Algorithmic Knowledge*

Joseph Y. Halpern Yoram Moses
IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099 Rehovot, ISRAEL

halpern@almaden.ibm.com

Weizmann Institute

yoram@wisdom.weizmann.ac.il

Moshe Y. Vardi'
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

vardi@almaden.ibm.com

Abstract: The standard model of knowledge in multi-agent systems suffers from what has been
called the logical omniscience problem: agents know all tautologies, and know all the logical
consequences of their knowledge. For many types of analysis, this turns out not to be a problem.
Knowledge is viewed as being ascribed by the system designer to the agents; agents are not assumed
to compute their knowledge in any way, nor is it assumed that they can necessarily answer questions
based on their knowledge. Nevertheless, in many applications that we are interested in, agents
need to act on their knowledge. In such applications, an externally ascribed notion of knowledge is
insufficient: clearly an agent can base his actions only on what he explicitly knows. Furthermore,
an agent that has to act on his knowledge has to be able to compute this knowledge; we do need to
take into account the algorithms available to the agent, as well as the “effort” required to compute
knowledge. In this paper, we show how the standard model can be modified in a natural way to
take the computational aspects of knowledge into account.

*This paper appears in Proceedings of the Fifth Conference on Theoretical Aspects of Reasoning About Knowl-
edge, 1994, pp. 255-266.

fCurrent address: Dept. of Computer Science, Rice University, P.O. Box 1892, Houston, TX 77251-1892,
vardi@cs.rice.edu



1 Introduction

Representing knowledge in terms of possible-world semantics has proved quite useful. One im-
portant application has been to analyzing complex multi-agent systems. In [FHMV95], a formal
model of knowledge in multi-agent systems is proposed (which, in turn, is based on earlier models
that appeared in [CM86, HF89, HM90, PR85, RK86]). This model of knowledge satisfies the
axioms of S5. In particular, it suffers from what has been called the logical omniscience problem
[Hin75]: agents know all tautologies, and know all the logical consequences of their knowledge.
This was not viewed as a problem in the context of those papers, since knowledge is viewed as
being ascribed by the system designer to the agents. Agents are not assumed to compute their
knowledge in any way, nor is it assumed that they can necessarily answer questions based on their
knowledge. Despite the fact that no notion of computation is involved, there are many examples
to show that this notion of knowledge is useful when analyzing distributed systems [Hal87, Hal93].

Nevertheless, in many applications that we are interested in, agents need to act on their
knowledge. In such applications, an externally ascribed notion of knowledge is insufficient: clearly
an agent can base his action only on what he explicitly knows. Furthermore, an agent that has to
act on his knowledge has to be able to compute this knowledge; we do need to take into account
the algorithms available to the agent, as well as the “effort” required to compute knowledge.
Computing knowledge demands that the agents have access to appropriate algorithms and to the
computational resources required by these algorithms. In this paper, we show how the formal
model proposed in [FHMV95] can be modified in a natural way to take the computational aspects
of knowledge into account.

In the model of [FHMV95], each of the agents is assumed to be in some local state, which
encapsulates all the information to which the agent has access. To take computation into account,
we now assume that the agent has an algorithm to compute his knowledge, and that this algorithm
is included in his local state. This simple, yet powerful, idea lets us model many situations in a
natural way. For example, as we shall see, it lets us capture the distinction between “knowing
how” and “knowing that”. It also lets us capture the difference, for example, between an expert
and a novice blackjack player: even when both have the same information, they use very different
algorithms to compute their knowledge.

As expected, a model that takes computation into account does not suffer from the logical
omniscience problem. Indeed, the solution we propose here is closely related to a solution proposed
in [FH88| for dealing with the logical omniscience problem, namely, to include an awareness
function. And, just like that solution, it has a syntactic component.

There have been a number of other papers that were concerned with the problem of computing
knowledge. One of the first works in the AT literature relating knowledge and resource-bounded
computation is that of Konolige [Kon86]. Under reasonable assumptions, Konolige’s approach can
be embedded in ours. The treatment of resource-bounded knowledge suggested by Moses [Mos88],
and its extensions by Halpern, Moses and Tuttle [HMT88] to treat aspects of interactive proofs
and zero knowledge proofs [GMR89], can be viewed as precursors of this work. Although our
model is significantly different, it is in the spirit of [Mos88, HMT88]. There have also been
many attempts in the game-theoretical literature to model resource-bounded agents, e.g., [Meg89,

MW86, Ney85, Rub85] (see [Bin90](Chapters 5-6) for a foundational discussion); our formal model



is much different from any proposed in this literature.

