inference rule 
that lets us infer Li~ if we have already inferred q~ we have: 

From ~0 infer Agq~ ~ B i~ .  

Again, an agent must be aware of the relevant formula before he explicitly 
believes it. 

Further insight into the relationship between awareness and explicit belief is 
provided by considering the introspection axioms L ~ L ~ L ~ o  and 
--L~q~Li--L~q~. Here  the most interesting situation arises if we assume 
(s, t ) E  ~ implies Mi(s ) = Mi(t ), so that an agent knows what formulas he is 
aware of. In this case, the corresponding properties of explicit belief become: 

Biq9 A A i B i g ~  BiBi~ 
and 

~Bi t  p A A i ( - - B i ~ ) ~  B i ~ B i ~  • 

Again, note that an agent must be aware of the relevant formula before he 
explicitly believes it. The first of these two axioms shows how, as in the quote 
from de Chardin, an animal may know, but not know that it knows, while the 
second indicates how an agent may be "so dumb that he doesn't  even know 

, ,7  that he doesn't  know ~. 

7 Of course, we can construct analogous axioms even if we do not assume that an agent knows 
what formulas he is aware of, although they are not quite as elegant (cf. [21]). 
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Naturally,  explicit belief will have addit ional propert ies  once we put some 
fur ther  restrictions on the awareness  functions.  We now briefly discuss the 
impact  of  some of  the restrictions discussed above on the propert ies  of  explicit 
knowledge.  

The  fact that  the o rder  of  presenta t ion of  the conjuncts  does not  mat te r  can 
be captured  by the axiom Ai(  ~ A ~b)=-Ai(qt A ~). It is easy to see that in 
structures satisfying this restriction B~(~o A ~O) ~ B~(O A ~¢) is a valid formula.  If  
an agent  is aware of  a formula  iff he is aware of  its negat ion,  this can be 
captured  by the axiom Ai~  =--A~-q~. In structures satisfying this restriction, 
Biq~ ~- B i ~ q ~  is valid. 

Taking awareness to be closed under  subformulas  has some interesting 
consequences .  First note  that this p roper ty  can be captured  axiomatically by 
the axioms schemas 

A i ( ~ p ) ~  Aiq~ , 

Ai(q~ A O ) O ( A i ¢  A A , O ) ,  

Ai(Bjq Q ~ A?p , 

A~(Ljq~)O Ai~p, 

Ai(Aj~p) ~ A~q~. ~ 

Al though  agents still do not  explicitly believe all valid formulas if awareness is 
closed under  subformulas,  it is not  hard to show that an agent ' s  beliefs are 
closed under  implication; i.e., B~¢ A B i ( q : O O ) O B ~ O  is valid. Thus the 
seemingly innocuous  assumption that  awareness is closed under  subformulas  
has rather  powerful  consequences  on the propert ies  of  explicit belief. Certainly 
this assumption is inappropr ia te  for r e source -bounded  notions of  awareness.  
As we r emarked  above,  it may  be easy to see that  q: v - q ~  is a tautology 
without  having to compute  whether  either ~p or  -~p follows f rom some 
information.  Nevertheless ,  this observat ion  shows that  there are some natural  
interpretat ions of  awareness and explicit belief (for example,  an interpreta t ion 
of  awareness that is closed under  subformulas  and an interpretat ion of  explicit 
belief that  is not  closed under  implication) that cannot  be s imultaneously 
captured  in this f r amework  (cf. [11]). We remark  that the model  we int roduce 
in the next section overcomes  this problem.  

We remark that by changing ~ to -= in these axioms, we can capture a notion of awareness 
generated by a set of primitive propositions (i.e. where A,(s) consists precisely of the formulas 
where the only primitive propositions that appear are those in some subset q~ of primitive 
propositions). 
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We close this section with a brief example of an application of this model.  
Up to now, we have taken an " internal"  view of awareness,  knowledge, and 
belief. That  is, we have spoken of an agent knowing the formulas he is aware 
of and having beliefs about  his beliefs. This corresponds to the classical view of 
a reflective agent reasoning about  his knowledge and belief. Recently it has 
been argued that a useful way of analyzing distributed systems and machines is 
by ascribing knowledge to the processes or components  (cf. [13, 37]). The idea 
here is that we view each process in the system as being in some local state; the 
system as a whole is in a global state. Let us use s(i) to denote  process i's local 
state in global state s. Process i is said to k n o w  ~ in global state s if q~ is true in 
all global states s '  where s ( i ) =  s '( i) .  The global states of the system corres- 
pond to the possible worlds in a Kripke structure. If we define ~i  so that 
(s, s ' )  E ~i  iff s(i) -- s ' ( i ) ,  then it is easy to see that this definition makes  ~g 
into an equivalence relation on the global states. Our  definition of knowledge 
in distributed systems then corresponds precisely to the definition of knowledge 
in Kripke structures. Thus,  this information-based notion satisfies all the 
axioms of $5, the classical logic of knowledge. 

We can augment this picture with awareness by assuming that each process is 
running some algorithm to figure out what it knows. We assume that each 
process '  local state includes some information (perhaps encoded as a set of 
formulas,  although we do not need to assume this). The formulas that i is 
aware of in global state s (i.e.,  Mi(s)) are precisely those formulas for which i 
can determine,  using its algorithm, whether  or not they follow from the fact 
that its local state is s(i).  In general,  i 's algorithm will be resource bounded,  so 
that ~/~(s) will not include all formulas. Mi(s) clearly depends only on s(i) ,  so 
that if (s, t) E ~i  (i.e., s(i) = t(i)), then we must have ~gi(s) = ~gi(t). Intuitive- 
ly, we would now like to say that B~q~ is true in state s if the algorithm that 
processor i is running would say that q~ is true in state s. However ,  for this 
interpretation to be appropriate ,  we must assume that the algorithm is correct: 
if the algorithm says that ¢ is true in global state s, then ~ must be a 
consequence of the information contained in the local state s(i) ,  and hence true 
of all global states where i has the same local state. In particular, Li(q~ ) must 
hold. Note we do not need to make any further assumptions on how the 
algorithm operates.  We could imagine that the information in local state s(i) is 
encoded as a set of formulas and the algorithm applies some deductive 
procedure to these formulas. Alternatively,  we could imagine that the al- 
gorithm has information about  the set of possible global states and does some 
"semant ic"  reasoning about  the set of global states t where s(i) = t(i). Using 
this f ramework,  we now have a way of ascribing explicit as well as implicit 
knowledge to processes. This might be useful in analyzing systems where we 
want to view the actions of processes as depending on certain explicit know- 
ledge (cf. the knowledge-based protocols discussed in [12]). 
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6. A Logic of Local Reasoning 

Although  the logic of  general  awareness  is quite flexible, it still has the 
p rope r ty  that  an agent  cannot  hold inconsis tent  beliefs. In this section we 
present  a logic in which agents  can hold inconsistent  beliefs that  does  not  m a k e  
use of  incoherent  si tuations.  

