ON AMBIGUITIES IN THE
INTERPRETATION OF GAME TREES

Joseph Y. Halpern*
Cornell University
Computer Science Department
4144 Upson Hall

Ithaca, NY 14853
halpern@cs.cornell.edu

Nov. 18, 1996

Abstract

Piccione and Rubinstein have pointed out ambiguities in the interpretation of
games of imperfect recall. They focus on the notion of time consistency, and argue
that a player in a game of imperfect recall may be time inconsistent, changing his
strategy despite no new information and no change in his preferences. In this paper,
it is argued that the apparent time inconsistency arises from implicit assumptions
made in the definition about what the driver knows when he reconsiders his strategy
and what he will remember if he changes his strategy, and about how the node
at which reconsideration takes place is chosen. A model is proposed, based on
earlier work in the computer science literature, that allows us—indeed, almost
forces us—to make these issues explicit. Once these issues are made explicit, time
inconsistency seems less inconsistent.

*Most of this work was carried out while I was at the IBM Almaden Research Center. I gratefully
acknowledge IBM’s support. This version of the paper is a slightly expanded version of one that will
appear in Games and Economic Behavior; Section 3.5 and the proof of Theorem 4.2 do not appear in
the journal version.

1 Introduction

In an early version of their fascinating paper, Piccione and Rubinstein [1997] (PR from
now on) argue that “the model of extensive games with imperfect recall suffers from
major ambiguities”. They go on to say that “the difficulty in interpreting the model
stems from questions concerning the knowledge described by the information partition
and the restrictions that the information structure imposes on the set of strategies”. To
illustrate this issue, PR focus on time consistency: that is, the question of whether a
player will want to change his strategy in the midst of playing a game. One of their
primary examples is what they call the “absentminded driver paradox”, which they
describe as follows:

Example 1.1: An individual is sitting late at night in a bar planning his midnight trip
home. In order to get home he has to take the highway and get off at the second exit.
Turning at the first exit leads into a disastrous area (payoff 0). Turning at the second
exit yields the highest reward (payoff 4). If he continues beyond the second exit he will
reach the end of the highway and find a hotel where he can spend the night (payoff 1).
The driver is absentminded and is aware of this fact. When reaching an intersection he
cannot tell whether it is the first or the second intersection and he cannot remember how
many he has passed. 1

The situation is described by the game tree in Figure 1. Clearly the only decision

Figure 1: The absentminded driver game.

the driver has to make is whether to get off when he reaches an exit. He cannot plan on
doing different things at each exit, since, by assumption, he does not know which exit he
is at when he reaches an exit. Suppose we start by considering deterministic strategies.
In this case, while sitting at the bar, there is one obviously best option: not to exit. For
in this case, the driver will certainly reach the end of the highway, which has payoff 1.
On the other hand, if the driver decides to get off when he reaches an exit, then he will
do so at the first exit, which has payoff 0.

This is the driver’s reasoning at time 0, while still in the bar. Now consider what
happens when he reaches the first exit. Suppose that the driver remembers the strategy
he chose at the bar. Since this strategy prescribes not exiting, he should, according
to PR, ascribe subjective probability 1/2 to being at the first exit. Subjectively, he is
equally likely to be at either exit. He thus concludes that it is optimal to get off, since
the expected payoff of doing so is 2. This gives us time inconsistency: despite no new
information and no change in his preferences, the driver is tempted to change his initial
plan once he reaches an exit. PR go on to show that a similar time inconsistency arises
even if the driver uses his optimal randomized (behavioral) strategy. (Their argument is
reviewed in Section 3.) This certainly seems paradoxical!

At a high level, I agree completely with PR’s claim that there are ambiguities in
the standard approach to modeling of games of imperfect recall and, in particular, to
modeling the knowledge of agents in such games. Moreover, I agree with their implicit
claim that it is these ambiguities that lead to the apparently counterintuitive nature of
the absentminded driver example. The goal of this paper is to try to make the ambiguities
more explicit, and to propose a modeling methodology that helps us to avoid them.

I argue that in order to analyze this example (and time consistency in general), we
must be very careful to specify (1) exactly what the driver knows and remembers (in
particular, whether he knows his initial strategy and whether he will remember his new
strategy if he switches), and (2) what causes the agent to reconsider. (Does the agent
reconsider at just one node, or at every node in the information set? If it is just one
node, how is that node chosen?)

The critical role of what the driver knows and remembers is perhaps best seen by
considering the game described in Figure 2 (this is PR’s Example 2). It is not hard

Figure 2: Another game with time inconsistency

to show that the strategy that maximizes expected utility chooses action S at node x4,
action B at node x5, and action R at the information set X consisting of 3 and x4. Call

this strategy f. Let f’ be the strategy of choosing action B at x1, action S at xs, and
L at X. PR argue that if node z; is reached, the agent should reconsider, and decide to
switch from f to f'. If the agent is able to remember that he switched strategies, then this
is correct; the agent is indeed better off (under any reasonable notion of “better off”) if
he switches.

The reason for the time inconsistency here is that an agent’s strategy must dictate the
same action at nodes x3 and x4, since they are in the same information set. Intuitively,
since the agent cannot distinguish the nodes, he must do the same thing at both. If
the agent had perfect recall, he could distinguish the nodes. In this case, the optimal
strategy would essentially look like the result of switching from f to f’ at z; without
perfect recall: the agent plays L at x3 (as he would with f’) and R at x4 (as he would
with f). Switching strategies ends up simulating the optimal strategy here because, by
having the ability to switch strategies and remember that he has switched, the agent
is able to simulate perfect recall. Among other things, PR explicitly assume “that the
decision maker is not allowed to employ an external device to assist him in keeping the
information which he would otherwise lose”. However, allowing an agent to know his
strategy may act as just such an external device.

As this example suggests, an information set in a game tree may not adequately
represent the information that the agent actually has. As a consequence, the standard
restriction that a strategy must behave the same way at all nodes in an information set
may be inappropriate. Of course, a strategy must be such that an agent does the same
thing in all situations that he cannot distinguish. The point is that “situations that he
cannot distinguish” and “nodes in the same information set” may be two quite different
notions. Roughly speaking, they coincide if the agent knows his strategy, never changes
it, and has perfect recall. Otherwise, they may differ.