2 Knowledge in multi-agent systems

We briefly review the framework of [FHMV95] for modeling multi-agent systems. We assume that
at each point in time, each agent is in some local state. Informally, this local state encodes the
information the agent has observed thus far. In addition, there is also an environment state, that
keeps track of everything relevant to the system not recorded in the agents’ states. The way we
split up the system into agents and environment depends on the system being analyzed.

A global state is a sequence (s, S1,...,8,) consisting of the environment state s. and the local
state s; of each agent 7. A run of the system is a function from time (which, for ease of exposition,
we assume ranges over the natural numbers) to global states. Thus, if r is a run, then r(0),r(1),. ..
is a sequence of global states that, roughly speaking, is a complete description of what happens
over time in one possible execution of the system. We take a system to consist of a set of runs.
Intuitively, these runs describe all the possible sequences of events that could occur in a system.

Given a system R, we refer to a pair (r,m) consisting of a run r € R and a time m as a point.
If r(m) = (Se,81,...,8,), we define r;(m) = s;, for ¢ = 1,...,n; thus, r;(m) is process ¢’s local
state at the point (r,m). We say two points (r,m) and (', m’) are indistinguishable to agent ¢, and
write (r,m) ~; (r',m’), if ri(m) = ri(m’), i.e., if agent ¢ has the same local state at both points.
Finally, we define an interpreted system to be a pair (R, ) consisting of a system R together with
a mapping 7 that associates a truth assignment to the primitive propositions with each point.

An interpreted system can be viewed as a Kripke structure: the points are the possible worlds,
and ~; plays the role of the accessibility relation. We give semantics to knowledge formulas in
interpreted systems just as in Kripke structures: Given a point (r,m) in an interpreted system
T = (R, 7), we have (Z,r,m) = K;p if (Z,7",m') = ¢ for all points (', m’) such that (r',m’) ~;
(r,m). Notice that under this interpretation, an agent knows ¢ if ¢ is true at all the situations the
system could be in, given the agent’s current information (as encoded by his local state). Since
the ~; is an equivalence relation, knowledge in this framework satisfies the S5 axioms. We view
K; as describing implicit knowledge, in contrast to the notion of explicit, algorithmic knowledge
that we introduce in the next section.

The major application area of this framework has been in analyzing distributed protocols.
For a given distributed protocol, it is often relatively straightforward to construct the system
corresponding to the protocol. The local state of each process can typically be characterized by
a number of internal variables (which, for example, describe the messages thus far received and
the values of certain local variables), and there is a transition function that describes how the
system changes from one global state to another. (See [FHMV95] for a detailed discussion of the
modelling process, and for examples of its use.)

3 Algorithmic knowledge

Intuitively, we would like to say that the agent knows a fact ¢ if he can compute that he knows ¢.
As we mentioned in the introduction, we intend to model this by saying that the agent has an



algorithm for deciding if he knows ¢. To make this precise, we need to describe what it means for
an algorithm to decide if agent ¢ knows @, and also what it means for the agent to “have” such
an algorithm.

An agent’s knowledge clearly depends on his local state. Thus, we might expect that an
algorithm to decide if agent ¢ knows ¢ is one that, given as input a local state ¢ and a formula
@, returns either “Yes” or “No”, depending on whether agent ¢ knows . Note that a “No” is
not taken to mean that agent ¢ knows that ¢ is false, but that he does not know that it is true.
Determining the truth of all knowledge formulas at all points of the system may, however, be
beyond an agent’s computational abilities. In fact, one of the purposes of this approach is to come
to grips with this limitation of computational agents. We may be happy with an algorithm that
works in the prescribed manner only for certain formulas ¢, or only on a subset of the points of the
system. To deal with this, we allow an output of “?”, in addition to “Yes” and “No”; a “?” output
means that the agent is unable to compute whether he knows . Thus, we focus on algorithms
that take as input a local state and a formula, and return as answer either “Yes”, “No”, or “77.