O u r  key observa t ion  is that  one reason  that  peop le  hold inconsistent  beliefs 
is that  beliefs tend to come  in non- in terac t ing  clusters. We can a lmost  view an 
agent  as a society of  minds,  each with its own set (or cluster) of beliefs,  which 
m a y  contradict  each other .  

This p h e n o m e n o n  seems to occur  even in science. The  physicist E u g e n e  
Wigner  [43] no ted  tha t  the two great  theor ies  physicists reason  with are the 
theory  of q u a n t u m  p h e n o m e n a  and the theory  of  relativity.  H o w e v e r  (cf. [35, 
p. 166]), Wigner  thought  that  the two theor ies  might  well be incompat ib le!  

In our  previous  logics, given a state s, we viewed {t I (s, t) ~ ~i}  as the set of  
states that  agent  i thought  possible in state s. In our  next  logic, there  is not  
necessari ly one set of  states that  an agent  thinks possible,  but  ra ther  a n u m b e r  
of  sets, each one cor responding  to a different  cluster  of  beliefs. Al te rna t ive ly ,  
as discussed in the in t roduct ion,  we can view these sets as represen t ing  the 
worlds the agent  thinks are possible  in a given f rame  of mind,  when  he is 
focussing on a certain set of  issues. 

More  formal ly ,  a Kripke structure for local reasoning is a tuple M -- (S, ~-, 
~ . . . . .  c£ n) where  S is a set of  states, zr(s,.) is a t ruth ass ignment  to the 
pr imit ive proposi t ions  for  each state s ~ S and Yi(s) is a n o n e m p t y  set of  
n o n e m p t y  subsets of  S. If we wish to cap ture  knowledge  ra ther  than belief,  we 
need to impose  the added  condi t ion that  s is a m e m b e r  of  every set in ~i(s) .  
Intui t ively,  if ~ ( s )  = { T~ . . . . .  Tk}, then  in state s agent  i some t imes  (depend-  
ing pe rhaps  of  his s tate of  mind or the issues on which he is focussing) bel ieves 
that  the set of  possible  states is precisely T~; some t imes  he bel ieves that  the set 
of  possible states is precisely T 2, etc. Or  we could view each of these sets as 
represen t ing  precisely the worlds that  some  m e m b e r  of  the society in agent  i 's 
mind thinks possible.  If  ~g(s) is just a s ingleton set for  each state s, say { T,}, 
then this s t ructure  is equivalent  to the s t ructures  of  the previous  section,  where  
we in terpre t  (s, t) E ~ i  exact ly  if t E T,-9 

The  moda l  ope ra to r s  that  seem appropr ia t e  for  captur ing the v iewpoint  of  an 
agent  as a "soc ie ty  of  minds"  are exact ly those  discussed in [13] for  captur ing  
the knowledge  of a group.  We now interpre t  Bi~0 as "agen t  i bel ieves q~ in some 
f r ame  of m ind" ;  i .e. ,  some  m e m b e r  of  the society of  minds  mak ing  up i 
bel ieves q~. Note  that  a l though we are using the same  symbol  in the language,  

As we mentioned in the introduction, similar approaches to avoiding logical omniscience were 
independently discussed by Levesque [27], Stalnaker [411, and Zadrozny [44]. In fact, these models 
can also be viewed as special cases of minimal models (also known as "neighborhood" or 
"Scott-Montague" models) that satisfy the added conditions that the set of sets is closed under 
supersets and is nonempty (cf. [3, Chapter 7]). 
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this notion is quite different f rom the notion of explicit belief discussed above.  
We call this form of explicit belief local belief, since it is local to one of the 
members  of  the society. We can also imagine a stronger notion where i believes 
~0 in all frames of mind or an even stronger notion where it is common 
knowledge that ~0 is true in all f rames of mind. We could easily add modal  
operators  to the language to describe these notions (and indeed, in an earlier 
version of this paper ,  [7], we did have a modal opera tor  to describe the 
situation where ~o was believed in all f rames of mind),  but in order  to be 
consistent with the operators  used in the previous section, we add here only an 
opera tor  for implicit belief. An agent i implicitly believes ~, which we again 
write L~0, if i would know ~p as a result of pooling together  the information of 
his various frames of mind. Although again, this notion has a somewhat  
different flavor f rom the notion of implicit belief discussed in previous sections, 
it does correspond directly to implicit knowledge as defined in [13, 14]; 
moreover ,  it is easy to show that explicit (local) belief implies implicit belief. 
We capture implicit belief formally by saying that agent i implicitly believes ~0 if 
~p is true in every world that is considered possible in all frames of mind. By 
intersecting the set of worlds in this way, we are using the information in each 
f rame of mind to help eliminate possibilities. Of  course, if an agent holds 
inconsistent beliefs in different frames of mind, there will not be any worlds in 
this intersection, so that he will implicitly believe false. 

We formally define ~ for these structures as follows: 

M,s ~ p, where p is a primitive proposit ion,  iff It(s, p ) =  t r u e ,  
M,s ~--q~ iff M,s ~ q~ , 
M , s ~ q h  ^q~2 iff M , s ~ o  l a n d M , s ~ % ,  
M,S~ Bi~ iff there is some T E ~ ( s )  such that M , t ~  q~ for all 

t E T ,  
M,s ~ Lg~ iff M,t ~ cp for all t E (-'1 T . 