So how can we capture an agent’s information? I propose a solution based on the
multi-agent system framework introduced by Halpern and Fagin [1989]—and discussed
in detail in [Fagin, Halpern, Moses, and Vardi 1995]—and extended by Halpern and
Tuttle [1993] to deal with randomized actions. The idea is to distinguish the “external
world” from an agent’s “internal world”. The game tree is a useful representation of the
external world. Nodes in a game tree can be viewed as describing possible states of the
external world. Information sets then represent an upper bound on what the agent can
know about the external world, even assuming that she has perfect recall. To represent
an agent’s internal world, I assume that the agent, like the external world, is always
in some (local) state. Intuitively, this state describes all the relevant information the
agent has—about the external world, about other agents (if there are other agents in
the game), about her strategy, and so on. For example, as noted in [Fagin, Halpern,
Moses, and Vardi 1995], to capture the fact that an agent knows her strategy, we can
encode the strategy in the agent’s local state. Similarly, to capture the fact that an agent
remembers what actions she has performed thus far, these actions must be encoded in
the agent’s state. By making the agent’s state explicit, there is no doubt about what the
agent knows or does not know at any point.

3

The analogue to a strategy in this framework is a protocol, which is a function from
local states to actions. Protocols are meant to capture the same intuitions as strategies:
what an agent does can depend only on what he knows. But now, an agent’s knowledge
is captured, not by the information set, but by his local state. If the information sets
characterize an agent’s knowledge in a game, then protocols and strategies coincide.
When they do not (as is the case in the two games discussed above), then I would argue
that protocols are the right notion to consider, not strategies.

In the games of imperfect recall described in PR, what the agent’s possible states are
is left ambiguous. In the framework I present here, we are forced to be explicit about this.
If we allow the agent to switch strategies, and the agent’s state includes the last strategy
chosen, the agent’s local state will be different at nodes x3 and x4 in Figure 2. Since the
agent’s protocol is a function of his local state, not his information set, a protocol may
perform different actions at these nodes. The optimal protocol in this game is indeed to
choose to change strategies at node x; (which results in different actions being performed
at x3 and x4), and it is indeed time consistent.

The rest of this paper is organized as follows. In Section 2, some basic definitions
are given (which are mainly standard definitions of game theory). In Section 3, I take a
closer look at the notion of time consistency, and consider four possible definitions of it
and the assumptions underlying them: the original PR notion of time consistency, PR’s
notion of modified multi-self time consistency (and Aumann, Hart, and Perry’s [1997]
equivalent notion of action optimality), and two new notions called gt and ms (multi-
self) consistency. As we shall see, the notions differ in important but subtle ways. In
Section 4, I describe the multi-agent system framework and show how it can be used to
capture information in games. In particular, I show that, given a game, each of the four
notions of consistency gives rise to a particular system that captures in a precise sense
the assumptions underlying the notion. I conclude with some discussion in Section 5.
Proofs of some of the results can be found in the appendix.

2 Basic Definitions

A game T is described by a game tree consisting of a finite collection of nodes partially
ordered by < (where < is a transitive and anti-symmetric relation). As usual, we write
xR yiftz < yorx=y. Intuitively, x < y if there is a path from x to y in the tree.
Game trees are assumed to be rooted; that is, there is a unique node xzy such that for
all nodes y in I', we have g < y. Finally, we assume that < does define a tree, in that
if x < y and 2’ < y, then we must have either x < 2’ or 2’ < x. For a k-player game,
the nodes in a game tree can be partitioned into k + 2 sets denoted C, Dy, ..., Dy,
and Z. Since in this paper I want to focus on single-agent games, I henceforth assume
that £ = 1, and refer to D rather than D;. The set C consists of chance nodes, where
nature moves. The edges coming out of nodes in C' are labeled by the probability of
nature taking that move. For example, in Figure 2, x(is a chance node; nature moves

from x¢ to x; with probability .5. The set D consists of decision nodes where the player
must move. D is further partitioned into information sets. (The information sets are
described by ellipses in the game tree.) For example, in Figure 1, e; and ey are in the
same information set. Intuitively, if two nodes are in the same information set, then
the player cannot distinguish them. Exactly what “cannot distinguish” means is one of
the major issues dealt with in this paper. At each node x in D, the player can choose
among some set of actions, denoted A(x). The edges coming out of x are labeled by
these actions. We assume that the same set of actions can be performed at each node
in a given information set. That is, if # and y are both in information set X, then
A(z) = A(y). For example, since e; and ey are both in information set X, in Figure 1,
we have A(e;) = A(eq) = {B, E'}. Thus, we can write A(X) to denote the actions that
can be taken at an information set X. The set Z consists of the set of terminal nodes in
['; that is, those nodes z for which there does not exist z’ such that z < 2z’. With each
node z € Z is associated a utility u(z); u(z) can be thought of as the payoff for reaching
node z. For example, in Figure 1, u(2;) = 0 and u(zy) = 4.

Roughly speaking, an agent in game I' has perfect recall if he always remembers
what actions he has taken and what he knew previously. Formally, this is captured by
associating with each node z in the game tree the sequence exp(z) (for the ezperience of
the agent at node x) of actions taken by the agent and information sets gone through by
the agent in going from the root to x. For example, in Figure 1, exp(ey) = (X, B, Xe),
while in Figure 2, ezp(x3) = ({x1}, B, {x3,x4}). I omit the formal definition here. A game
of perfect recall is one where, for every information set X, we have exp(x) = exp(x’) for
all nodes z,z’ € X. Thus, the game in Figure 1 is not a game of perfect recall, since
exp(e;) # exp(ez). The game in Figure 2 is not a game of perfect recall either, since
exp(vs) # eap(zs).

