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Abstract

We investigate the problem of reasoning with
imprecise quantitative information. We give
formal semantics to a notion of approximate
observations, and define two types of entail-
ment for a knowledge base with imprecise in-
formation: a cautious notion, which allows
only completely justified conclusions, and a
bold one, which allows jumping to conclu-
sions. Both versions of the entailment rela-
tion are shown to be decidable. We inves-
tigate the behavior of the two alternatives
on various examples, and show that the an-
swers obtained are intuitively desirable. The
behavior of these two entailment relations is
completely characterized for a certain sublan-
guage, in terms of the logic of true equality.
We demonstrate various properties of the full
logic, and show how it applies to many situ-
ations of interest.

1 Introduction

In almost any situation involving quantitative infor-
mation, some of the information is bound to be ap-
proximate and imprecise. Moreover, such imprecision
can easily cause inconsistencies. Consider, for exam-
ple, the following knowledge base KB:

Bill 1s 1.8 meters tall.
John 1s half a head taller than Bill.
A head is 0.2 meters.

Although the information in this knowledge base is
not intended to be completely precise, we might nev-
ertheless want to conclude from it that John is 1.9
meters tall. It 1s clear that we want to view this con-
clusion as being only an approximation of the truth.
In particular, if we later obtain the additional piece
of information “John is 1.88 meters tall,” we do not
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want to conclude that the resulting knowledge base
KB’ is inconsistent; rather, we view this as a problem
due to inaccurate measurement. This shows that we
cannot interpret “is” in approximate observations as
true numeric equality, because we would end up de-
ducing that the above knowledge base is inconsistent,

thus enabling arbitrary conclusions.

The need for dealing with approximate information
arises in many other contexts. We often want to say
that a certain quantity (such as a probability) is very
close to zero, without committing to a particular value.
The technique of e-semantics [Pea88] is based on this
concept (see Section 6.3). When dealing with statisti-
cal information, we often use statements of the form
“90% of birds fly;” however, we do not wish to in-
fer that the number of birds is divisible by 10, as we
could if we interpret this statement as “precisely 90%
of birds fly.” It is more appropriate to interpret it as
“approzimately 90% of birds fly.” (See [GHK94] for
a thorough discussion.) Problems relating to the in-
transitivity of the perceptual indistinguishability rela-
tion in human observations [SKLT89] can also be for-
mulated and circumvented using approximate equality
(see Section 6.2).

In this paper, we introduce a logic which enables us to
deal with and reason about imprecise information and
the inconsistencies that usually accompany it. Our
logic extends standard real arithmetic with notions of
approximate equality and inequality. We formalize ap-
proximate equality to allow some small but unspecified
discrepancy between the values being compared.

Our main interest is in making deductions from knowl-
edge bases, so we focus here on what we call approz-
tmate entailment, where we view “KB approximately
entails ¢” as meaning that we have reasonable justifi-
cation for concluding ¢ given the knowledge base KB.
For example, if we are interested in buying John a
jacket, and we are given the knowledge base KB above,
we would certainly think it justified to proceed under
the assumption that John is about 1.9 meters tall. The
problem becomes more difficult when we ask for infer-
ences from the extended knowledge base KB’ above.
We present two different entailment relations that we



call cautious entailment and bold entailment. They dif-
fer in the degree to which they allow the agent to “leap
to conclusions;” i.e., in the degree of default reasoning
they incorporate. The knowledge base KB’ cautiously
entails that “John is approximately between 1.88 and
1.9 meters tall.” Thus, given contradictory informa-
tion, the cautious approach assumes the answer could
be anywhere in between. On the other hand, the bold
approach, given the same knowledge base, would be
able to conclude that “John is approximately h meters
tall” for each h between 1.88 and 1.9; any reasonable
number can be used as a “guesstimate.”

From this example, it is clear that cautious entailment
is nonmonotonic: by adding additional information to
the knowledge base KB, we lose the ability to deduce
that “John is approximately 1.9 meters tall.” On the
other hand, bold entailment is usually monotonic in
the sense that adding new data to the knowledge base
does not force us to withdraw conclusions. From the
knowledge base KB’ we can still deduce that “John
is approximately 1.9 meters tall.” However, the bold
logic 1s not a standard monotonic logic. Although we
can deduce both that “John is approximately 1.9 me-
ters tall” and that “John is approximately 1.88 me-
ters tall,” we cannot deduce their conjunction (see
Section 5.2 for more details). At first, this might
seem strange. But the intuition here is that, although
we can work with any reasonable assumption about
John’s height, we do not want to work with contradic-
tory assumptions simultaneously.

Both types of entailment can be reduced to the va-
lidity of a formula in the language of real closed fields
[Tarb1], and therefore are decidable. The decision pro-
cedure, however, does not give us much insight into the
properties of entailment. To gain this insight, we con-
sider several examples, and present general properties
of our notion of approximate entailment. These show
that approximate entailment agrees with our intuition
in many situations. For example, we show that infer-
ences made by either one of our entailment relations
are always consistent with those obtained by taking
approximate equality to be true equality. However,
if the knowledge base is inconsistent with equality, as
with KB above, it entails only “reasonable” conclu-
sions. We provide an elegant characterization of these
entailment relations for a large sublanguage of our full
language; in particular, the characterization justifies
our choice of the names “bold” and “cautious.” As
a corollary to this characterization, we show that if
our data is consistent even if approximate equality 1s
treated as true equality, then we typically get precisely
the conclusions that we get from true equality. Our
characterization also shows that, for a large subclass
of formulas, cautious entailment reduces to a variant
of preference semantics [Sho87] (see Section 5.2).

While most of the paper focuses on issues concern-
ing measurement, our approach is actually much more
general. Given a notion of exact inference from a
knowledge base with precise information, we can use

our framework to extend it to a notion of approximate
inference from a knowledge base of imprecise informa-
tion. The notion of exact inference could well be prob-
abilistic or nonmonotonic. In particular, we can apply
these ideas to e-semantics ([Pea88, GMP90]) and to
the problem of computing degrees of belief from sta-
tistical information [GHK94] (see Section 6.3).

2 Syntax and Semantics

Since we want to focus on the basic issues arising from
the problem of approximate numerical information,
we restrict ourselves to considering a relatively sim-
ple framework where these issues arise. We begin with
a core language L, consisting of:

e the standard arithmetic operations of 4+, —, x, /,

e the standard equality and inequality relations =
and <,

e a constant symbol d, for each real number r (in
our examples, we typically write, say, 0.1, rather
than do,l),

e a countable collection eq, e, ...
constant symbols.

of uninterpreted

We form the set of terms by closing off the constants
under +, —, x and /. The set £ of precise expressions
consists of formulas of the form ¢ = ¢’ and ¢ < ¢’ for
terms ¢t and ¢'. The language £ is formed by closing
off £ under conjunction, disjunction, and negation.