What does it mean to say that agent ¢ “has” an algorithm for deciding ¢7 It is certainly not
enough to say that there is some algorithm for ¢ that gives the right answer on input ¢. At a
given point (r,m), either K;p holds or it does not. Consider two trivial algorithms: the first is an
algorithm that always says “Yes”, and the other is the algorithm that always says “No”. Clearly,
one of them gives the right answer about whether K;p holds at (r,m). Nevertheless, despite his
being able to execute both of these algorithms, we would not say that agent : “has” an algorithm
to compute whether he knows ¢ in this case, unless he knows which of the two algorithms to use
when asked about . Part of “having” an algorithm is knowing when to use it.

We deal with this problem by assuming that the algorithm that agent ¢ uses to compute his
knowledge at a point (r,m) is part of his local state at (r,m). Thus, agent ¢ “has” the algorithm
in his local state. We do not mean to imply that the agent necessarily has the same algorithm at
every point in the system. An agent may have a number of possible algorithms at his disposal,
and the one he uses may depend on the information he receives. Alternatively, the information he
receives may allow him to come up with a new algorithm.

Formally, we now model agent ¢’s local state as a pair (A, (), where A is an algorithm, and ¢
is the rest of his local state. We call A the agent’s local algorithm, and we call ¢ the agent’s local
data. An interpreted system in which local states have this form is called an algorithmic system.
When r;(m) = (A, (), we use alg,(r,m) to denote the algorithm A, and data;(r,m) to denote ¢’s
local data £. In local state (A, (), the agent computes whether he knows ¢ by applying the local
algorithm A to input (¢, ).

The separation between an agent’s local algorithm and his local data in algorithmic systems
allows us to distinguish the agent’s operational knowledge (“knowing how”) from his factual knowl-
edge about the world (“knowing that”). The operational knowledge is captured by the agent’s
local algorithm, while the factual knowledge is captured by his local data. Note that it is not
always obvious how to partition a local state into local algorithm and local data (just as it is not
always obvious how to partition a global state into local states). For example, as we discuss later,
a cryptographic key can be viewed either as local data or as part of the decryption procedure, and
therefore as part of the local algorithm. In general, there is more than one way to “cut the cake”;
the appropriate choice is application dependent.



Algorithmic systems can model both our earlier notion of implicit, externally ascribed knowl-
edge, and a notion of explicit knowledge that we call algorithmic knowledge. Implicit knowledge
is denoted, as before, by the modal operator K;, while algorithmic knowledge is denoted by the
modal operator X;, and is defined as follows:

(Z,r,m) E Xip iff A(p,0) = “Yes”, for A = alg,(r,m) and { = data;(r,m).

Thus, agent ¢ has algorithmic knowledge of ¢ at a given point if the agent’s algorithm at that
point outputs “Yes” when presented with ¢ and with the agent’s local data. (Note that both the
outputs “No” and “?” result in lack of algorithmic knowledge.) We say that a local algorithm
claims (that agent 7 knows) a formula ¢ at a given point if it outputs “Yes” when presented with ¢
and ¢’s local data at that point.

Notice that our definition makes clear that computing whether an agent knows ¢ has essentially
nothing to do with computing whether ¢ is valid. The fact that checking validity is PSPACE-
complete in multi-agent S5 [HM92] does not indicate that computing knowledge in any particular
situation will necessarily be hard. On the other hand, as we shall see, there is a connection between
computing knowledge and the model-checking problem, that is, the problem of checking whether
a formula is true at a particular point in the system [HV91].

While the definition of algorithmic knowledge draws a direct connection between an agent’s
explicit knowledge and the need to compute this knowledge, X;p as defined is a notion of belief.
An algorithm could very well claim that agent ¢ knows ¢ (i.e., output “Yes”) whenever it chooses
to, including at points where K;p does not hold. This is not so unreasonable in practice; agents
do make mistakes! The local algorithm of, say, a knowledge base (which we abbreviate as KB
from now on) may very well occasionally give the wrong answer. In such cases, the answer given
by the KB describes a belief, which may perhaps be modified as new information is added to the
knowledge base.