We can similarly associate with each node x two other sequences, denoted ezp'(z) and
exp”(x). The sequence exp’(x) consists of the sequence of information sets gone through
by the agent (but not the sequence of actions), while exp”(x) consists of the sequence of
information sets without consecutive repetitions. Thus, for example, in Figure 1, we have
exp'(eg) = (Xe, Xe), while exp”(eq) = (X.), with the second X, omitted. PR say a game
" has perfect recall of information sets if, for every information set X and z,2’ € X, we
have ezp'(z) = exp/(x’). Similarly, I say that ' has partial recall (of information sets)
if, for every information set X and z,2’ € X, we have exp”’(z) = exp”(z').! Note that
the absentminded driver example exhibits partial recall, although not perfect recall of
information sets. The game in Figure 2 does not exhibit partial recall (and, a fortiori,
does not exhibit perfect recall of information sets either).

PR say that a game exhibits absentmindedness if there is an information set X with

!Interestingly, the notion of partial recall of information sets is actually closer in spirit to what is
called perfect recall in the computer science literature [Fagin, Halpern, Moses, and Vardi 1995; Halpern
and Vardi 1986] than the standard definition of perfect recall (in terms of exzp) used in the game theory
literature. Roughly speaking, ezp” (x) is meant to capture the intuition that the agent is not aware of time
passing. Discussion of and more motivation for the computer science definition is given in Footnote 7.

two nodes x, 2’ € X such that < 2’. Clearly a game that exhibits absentmindedness
cannot be a game of perfect recall. The absentminded driver example of Figure 1 is a
game that exhibits absentmindedness.

Intuitively, a behavior strategy specifies the action that an agent takes at each node
x € D. We allow the choice of action to be randomized. Formally, a behavior strategy
b assigns to each node x € D a probability distribution b(x) over the actions in A(z).
For notational convenience, this distribution is often denoted b,. (Of course, if b is
deterministic, b, assigns probability 1 to some action in a € A(x); in this case, I write
b(z) = a.) If nodes x and y are in the same information set X, we assume that b, = b,,
since the agent is not supposed to be able to tell which of these nodes he is at. Thus, we
can write by to denote the distribution on the actions in A(X). We can think of b, as a
random device (e.g., a coin toss) that is activated when node z is reached. For example,
if at node x an agent has two possible actions, L and R, and b,(L) = .6, then at node
x, the agent tosses a coin which lands heads with probability .6, and chooses action L
if the coin lands heads, and action R otherwise. If x and y are distinct nodes such that
by = by, then the coin is tossed independently at x and y; the outcome at x does not
affect the outcome at y. Given a (generalized) behavior strategy b and a node x in the
tree, let py(y|x) denote the probability of reaching node y starting at node z and using
strategy b. Clearly, if there is no path from x to y in I, we must have p,(y|z) = 0. If
there is a path, then py(y|z) is just the probability of choosing the (unique) sequence of
actions that lead from z to y, according to behavior strategy b. Finally, let p,(y) be an
abbreviation for p,(y|r), where r is the root of the tree.

3 A Closer Look at Time Consistency

Roughly speaking, a behavior strategy b is said to be time consistent if, whenever an
agent reaches an information set X in the game tree, then the agent does not consider
some other strategy ' to be better than b, given that he has reached X. As usual,
goodness is evaluated in terms of expected utility. However, the agent’s subjective utility
will depend on his beliefs. In this section, I consider four possible collections of beliefs
that the agent may have, that lead to four notions of time consistency.

3.1 PR time consistency

In considering whether to switch from b to another strategy at information set X, PR
seem to be implicitly assuming that the agent believes the following:

1. some process (external to the game) has picked a unique node x in X where he is
reconsidering; he will not reconsider elsewhere,

2. at z, the agent remembers his initial strategy b,

3. if the agent switches to a new strategy b’ at x, he will remember o’ (and may then
forget b).

The picture here is that the agent (believes that he) follows strategy b up to some point
x € X chosen by some process, and then reconsiders at x. If he decides to continue with
b, he does so for the rest of the game. If he switches to ', then he uses b’ for the rest of
the game, and remembers that he is using it.?

Keeping this picture in mind, let us consider the PR notion of time consistency.
Suppose the agent is reconsidering at node = in information set X, and has been using
strategy b. The agent does not know that he is at z; all he knows is that he is in X.
His subjective belief that he is at x will depend on his belief that x is the node that
the process chose (recall that Assumption 1 says that the process picks a unique node
in X); let up(x|X) denote this subjective probability. Notice that the agent’s subjective
probability may depend on the strategy b, which is why p is subscripted by b, and why
it is necessary for the agent to believe that he has been using b up to node x when
calculating his belief that he is at z. (This follows from Assumptions 1 and 2.) For each
node x in X, it is easy to evaluate the expected utility of a strategy b, starting at z; it
is simply EU(b;x) = 3 ,c, po(z|x)u(z). Given these assumptions, it is easy to compare
the expected utility of sticking with strategy b to that of switching to strategy o', given
our assumption that the agent will remember &' if he does switch to it (so he can play it
even when is in a different information set) and will not make any further changes. This
leads to PR’s definition of time consistency.

Definition 3.1: A behavior strategy b is PR time consistent if for all information sets
X such that py(X) > 0 and all strategies o', we have

Y (| X)EU(byx) > Y pp(a|X)EU (Vs 2).

zeX zeX

The agent’s belief p,(x|X) that he is at x depends on his beliefs regarding how the
node at which he reconsiders is chosen. Although, in principle, the definition makes sense
for any choice of up, I focus here on one particular choice. This choice is generated by
a process that chooses a decision node uniformly at random before the game starts. If
the agent reaches that node, he gets to reconsider there. Clearly, if there are N decision
nodes, the probability that the agent reaches x and gets to reconsider there is py(z)/N.
Thus, if the agent is reconsidering at information set X, then his subjective probability
that he is reconsidering at x is up(2|X) = pp()/ Xorex po(2’).