In order to form the approzimate language L=, we aug-
ment the language £ with the approzimate equality and
inequality relations ~ and <. The set A of approzimate
expressions consists of formulas of the form ¢ ~ ¢’ and
t < t' for terms t and ¢'. The language £~ is formed
by closing off £ U A under conjunction, disjunction,
and negation.

We interpret £ in the standard fashion. Terms are in-
terpreted over the reals, with an additional undefined
value ¢ (used to deal with the problem of division by
zero). The symbols 4+, —, x, /, =, < receive their stan-
dard interpretation (extended to deal with ¢), and the
constant d, is interpreted as the real number 7.

Definition 2.1: A model v for £ is a function assign-
ing an element in IR U {:} to each term, and a truth
value to each formula, as follows:

e for each uninterpreted constant ¢;, v(¢;) € IR,
o for each constant d,., v(d,) =r € R,

o for each term t o t', where o € {+,—, x,/}, we
have v(t ot’) = v(t) o v(t') in the standard way,
with the following exceptions:

— if v(t") = 0, then v(t/t') =,
— if v(t) = ¢ or v(t') = ¢, then v(t o t’") = 4.
o if ~is one of = or <, then v(t ~ t') is true if both
v(t) and v(t') are in IR and v(t) ~ v(t'); otherwise



v(t ~ ') is false,

e v is extended to Boolean combinations of precise
expressions in the standard way. |

One might wonder why we take division to be a prim-
itive operation in our language (at the cost of hav-
ing to deal with ¢), rather than defining it in terms
of multiplication. The problem arises due to subtle
interactions between division and the semantics of ap-
proximate equality, in such terms as a/b where b 2 0.
This is particularly relevant in such applications as e-
semantics. It turns out that the only way to handle
such expressions appropriately is to allow division as
a primitive operation (see Section 6.3).

To understand the interpretation of ~ and <, we first
need to consider how we want to interpret a statement
such as: “Bill is approximately 1.8 meters tall.” We
view such a statement as describing a measurement
of Bill’s height, taken with some unknown degree of
inaccuracy. Thus, we take this to mean that Bill’s
height is within 7 of 1.8 meters, for some unknown
tolerance 7. In general, the tolerances for different
measurements may be completely independent. We
enforce this in our semantics by interpreting &~ and <
in a nonstandard, context-dependent manner; for each
expression e € A, there is a tolerance 7(e) associated
with e.!

Definition 2.2: The tolerance function 7 is a function
from A to Rt = [0,00). Let 7 denote the set of
tolerance functions. i

In this definition, we have chosen to allow 0 as a legal
tolerance value; that is, the range of a tolerance func-
tion is [0, 00), not (0,00). While this issue may seem
minor, it has a number of side effects. For one thing,
it allows us to state stronger theorems, with simpler
proofs. But it also affects our ability to make certain
inferences. We discuss this issue further in Section 5.1.

In order to relate the meaning of expressions in £L¥ to
the semantics of £, we need the following definition.

Definition 2.3: For a formula ¢ € £¥, and a fixed
tolerance function 7, we define ¢[7] € £ to be the same
as ¢, except that every approximate expression ¢ & t/
is replaced by the expression [t —t| < d,(;x¢y and each
expression ¢ < ' is replaced by (t —t') < d-(;<¢1). 1

For example, if ¢ is ¢; & ¢2, and 7 is such that 7(c; =
e2) = 0.1, then ¢[r] = |e1 — 2] < dg1. Let 75 to be

'In some cases we may know that tolerances are related
in some way. For example, we may know that different
measurements were taken with the same measuring device,
and therefore have the same maximum error. This issue
was dealt with in [GHK94] by explicitly subscripting =
and < so that each =; denotes a different approximate
equality relation. For the sake of simplicity, we have chosen
not to extend the logic to express relationships between
tolerances.

the tolerance function that assigns tolerance 0 to all
expressions. Note that ¢[rg] is precisely the result of
interpreting all occurrences of “approximately equals”
in ¢ as true equality. We say that ¢ is consistent with
equality if ¢[rg] is consistent.

Definition 2.4: An augmenied model M for L% is a
pair (v, 7), where v is a model for £ and 7 is a tolerance
function. For a formula ¢ € L%, we define M = ¢ if

v elr]

Note that 7(e) for expressions e that do not appear in
a formula ¢ has no affect on the truth value of ¢: if 7
and 7’ agree on all expressions that appear in ¢, then
for any v, we have (v, 7) |E ¢ iff (v, 7') £ ¢.

We define validity for £¥ as usual: v is valid if M |= ¢
for all models M. The validity problem for £ is of
little interest, as the following example suggests.

Example 2.5: Let ¢ be (e & 1) = (2 x ¢ = 2), and
the model M = (v, 1), for v(e) = 1.1,7(e = 1) = 0.1,
and 7(2 x ¢ & 2) = 0.15. Then M [£ ¢, and therefore
¢ is not valid. 11

In fact, as the following theorem shows, if we restrict
attention to (Boolean combinations of) approximate
expressions not involving division (which allows us to
avoid all the complications of dealing with ¢), the only
valid formulas are those that are propositionally valid
if we treat every approximate expression as a distinct
primitive proposition.

Theorem 2.6: Let ¢ € L= be a Boolean combination
of approzimate expressions not involving division. Let
a(p) be the propositional formula that results from re-
placing each approzimate expression e in ¢ by a prim-
ttiwe proposition p.. Then ¢ 1s valid over models of
L” iff a(p) is propositionally valid.

Thus, rather than considering validity, we concentrate
on a different notion that we call approrimate entail-
ment.

3 Approximate Entailment

Given a knowledge base of approximate measurements,
when should it entail a statement ¢ such as “John is
approximately 1.9 meters tall”? We do not want to
view ¢ as necessarily representing an actual measure-
ment that was taken of John’s height. Rather, we
want 1t to be a useful working assumption. For ex-
ample, if we are interested in buying John a suit, we
may well be content with an approximate estimate of
John’s height. We do not expect formulas entailed by
the knowledge base to be completely accurate. More-
over, we will rarely know exactly how accurate they
are, since that depends on the accuracy of our ini-
tial measurements, which we do not typically know.
However, we would like to have the property that the
smaller the errors in the knowledge base, the smaller



the errors in formulas entailed by the knowledge base.
This is in the spirit of the standard e-é definition of
limit.

Notice that it may not be possible to have all toler-
ances grow arbitrarily small simultaneously. For exam-
ple, if our knowledge base consists of (¢ & 1) A (2¢ =
2.1), it is clear that both relevant tolerances cannot
be arbitrarily small at the same time. We there-
fore introduce the concept of minimal tolerance func-
tion. Intuitively, this is one that chooses the smallest
possible tolerances while still keeping the knowledge
base consistent. We say that a tolerance function 7
is consistent with KB if KB[r] is satisfiable. We say
that 7 < 7’ for two tolerance functions 7, 7’ if for all
e € A, 1(e) < 7'(e), and there exists some e € A
such that 7(e) < 7'(e). We also define [|7|| to be
sup{|r(e)| : e € A}. The tolerance function 5 is mini-
mal for KB if it is in the closure of tolerance functions
consistent with KB and there is no smaller tolerance
function consistent with KB.