Although algorithms that make mistakes are common, we are often interested in local algo-
rithms that are correct. Formally, a local algorithm A is called sound for agent z in the system Z
if for all points (r,m) of 7 and formulas ¢, if alg,(r,m) = A and data;(r,m) = ¢, then (a)
A(p,0) = “Yes” implies (Z,r,m) = K;p, and (b) A(p,¢) = “No” implies (Z,r,m) = - K;p. It
follows that at a point where agent ¢ uses a sound local algorithm, X;o = K;¢ holds. Thus, if the
local algorithms used by agent ¢ in a given system 7 are sound, then X; satisfies the Knowledge
Axiom: T = X, = . Soundness of local algorithms is clearly a desirable property, since acting
based on knowledge is, in general, better than acting based on beliefs that may turn out to be
wrong.

In a precise sense, when X;¢ holds at a point where agent ¢ uses a sound local algorithm, it
is appropriate to say that ¢ is able to compute that he knows ¢. Soundness is a safety property;
it is a guarantee that wrong answers are not given. Notice that an algorithm does not have to be
very sophisticated in order to be sound. In fact, an algorithm that never outputs “Yes” and never
outputs “No” (i.e., it always outputs “?”) is clearly sound. We are often interested, in addition
to soundness, in a guarantee that the algorithm always yields a definite (“Yes” or “No”) answer.
This motivates the following definition. A local algorithm A is called complete for agent ¢ in the
system T if for all points (r,m) of 7 and all formulas ¢, if alg;(r,m) = A and data;(r,m) = ¢,



then A(p,l) € {“Yes”, “No”}. It follows that at a point where agent ¢ uses a sound and complete
local algorithm, X;¢ < K, holds.

For many applications of interest, completeness is too strong a requirement. In [FHMV95], we
introduce a notion of knowledge-based programs, in which there are explicit tests for knowledge, in
order to help us explicitly capture the connection between knowledge and action. Such programs
can contain statements of the form “if asked ‘does ¢ hold?’ and K;p do say Yes'”. (Knowledge-
based programs are related in spirit to the knowledge-based protocols of [HF89], and to the notion
of agent-oriented programming introduced by Shoham [Sho93].) Such a program contains only
a finite number of knowledge tests. Thus, in order to implement such a program, we need an
algorithm that is complete only with respect to the tests in the program. Moreover, the algorithm
need not be able to compute the outcome of each test at every point; it suffices to be able to
compute the outcome only at the local states where the test is encountered. This leads us to the
following weakening of the completeness requirement. Given a set ¥ of formulas and a set L of
local data for 7 in an algorithmic system 7, a local algorithm A is complete with respect to (¥, L)
if for all points (r,m) in Z such that data;(r,m) € L and all formulas ¢ € U, it is the case that
A(y,data;(r,m)) € {“Yes”, “No”}. Thus, on the formulas and local data of interest, a complete
algorithm always gives a definite answer. (A restricted version of soundness can be defined in an
analogous manner.)

The soundness of an agent’s local algorithm is related to the agent’s rationality. A rational
agent would not want to act based on incorrect information. Similarly, the completeness of agent’s
local algorithm is related to the agent’s expertise. Intuitively, the less often an agent’s local
algorithm gives the answer “?”, the more expert the agent is. Notice that if an agent has a sound
algorithm for computing whether he knows ¢ at a particular local state, then he essentially has
an algorithm for checking if K;p holds at a point where he is in that local state; thus, he can do
a limited form of model checking.

There is a subtlety in using the algorithmic framework to model the limited abilities of resource-
bounded agents that has to do with the notion of time. We often classify computational complexity
by analyzing the time requirement of the computation, e.g., polynomial time. Recall that a run is a
function from time to global states. But what is the relationship between the notion of time when
we speak of polynomial-time algorithms and the notion of time modeled explicitly in multi-agent
systems? Our semantics for algorithmic knowledge suggests that the local algorithms always yield
their result in one round regardless of their time complexity.

The reason for this apparent inconsistency is that we really have two notions of time in mind.
Time in runs serves as a convenient way to partition the system behavior into rounds, where a
round is a basic unit of activity. For example, in multi-agent systems that model communication
in distributed systems, it is often convenient to take a round to be sufficiently long for a process to
send a message to all other processes. Generally, our choice of the granularity of time is motivated
by convenience of modeling, and time should not be thought of as “real time”.