This is the choice of u, that PR focus on in their paper. As pointed out in PR, we
can think of this distribution as being determined by the following experiment: “Play the
game over and over, using strategy b. As soon as a terminal node is reached, start over

2T do not mean to imply that this is the only story that one can tell characterizing PR’s notion of
time consistency. My claim is only that the technical analogues of the assumptions I have made do in
fact characterize PR’s notion of time consistency, and must follow from any other story that is told.

7

again.” Then p,(x|X) is the expected fraction of times that the agent is at x, given that
he is in X. We can also justify these beliefs in terms of a different process, which picks a
time ¢ in the interval [0, 7’| uniformly at random, where 7" is the length of the longest path
in the game tree, and lets the agent reconsider at time ¢ if he is still playing the game
at that time. It is easy to see that this again gives us up(x|X) = po(z)/ X oex po(').
(This choice of random process is in fact somewhat in the spirit of the discussion in the
appendix of [Aumann, Hart, and Perry 1997].)

The assumption that there is some process external to the original game choosing the
node at which the agent reconsiders introduces a significant new feature to the game. Al-
though the particular process considered here, which chooses among the nodes uniformly
at random, seems innocuous, it is not. To see this, consider the game tree described in
Figure 3. It is easy to see that u;, ascribes a belief of 1/3 to each node in the information

Figure 3: The impact of .

set. Thus, although nature was equally likely to go left as right, at the information set,
the agent believes he is twice as likely to be on the left path as on the right path. If a
node is picked at random, it is more likely to be on the longer path. Further discussion
of the impact of the way the node is chosen can be found in [Grove and Halpern 1997].

The other assumptions that lead to PR time consistency are also quite strong. As
was observed in the introduction, the ability to remember the last strategy chosen clearly
gives extra information in the game of Figure 2. As we shall see in Section 4.4, being able
to remember the last strategy chosen allows the agent to simulate perfect recall, and thus
do better than the optimal strategy of exiting with probability 1/3 in the absentminded
driver game. The assumption that the agent believes he will reconsider only once also
plays a significant role. For example, if the agent believes he may have switched strategies

before, then p,(x|X) is not the appropriate degree of belief for him to assign to being at x,
given that he is in X. In general, the appropriate degree of belief depends on the agent’s
beliefs regarding what strategy (or strategies) he used to get to node z.3 Similarly, if the
agent believes that he might change strategies in the future, he should not use EU(V;x)
in the expression above, but rather should consider all possible changes to b'.

3.2 Modified multi-self time consistency

PR motivate their notion of modified multi-self consistency in terms of the multi-self
view of decision making [Strotz 1956], where an “agent” is viewed as a “team”, or a
collection of “selves”, one associated with each information set. Each “self” makes his
choice independently. In Strotz’s original approach, the selves may also have different
payoff functions; PR consider a variant of this approach where the selves share the same
payoff function (which makes sense if we think of the selves as members of the same
team). Since the agents are independent, a change made by one agent will not be known
to the other agents. This can be modeled equivalently (at least as far as time consistency
is concerned) by removing the last of the three assumptions characterizing PR time
consistency. With this change, all the agent can assume is that he may deviate from his
strategy at the current node, but otherwise will follow it.

Definition 3.2: Let a(x) denote the node that results from taking action a € A(z) at
x. A strategy b is modified multi-self consistent if for every action a € A(X), we have

S w(@ [X)EU®b;) > 3 (] X)EU(b; a(x))

rxeX reX

As shown by PR, optimal strategies are modified multi-self consistent. Thus, an
agent who starts out using an optimal strategy will not switch to another strategy when
reconsidering, given the assumption that the choice of when to reconsider is made by an
external choice that chooses a node for reconsideration uniformly at random. However, it
is easy to see that a modified multi-self consistent strategy is not necessarily optimal. For
example, in the simple game (with perfect recall) described in Figure 4, the strategy of
playing L at every node is modified multi-self consistent, but not optimal. In retrospect,

3In games of perfect recall, it is not hard to show that ps(-|X) is actually independent of b. This
is not necessarily true for games of imperfect recall, and is one of the many complications that arise in
considering such games.

4This definition is in the spirit of that of action optimality given in [Aumann, Hart, and Perry 1997].
PR’s definition of modified multi-self consistency is somewhat different. According to their definition, b is
modified multi-self consistent if for all actions a € A(X) and all actions a’ € A(X) such that bx(a’) > 0,

we have
> (@ X)EU(b;a/ () >) (2| X)EU (b a(x)).
r€X ze€X

A straightforward argument shows that the two definitions are equivalent.

Figure 4: A game where an ms time consistent strategy is not optimal.

this observation is not too surprising. As observed by PR, a modified multi-self consistent
strategy is an equilibrium, in the sense that the team does not gain by any team member
unilaterally defecting from the strategy. As this example shows, there may well be
equilibrium strategies that are not optimal.

3.3 Ms time consistency

In both PR time consistency and modified multi-self consistency, the choice of when to
reconsider is made according to some process external to the game, which picks a node
z in some information set X. Suppose instead we view the reconsideration process as
depending only on the information that the agent has. Put another way, this means that
the process is not picking a node at which the agent reconsiders; rather, it is picking
the information set X at which the agent reconsiders. If the agent reconsiders at one
node in X, then he reconsiders at all of them, since reconsideration depends only on his
information.

This change leads to two further notions of time consistency, called gt (for game
tree) time consistency and ms (for multi-self time consistency), which differ in the same
way that PR and modified multi-self consistency differ, namely, in whether the agent
remembers his new strategy.

In this section, I consider ms time consistency. In this case, the agent believes that

1. some process (external to the game) has picked a unique information set X where
he is reconsidering; he will not reconsider elsewhere,

2. the agent remembers his initial strategy b.

Because the agent reconsiders at every point in X, if he does deviate from his original
strategy b, he ends up following a strategy that may differ from b at X. Since the agent
reconsiders only at X, and does not recall the fact that he has switched strategies, his
new strategy will agree with b off X. Unlike PR and modified multi-self consistency,
with ms time consistency, how the information set X at which the agent can reconsider

10

is chosen is irrelevant, just as long as all information sets (at least, all information sets
X such that py(X) > 0) are chosen with positive probability.