Definition 3.1: A tolerance function 7 is said to be
minimal for KB if

1. for every € > 0, there exists a tolerance function
T consistent with KB such that ||7 — || <,

2. there does not exist another tolerance function 7
such that 7 < n and 7 is consistent with KB.

Let Q(KB) be the set of tolerance functions minimal

for KB. 1

Recall that 7 is the tolerance function that assigns
tolerance 0 to all expressions. It is easy to see that if
KB is consistent with equality, then 7y is the unique
minimal tolerance function for KB. Thus, the notion
of minimal tolerance function becomes interesting only
for knowledge bases that are inconsistent with equality.

Example 3.2: The “inconsistent” height knowledge
base KB’ from the introduction, written formally in
our language, is the conjunction: (cp & 1.8) A (cj =~
epter/2)A (e = 0.2)A(ey = 1.88), where cp denotes
Bill’s height, ¢; denotes John’s height, and cg denotes
the height of a head. Let 7 be a tolerance function
such that 7(e) = 0 for any irrelevant expression e (not
one of the four above), and let 7, 79, 73, 74 denote the
values assigned by 7 to the four expressions above.
Let 7 denote (71,...,74). It is easy to see that KB’
is consistent iff 74 > 0.02 — 74 — 75 — 73/2. Thus, if
7 = (0,0,0,0.01), then 7 is not a minimal tolerance
function for KB’ because it violates condition 1. On
the other hand, if ¥ = (0.03,0,0,0.01), then 7 is not
minimal because it violates condition 2: there exists
a smaller tolerance function consistent with KB’ that
assigns (0.02,0,0,0) to the relevant expressions. This
last tolerance function is in fact minimal for KB, as
is the one that assigns (0.01,0,0.02, 0) to the relevant
expressions. And generally,

QKB) = {r:m=002—7 — 19— 13/2,

7(e) = 0if e is irrelevant} . 1

We now give an example of a formula KB for which
the set of tolerances consistent with KB is not closed,
and some minimal tolerance function is not consistent
with KB.

Example 3.3: Let KB be (c1 X c2 & 1) A (e1 = 0),
and let 7 = 7(e1 X ca & 1) and 72 = 7(c1 = 0). Tt is
clear that for any value of 7 and any 7 > 0, KB[r] is
consistent. Therefore, one minimal tolerance function
for KB i1s 1y, which is inconsistent with KB. Note
that the tolerance function 7/ for which 7{ = 1 and
75 = 0 is also consistent with KB (and therefore fulfills
condition 1). And, although 7y < 7/, there does not
exist a tolerance function 7 < 7/ which is consistent
with KB. Therefore, 7' is also a minimal tolerance

function, and Q(KB) = {7, 7'}. 1

Remark 3.4: Although a minimal tolerance function
for KB is not necessarily consistent with KB, it is the
case that K Bis satisfiable (i.e., some tolerance function
is consistent with KB) iff Q(KB) # 0. From this point
on, we consider only satisfiable KB’s. |

Using the concept of minimal tolerance functions, we
can now define entailment. Before we give the for-
mal definitions, we give a little intuition. We would
certainly like a knowledge base of the form ¢ ~ 1 to
entail, say 2¢ ~ 2. Recall from Example 2.5 that
(¢ ® 1) = (2¢ = 2) is not valid. However, given a
tolerance 7 for ¢ & 1, we can clearly find a tolerance
79 for 2¢ & 2 to make 1t true, namely, 27;. This is the
key idea in our notion of entailment. Roughly speak-
ing, we want it to be the case that K B entails ¢ if, given
a tolerance function 7 that makes KB true, we can find
a tolerance function 7’ that makes ¢ true. Clearly we
want to put some constraints on 7’ (for otherwise from
¢~ 1 we could infer ¢ = 2). We require that the closer
7 is to a minimal tolerance function, the closer 7 is
to 9. This corresponds to the intuition we described
earlier, that the smaller the errors in the knowledge
base, the smaller the errors in the conclusion. Note
that we do not try to describe how 7/ must go to 7 as
a function of how 7 gets small.

We can now define the first of our two notions of en-
tallment.

Definition 3.5: We say that KB cautiously entails
p, written KB |, ¢, if for every minimal tolerance
function n € Q(KB) there exists some function f :
T — 7, and some € > 0 such that:

e for every tolerance function 7 such that [|7 — || <

¢, we have KB[7] = ¢[f(7)],

o for every
sequence (77)%%; such that lim, o 7™ = 7, we
have limy, oo f(7") = 1. |1

The reader might wonder why we insist that f(7") con-
verge to 7p, rather than to a minimal tolerance func-



tion. The reason is that, even if we have a knowledge
base that is inconsistent with equality, we want the
formulas entailed by the knowledge base to be consis-
tent with equality, since we want our conclusions to
be useful working assumptions. Thus, if we have a
knowledge base KB such as (¢ & 0) A (¢ & 0.1), then
we do not want to conclude KB, as we would be able
to do if we just required that f(7") approach a min-
1mmal tolerance function rather than 5. As we shall
show, although KB does not cautiously entail KB, it
does cautiously entail 0 < ¢ < 0.1, which seems more
reasonable.

Bold entailment replaces most of the universal quan-
tifiers in the definition of cautious entailment by exis-
tential quantifiers.

Definition 3.6: We say that KB boldly entails o,
written KB [y o, if either KB is unsatisfiable, or there
exists some function f : 7 — 7, some minimal toler-
ance function n € Q(KB), and some decreasing se-
quence (7)22; such that the following all hold:

o for all n, KB[T"] |E ¢[f(m")],

e 7" is consistent with KB for all n,

o limy oo 7™ =nand lim, o f(7) =70. 1

Note that we restrict attention only to the tolerance
functions 77 in the first clause above, rather than re-
quiring that this condition hold for all tolerance func-
tions 7. The latter would also give us a reasonable no-
tion of entailment. We chose our condition because it
leads to a bolder notion of entailment; that is, it allows
strictly more formulas to be entailed by a knowledge
base. We have tried to make bold entailment as liberal
as reasonably possible, while making cautious entail-
ment as conservative as reasonably possible. Clearly
other intermediate notions of entailment are possible.

As the names suggest, k., C | when viewed as
relations on formulas. As Example 3.9 demonstrates,
the containment is proper.

Proposition 3.7: For KB,y € L%, if KB &, ¢ then
KB R .

We begin by showing a simple example of entailment.