When we speak of time in the context of (polynomial-time) computations, we are not speaking
of “real time” either. Rather, the notion of time in complexity is meant to measure the number
of machine instructions performed by a computational device. In general, the precise relationship
between the two notions of time is also application dependent. In modeling communication in
distributed systems, a machine instruction could be “transmit one bit” and a round could include



up to some polynomial number of such instructions. Thus, when we model an algorithmic system,
the local algorithms have to be such that they can be run in one round. If one wishes to model
algorithms with longer running time, then these algorithms should be split up among successive
states.

As a consequence, our framework is more general than the step-logics considered by Elgot-
Drapkin and Perlis [Elg91, EP90]. They essentially try to model the reasoning of agents over
time; at each time step, the agent can carry out one step of reasoning. This can be viewed as
a special case of our framework: We take the agent’s local state to consist of a set of formulas
(intuitively, those that it has deduced thus far). At each step, this set would be augmented by
whatever new formulas are deduced. If we only allow one inference at each step, only one formula
can be added at each step. The agent’s local algorithm is now quite trivial: The agent explicitly
knows ¢ only if it is one of the formulas that has been deduced thus far.

We close this section with a brief discussion of the properties of algorithmic knowledge, and its
relationship to awareness. First of all, it is easy to see that algorithmic knowledge does not suffer
from logical omniscience. There is no need for an agent to algorithmically know any tautologies,
nor to know the logical consequences of his algorithmic knowledge. Indeed, if we put no constraints
on the algorithms, there are no interesting properties of algorithmic knowledge in and of itself.

There is an important connection, however, between algorithmic knowledge and implicit knowl-
edge. Recall that an agent’s local algorithm is considered part of its local state. Moreover, the
local algorithm operates only on the local data, which is also a component of the agent’s local
state. Thus, the agent’s algorithmic knowledge depends only on its local state. As a result, an
agent (implicitly) knows whether or not he has algorithmic knowledge. Thus, X;¢ = K;X;¢ and
- X;p = K;=X;p are both valid in algorithmic systems.

As we already observed, X;p = ¢ holds at all points agent ¢’s local algorithm is sound, as does
Xip = K,p, and K;po & X, holds at all points where 2’s local algorithm sound and complete.
This means that at points where 2’s local algorithm is sound and complete, the properties of
algorithmic knowledge and implicit knowledge coincide.

The behavior of a local algorithm clearly may depend on the syntax of ¢, just as the notion
of awareness in [FH88]. In fact, as we mentioned in the introduction, algorithmic knowledge is
also closely related to the logic of awareness. In this logic, a new modal operator A; is introduced,
where A;p can be read as “agent 7 is aware of ¢”. At every state, there is some (arbitrary) set of
formulas that the agent is aware of. In the context of algorithmic knowledge, we can say that agent
i is aware of ¢, denoted (Z,r,m) |= A;p, in local state r;(m) = (&,0), if A(¢, () € {“Yes”, “No” }.
If alg;(r,m) is a sound algorithm, then we have that (Z,r,m) = X;o & K;p A Ajp. This is, in
fact, the definition of explicit knowledge given in [FH88].

4 Examples

A framework is useful only if it can capture a wide variety of problems in a natural way. As we
now show by example, algorithmic knowledge can indeed capture many situations of interest in
which agents need to compute their knowledge.

Sophisticated vs. naive players: Consider the card game of blackjack. In this game, players of



different skills vary in both their local data and local algorithms. The local data of a naive player
often comprises just the information about the cards in his hand and the exposed cards on the
table. Such a player would typically also use a rather simple local algorithm to decide whether or
not to draw more cards. The local data of a more sophisticated player may also include information
about cards that were exposed in previous rounds of the game (a practice called “card counting”).
Such a player would typically also have a more sophisticated local algorithm at his disposal. It is
well known that while the odds are against a naive player of blackjack, they favor a sufficiently
sophisticated card counter [Tho61, Tho66]. Thus, a sophisticated player gets an advantage both
from having more detailed local data and from using a more sophisticated local algorithm.