Definition 3.3: The expected utility of b, denoted EU(b), is 3 ,c po(2)u(2). A behavior
strategy b is ms time consistent if for all information sets X and all strategies b’ that
agree with b off X (i.e., such that 0'(X’) = b(X"') for X’ # X)), we have

EU®b) > EU(Y).

It follows immediately from the definition that an optimal strategy is ms time consistent.
The example in Figure 4 shows that the converse may not hold.

How do ms and modified multi-self consistency compare? It is easy to see that in
games without absentmindedness, the two notions agree.

Observation 3.4: IfI" is a game without absentmindedness, then b is modified multi-self
consistent iff b is ms time consistent.

In games with absentmindedness, the two notions may differ. The following technical
characterization of modified multi-self consistency helps to delineate the differences.

Definition 3.5: Given a strategy b, an information set X, and two actions a;, a; € A(X),
we say that b’ is an (ay, as, X)-variant of b if b agrees with ¢’ off X, and bx(a) = V/x(a)
for all actions a ¢ {ay,as}. For a < bx(a;) + bx(az), let b, be the (a1, ay, X)-variant of
b such that b,(a1) = a, and let V,, ,,(a) be the expected utility of b,. I

As mentioned earlier, PR show that an optimal strategy is modified multi-self consis-
tent. Their proof actually shows much more. Indeed, it shows the following.

Proposition 3.6: A strateqy b is modified multi-self consistent iff for each information
set X such that py(X) > 0 and for all ay,ay € A(X), we have (1) if bx(a1) = 0, then
Vi (bx(a1)) <0, (2) if bx(az) =0, then V,, ,,(bx(a1)) >0, and (3) if bx(a1) > 0 and

bx(aq) >0, then V! (bx(al)) =0.

ai,az
Corollary 3.7: If b is ms time consistent then it is modified multi-self consistent.

The converse to Corollary 3.7 does not hold. Consider the modification of the absent-
minded driver example where the payoffs at z;, 29, and z3 are 1, 0, and 2 respectively,
instead of 0, 4, and 1. An easy computation shows that if b, is the strategy of not exiting
(that is, taking action B) with probability «, then EU(b,) = 2a* — o + 1. Clearly, the
optimal strategy is by, never exiting, which gives a payoft of 2. In the notation of Defini-
tion 3.5, EU(ba) is Vp,z(a). Note that Vi (o) = 4a—1. It follows from Proposition 3.6
that each of by, b1/4, and by is modified multi-self consistent. On the other hand, since
there is only one information set in this game, it follows that b; is the only ms time
consistent strategy.

To summarize, we have shown that the set of optimal strategies is a subset of the
ms time consistent strategies, which is a subset of the modified multi-self consistent
strategies. In general, the containment is strict.

11

3.4 Gt time consistency

Gt (game tree) time consistency is like PR time consistency in that the agent is assumed
to remember his new strategy if he switches strategies and like ms time consistency in
that the question of whether the agent reconsiders his strategy depends only on the
agent’s information. There is one more twist to the definition of gt time consistency: the
agent is assumed to switch strategies only once. Intuitively, the motivation for this is
that if the agent switches, then he is switching to his optimal strategy, so there is no need
for him to switch again. This intuition is flawed: As we shall see in Section 4.4, if the
agent can remember that he has switched strategies, then he may be able to do better
by not switching immediately to the optimal strategy. Rather, he may want to use the
switch as a way of encoding information to allow him to simulate perfect recall. Thus,
it is perhaps better to view the restriction that only one switch is allowed as a way to
prevent the use of the strategy as an encoding device.

To summarize, gt time consistency makes sense if we assume that the agent believes
that

1. some process external to the game has picked a unique information set X where he
is reconsidering; he will not reconsider elsewhere, and he will only reconsider once
in X,

2. the agent remembers his initial strategy b up to the time that he reconsiders,

3. after reconsidering, if the agent switches to a new strategy o', then he remembers
b'.

Let the upper frontier of an information set X, denoted X, consist of all those nodes
x € X such that there is no node 2/ € X that precedes x on some path from the
root. For example, in the absentminded driver game, X, = {e1}. It is easy to see that,
given the assumptions of gt time consistency, if the agent switches strategies at all in an
information set X, then he does so at the upper frontier of X: Whatever considerations
would have led the agent to switch strategies at some node x € X would have led him to
switch strategies at the (unique) node 2’ € X such that 2’ < z. (This is precisely where
the assumption that whether the agent switches depends only on his information comes
into play.)

These considerations lead to the following definition.

Definition 3.8: A behavior strategy b is gt (“game tree”) time consistent if for all
information sets X such that p,(X) > 0 and all strategies b’, we have

S (@] X)EU(by2) > S (x| X)EU(V; 2).

xEX mEX

12

Thus, the difference between gt time consistency and PR time consistency is the use of
X rather than X.

How different are PR and gt time consistency? As is shown below, they differ only
in games that exhibit absentmindedness. These are precisely the games where X may
differ from X. For example, in the absentminded driver game of Figure 1, let d be the
deterministic strategy where the driver never exits, and d' the deterministic strategy
where he always exits. It is easy to see that ug(e;) = pa(ez) = 1/2, while ug(er) =1
and pg(ez) = 0. According to the PR definition, the driver who starts by using strategy
d should switch to d’' at information set X,, since the expected utility of switching to
d is 2 (0 x 1/2 4+ 4 x 1/2) while the expected utility of sticking with d is only 1. This
is a correct calculation if the choice regarding the node at which reconsideration takes
place is made by a random process, that chooses according to pg. On the other hand,
if we assume that the decision as to whether to switch is based on the information the
driver has, then whatever decision the driver makes at e,, he knows he would have made
the same decision at e;. Since the expected utility of switching at e; is 0, he should not
switch.

In the case of perfect recall, it is well known that a strategy is optimal iff it is PR
time consistent. In fact, PR prove that this is true in games with perfect recall of
information sets, provided that there is no absentmindedness.” PR time consistency and
gt time consistency coincide in games with no absentmindedness (since X = X for all
information sets X in games with no absentmindedness), so in such games, it is also the
case that a strategy is optimal iff it is gt time consistent. In fact, an even stronger result
holds for gt time consistency.