Example 3.8: The consistent height knowledge base
KB from the introduction, written formally in our lan-
guage, 1s

(CB ~ 1.8)/\(6] ~ CB —|—CH/2)/\(CH ~ 02) .

If we interpret & as =, we can deduce that ¢y, John’s
height, is 1.9 meters. As we might hope, using both
cautious and bold entailment, KB entails that ¢; ~
1.9. Since . C R4, it suffices to show this for
cautious entailment. We proceed as follows: Since
KB is consistent with equality, the only minimal tol-
erance function for KB is 7q. Let 7,7, 73 be the
relevant coordinates of the tolerance function 7 for

KB. We choose (f(7))(cs = 1.9) = 7 + 12 + 73/2,
and f(r)(e) = 0 for all other expressions e € £.
Clearly, if lim, oo 7" = 79, then lim,_ f(7") = 7.
Moreover, for any valuation v, if |v(ep) — 1.8] < 7,
[v(es)—v(ep)—v(em)/2| < 1, and |v(cm) —0.2] < 73,
then |v(es) — 1.9] < 1 + 13/2 4+ 12 = f(7)(cs = 1.9).
Thus, if (v,7) E KB, then (v, f(7)) E ¢ = 1.9. Tt
follows that KB e, cj &= 1.9, as desired. I

The following example helps explain the difference be-
tween bold and cautious entailment. Intuitively, cau-
tious entailment allows no unjustified default assump-
tions about the relationships between the tolerances
in the knowledge base, whereas bold entailment allows
arbitrary assumptions about these relationships.

Example 3.9: Consider the the knowledge base KB’
from Example 3.2. This knowledge base is clearly in-
consistent with equality, so using true equality we can
deduce anything. What can we deduce using approxi-
mate entailment? Recall from Example 3.2 that

QKB ={r:12=002—1 —1g—13/2} .

Tt is easy to see that for any model (v,7) consis-
tent with KB’ such that 7 € Q(KB'), we must have
1.88 < v(ey) < 1.9; moreover, every value in the range
[1.88,1.9]is attained in one of these models. Tt follows
that KB’ k. 1.88 < ¢; < 1.9, and that we cannot get
better bounds on ¢; using cautious entailment. Thus,
given contradictory information as to John’s height,
the cautious approach allows us to deduce only that
the value of ¢; 1s somewhere in the interval.

On the other hand, using the function f assigning
(f(m)(eg = h) =714 —(0.02— 1 — 75 — 73/2) for any
1.88 < h < 1.9 and zero elsewhere, we can deduce
KB Rypecy ~ 1.88, KB kycy ~ 1.89, and in gen-
eral, KB' |y c; ~ h for every h € [1.88,1.9]. Thus,
the bold approach allows us to deduce any value for
John’s height in the permissible range; we may use any
reasonable working assumption for John’s height. Il

The two approximate entailment relations are de-
fined for a particular language £ and a semantics
for it. Clearly the definitions make perfect sense for
a far richer language, for example, one with first-
order quantification and with interactions between tol-
erances. (We remark that the decision procedure in
the next section also holds for this extended language,
although our characterizations in Section 5 do not.)
More interestingly, these relations can be extended to
other semantics and other notions of satisfaction. The
first clause in both of the approximate entailment def-
initions is based on the standard notion of satisfaction
for precise formulas—KB[r] = ¢[f(7)]. We can re-
place the symbol |= is this statement by a nonmono-
tonic notion, for example, or a probabilistic notion
such as “holds with probability 1.” This extension
is explored further in Section 6.



4 A Decision Procedure for
Approximate Entailment

In this section, we present decision procedures for the
problems of deciding whether KB . ¢ and whether
KB ey ¢. Our decision procedures will be based on
reducing these questions to the validity of certain for-
mulas over the reals. We need first present the defini-
tion of a real closed field (see, for example, [Sho67]).

Definition 4.1: An ordered field is a field with a linear
ordering <, where the field operations 4+ and x respect
the ordering: that is, z < y implies z 4+ z < y + z, and
if z,y are positive (where an element z is positive if
z > 0) then sois  xy. A real closed field is an ordered
field where every positive element has a square root
and every polynomial of odd degree has a root. 1

Tarski [Tarb1] showed that the theory of real closed
fields coincides with the theory of the reals (under
formulas containing only 4+, x,<,= and constants
0,1,—1). He also proved that the theory is decidable.
Ben-Or, Kozen, and Reif [BKR86] extended this result
to show that the complexity of the decision problem is
exponential space.

When defining £¥, we allowed a constant d, for every
real number r. Clearly, we cannot extend the decision
procedure to formulas containing such constants. We
therefore define a formula ¢ to be rational if for every
constant d, mentioned in ¢, r is a rational number.

Theorem 4.2: Given rational formulas ¢, KB € L7,
we can in polynomial time construct formulas ¥y and
Y. over the vocabulary {0,1, 4, x, <} whose length? is
linear in that of ¢ and KB, such that

o KB, ¢ iff (R,0,1,+, x) E .,
o KBy o iff (IR,0,1,4, x) E .

From the results of [Tar51] and [BKR86] mentioned
above, we immediately get:

Corollary 4.3: For KB, ¢ rational formulas, the
problem of deciding whether KB . ¢ (resp. KB ey )
1s in ezponential space.

5 Properties of Entailment

Although we have a decision procedure for approxi-
mate entailment, it does not give us much insight into
the properties of these relations. In this section, we ex-
plore these properties in greater depth. We begin by
showing the connection between approximate entail-
ment and standard entailment in £ (the logic of true
equality). This gives a complete characterization for a

2The length of a rational formula ¢ is defined as the
length of ¢ written as a string of symbols, where the length
of dg, where ¢ = a/b and @ and b are integers, is the sum
of the lengths of the binary representations of a and b.

large fragment of our language. We then use this char-
acterization in order to relate approximate entailment
to standard nonmononotonic formalisms.

5.1 Characterization

What kind of inferences can we make using our two no-
tions of entaillment? Most importantly, the inferences
we make are always consistent with equality: they are
always a subset of those we would obtain if we were to
treat approximate equality as true equality. This i1s an
important property; if it is consistent to interpret ap-
proximate equality as equality, then we do not want to
conclude anything that would be inconsistent with this
intepretation. One might also hope that for consistent
knowledge bases, the converse also holds. This is in
fact the case for bold entailment, and under certain
conditions also for cautious entailment. Thus, we get
all and only “reasonable” conclusions from knowledge
bases consistent with equality. If this were the whole
story, then there would be no need to introduce ap-
proximate equality at all. However, as we have already
observed, some of the most interesting applications of
approximate reasoning arise precisely when the knowl-
edge base is inconsistent with equality. In this case, we
do not want to be able to infer everything (as we could
if we did not view equality as approximate). We will
see, In fact, that the inferences that are lost are the
“undesirable” ones.