TE~i(s) 

It is easy to see from the semantic definitions given that explicit belief is not 
closed under  implication, but in this case the reason has nothing to do with 
awareness. The formula Bip ^ Bi(p ~ q)/x --Biq is satisfiable simply because 
in one f rame of mind agent i might believe p ,  in another  he might believe 
p ~ q, but he might never  be in a f rame of mind where he puts these facts 

10 together  to conclude q. 
More importantly for our purposes,  note that an agent may now hold 

inconsistent beliefs: B~p ^ B ~ - p  is satisfiable, since in one f rame of mind 

1°We could guarantee closure under implication by requiring that there is always a frame of mind 
where an agent puts together information that he knows in other frames. Formally this would 
correspond to the set of sets of possible worlds being closed under intersection, so that if T, 
T' ~ %(s), then T n T' E ~,(s) (cf. [3, 42]). 
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agent i might believe p, while in another  he might believe - p .  On the other 
hand, Bi( p A --p) is impossible: agents do not believe in incoherent worlds. If 
we consider knowledge rather than belief (so that s is an element  of every 
member  of ~i(s)), then inconsistent beliefs are impossible. Indeed,  in this case 
we get the axiom Biq~ ~ q~. 

Since implicit belief results by pooling together the information available in 
each frame of mind, we clearly have B ~  ~ Liq~. In particular, it follows that if 
an agent holds inconsistent beliefs, he implicitly believes everything for vacu- 
ous reasons. Thus we get B~q~ A B~(--~0)~ L~(false). (Note that this situation 
is impossible if we consider knowledge rather  than belief, since with knowl- 
edge we still have the axiom B~q~ ~ ~.) 

It is easy to see that as defined here, L i does not satisfy the axioms of KD45, 
the classical logic of belief. We have just pointed out that Li(false ) is 
consistent, so the axiom (A3) of Section 2 does not hold. (A4) and (A5) do not 
hold either, although (A1) and (A2) do. 

In the classical possible-worlds f ramework,  we can capture various properties 
of knowledge and belief by imposing various conditions on the binary relation 
~3i. Analogously, in this f ramework,  we can capture various properties of 
knowledge and belief by imposing conditions on the set of sets ~i(s). In the 
possible-worlds model we have the condition of seriality, which results in the 
axiom -L~(false). The fact that %(s) consists of nonempty  sets ensures the 
validity of -B~(false). If we want -L~(false) to hold in this logic, we must add 
the condition that the intersection of the sets in ~i(s) is nonempty.  As 
remarked above, if we want to capture knowledge rather than belief (so that 
both Li~0 ~ q~ and B ~  ~ q~ are valid), then we must add the further restriction 
that s is a member  of every member  of ~ ( s ) .  It is also not hard to check that if 
we require that in each frame of mind an agent considers it possible that he is 
in that frame of mind (that is, if s' C T E ~i(s), then T E ~,(s ' ) ) ,  this ensures 
the validity of both B~q~ ~ B~Bi~ and Liq~ ~ L~L~. Finally, adding the condi- 
tion that for all T @ ~,(s) and all t ~ T we have ~,(t) _C ~,(s), then we have 
both -B~q~ ~ B~-B~q~ and -L?p  ~ L ~ L i ~ .  (See [3, 42] for a related dis- 
cussion.) 

A particularly interesting special case we can capture is one where in each 
frame of mind, an agent refuses to admit that he may occasionally be in 
another  frame of mind. (This phenomenon can certainly be observed with 
people!)  Semantically, we can capture this by requiring that if s '  ~ T ~ ~ ( s ) ,  
then %(s ' )  is the singleton set {T}. ~ A Kripke structure for local reasoning 
that satisfies this additional restriction is called a Kripke structure for narrow- 
minded agents. 

A narrow-minded agent will believe he is consistent (even if he is not),  since 

u Note that this restriction is not possible in general when dealing with knowledge rather than 
belief. You cannot refuse to know the truth, although you can refuse to believe it! 
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in a given f rame of  mind he refuses to recognize that  he may  have o ther  f rames 
of  mind.  Thus,  B~(~(B~p A B~--p)) is valid in this case, even though  
B~p A B ~ p  is consistent.  In fact, a s t ronger  s ta tement  is true. In all f rames  of  
mind an agent  believes he is consistent.  Moreover ,  since an agent  can do 
perfect  reasoning within a given f rame of  mind,  a na r row-minded  agent  will 
also believe he is a perfect  reasoner .  Thus  B~(B~p/x B ~ ( p ~ q ) ~ B ~ q )  is a 
valid formula  in all Kripke structures for na r row-minded  agents. 

No te  that in both  the general  and the na r row-minded  versions of  the logic of  
local reasoning,  an agent ' s  beliefs are closed under  valid implication (so that  if 
q~ ~ 6 is valid, so is B~q~ ~ B~0) and agents believe all valid formulas.  This is 
because we have assumed that  agents can do perfect  reasoning within each 
cluster. By adding an awareness funct ion to a s t ructure for local reasoning,  we 
can get a model  for  belief where  agents do not  necessarily believe all valid 
formulas.  We can then construct  a model  for  a not ion of  belief and awareness 
where  an agent ' s  awareness  is closed under  subformulas ,  but  his explicit (local) 
beliefs are still not  closed under  logical consequence .  

7. Incorporating Time 

Even  greater  flexibility can be at tained by incorpora t ing  time into the lan- 
guage.  Once  we can explicitly talk about  t ime, we are in a posit ion to discuss 
not ions like knowledge  acquisit ion and forgett ing.  For tunate ly ,  it is easy to 
incorpora te  time into the possible-worlds f r amework  by adding a relation, and 
a cor responding  modal  opera tor ,  to capture  time. For  example,  a Kripke 
structure for general awareness and time is a tuple M = (S, 7r, ~1 . . . . .  ~ , ,  
~1 . . . . .  ~n ,  S-), where  ~ is a deterministic,  serial relat ion; i.e. for  all s E S, 
there  is a unique t E S such that  (s, t) E ~ .  Intuit ively,  (s, t) E S- if t describes 
the state of  the wor ld  at the "nex t "  t ime instant after s. I2 We also add unary  
modal  opera tors  © and ~ into the language,  where  ©q~ is t rue if q~ is t rue at the 
next t ime instant (or " t o m o r r o w " ) ,  and Oq~ is t rue if q~ is eventually true. We 
define S-* to be the reflexive, transitive closure of  S-, that  is, the binary 
relat ion on S defined by (s, t) E S *  iff there exist states s o . . . . .  s k such that 
s = s  0' t = s ~ ,  and (s i, s , + 1 ) E  S - f o r  i < k .  More  formally,  we have: 

M,s~©q~ iff M,t~  ~ for (the unique) t such that ( s , t )  E S - ,  
M , s ~ q ~  iff M,t~q~forsometsuch tha t  ( s , t )  E S - * .  