Theorem 3.9: IfI' is a game of partial recall, then b is optimal iff b is gt time consistent.

Proof: See the appendix. I

Since the absentminded driver game is one of partial recall, it follows from Theo-
rem 3.9 that the only gt time consistent strategy in that game is the optimal strategy
of exiting with probability 1/3. On the other hand, as PR show, the only PR time
consistent strategy in that game is to exit with probability 5/9.

Once we move beyond games of partial recall, the optimal strategy may not be gt
time consistent. Consider the game in Figure 2 (which is not a game of partial recall). In
this game, PR time consistency and gt time consistency coincide, and they do not agree
with optimality. At the node z1, it is clear that the agent should switch from f to f’. He
can do better than his optimal strategy by switching. In fact, even in games of partial
recall, if the agent can switch strategies, he may be able to do better than his optimal
strategy. In particular, the absentminded driver can improve on his optimal strategy if
he is allowed to switch strategies (see Section 4.4). What is going on here?

5Actually, they show it for a condition weaker than perfect recall of information sets, but they do
restrict to games with no absentmindedness.

13

As T observed in the Introduction, an agent who (quite rationally) decides to switch
from f to f' at node 1 ends up playing the optimal strategy for the game where x5 and
x4 are distinguishable: that is, he chooses action B at both x; and z3, L at x5, and R
at x4. This suggests that the ability to switch strategies at x; gives the agent the ability
to pass on information that allows him to distinguish x5 from x,. The information sets
are simply not capturing the agent’s knowledge in this game. This intuition is made
precise in the Section 4.1, where an arguably clearer model of the agent’s information is
presented.

3.5 Other notions of time consistency

I have considered four notions of time consistency here. It is clearly possible to define
others; I briefly mention two.

Battigalli [1995] considers a notion he calls constrained time consistency. Roughly
speaking, while modified multi-self time consistency allows only deviations at a single
node, constrained time consistency also allows deviations at information sets that are
irrelevant, in that they are reached with probability 0. (See [Battigalli 1995] for a formal
definition.) It is also possible to modify ms time consistency in a way analogous to the
way modified multi-self time consistency is modified to get constrained time consistency.
(See an earlier version of this paper [1995] for the formal definition and a comparison of
the resulting notions.) However, it is not clear what the motivation would be for allowing
reconsideration at irrelevant nodes in the context of time consistency (although it may
be appropriate in other contexts).

Another possibility is to drop the assumption that reconsideration takes place only at
one node, or at one information set. This starts to get complicated, since, in general, we
must then model the agent’s beliefs regarding how likely he is never to switch strategies
again, or to switch strategies only once more, and so on. Any particular set of assumptions
regarding these issues can, of course, be modeled.

No matter what notion of time consistency we consider, we must carefully model the
underlying assumptions. In the next section, I present a framework for doing so.

4 Representing Games as Systems

PR and Aumann, Hart, and Perry also discuss the assumptions that underlie their notions
of consistency. Their assumptions seem quite different from the ones here. In particular,
the assumption that the agent believes that he will reconsider only once, which I have
argued plays a key role in PR time consistency and modified multi-agent time consis-
tency, is not mentioned explicitly in either paper. English is notoriously slippery. Given
the ambiguity that we have seen in making sense of time consistency in games with ab-
sentmindedness, it becomes particularly important to express these assumptions within
the model, not outside it.

14

Each of the assumptions considered in the previous section can in fact be captured
by an appropriate expanded game tree. There is no difficulty capturing the assumption
that a random process chooses a node or an information set at which the agent gets to
reconsider. This just amounts to adding an extra move for nature at the beginning of the
game. Capturing the assumption that the agent does or does not remember his strategy
is more subtle. Since an information set consists of a set of nodes in the game tree, at
best, it can model only what an agent knows about the moves that have been made.
Thus, if we want to use an agent’s information set to model information about strategies
that other agents are using (or information about the strategy the agent herself is using),
it is generally necessary to include strategy choices as moves in the game.®

Information sets are awkward in other contexts too (that do not arise in analyzing time
consistency). For example, it is difficult to use information sets to model future moves or,
indeed, anything about the future. (As Rubinstein [1991] observes, it is difficult to model
considerations such as “I know that if I reach the second intersection I will have doubt of
10% that I am at the first intersection”.) Moreover, traditionally, an agent’s information
sets consist only of nodes where the agent is about to move. (This is not a universal
assumption; for example, it is not made by Rasmusen [1989].) Nodes where agent 1
does not move are not part of any information set for agent 1. The traditional notion
of knowledge says that an agent knows a fact if it is true at all nodes in his information
set. This means that we cannot make sense out of statements such as “agent 1 knows
that agent 2 knows that agent 1 has moved left”, let alone “it is common knowledge
that agent 1 has moved left”, because a node that is in some information set for agent
1 is not in any of agent 2’s information sets. Battigalli and Bonnano [1996] propose one
particular approach for making sense of such statements in games of perfect recall, but
this is clearly not a general solution to the problem.

So how can we model such considerations? There is no difficulty doing so using the
standard states-of-the-world approach first used in the economics literature by Aumann
[1976] (which actually is a variant of the standard possible-worlds model for knowledge
in the philosophical literature that goes back to Hintikka [1962]; see [Fagin, Halpern,
Moses, and Vardi 1995] for discussion). In this approach, each state in a state space € is
a complete description of the world, which includes what happened in the past and what
will happen in the future, the agents’ beliefs and knowledge, and so on. The trouble
with this approach is that, while it does a good job of capturing an agent’s knowledge, it
does not do such a good job of describing the play of the game—who moves when, and
what the possible moves are. Moreover, because time is not explicit in this approach, it
becomes difficult to model statements such as “I know now that after I move my opponent

)

will not know ...”.

I describe in the next subsection (a slightly simplified version of) an approach that
goes back to [Halpern and Fagin 1989] and can be viewed as combining features of both

60f course, in a given information set X, an agent does have some minimal information regarding
strategies: She knows that a strategy that did not lead to X is impossible.