Our goal is to characterize what we can infer in gen-
eral. Roughly speaking, we want to show that a knowl-
edge base KB cautiously entails ¢ if ¢ is true for every
minimal tolerance function for K'B; on the other hand,
KB boldly entails ¢ if ¢ is true for some minimal tol-
erance function.

In order to relate entailment to the truth of formulas
in £, we first need a result that shows that entailment
18, in some sense, continuous in the tolerance function.

Proposition 5.1: Let KB and ¢ be two sentences
in L®. Let ™ be a decreasing sequence of tolerance
functions such that lim,_oo 7 = n, and let f be a
function such that limy,_ f(7") = 10. If, for every

n, KB[r"] |2 [f(7")], then KB[n] = ¢[ro].
We can now give half of our desired characterization.
Theorem 5.2: Suppose ¢, KB € L¥.

o If KB ¢ then for all n € Q(KB), we have
KB[n] | ¢l

o If KBy ¢ then for some n € Q(KB), we have
KB[n] | ¢l

Note that if KB[r] is consistent (i.e., the knowledge
base is consistent with equality), then Q(KB) = {rg}.
Thus, as a corollary to Theorem 5.2, we get that our
inferences are always consistent with equality:

Corollary 5.3: If KBy ¢ (resp., KB @) then



KB[n] E ¢l

This result is important, because it says that we can-
not conclude anything (using either notion of entail-
ment) that we could not have concluded by viewing
approximate equality as equality.

The converses to Theorem 5.2 and Corollary 5.3 do
not hold in general, nor do we want them to. If KB[n]
is inconsistent, then KB[n] | ¢[70] for all ¢, but we do
not want to conclude KB |y ¢ for all ¢. In the case
of bold entailment, such inconsistencies are the only
problem.

Definition 5.4: We say KB is min-consistent if KB[n)
is consistent for all n € Q(KB). 1

The knowledge-base in Example 3.3 is not min-
consistent.

Theorem 5.5 : If KB 1is min-consistent, then

KB e ¢ iff KB[n) | ¢[r0] for some n € Q(KB).2

This result characterizes | for min-consistent
knowledge bases KB, and provides some justification
for our calling this entailment “bold.” It also lets us
prove that, as long as our knowledge base is consistent
with equality, then bold entailment lets us conclude
precisely what we can conclude by viewing approxi-
mate equality as equality.

Corollary 5.6: If KB[ry] is consistent, then KB[ry] =
elro] iff KB R .

We can prove results analogous to Theorem 5.5 and
Corollary 5.6 for cautious entailment. However, we
must place some restrictions on formulas, as the fol-
lowing examples show.

The first example shows that we cannot deal with for-
mulas that use precise equality.

Example 5.7: Let KBbe ¢~ 0 and ¢ be ¢ = 0. The
knowledge base is consistent with equality; therefore
Q(KB) = {r}. From KB[rg] we can infer p[rg] (the
two are, in fact, equivalent). However, it is not the
case, nor do we want it to be, that KB . ¢. We
point out that for the bold logic it is the case that
KBRy ot 1

The second example shows that we cannot deal with
formulas that mention division either. Here the prob-
lem is the possibility of division by zero.

Example 5.8: Let KB be ¢~ 0 and ¢ be =(1/¢ = 0).

Clearly KB is consistent with equality. Moreover, it

31f we were to require that the range of a tolerance func-
tion is (0, c0), so that 75 is not a a legal tolerance function,
this theorem would not hold. Additional assumptions, sim-
ilar to the well-behavedness assumptions below, would be
necessary.

*In fact, it is easy to see that if KB is min-consistent,
and KB x5 ¢, then KB |xp ¢[70].

is easy to see that ¢ = 0 = =(1/c > 0): according to
our semantics 1/0 = ¢ and ¢ > 0 is false. However, it
is also easy to see that KB does not cautiously entail
@: for all 7 with 7(c & 0) > 0, there is no choice of 7/

such that (c ~ 0)[r] &= (=(1/c = 0))[7"].> 1

Therefore, in order to obtain the desired results, we
cannot allow precise equality and division in KB or
. But, as the following three examples show, further
restrictions are necessary as well.

Example 5.9: Let KBbe ((c & 1)A(c+1 % 2))V (e =
0). Clearly, Q(KB) = {ro}. From KB[ry] we can infer
¢ = 0, and thus KB boldly entails ¢ & 0. We might also
hope that KB cautiously entails ¢ &~ 0, but this is not
the case. Let 1 = (¢ & 1) and 72 = 7(c+ 1 = 2). For
any 7 such that m > 7, we can easily see that there
are models (v, 7) = KBsuch that v(¢) is within 71 of 1.
Thus, KB . ¢ & 0. All we can deduce using cautious
entailment is KB . (¢ & 1) V (¢ & 0). Note that
this is, in fact, a reasonable conclusion if we are being
cautious in assuming relationships between different
tolerances. 1

Example 5.10: It is easy to see that ¢ ~ 0 . 2¢ = 0;
we simply define the function f in the definition of
cautious entailment so that f(r) = 27. Similarly,
¢~ 0R.d x ¢c = 0 for any r. However, if ¢’ is
another uninterpreted constant in the language, then
e 0. xc= 0 (although Q(c ~ 0) = {7} and
¢ =0 F ¢ xc=0). The reason is that for every
tolerance function 7 such that 7(¢ &~ 0) > 0 and every
constant B > 0, there is some model (v, 7) such that
v(¢! x ¢) > B. We cannot place an a priori bound
on the tolerance required for ¢/ x ¢ ~ 0 in terms of

m(c=0). 1

Example 5.11: Let KBbe (c & 0)V(c = 1) and ¢
be

[(em 0)A((d#0)V (dx efc — )]V
(e~ D)A((d = 0) V (d % efe — 1)))]

Under true equality, the second conjunct in each dis-
junct of ¢ is implied by the first, so that KB[r] |
©[70]. Under approximate equality, on the other hand,
the situation is very different: As we show in the full
paper, KB k. ¢. To see why at an intuitive level, re-
call that the first clause in the definition of cautious
entallment requires us to find a function f such that
KB[r] E ¢[f(7)], for every 7 small enough. For any
7 small enough, we can easily find v and v’ such that
(v,7) Ee=x0and (v/,7) E ¢ & 1. We must there-
fore have (v, f(7)) = (d % 0) V (d = c¢(ec — 1)) and
(v, f(7)) E (d = 0)V(d % c(c —1)). However, we
cannot define f(7)(d ~ 0) and f(7)(d = c¢(c — 1)) so
that both implications hold. Essentially, the problem
is that the two expressions d &~ 0 and d ~ c(c — 1)

5This problem might seem to be an artifact of our par-
ticular semantics for division by zero. However, similar
examples can be constructed for other choices.



appear both negated and unnegated in ¢, inducing in-
teractions between the two tolerances.

These three examples essentially characterize the rea-
sons why we do not get an analogue to Theorem 5.5 for
cautious entailment, even for the restricted language.
To make this precise, we need some definitions.