As usual in the l i terature,  we define [] to be the dual of  O, so that  [ ] ~  is 
- ~ - - q ~ .  Thus  [ ] ~  is t rue if q~ is t rue now and forever  in the future.  

Once  we have t ime in the picture,  we can consider  investigating what  
happens  when we impose a n u m b e r  of  addit ional  constraints on the relation- 

12 Thus we have taken time to be linear rather than branching, discrete rather than continuous, 
and with no endpoint. However, easy modifications can be made to the model presented above to 
allow us to deal with all of the possibilities (cf. [19]). 
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ship between belief (or knowledge), time, and awareness. When considering 
knowledge rather than belief, in some treatments (for example [16, 25, 38]), an 
additional requirement is placed on the interaction between knowledge and 
time, which, roughly speaking, captures "not  forgetting." The intuition is that 
the set of worlds an agent thinks possible should decrease over time, as the 
agent acquires more information. In particular, this means that at a given time, 
the set of worlds that an agent now thinks could possibly describe the situation 
of tomorrow is a superset of the set of worlds that he actually thinks possible 
tomorrow. Syntactically this corresponds to the axiom 

K~(O~) ~ ©Ki¢  ; (1) 

if agent i knows (today) that ~ will be true tomorrow, then tomorrow he will 
know q~ (where we use K i since we are dealing with knowledge rather than 
belief). Semantically, this corresponds to the following restriction (where Ni is 
an equivalence relation, since we are dealing with knowledge): 

If for some states s, t, u we have (s, t) E 3- and (t, u) E ~ ,  
then there exists a state w such that (s, w) E N~ and (w, u) E 3-; 
i.e. 3-° ~i C_ ~i o 3- . (2) 

It is easy to check that axiom (1) holds in all structures that obey the restriction 
(2) (and, as shown in [16], (1) essentially characterizes such structures). As 
pointed out to us by Elias Thijsse, (1) is not immediately applicable to belief. 
For example, I may believe now that I may finish writing this paper by 
tomorrow, but tomorrow I may realize that this belief is false, and no longer 
believe it. But even with regards to knowledge, (1) is not often not a realistic 
assumption. People certainly forget! And (2) seems to have rather unpleasant 
consequences for the decision procedure of the resulting logic (see [16] and 
Section 8). 

Recall that one interpretation we gave the awareness function in Section 5 
was in terms of the formulas whose truth could be computed within a certain 
amount of time. Since we are dealing with a decidable language, we can 
imagine a program that will eventual ly  be able to compute the truth value of 
every formula. We can capture this very easily in our present framework by 
simply requiring that the awareness functions satisfy the following constraints: 

and 
if (s, t) E 3- then sCi(s ) C_ ~i( t )  (3) 

for all s E S and all formulas q~, there is some t with (s, t) E 3-* 
and q~ E s~i([ ) . (4) 

Intuitively, constraint (3) says that agent i's awareness never decreases over 
time, while (4) says that i is eventually aware of every formula. In a structure 
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satisfying these constraints, we have the following sound inference rule: from q~ 
infer OBiq~. Thus, all valid formulas are eventually believed. Moreover ,  the 
obvious weakening of closure under implication also holds. Specifically, as long 
as Bi~ and Bi(q~ ~ ~) are stable formulas (once true, they remain true), then if 
q~ and q~ ~ 0 are believed, it follows that eventually 0 will be believed too. 
Thus, if B~q~ and Be( ~ ~ O) are stable, then we have 

(B~q~ /x Bi( ~ ~ ~)) ~ ~BiO. 

Other variations on these restrictions are also possible. For example, we may 
want to drop (4) while retaining (3), so that while an agent's awareness 
increases, he might not be eventually aware of every formula. We may also 
want to impose conditions on how awareness increases, say by allowing 
application of a particular deduction rule at every step, where the deduction 
rule applied might depend on current knowledge or past history (this was 
suggested to us by Kurt Konolige). There  is clearly room for further work here. 

If we combine awareness, time, and clusters of belief, we can capture even 
more complicated situations. For example, it has frequently been observed that 
people do not like inconsistencies. Yet occasionally they become aware that 
their beliefs really are inconsistent. When this happens, people tend to modify 
their beliefs in order  to make them consistent again. In a system with local 
belief, time, and awareness, this can be captured by an axiom such as: 

(B~ A B~--~)/x Ai(Bg~ A B~--~)~©(--(B?; A B~--~)). 

This axiom says that if agent i has an inconsistent belief of which he is aware, 
then at the next state he will modify his belief so that it is not inconsistent. 

8. Decision Procedures and Complete Axiomatizations 

In the case of the classical logics of belief and knowledge, KD45 and $5, it is 
known that the problem of deciding whether a formula is satisfiable is 
NP-complete in the case of one agent, and PSPACE-complete if there is more 
than one agent (see [14] for a discussion of these results and techniques, many 
of which go back to Ladner [23]). Despite the apparent extra machinery we 
have introduced in our models, we can show in most cases that the decision 
procedures get no harder. 

Theorem 8.1. 
(1) The problem of deciding satisfiability of formulas in each of the following 

logics is NP-complete (and hence the problem of deciding validity is co-NP- 
complete): 

(a) Levesque's logic of implicit and explicit belief, 
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(b) the one-agent case of  the logic of awareness, 
(c) the one-agent case of  the narrow-minded version of  the logic of local 

reasoning. 
(2) The problem of deciding satisfiability and validity of formulas is 

PSPA CE-complete in each of the following logics: 
(a) the multi-agent case of the logic of awareness, 
(b) the one-agent and multi-agent case of the logic of  local reasoning, 
(c) the multi-agent case of  the narrow-minded version of  the logic of  local 

reasoning, 
(d) the one-agent and multi-agent case of each of these logics with time. 

Proof. The proof of these results uses the techniques described in [14, 16], so 
we only sketch the details here. Since in all of these logics a propositional 
formula is a tautology iff it is a tautology of propositional logic, the satisfiability 
problem is NP-hard. The key idea in proving NP-completeness is to show that 
for each of the logics mentioned in part (1), a satisfiable formula is satisfiable 
in a small structure: one that has at most polynomially many states (or 
situations, in the case of Levesque's logic) as the size of the formula. (For all 
the logics the number of states is in fact linear in the size of the formula except 
for the narrow-minded version of the logic of local reasoning, where it is 
quadratic.) We can thus guess a structure for a satisfiable formula in polyno- 
mial time, so the problem is in NP. 