15

game trees and the states-of-the-world approach. It has been used quite successfully in
dealing with computer science problems [Fagin, Halpern, Moses, and Vardi 1995]. In
this approach, a game is represented as a multi-agent system. In the description of the
system, the actual play of the game is distinguished from what goes on in the agent’s
mind.

4.1 The framework

To describe the agent’s state of mind, we assume that, at any point in time, the agent is
in some state. Occasionally this is called a local state, to distinguish it from a global state,
which is defined below. The local state is essentially what is called an agent’s type in
the game theory literature. Intuitively, it encapsulates all the information to which the
agent has access. Deciding how to model the state can be quite a nontrivial issue. In a
poker game, a player’s state might consist of the cards he currently holds, the bets made
by the other players, any other cards he has seen, and any information he has about the
strategies of the other players. Alternatively, a forgetful player may not remember all
the details of the bets made by the other players; his state would reflect this.

To describe the external world, we use an environment, which is also in some state
at any point in time. Roughly speaking, the environment’s state describes everything
relevant to the system that is not part of the agents’ states. For example, when describing
a game, we can take the environment’s state to consist of the sequence of actions that
have been taken up to a certain point. If we do this, we can essentially identify the
possible environment states with the nodes in the game tree.

The system as a whole can be described by a global state, a tuple of the form
(le,ly,...,0,), where £, is the environment’s state, and ¢; is agent i’s state, i =1,...,n.
A global state describes the system at any given point in time. We are typically inter-
ested in dynamic systems that change over time. A run is a function from time (which
is taken for simplicity to range over the natural numbers) to global states. Intuitively,
a run is a complete description of how the system’s global state evolves over time. For
example, when analyzing a game, a run could be a particular play of a game. Thus, if
r is a run, r(0) describes the initial global state of the system, (1) describes the next
global state, and so on. A point is a pair (r,m) consisting of a run r and time m. If
r(m) = (be,l,...,0,), let r;(m) = ¢;. Thus, r;(m) is agent i’s local state at the point
(r,m).

Finally, a system is formally defined to be a set of runs. Intuitively, a system is being
identified with its set of possible behaviors. Thus, for example, the game of bridge can be
identified with all the possible games of bridge that can be played (where a run describes
a particular game, by describing the deal of the cards, the bidding, and the play of the
hand).

Notice that information sets are conspicuously absent from this definition. Informa-
tion sets in fact do not have to be specified exogenously; they can be reconstructed from

16

the local states. Given a system, that is, a set R of runs, we can define an equivalence
relation on the points in R. The point (r,m) is indistinguishable from (r',m’) by agent
i, denoted (r,m) ~; (r';m'), if r;(m) = r}(m). Thus, two points are indistinguishable by
agent ¢ if agent ¢ has the same local state at each point. Clearly ~; is an equivalence
relation. The ~; relations can be viewed as defining information sets. However, note
that even a point where agent ¢ does not move is in an information set for agent .

Actions play an important role in generating systems. Typically we think of them as
being generated by a protocol. In [Fagin, Halpern, Moses, and Vardi 1995], there is a
notion of a contert in which the agents are embedded (i.e., the context in which the game
is played), which includes the actions that can be taken. Formally, an action is just a
global state transformer, that is, a function from global states to global states. A protocol
for an agent in this setting is a function from that agent’s local states to a probability
distribution over actions. A protocol is the analogue of a strategy, and captures the
intuition that what an agent does can depend only on his information. At two points
where the agent has the same information, the agent must do the same thing.

Actions do not appear in the formal definition of a system. Nevertheless, they often
do appear (either implicitly or explicitly) in the global state of the system. That is
because we typically think of the runs of the system as being generated by the agents
and the environment performing some actions. For example, in modeling the game of
bridge, we may well put actions such as bidding into the global state. If the agent knows
what action was taken, it would be encoded in his local state. Otherwise, we can encode
it in the environment’s state if the action is considered relevant to the description of the
system. Thus, we can ensure that the actions appear in the global state whenever they
are relevant to the description of the system.”

Given a protocol and a set of initial global states, we can construct a computation
tree for that protocol. The successors of a given global state in the tree are the results of
actions that can be taken according to the protocol. Each transition has a probability,
according to the probability assigned by the protocol to the action corresponding to
that transition. The paths in the tree become the runs of the system, and (given a
distribution on initial states) we can put a distribution on the runs in the system in
the obvious way. Rather than going through all the formal definitions here (they can
be found in [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Tuttle 1993]), I shall

"With this background, I can explain how perfect recall is defined in the computer science litera-
ture [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Vardi 1986]. Borrowing the notation from
Section 2, define exp”(r,m) to be the sequence of local states that the agent has gone through, with
consecutive repetitions omitted. An agent is said to exhibit perfect recall if, whenever (r',m') ~; (r,m),
then exp”(r,m) = exp’(r',m’). Intuitively, this definition of perfect recall says that the agent remem-
bers everything he ever knew. It does not say that he remembers everything he ever did. He may not
remember his actions if his actions were not encoded in his local state to begin with. The reason that
consecutive repetitions are omitted is that if an agent has the same local state at a sequence of consecu-
tive states, this just means that time has passed without the agent being aware of it (or of anything else
that may have happened, including actions that he has performed). Again, this is not counted against
the agent having perfect recall of everything he knew.

17

focus on some examples of applying these ideas to modeling games.

4.2 From game trees to systems

When modeling a game, we must first decide how to model the states of the agent and
the environment. Of course, there are many ways to do this. Here is one approach that
should be useful for many games of interest: Given a game I, it is typically useful to let
the environment state encode (among other things) the current node in the game (or,
equivalently, the sequence of actions taken to reach that node). Thus, I assume that
environment states have the form (z,...), where x € I'. The “...” includes whatever
else might be relevant to the system; we shall see some examples shortly. Similarly,
it is typically useful to let the agent’s state encode (among other things), what nodes
the agent considers possible. Thus, I assume that the agent’s local state has the form
(X,...), where X is a set of nodes in the tree (intuitively, this is the set of nodes that
the agent considers possible) and, again, the “...” incorporates whatever other relevant
information the agent may have (for example, about his protocol, or protocols that other
agents may be using). Although for some applications it may be useful to take X to be
an arbitrary set of nodes, here, for simplicity, I further assume that in a global state of
the form ((x,...),(X,...)), if z € D, then X is the information set containing z.