Definition 5.12: The constant c is said to be bounded
by KB if KB implies d, < ¢ < d,+ for some constants
rand r'. |

Notice that the constant ¢’ is not bounded by the KB
¢ = 0 in Example 5.10.

Definition 5.13: Let ¢ be a formula in £¥. We say
that an expression e € A appears positively (resp., ap-
pears negatively) in ¢ if there is an instance of e which
is in the scope of an even (resp. odd) number of nega-
tions. We say that ¢ is sirictly independent if there
is no expression e that appears both positively and
negatively in ¢. 1

Note that the formula ¢ in Example 5.11 is not strictly
independent. Strict independence might seem, at first
glance, to be a harsh restriction. But this is not the
case. Consider, for example, (¢ & 0) A (¢ % 0). This
formula is not strictly independent, but the almost
identical formula (¢ &~ 0) A (¢ + 0 % 0) is. In general,
it is simple to transform any ¢ to a strictly indepen-
dent formula ¢’, that, apart from interactions between
different tolerances, is equivalent.

Definition 5.14: The pair KB, ¢ is said to be well-
behaved if

e neither KB nor ¢ contain any division operations
or precise equality expressions,

e K B is negation free,
e all the constants in ¢ and KB are bounded by KB,
e o is strictly independent. |

How reasonable is the assumption of
well-behavedness? Since we are mainly interested in
knowledge bases with approximate information, not
allowing precise equality in this context does not seem
unduly restrictive. Not allowing division 1s, of course,
a nontrivial restriction, but still seems to cover many
interesting examples. As we have seen, strict indepen-
dence is a very mild restriction. Although for general
knowledge bases we want negations, in this case we
are reasoning only about quantitative relations among
measured quantities and numerical constants. It seems
reasonable to expect that the information we have in
such a knowledge base would be positive. Finally, al-
though the assumption that all constants that appear
be bounded may seem restrictive, note that the bounds
can be arbitrarily large. In practice, we often do have
some bounds on the size of constants, perhaps not very

precise. For example, if we are talking about heights
of people, we surely have a lower bound of 0 and an
upper bound of 3 meters. It should not hurt to add
such bounds to the knowledge base. We therefore be-
lieve that in practice, knowledge bases will often be
well-behaved (or can easily be made so). As we now
show, well-behavedness is sufficient to guarantee that
we avoid the problems in the examples above, as well
as other difficulties.

Assuming well-behavedness, we can now prove that if
an assertion holds at some minimal point, then it also
holds for any sequence tending to that point.

Proposition 5.15: Let KB, ¢ be well-behaved, and let
n be a tolerance function such that KB[n] is satisfiable.
If KB[n] E ¢[ro], then there exists a function f and
some ¢ > 0 such that for all T such that ||7—n|| < €, we
have KB[t] = ¢[f(7)], and for all sequences ™ such
that lim, oo 7" = 0, we have lim,_.o f(7") = 70.

We can now prove the following analogues to Theo-
rem 5.5 and Corollary 5.6.

Theorem 5.16: If the pair KB, ¢ s well-behaved,
then KB e, ¢ iff KB[n] = ¢[r0] for all n € Q(KB).

Corollary 5.17: If KB, ¢ are well-behaved and K B[]
is consistent, then KB . ¢ iff KB[ro] |E ¢[70].

We can also show that the assumptions of Theo-
rem 5.16 are stronger than those of Theorem 5.5:

Lemma 5.18: If KB s bounded and negation-free
then KB s min-consistent.

We do not have an elegant characterization of bold
entailment in the case where KB is not min-consistent,
nor for cautious entailment in the case where ¢ and KB
are not well-behaved. As our various examples show,
we still get reasonable entailments even when these
conditions are not met.

5.2 Preference semantics

Our characterization theorems emphasize the impor-
tance of minimal tolerance functions. Tolerance func-
tions consistent with a knowledge base KB are pos-
sible combinations of measurement errors that could
have led to the formation of KB. Since we prefer to
believe that the errors made were as small as possible,
we can view the ordering < on tolerance functions as
defining a preference relation on tolerance functions,
in the spirit of [Sho87]. Therefore, for the fragment
of our language for which the characterization theo-
rems (Theorems 5.5 and 5.16) hold, approximate en-
tailment reduces to reasoning in the preferred mod-
els. Using these results, we can now show that for
well-behaved formulas, cautious entailment is closely
related to Shoham’s notion of preferential entailment

[Sho87].



Definition 5.19: For two augmented models M =
(v,7) and M’ = (v/,7'), M < M'" if 7 < 7'. The
augmented model M is a preferred model of KBif M |=
KB and there is no other augmented model M’ such
that M’ < M and M' = KB. KB preferentially entails
o, written KB =« ¢, if for any preferred model M of
KB, M = ¢[m].5 11

Theorem 5.20: For well-behaved KB, ¢ the following
are true:

o An augmented model M = (v,n) of KB is a pre-
ferred model of KB iff n € Q(KB).

o KBk, ¢ iff KBE< .

We can view minimal tolerance functions as frames of
mind, and models v for £ as possible worlds. In the
frame of mind corresponding to the minimal tolerance
function 7, the agent believes ¢ if KB[n] E ¢[r0]. In
the cautious approach, the agent believes only deduc-
tions made in all frames of mind. In the bold approach,
the agent believes deductions made in any frame of
mind. Note, however, that the agent can believe ¢ in
one frame of mind and ¥ in another, while not believ-
ing ¢ Ay in any frame of mind. Therefore, 1t is possible
that KB ey @, KB |y ¢, while KB &y ¢ A 9.

Using the terminology of [KLM90], what this discus-
sion has shown is that bold entailment is not closed
under the And rule. We have also shown that nei-
ther bold nor cautious entailment is closed under the
Reflezivity rule: it is not necessarily the case that
KB Ry KB or that KB . KB. Our characterization
theorems suggest why this should be so: formulas on
the left-hand side of | or |, are evaluated with
respect to minimal tolerance functions; formulas on
the right-hand side are evaluated with respect to 7g.
Therefore, for KB inconsistent with equality, KB will
not entail itself (nor would we want it to). Several ex-
amples have demonstrated that cautious entailment is
nonmonotonic: adding information to the knowledge
base can cause inferences to be lost. Interestingly, bold
entailment is monotonic for a large fragment of the lan-
guage. Both | and |, are closed under most of
the other rules suggested in [KLM90] (under certain
restrictions such as strict independence). We discuss
this 1ssue in more detail in the full paper.

6 Applications
6.1 Error propagation

So far, we have only looked at very simple examples,
with two or three quantities of interest, and very few

6Shoham’s notation for M preferred to M'is M’ < M.
We choose to represent preference as M < M’ in order to
maintain consistency with the notation for tolerance func-
tions. Moreover, this is not quite Shoham’s definition of
preferential entailment. The exact analogue of Shoham’s
definition would have M |= ¢, not M |= ¢[m0].

interactions between them. In real-world situations,
there will be many different quantities, each of which
will be relevant in a variety of computations. This can
cause complex interactions, as shown in the following
simple example.