The PSPACE-completeness results for all the many-knower versions of the 
logics not involving time follow the same pattern as the PSPACE-completeness 
result for the many-knower version of $5 discussed in [14]. In particular, the 
upper bound is proved by showing the existence of a tree-like structure of at 
most linear depth, while the lower bound involves encoding the operation of a 
Turing machine that runs in alternating linear time, or alternatively, encoding 
the satisfiability of QBF formulas (cf. [23]). Because in the logic of local 
reasoning we have a "society of minds," even the one-knower version of the 
unrestricted version of this logic has all the necessary features required to get 
the PSPACE lower bound. Indeed, we could get the lower bound even if we 
restricted to formulas involving only the L i operator.  

The PSPACE lower bound for the all the logics with time follows from a 
PSPACE lower bound for the temporal component alone (cf. [15, 40]); the 
upper bound is proved using techniques similar to those sketched in [16]. 

The logic of general awareness is missing from the list above. Although we 
conjecture that the one-agent version for this logic is also NP-complete, and 
the multi-agent version is PSPACE-complete,  we have not been able to prove 
this. The lower bounds still hold, of course, but the best upper bounds we have 
been able to obtain are nondeterministic exponential time for the one-agent 
version, and exponential space for the multi-agent version. The difficulty 
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comes from the fact that we have to simultaneously deal with relations of the 
form M,s ~ ~ for various subsets ~ of primitive propositions. We remark that 
we have been able to prove the NP (resp. PSPACE) upper bound for large 
subclasses of the full language (for example, all those formulas where the 
outermost  occurrences of B i a r e  in the scope of an even number of negations, 
or all those formulas where n o  B i is in the scope of another Bj). It is also 
interesting to note that had we dropped the requirement that the Ni be 
Euclidean, then the decision procedure would be PSPACE-complete in both 
the one-agent and multi-agent case. 

We also remark that once we add condition (2) as discussed in Section 7 to 
the semantics of knowledge and time, things can get much worse. As shown in 
[16], with one knower, the decision procedure becomes complete for double 
exponential time, while with many knowers it has non-elementary complexity. 
And with many knowers and the further addition of common knowledge (cf. 
[113,140, the logic becomes undecidable (again, see [16]). 

We now turn our attention to obtaining complete axiomatizations for all the 
logics we have discussed. In the logic of awareness described in Section 3, the 
L~ operator  acts exactly like the classical belief operator.  Thus, all the axioms 
for the classical belief operator  discussed in Section 2 are still sound in the logic 
of awareness. In Proposition 4.2 we described a way to effectively transform 
any formula in the logic into one where the only occurrence of the B i operator  
is in the context of Bi( p v - p )  (which we abbreviate A~p). It turns out that no 
axioms are required to describe Aip,  so we get a complete axiomatization for 
this logic simply by taking the axioms for the classical belief operator  and 
adding the axiom: 

~- ~ * ,  (A6) 

where q~* is the formula described in (the proof of) Proposition 4.2. It remains 
an open question to find more natural axioms that completely characterize the 
B i operator.  

Theorem 8.2. The axioms for KD45 ( (A1)- (A5) ,  (R1), (R2)) together with 
(A6) give a sound and complete axiomatization for the logic of  awareness. 

Proof. The fact that (A6) is sound follows from Proposition 4.2. We prove 
completeness using techniques that go back to Makinson [29], and that are also 
used to prove completeness of the classical logics of knowledge and belief in 
[14]. We briefly recall some of the details here. 

A formula p is consistent (with respect to an axiom system) if --p is not 
provable. A finite set { p ~ , . . . ,  Pk} is consistent exactly if the formula 
p~ /x . . .  A Pk is consistent. An infinite set of formulas is consistent if every 
finite subset of it is consistent. A set F of formulas is a maximal consistent set if 
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it is consistent and any strict superset is inconsistent. Using standard techniques 
of propositional reasoning we can show 

Lemma 8.3. In any axiom system that includes (A1) and (R1): 
(1) Any  consistent set can be extended to a maximal consistent set. 
(2) I f  F is a maximal consistent set, then Jbr all formulas q~ and ~: 

(a) either q~ E F or ~ ~ F, 
(b) ~ /x ~ E F iff  q~ E F and qJ E F, 
(c) if  q~ E F and ~ ~ ~0 E F, then dJ E F, 
(d) if  q~ is provable, then q~ C F. [] 

In order to prove completeness,  we must show that every valid formula is 
provable. Equivalently, we can prove that every consistent formula is satisfi- 
able. We do so by constructing a canonical Kripke structure M c, containing a 
state s v for every maximal consistent set V of formulas, such that MC, sv ~ ~ iff 
q~ E V. Since every consistent formula is contained in some maximal consistent 
set, this suffices. Given a set V of formulas,  let V/L~ = {~] L,~ E V}. Let 
M c =  (S, 7r, ~ . . . . . .  ~4,,, ~ . . . . .  ~,,) be a Kripke structure of awareness 
where 

S = { s v l V  is a maximal consistent set} , 

true, if p ~ V ,  
zr(sv' P ) =  false, if p ~ V ,  

~%(sv) = {p I ~,(p v - p ) E V } ,  

~,  = {(s v, sw) ] V/L~ C_ W} . 

As shown in [14], axioms (A3), (A4), and (A5) guarantee that Ni as defined is 
indeed serial, transitive, and Euclidean. Now consider the sublanguage _f7 
consisting of those formulas where the only occurrence of B i is in the context 
Bi(p  v - p ) .  Using the techniques of [14], we can easily show by induction on 
the structure of formulas that for all formulas q~' E ~ ' ,  we have MC, sv ~ ~' iff 
~ '  E V. (The only axioms and rules of inference used in this part of the proof  
are (A1), (A2), (R1),  and (R2).)  Finally, suppose q~ E V. Using (A6), we can 
find a formula q~* such that ~ = W* is provable and q~* E ~ ' .  By Lemma 8.3, it 
follows that ~* E V. Since ~* @ 5f' ,  we also have MC, sv ~ q~*. Since q~ ~ ~* is 
valid, we have MC, sv ~ ~. 