The example above can be extended to dealing with trading activity in financial markets such
as the stock and futures market. Traders vary in both the raw information available to them
(the local data) as well as the way they interpret this information (the local algorithm). Traders
gain advantage by getting more information (perhaps even “inside information”) and by using
more sophisticated algorithms for estimating, for example, what the future value of a stock or
commodity is likely to be.

Konolige’s framework: Consider the reasoning systems discussed by Konolige [Kon86]. There
an agent is assumed to have a base set B of formulas, and a formal system R of inference rules.
Intuitively, the agent knows ¢ if she can deduce @ from her base formulas using her inference rules.
When the base set B is finite and the formal system is decidable, there is an algorithm that can tell
whether ¢ can be deduced from B using R. This case can be captured in our framework by having
the base set of formulas be part of the agent’s local data, while the formal system characterizes her
local algorithm. We remark that we cannot deal with an undecidable system, although Konolige’s
framework would allow it, provided that it is axiomatizable. The reason is that we insisted that
local algorithms be terminating (although they may return “?”). If we had allowed nonterminating
algorithms, then we would have been able to deal with Konolige’s framework in its full generality.

Levesque’s logic of explicit belief: Levesque introduced a notion of explicit belief , captured
by a modal operator B, in [Lev84], with the property that the validity of formulas of the form
Bk = By, for £ and ¢ propositional formulas in conjunctive normal form (CNF) can be decided
in polynomial time. Moreover, he proved that if Bx = By is valid with respect to his semantics
for explicit belief, then k = ¢ is a propositional tautology. As discussed in [FHMV95, HV91],
KBs can be easily modeled in the framework of multi-agent systems. Now suppose that the KB
is told only propositional formulas, so that its local state can be represented by a propositional
formula k describing what it has been told. When asked a query ¢, we would like the KB to
answer “Yes” exactly if kK = ¢ is valid. Unfortunately, this is too much to expect from a KB, since
testing propositional validity is co-NP-complete. Levesque suggested that by using his approach,
we can at least get correct answers, with a comprehensible semantics.

We can recast this in terms of algorithmic knowledge. When asked a query ¢ in state &, for
k and ¢ in CNF, the KB’s local algorithm is to test whether Bk = By is valid under Levesque’s
semantics. If it is, the algorithm outputs “Yes”, otherwise it outputs “?”7. Thus, the KB has
algorithmic knowledge of ¢ if its local state is & iff Bk = By is valid. By Levesque’s results, this
algorithm is sound for propositional formulas in CNF, and runs in polynomial time; however, it is
not complete, even for formulas in CNF.



Cryptography: Another application that fits the framework of algorithmic systems well is
modern-day cryptography. A popular approach in cryptography these days is to use compu-
tational difficulty to guarantee the security of encryption, via public-key cryptography (see, for
example, [RSAT8]). Messages are encrypted by applying a publicized function to the original text
of the message. These functions are chosen in such a way that decrypting an encrypted message
is easy for an agent who possesses a secret key (such as the factorization of a particular large
number), while an agent with no access to such a key would have to use a great deal of computing
power to decrypt the message. Thus, while all of the information about the original content of
the message is encoded in the encrypted message, the content is inaccessible without the secret
key. Suppose that ¢ possesses the secret key, while 57 does not. Agent ¢ then has at his disposal an
efficient decryption algorithm, and hence will explicitly know the content of encrypted messages he
receives. Agent j, not possessing the secret, will not explicitly know the content of such encrypted
messages. On the other hand, j would have implicit knowledge of the content of each message
he receives, although it would probably be of no practical use to him. This example points out
another feature of our framework. Notice that the main source of :’s uncertainty regarding j is not
what j knows: ¢ knows that j knows the encrypted message and does not know the secret. (Actu-
ally, the latter is probably belief rather than knowledge, but that is not the issue here.) Rather,
it 1s uncertainty regarding j’s algorithm. Such uncertainty is precisely the type of uncertainty
we need to model in cryptographic settings, where the question of whether an opponent has an
algorithm allowing him to break a code is crucial.

As we mentioned earlier, in [HMT88] a framework much in the spirit of the one presented here is
used to analyze some aspects of cryptography, namely the work on zero-knowledge protocols. The
framework of [HMT88] includes probability as well as knowledge. It would be straightforward to
add probability to the framework discussed here, along the lines of what is done in [HMT88, HT93].
Once that is done, we can recast the analysis of zero-knowledge protocols done in [HMTS88] in the
framework of algorithmic knowledge.