Example 6.1: Consider a robot operating in a blocks
world, whose primitive actions are: grasp (g), ungrasp
(u), and move arm (m). Suppose that the robot has
estimates on how long these tasks take. Such esti-
mates are clearly useful in the context of planning.
Let ¢y = 2, ¢y, = 1.5, and ¢, ® 5 be the estimates for
the time taken by these three actions, respectively. As-
sume that a particular plan r (raise block) requires one
grasp and one move action, so that the robot estimate
that ¢, & ¢; + ¢, whereas plan ! (lower block), re-
quires one move and one ungrasp, so that ¢; & ¢, +¢y.
The robot can deduce that KB k. ¢, & 7T A ¢; = 6.5.
Now suppose that the robot executes plan r, mea-
sures the time 1t actually takes, and discovers that
it takes 7.5 seconds. The robot would like to use this
measurement as a new approximation for how long
this plan usually takes. It therefore adds ¢, &~ 7.5 to
KB, obtaining KB’. The robot can now conclude that
KB ke ¢y & 2.5 A ¢; & 6.5; this corresponds to the
case that the mistaken estimate was for action ¢, and
therefore the time for plan [ is unaffected. Alterna-
tively, the robot can conclude KB’ | (cy & 2)A(cm =
5.5) A(er & T), corresponding to the case that the mis-
taken estimate was for action m. Yet another alterna-
tive is that KB' | (c; = 2) A (em = 5) A (a1 & 6.5),
corresponding to the case that the cause of the dis-
crepancy was overhead in plan r. Any intermediate
assignment of errors is also possible. Note that each of
these alternatives corresponds to a scenario that “ex-
plains” the discrepancy between the estimated time
for the plan and the actual time for the plan by as-
suming that the estimates were as correct as possible,
and making the minimal change required to account
for the discrepancy. If the robot is not willing to leap
to any of these conclusions, then it could use cautious
entailment, and obtain ranges for the estimated time
for each action and plan. i

We see that the process of considering the different
causes for the discrepancy, and deducing from those
how the times for different plans could be affected, 1s
done automatically by approximate entailment. Es-
sentially, errors are propagated back to their possible
sources, and then forward to their logical conclusions.
This type of reasoning is useful in many other appli-
cations. For example, it arises in complex numerical
computations, where each subroutine can introduce er-
rors (such as rounding errors), which then propagate
in many ways, affecting more than one result.

6.2 Measurement theory

The problems of inexact measurement and numerical
inaccuracies have been extensively investigated in the
field of measurement theory. While there are many



points of commonality between our approach and mea-
surement theory, there are also some significant dif-
ferences. Measurement theory investigates the issue
from an axiomatic standpoint. Their measurement
data typically contains relative observations about the
objects being measured. For example, if we are mea-
suring the heights of people, we may observe that John
is taller than Bill. The general theory attempts to find
axioms guaranteeing that numbers that “satisfy” the
observations in an appropriate sense can be assigned
to the objects. Thus, they start from axioms, rather
than models, as we do.

When dealing with inexact measurement, the prob-
lems encountered typically involve intransitivities.
Consider the following classic example [LR57]:

Example 6.2: Let ¢, denote a standard cup of coffee
that contains n granules of sugar. The agent cannot
differentiate between ¢, and c,y1 by taste; therefore,
its KB will contain ¢, = c,41 for every n. However,
for some m, the agent will be able to tell that ¢,, is
sweeter than ¢y, so KB will contain ¢; < ¢p,. 1

Intuitively, from the point of view of measurement
theory, this problem arises because each measurable
quantity ¢; has a “true value,” and an interval around
it that the agent cannot differentiate from the true
value. Tt is shown [SKLT89] that if the < relation sat-
isfies certain axioms, then we can find an assignment
v and a threshold function § such that taking ¢; = c;
iff v(e;) € [v(ej) — 6(cj), v(cj) + 6(¢;)] is consistent
with all the observations. Such a pair (v, §) is called a
threshold representation.

This shows another key difference between our ap-
proach and measurement theory. Measurement theory
assoclates the “tolerance” § with a quantity such as ¢;,
whereas we associate a tolerance with a measurement
such as ¢; & ¢j, viewing each measurement as hav-
ing its own (independent) uncertainty. However, we
can capture the measurement theory notion of toler-
ance in our approach if we put additional constraints
on our tolerance function 7. In particular, we could
require for each variable ¢;, the tolerances of all com-
parisons involving ¢; are the same; i.e., for all j and k&,
we could require that 7(c; & ¢;) = 7(¢j & ¢;). Thus, a
threshold representation corresponds to an augmented
model with some additional constraints on the toler-
ance function, so axioms that guarantee the existence
of a threshold representation also guarantee the exis-
tence of such an augmented model.

6.3 Probabilistic entailment

Another important type of numerical information is
probabilistic knowledge. An agent may frequently use
probabilities to deal with its uncertainty about the
truth of various sentences. For example, in [Nil86],
Nilsson suggests a framework for probabilistic logic,
which, for the case of propositional logic, is essentially
as follows.

Consider a finite propositional language over the
propositions p1,...,ps. There are K = 2% truth as-
signments, or worlds, for this language; let us denote
them by wq, ..., wg. Given a probability distribution
7w over the K worlds, we define the probability of a
propositional sentence « to be

mla)= > w(w) . (1)

wil=a

The agent’s knowledge base consists of a set of con-
straints on the probabilities of different sentences; for
example, 7((p1 V p3) A 7ps) < 0.4. Using probabilis-
tic entailment, the agent deduces constraints on the
probability of a sentence « from the probabilistic con-
straints in the knowledge base.

In our framework, we define the constant ¢; to be the
probability m(w;). Any constraint on the probability
of sentences can be replaced by a constraint referring
only to the constants ¢;, using Equation (1). Thus, the
problem of probabilistic entailment can be expressed
in £. But what happens if the numbers appearing in
the probabilistic constraints are not known to be pre-
cise? As Nilsson points out, “just as it is possible to
assign inconsistent {rue-false truth values to sentences,
it is also possible to assign them inconsistent probabil-
ities.” He suggests the heuristic, based on a geomet-
ric interpretation, of moving to a “nearby” consistent
probability distribution. This 1s, in fact, the effect of
using approximate equality (instead of true equality)
to represent the constraints, and using our framework
for approximate entailment.