We have just shown that if q~ E V then MC, sv ~ q~. (Actually, from the 
maximality of V is also easily follows that ~ E V iff MC, sv ~ q~.) From this we 
get that if q~ is consistent, then for some state s v in M c we have MC, sv ~ q~. This 
shows the axiom system is complete.  [] 
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In the logic of general awareness, we again have that L i satisfies all the 
axioms of KD45. In this logic the explicit belief operator is completely 
characterized by 

Bi¢ ~ L~q~/x A~q~ (explicit belief is equivalent to implicit belief 
plus awareness). (A7) 

Theorem 8.4. The axioms for KD45 together with (A7) give a sound and 
complete axiomatization for the logic of  general awareness. 

Proof. Soundness is straightforward, and completeness is proved in a com- 
pletely analogous fashion to Theorem 8.2. We define the canonical structure in 
the same way except that now we have ~li(Sv) = {q~ I A i¢  E sv}. Again we can 
show that MC, sv ~ q~ iff q~ E V. We leave details to the reader. [] 

Finally, we consider the logic of local reasoning. In this case the L~ operator 
as defined does not satisfy all the axioms of KD45. The only axioms it satisfies 
are (A1) and (A2), and inference rules (R1) and (R2). (Although, as we 
remarked above, by imposing extra conditions on ~ ,  we can obtain axioms 
(A3), (A4), and (A5).) We also have the following axioms: 

~ B~( false) . (A8) 

Biq~ ~ L~q~ . (A9) 

As we remarked in Section 7, an agent's local beliefs are closed under valid 
implication and agents believe all valid formulas. This gives us the following 
rules of inference. 

Biq~ " (R3) 

Biq~ ::~ Big,. (R4) 

Note that (A9) and (R3) render (R2) redundant. Thus we have 

Theorem 8.5. The system consisting of  axioms (A1), (A2), (A8), (A9) and 
rules of  inference (R1), (R3), (R4) is sound and complete for the logic of  local 
reasoning. 

Proof. Again soundness is straightforward. For completeness, we modify the 
techniques sketched in Theorem 8.2. Again we consider maximal consistent 
sets of formulas and construct a canonical structure, but in this case the 
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structure has two states corresponding to each maximal consistent set. This 
technical change allows us to deal with implicit knowledge in a straightforward 
way. 

We define a canonical Kripke structure for local reasoning M c =  (S, ~-, 
qgl . . . .  , qg,) by taking 

S = {s h I V is a maximal consistent set, h = 0, 1 } , 

true, i f p ~ V ,  
7 r ( s h ' p ) = L f a l s e ,  if p ~ ' V ,  h = 0 , 1 ,  

% ( 4 )  h '  = , = { co.v I B,~b @ V, O, 1} 

where 

Th+iv= {S~ I O@ W} U {sw l V/L, C W, I=O, 1} " 

In order to show that this is indeed a Kripke structure for local reasoning, we 
must show that (gi(Shv) is a nonempty  set of nonempty  subsets of S. Since true is 
provable by (A1), Bi(true) is provable by (R3),  so we have Bg(true) E V for all 

0 1 h 
maximal consistent sets V by Lemma  8.3(d). Thus T ...... v, T ...... v E cg,(Sv) and 
~g,(s h) is nonempty.  To see that ~gi(s h) consists of nonempty  sets, suppose 
Big, E V. Then qJ must be consistent, for if not, t) ~ false is provable,  and by 
(R4) and the propert ies of maximal consistent sets, we would have Bi ( fa l se )E  
V, contradicting the consistency of V by axiom (A8). Since 4, is consistent, 
there must be some maximal consistent set W containing ~0, so s~ E T h' c0,V" 

c h 
We next show by induction on structure of formulas that M ,s v p q~ iff q~ E V. 

This will show that all consistent formulas are satisfiable, and thus give us 
completeness of the axiom system. The only interesting cases arise when q~ is of 
the form Bi~ '  or L,q~'. 

t 17 h For B,q~, note that if B/q~'E V, then T¢,v ~ qgi(Sv). By construction, if 
s w~ E T h~,,v, then ~ '  ~ W. (Note that since B,q:' E V, we must have L,~0' E V by 
(A9) and the fact that V is a maximal consistent set. Thus if V/L, C_ W, then 
q~'EW.)  Using the induction hypothesis, it follows that MC, t ~ q <  for all 
t E T h Thus c h , ~',v" M ,s v ~ B , ~ .  For the converse, suppose Biq~ ~ 'V.  We want to 

C h t show that M , s  v ~ B,q~ , so we must show that for all T h' E ~,(s~), there is 
t E  h '  c t , h '  h ~ ' ' ' V  some T , , v  such that M , ~ - q ~  . But if T,,,v E ~(Sv) ,  then we must have 

B , ~ " E  V. It must be the case that ~"A ~q~' is consistent. For suppose not. 
Then q ~ " ~ '  is provable,  so by (R4) and the fact that V is a maximal 
consistent set, we must have B , ~ ' C  V, a contradiction. Since q~"A ~ '  is 
consistent, there must be some maximal consistent set W such that q~", 
~ '  E W. But by construction, s h E T h' ,",v, and by the induction hypothesis we 

c h ~ r. h have M ,s w ~ Thus s w is the desired state. 
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For Lifo', note that 

N T:WwlV/L, CW, /=0,1}. 
Te~i(s h) 

(We remark that we took two representatives of each maximal consistent set 
and defined c~g the way we did precisely to have this equality hold.) It follows 
that if L~o' ~ V then ~0' E W for all W such that s~v ~ (-')re~i(s~) T. Thus, using 

c h t the induction hypothesis, M ,s v ~ Lgq~. The converse follows along the same 
lines as the corresponding proof  in [14, Theorem 3], so we omit details 
here. [] 

We remark that explicit belief in the logic of local reasoning satisfies 
precisely the axioms of the classical logic EMNP (cf. [3]). 

9. Conclusions 

We have examined a number of logics, each of which captures different aspects 
of the problem of lack of logical omniscience, including lack of awareness and 
local reasoning (within a cluster of beliefs). We expect that other logics can be 
designed to capture other aspects of this issue. 

We view one of the main strengths of our logics to be their semantic 
naturalness. Thus, the fact that the formula Bip ^ B i -  p is consistent in the 
logic of local reasoning is not due to some ad hoc condition, but rather follows 
naturally from the semantic interpretation of Bi. And the relationship between 
belief and awareness in our logic of general awareness, as exemplified in the 
axioms, also has a clear semantic interpretation. 