Algorithmic programs: We mentioned above that knowledge-based programs can be used to
describe the relationship between knowledge and action. Intuitively, knowledge-based programs
prescribe what actions the agents should take as a function of their local state and their knowl-
edge. In knowledge-based programs, however, an agent’s actions depend on the agent’s implicit
knowledge. As a result, knowledge-based programs are not directly “runnable”. We need a way
of computing the agent’s knowledge of the specific facts that appear in the program in order to be
able to execute such a program. The concept of algorithmic knowledge suggests a solution to the
“non-runnability” of knowledge-based programs; we can consider programs that prescribe what
actions the agents should take as a function of their local state and their algorithmic knowledge.
We call such programs algorithmic programs. The formal syntax and semantics of algorithmic
programs will be described in [FHMV95]. In [FHMV95] we also provide conditions on when we
can go from knowledge-based programs—which are often easier for the designer to think about—to
algorithmic programs with tests for explicit knowledge, which are necessary for implementation.

In many applications, algorithmic programs capture our intuition of “action based on knowl-
edge” better than knowledge-based programs. Designers of distributed programs often say things
like: “once A knows B has received the message p, then A will stop sending p to B”. Quite



often, however, these designers are not necessarily referring to implicit knowledge. A program
based on such an intuition will typically involve having B send A an acknowledgement when B
receives p, and having A stop sending p once it receives such an acknowledgement. It may happen
that before receiving this acknowledgement, A already has enough information to infer that B has
received i, e.g., A received a message from a third agent C' that could not have been sent unless B
had already received p. In practice, A would usually not try to detect such knowledge (unless
stopping to send p as early as possible is absolutely essential); rather, it would continue to send g
until the particular test for the acknowledgement succeeds. We may conclude that the reference
to knowledge in the designers’ intuition above does not quite refer to implicit knowledge. Rather,
it can be thought of as assuming that there are particular tests on which the knowledge is based.
Clearly, these tests give rise to local algorithms for the processes to use in testing for knowledge
about the relevant facts of interest. Thus, what the designers often have in mind is an algorithmic
notion of knowledge rather than an information-based one, which is exactly what the notion of
algorithmic programs is intended to capture.

This discussion suggests that reasoning about implicit knowledge will not suffice in the analysis
of many complex algorithms; reasoning in terms of algorithmic knowledge may be necessary as
well. One example where algorithmic knowledge has been found to be useful is in the design and
description of protocols for Byzantine agreement [BGP89]. Although the notion of algorithmic
knowledge was not explicitly used in [BGP89], the reasoning done there can be embedded directly
in our framework.

5 Conclusions

We have presented a conceptually simple, yet quite powerful, framework in which computational
properties of knowledge can be captured. We have shown that this framework enables us to model
in a natural manner many applications where such computational properties are important.

Implicit knowledge has been shown to be an important tool for analyzing multi-agent systems.
One of the advantages of implicit knowledge is that its simple semantics in terms of Kripke
structures makes it easy to analyze. We believe that our simple model for algorithmic knowledge
will be a useful tool for finer analysis of the connection between knowledge and action.

Acknowledgements

The first and second authors would like to thank Mark Tuttle for the insights obtained in their
joint work on [HMT88], which had significant influence on this paper. We would also like to thank
Ron Fagin for his collaboration on the book [FHMV95]; this collaboration nurtured the ideas in
this paper. Finally, we thank Gerhard Lakemeyer for his useful comments on an earlier draft
of the paper. The work of the second author was supported in part by a Helen and Milton A.
Kimmelman Career Development Chair.



References

[BGPSY]

[Bin90]

[CMS6]

[Elg91]

[EP90]

[FHSS]

[FHMV95]

[GMRSY]

[Hal87]

[Hal93]

[HFS89)

[Hin75]

[HM90]

[HM92]

P. Berman, J. Garay, and K. J. Perry. Towards optimal distributed consensus. In

Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 410-415, 1989.

K. Binmore. Essays on the Foundations of Game Theory. Basil Blackwell, Oxford,
U.K., 1990.

K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-52,
1986.