The same framework for assigning probabilities to
propositional sentences is also used in Pearl’s e-
semantics [Pea88]. The goal of e-semantics is to pro-
vide probabilistic semantics for default reasoning—
defaults of the type “birds fly” are interpreted as
meaning “almost all birds fly,” and are given se-
mantics using the conditional probability of the “fly”
given “bird” (where “fly” and “bird” are propositions
in the language). However, the statement w(fly A
bird)/w(bird) = 1 does not accurately represent the
meaning of the sentence “almost all birds fly,” since it
is inconsistent with the existence of non-flying birds.
Pearl’s solution to the problem is essentially equivalent
to representing that sentence as w(flyA bird) /w(bird) =
1 (using the transformation of # into constants ¢; as
described above).”  Using this representation, Pearl
defines a notion of e-entailment, written |=.. As we
now show, our notion of cautious entailment agrees
with e-entailment, except when the knowledge base is
declared inconsistent by the e-semantics approach. In
this case, cautious entailment can tolerate the incon-
sistency and still provide reasonable answers.

"We cannot represent this formula as =(fly A bird) =
w(bird). Assume, for example, that we also knew that most
things are not birds, that is, w(bird) ~ 0. Then, for any
7 such that 7(7(bird) = 0) < r(x(fly A bird) = =(bird)),
the assertion w(flyA bird) = w(bird) would be trivially true.
This is not the case for the original assertion above.



Theorem 6.3: Let A be a set of defaults and v a sen-
tence in the language of e-semantics. Let KB and ¢

be their respective analogues in L=, using the transfor-
mation described above. Then if Q(KB) = {10}, then

AE.aiff KBR. ¢.

Note that this equivalence holds only if the knowledge
base is consistent arbitrarily close to 7q. If this is not
the case, then e-semantics would declare the knowl-
edge base to be inconsistent, allowing arbitrary de-
ductions. Consider, for example, the following variant
(from [Pea88]) of the famous lottery paradoz [Kyb61].

Example 6.4: A large number of people buy tickets
for a lottery that will have a single winner. Let ¢;
represent the probability that person i will win. The
probability that any one person will win is very low.
Therefore, we might choose to represent our knowledge
in e-semantics using the statement ¢; &~ 0. However,
we know that one person will certainly win, leading
to the conclusion ¢ +¢3 + ...+ ey = 1, where N
is the number of people participating in the lottery.
The resulting knowledge base is inconsistent in the e-
semantics framework. However, using our approach,
this inconsistency is avoided, and the knowledge base
can be used for making inferences. I

Both Nilsson and Pearl have suggested specific non-
monotonic variants of their basic logics. Our formal-
ism easily extends to encompass these proposals. Both
proposals use the same basic idea: instead of looking
at all probability distributions over worlds consistent
with the constraints, one should look at one partic-
ular “special” one—the probability distribution satis-
fying the constraints that has mazimum entropy (see
[GMPI0] for more details). This leads to nonmono-
tonic notions of inferences: we leap to the conclu-
sions sanctioned by the distribution of maximum en-
tropy consistent with our information, although they
may not be sanctioned by other distributions consis-
tent with our information. We can easily extend our
framework to deal with nonmonotonic inferences, and
thus capture these nonmonotonic approaches. As be-
fore, let KB,y € L% represent the knowledge base
and desired conclusion in our framework. Recall that
the first condition in the definition of cautious entail-
ment states that, for every 7, KB[r] = ¢[f(7)]. Until
now, we used = to denote the standard notion of en-
tailment. Instead, we can replace = by =g, where
Ewme allows any inferences which hold in the model
v of KB[r] having maximum entropy (where we now
view v as a probability assignment, so that talking
about its entropy makes sense), leaving the remainder
of the definition unchanged. The key point here is that
the choice of inference rule is completely orthogonal to
our treatment of approximate equality. Our approach
can be applied to any notion of inference rule, to con-
vert a logic for reasoning about equality to one for
reasoning about approximate equality.

A final example of the generality of this framework
uses yet another language and inference mechanism.

In [GHK94], we present a technique which deduces de-
grees of belief from a first-order knowledge base aug-
mented with statistical information about the domain.
That is, given such a knowledge base KB and a for-
mula ¢, we define the notion of the degree of belief
in ¢ given KB, denoted Pr (| KB) (see [GHK94] for
details). The statistical information has the form “the
proportion of flyers among birds is 90%;” this type
of information is usually based on some sort of sta-
tistical sampling, and is therefore only approximate.
Moreover, as pointed out in [GHK94], if we were to
interpret the statistical statement above as being pre-
cisely true, we would deduce that the number of birds
is a multiple of 10, an inference which is surely unde-
sirable. Therefore, approximate equality rather than
precise equality is used in [GHK94]. However, there is
no analogue to (cautious or bold) entailment. Rather,
the approach of [GHK94] can be viewed as using an
analogue to validity (for an appropriate nonstandard
notion of |=). Since, as we have seen, very few inter-
esting deductions regarding approximate inference can
be made using validity, not much can be deduced if we
have approximate equality in both ¢ and KB. As an
example of this phenomenon, suppose KB is “10% of
birds are yellow, 20% of birds are green, and no birds
are both yellow and green,” and ¢ is “30% of birds
are yellow or green.” Using the approach of [GHK94],
we cannot deduce Pre(¢|KB) = 1. Moreover, this
approach could not deal with inconsistent numerical
information in KB. By using the approach outlined in
this paper, one could define both a bold and a cau-
tious version of Pr.,, and deal with these issues in a
satisfactory way.

7 Conclusions

We have presented a logic for approximate reasoning,
and defined two notions of approximate entailment
used to make default deductions from an imprecise
knowledge base. One might ask why we should bother
designing a new logic, rather than using say, a variant
of relevance logic [ABT5], fuzzy logic [Zad75], or any
one of a number of nonmonotonic logics. Each of these
logics has some properties that we view as desirable in
our setting. The use of relevance logic would block
the deduction of arbitrary formulas from an inconsis-
tent knowledge base. Fuzzy logic would allow us to
express the notion of approximate equality (although
in a way that is very different from that captured by
our semantics). Nonmonotonic logics allow the type of
nonmonotonic behavior we want in the height knowl-
edge base mentioned above. However, since these log-
ics were not designed specifically to handle approxi-
mate measurement, none of them can capture all the
situations in which we are interested. Threshold rep-
resentations and semantics based on intervals can be
used to directly express approximate quantities. In
fact, Parikh’s [Par83] theory of vague reals is a logical
framework for doing this. However, as we explained in
Section 6.2, approximate quantities differ from approx-



imate measurements. Moreover, Parikh’s framework
requires observations to be given in terms of ranges
rather than exact numbers; this is not always feasible.

Our logic has many interesting and intuitive proper-
ties. We concentrated on demonstrating these proper-
ties for a particular language (the language of arith-
metic), and for the classical notion of entailment.
However, we also showed variants of our logic for prob-
abilistic and even nonmonotonic logics. We view this
logic as providing a general and coherent framework
for dealing with approximate information and the nu-
merical inconsistencies that usually accompany it.
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