We have avoided committing ourselves to a particular notion of awareness in 
our logic of general awareness, simply because we feel that the conditions on 
the awareness function should be determined by the particular application. 
Indeed,  we consider the flexibility of this approach to be a point in its favor. 
Nevertheless, it is clear that further research needs to be done in order to find 
useful and natural awareness functions. A particularly exciting direction seems 
to be that of combining awareness and time in interesting ways to try to model 
interesting properties of knowledge acquisition. 

Another  interesting direction to take is that of considering quantified 
versions of these logics. Here  some very interesting technical and philosophical 
questions arise. For example, since we would like to be able to capture 
sentences such as " H e  is aware of something that I am not aware of ,"  we seem 
to be forced into allowing states with different domains, and dealing with all 
the technical complications that arise there. There is still much work to be 
done in finding an intuitively motivated logic powerful enough to describe such 
situations. 
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Appendix A. Proofs of Proposition 3.1 and Proposition 4.2 

Proof of Proposition 3.1. Recall we are trying to show that in Levesque 's  logic, 
if ~ is a valid propositional formula,  then ~ A ¢ ~  B~, where A¢  is the 
conjunction of Ap taken over all the primitive propositions p that appear  in ¢, 
and Ap is an abbreviation for B ( p  v --p) .  

Suppose ~ is a valid propositional formula and let M = (S, ~ ,  T, F) be a 
structure. We show that in fact M,s ~x  A~ ~ B~ holds in all situations s in M 
(and not just in complete situations). 

As usual, we define a valuation u to be a function that assigns to every 
primitive proposition a (unique) value in {true, false}. We can extend a 
valuation v so that it gives truth values to every propositional formula using the 
usual rules of propositional logic. Let ~ be a set of primitive propositions. We 
define a valuation u to be compatible with situation s in M with respect to ~ if, 
for all primitive propositions p E ~ ,  we have v (p )  = true implies s E T ( p )  and 
v(p)  = false implies s E F(p) .  (Note that it may well be that s is an incoherent 
situation.) Now we can easily show (by induction on the structure of tk) that if 
4, is a propositional formula and v is compatible with s with respect to Prim(qJ), 
then v(~) = true implies M,s ~ v  0 and v(qJ) = false implies M,s ~V ~" 

We say a set 1/, of primitive propositions is determined in a situation s it 
M,s ~'r P v - p  for each p ~ qt. It easily follows from the definitions that if gt 
is determined in s, then there is some valuation v compatible with s with 
respect to ~. Putting together the two observations we have just made,  it 
follows that if q~ is a valid propositional formula and Prim(~O) is determined in 
s, then m,s ~ ~ tk. 

But now returning to our valid formula ~, note that either Prim(q~) is 
determined in all situations in o~ or it isn't. In the former  case, by the argument  
above,  q~ is true in all situations in ~ ,  so B~ is true in all situations, as is 
Aq~ ~ Bq~. In the latter case, Aq~ ~ Bq~ holds vacuously in all situations (since 
Aq~ is false). In either case, A~ ~ Bq~ is true in all situations. [] 

Proof of Proposition 4.2. For the purposes of this proof,  we call a formula good 
if the only occurrences of B e in the formula are in the context of Bg(p v - p )  
(i.e.,  Aip).  Recall that we are trying to prove that for all formulas ~, we can 
effectively find a good formula ¢* such that ~ q ~ * .  We in fact prove 
something more general. Given a formula ~ and a subformula $, we say that 
an occurrence of $ in ~ appears  positively in ¢ if it is in the scope of an even 
number  of negation symbols; otherwise it occurs negatively. For example,  the 
first and third p ' s  in the formula (p  A - ( B i p  v Bj--p)) appear  positively, while 
the second occurs negatively. 

Lemma A.1. For all formulas q~, we can effectively find good formulas q~+, q~ , 
and ~p* such that for all structures M, states s, and sets ~ of primitive 
propositions, we have: 
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a Jr ÷ 
(1) M , S ~ T ¢  if]" M,S~Tq~ , 

S ,It (2) M,S~F ~p iff M, ~v  ~ , 
(3) M,s b ~ iff M,s ~ ~ * . 

Moreover, all occurrences of  A ip  in ~÷ 
A~p in q< are negative. 

are positive, while all occurrences of  

Proof. If qt is a set of primitive propositions, we define A i ( ~  ) to be an 
abbreviation for A p e ,  Aip.  We also define ~p(q r÷) (resp. q~(qs-)) to be the 
result of replacing all positive occurrences of primitive propositions in ~p but not 
in 1/-' by false (resp. true) and negative occurrences of propositions in q~ but not 
in ~ by true (resp. false). Thus, if qt = ~ _  {p} (i.e., qs consists of all 
primitive propositions but p) and we take ~ to be (p  v q v -- (Bip v Bj-p)) ,  
then q~(q t+) is ( fa l ser  q v - ( B d r u e v  Bj(-false))). Similarly, if q~ is the 
formula p v --p, then q~(g'+) is the formula false v -true,  which of course is 
equivalent to false, while q~(~ ) is the formula true v -false, which is equival- 
ent to true. Note that Prim(qffq r+)) and Prim(qffq t - ) )  (the primitive proposi- 
tions that appear in ~p(q-'+) and ~o(qp-), respectively) are subsets of ap. 

We now define q~+, ¢ , and q~*, by induction on structure: 

+ -- ~ p ~  p = p  = p  

for a primitive proposition p; 

( - ~ ) +  = - ( ~ - ) ,  
( - ~ ) -  = - ( ~ + ) ,  
( -  ~)* = _ ( ~ * )  ; 

-{ {//+ ( ~ ^ ~ 0 )  + ~ ^ , 
(,p ^ q,) = ~ -  ^ ~ 0 - ,  

(~ ^ q,)* = ~* ^ 4,* ; 

( B , ~ )  + = V ( A ~ ( ~ , )  ^ L , ~ + ( ~ ' + ) ) ,  
W C Prina(,.p) 

(B,¢) = A ( A , ( ~ ) ~ L , ~  ( ~ - ) ) ,  
• C_ Pr im(~)  

( a , ~ ) *  = ( a , ~ )  + ; 

(L, q0 + = L , (qF) ,  
(L,~)-  = L,(~ ) ,  
(L,~)* = L , (~*) .  