J. J. Elgot-Drapkin. Step-logic and the three-wise-men problem. In Proc. National
Conference on Artificial Intelligence (AAAI “91), pages 412-417, 1991.

J. J. Elgot-Drapkin and D. Perlis. Reasoning situation in time I: basic concepts.

Journal of Fxperimental and Theoretical Artificial Intelligence, 2(1):75-98, 1990.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34:39-76, 1988.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems. In
J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson, editors, Annual Review of
Computer Science, Vol. 2, pages 37-68. Annual Reviews Inc., Palo Alto, Calif., 1987.

J. Y. Halpern. Reasoning about knowledge: a survey circa 1991. In A. Kent and
J. G. Williams, editors, Encyclopedia of Computer Science and Technology, Volume
27 (Supplement 12), pages 275-296. Marcel Dekker, New York, 1993.

J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed sys-
tems. Distributed Computing, 3(4):159-179, 1989. A preliminary version appeared in
Proc. jth ACM Symposium on Principles of Distributed Computing, 1985, with the ti-
tle “A formal model of knowledge, action, and communication in distributed systems:
preliminary report”.

J. Hintikka. Impossible possible worlds vindicated. Journal of Philosophical Logic,
4:475-484, 1975.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed en-
vironment. Journal of the ACM, 37(3):549-587, 1990. A preliminary version appeared

in Proc. 3rd ACM Symposium on Principles of Distributed Computing, 1984.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.



[HMTSS]

[HT93]

[HV91]

[Kon86]

[Lev84]

[Meg89]

[Mos88]

[MWS6]

[Ney85]

[PRS5]

[RKS6]

[RSATS]

[Rub85]

[Sho93]

J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-based analysis of zero
knowledge. In Proc. 20th ACM Symp. on Theory of Computing, pages 132-147, 1988.

J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries. Journal of
the ACM, 40(4):917-962, 1993.

J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: a manifesto. In
J. A. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representa-
tion and Reasoning: Proc. Second International Conference (KR ’91), pages 325-334.
Morgan Kaufmann, San Francisco, Calif., 1991. An expanded version appears in Arti-
ficial Intelligence and Mathematical Theory of Computation (Papers in Honor of John
McCarthy) (ed. V. Lifschitz), Academic Press, 1991, pp. 151-176.

K. Konolige. A Deduction Model of Belief. Morgan Kaufmann, San Francisco, Calif.,
1986.

H. J. Levesque. A logic of implicit and explicit belief. In Proc. National Conference
on Artificial Intelligence (AAAI ’84), pages 198-202, 1984.

N. Megiddo. On computable beliefs of rational machines. Games and Economical

Behavior, 1:144-169, 1989.

Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor, Proc. Second Con-
ference on Theoretical Aspects of Reasoning about Knowledge, pages 261-276. Morgan
Kaufmann, San Francisco, Calif., 1988.

N. Megiddo and A. Wigderson. On play by means of computing machines. In J. Y.
Halpern, editor, Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Con-
ference, pages 259-274. Morgan Kaufmann, San Francisco, Calif., 1986.

A. Neyman. Bounded complexity justifies cooperation in finitely repated prisoner’s
dilemma. Fconomic Letters, pages 227-229, 1985.

R. Parikh and R. Ramanujam. Distributed processing and the logic of knowledge. In
R. Parikh, editor, Proc. Workshop on Logics of Programs, pages 256-268, 1985.

S. J. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable
epistemic properties. In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about
Knowledge: Proc. 1986 Conference, pages 83-97. Morgan Kaufmann, San Francisco,
Calif., 1986.

R. L. Rivest, A. Shamir, and I.. Adelman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

A. Rubinstein. Finite automata play the repeated prisoner’s dilemma. ST/ICERD
Discussion Paper 85/109, London School of Economics, 1985.

Y. Shoham. Agent oriented programming. Artificial Intelligence, 60(1):51-92, 1993.



[Tho61] E. O. Thorp. A favorable strategy for twenty-one. Proc. Natl. Acad. Sei., 47(1):110-
112, 1961.

[Tho66] E. O. Thorp. Beat the dealer. Vintage, New York, 2nd edition, 1966.