All the clauses are quite straightforward except that for B ~ .  The way we 
replace B~ by L~ here depends on which formulas the agent is aware of. For 
example, in the definition of (Bi~) +, if he is aware of all the formulas in ~,  
then we replace B i by L~, and replace all positive occurrences of primitive 
propositions not in ~P by false, and all negative occurrences of primitive 
propositions not in ~ by true. We have taken the disjunction over all possible 
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subsets of Prim(qQ in our translation, since these are the only subsets "rele- 
vant" to the formula. We could equally well have taken the disjunction over all 
subsets of primitive propositions, but then the length of ~+ would no longer be 
a function of the length of q~. (We leave it to the reader to check that the length 
of q~+, ¢-, and ¢* is at most exponential in the length of q~.) 

Not surprisingly, it is straightforward to check that q~+ and q~- have all the 
required properties in all cases except that where q~ is of the form B~¢'. In 
order to show that the translation works in this case too, we need a preliminary 
lemma. 

Lemma A.2. 
(1) If  qt' C_ q *, then 

(a) M,s ~ '  q~ implies M,s ~ "  q~(qt+), and 
(b) M,s ~v'  q~ implies M , s ~ '  ¢(qt ). 

(2) If qt C_ qt,, then 
(a) M,s ~ '  q~(~+) implies M,s ~ '  ~, and 

*' m ~' (b) M,s~v q~(q* )implies ,S~F ~#. 
(3) If q* n Prim(~) = qt, n Prim(q0, then 

(a) M,s ~ ~v" ~ iff M,s ~-,'v' ~, and 
ql 

(b) M,s ~v ~ iff M,s ~ ~v' q~. 

Proof. Each part of the lemma can be proved by a straightforward induction 
on the structure of ~. The only nontrivial case, surprisingly enough, is when q~ 
is a primitive proposition. For example, in part (la),  if q~ is the primitive 
proposition p, the proof breaks into two cases. If p E qr,, then, since qr, C_ ~, 
we must also have p E q t  and p(q  t+)  = p .  In this case we clearly have 
M,s ~ ~. ' p iff M,s ~ ~' p( qt+ ). On the other hand, i f p ~ q  t', then M,s ~# ~' p. 
We leave the other cases to the reader. [] 

g, q* + 
Now we show that M,s ~T Biq~ iff M,s ~v (Bi~) • Let E = gt N ~i(s) n 

Prim(~o). Then we have: 

M,s ~ ~q~ Biq~ 

' /~nP,im(,p) Biq~ (by Lemma A.2(3)) iff M,s ~.r 

iff M,t~zvq~ * for all t such that (s, t ) ~  ~i 
(by definition) 

iff M,t~Tq~+ for all t such  that (s , t )@N~ 
(by the induction hypothesis) 

iff M,t~q~+(X +) for a l l t s u c h  that (s , t )  E ~ ,  
(by Lemmas A.2(1) and A.2(2)) 
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iff M , t ~ { ~ + ( , ~  +) for a l l t s u c h  that ( s , t ) •~3~ 
(by Lemma A.2(3)) 

iff M,s ~T L~+(27+) 
(by definition). 

qt 
Since we also clearly have M,S~T Ai(Z) ,  it follows that M,S~TAi(Z)/x 
Li~p+ (?£+), so that M,s ~ ~v ( Biq~) +. 

For the converse, suppose that M,s ~ (Biq~) +. Thus, for some ,~ C Prim(q~), 
q'A we have M,s ~ v  i(,Y,)/x L~¢+(~+). We must also have ~ C ~ fq sqg(s) (other- 

wise it would not be the case that M,s ~ Ai(,~)). It now follows that 

M,s L I ( Z  +) 
iff M,t~ f~+(~  +) for all t such that (s, t ) e  ~i 

(by definition) 

~,n,~,~) + ( E + )  for all t such that (s, t) e ~ iff M,t ~ T 
(by Lemma A.2(3)) 

implies M,t ~{n~{~) + for all t such that (s, t) • ~i 
(by Lemma A.2(2)) 

n ,% ( s )  iff M , t ~ f  ~p for all t such  that ( s , t ) • ~  
(by induction hypothesis) 

i b, 
iff M,s ~ f  Bi~ • 

The proof that ( B ~ ) -  has the right properties is similar; we leave details to 
the reader. 

To prove that ~* has the right properties, again all cases are straightforward 
except when q~ is of the form B ~ ' .  To deal with this case, we again first need a 
lemma. 

Lemma A.3. If ~ is a formula where all outermost occurrences of subformulas 
of the form Bj~ (i.e., all those that are not in the scope of any Bk) occur 
positively, then for all states s, we have M,s ~ ~p iff M,s ~ ~ q~. 

Proof. Let Mi~ be an abbreviaton for - L i - ~ .  It is easy to see that using the 
operator Mg, we can rewrite any formula where all outermost occurrences of 
subformulas of the form Bi~b occur positively so that the only occurrences of 
are either inside the scope of a Bj or occur in front of primitive propositions• 
Now an easy induction on structure of formulas (treating formulas of the form 
BiqJ and M qJ as base cases) shows that for all formulas q~ in this form, M,s ~ q~ 
• q~ /  

lff M,s ~ T q~" [] 
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( W e  r e m a r k  tha t  this  l e m m a  d o e s  n o t  h o l d  fo r  a r b i t r a r y  f o r m u l a s .  F o r  
e x a m p l e ,  if ~ ( s )  = ~, t h e n  we  h a v e  M,s  ~ - B ~ p  bu t  M,s  ~ ' - - B ~ p . )  

q~- 
It  n o w  fo l lows  i m m e d i a t e l y  tha t  M,s  ~ B ~  i ff  M, '~TBAO (by  de f in i t ion )  iff 

M,s  ~,~ ( B ~ )  + (by  L e m m a  A . I ( 1 ) )  iff  M,s  ~ ( B ~ )  + (by  L e m m a  A , 3 ,  s ince  by 

c o n s t r u c t i o n  the  on ly  o c c u r r e n c e s  o f  s u b f o r m u l a s  o f  t he  f o r m  Bj~0 in ( B ~ )  ÷ 

o c c u r  pos i t i ve ly ,  and  in fact  on ly  o c c u r  in t he  c o n t e x t  B j ( p  v --p) = A j p )  i ff  

M,s  ~ (Bi~)* (s ince  ( B i ~ ) *  = ( B ~ )  +).  Th i s  c o m p l e t e s  t he  p r o o f  o f  P r o p o s i t i o n  
4.2. [] 
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