Just as we associate a set of allowed actions A(z) with each node z in the tree, we
associate a set of allowed actions A(g) with each global state g. Actually, it is convenient
to take A(g) to be a set of allowed probability distributions over actions. By being able to
stipulate that only certain distributions over actions are allowed, we can capture cleanly

nature’s moves, as well as certain constraints on the agents’ moves. Suppose g has the
form ((z,...),£); then A(g) depends on whether z is in D, C, or Z.

e If z € D, we could identify A(g) with all possible distributions on the actions in
A(x). However, as we shall see, it is sometimes useful to allow more constraints
to be imposed, and to allow more general actions. For example, if the agent’s
local state includes his strategy, then we may want A(g) to consist only of the
distribution on A(x) that is determined by the strategy. On the other hand, if the
agent can switch strategies, then we may have distributions over actions that can
both change the node in the tree and change the agent’s strategy. Thus, we assume
that the elements in A((z,...),) are distributions over actions of the form (..., a),
where a € A(z). The “...” in (...,a) allows for a general action that may, for
example, result in the agent changing his strategy, as well as changing the node in
the tree. After performing action (...,a), the global state becomes ((a(z),...),),
for some appropriate local state ¢'. I further assume that A((z,...),¢) depends only
on the agent’s local state ¢, so that A((x,...),¢) = A((«',...),£) if x,2' € D. This
is the analogue of the assumption that the agent’s set of possible actions must be
the same at all nodes in the same information set.

18

o If v € C, then A((z,...),{) consists of a single distribution over the possible tran-
sitions at node x, as defined by the game tree. More precisely, assume that £ is the
outdegree of the node x in the game tree. Associate an action ¢;, j =1,...,k, with
each of the edges leading out from x. Performing action ¢; in ((z,...),£) results
in a global state of the form ((¢j(x),...),¢), where ¢;(x) is the jth successor of x
in the tree, in some fixed ordering of z’s successors. If the transition to ¢;(z) has
probability p;, then A((z,...),¢) consists of the unique distribution over ¢y, ..., ¢
that gives c; probability p;.

o If v € Z, then A((x,...),¢) = 0; no actions are possible at terminal nodes.

A context is a triple (G, Go, A) consisting of a set G of global states as above, a subset
Go of G of initial states, and a function A associating with each global state g € G a set
A(g) of allowed distributions over actions. Given a protocol 7, we say that a run r is
consistent with 7 in context (G, Gy, A) if (a) r(0) € Gy (so that the initial state is a legal
initial state), and (b) r(m) = ((«,...),£), then (i) if x € D, then r(m + 1) = a(r(m)) for
some a such that 7(¢) gives a positive probability, (ii) if z € C, then r(m + 1) = ¢(r(m))
for some action ¢ corresponding to a transition out of z in the tree, (iii) if z € Z, then
r(m +1) = r(m).® The system generated by 7 (in context (G, Gy, A)) consists of all the
runs consistent with 7. Given a distribution on the global states in Gy, we can get a
distribution on the runs in the system generated by 7 in a straightforward way, and thus
compute the expected utility of protocol .

4.3 Modeling time consistency

Given a game [, I now construct four contexts corresponding to the game, one for each
of the four notions of time consistency considered in Section 3. These systems attempt
to capture formally the assumptions underlying the four notions.

The environment state is used to capture when reconsideration takes place. Thus,
I take the environment state to have the form (z,Y)b), where = is a node in the tree,
Y C D, and b is a strategy. Intuitively, x is the current node in the tree, Y is the set of
nodes where reconsideration takes place (if a node in Y is reached in the game), and b is
the agent’s initial strategy. For PR time consistency and modified multi-self consistency,
Y is always a singleton; for ms and gt time consistency, Y is an information set.’

The agent’s local state has the form (X, b,t), where X is a set of nodes in the tree,
b is a strategy, and t is either 0 or 1, depending on whether the agent reconsiders his
strategy at that state. Note that the local state makes the fact that the agent knows his
strategy explicit, by making the strategy part of the local state.

8For consistency with [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Fagin 1989], where runs
are taken to be infinite, I have assumed that once the system reaches a terminal node, it stays there
forever.

90nly in the case of gt time consistency is it necessary to encode the agent’s initial strategy in the
environment state. However, I do it in all cases for uniformity of presentation.

19

The set G of global states consists of all global states of the form ((x,Y, by), (X, 0,1))
where t =0if x ¢ Y or b # by, t = 1 otherwise, and X is the information set containing
x if € D. The choice of X if z ¢ D is unimportant for the current discussion; any fixed
choice will do. For definiteness, I take X = {z} in this case.

Next we must define the allowed actions. This is where PR and gt time consistency
differs from ms and modified multi-self consistency. In the case of PR and gt, the agent
remembers his new strategy if he chooses to switch strategies; this fact must be encoded
in his local state. In the case of ms and modified multi-self consistency, the agent does not
remember the change. Thus, I consider two possible sets of distributions on actions, de-
noted A! and A?, depending on which notion of consistency is being considered. Suppose
g=((z,Y,by),(X,b,t)). If xis in C or Z, then A'(g) = A*(g) is determined as discussed
earlier. If z € D, then A'(g) and A?(g) depend on whether t = 0 or ¢t = 1. If ¢t = 0, then
the agent just performs an action according to strategy b. Thus, A'(g) = A%*(g), and
consists of the unique distribution over the actions in A(z) determined by b. Performing
action a € A(z) in global state ((z,Y,by), (X,b,0)) results in the unique global state in
G of the form ((a(z),Y, by), (X', b,t)). Note that the strategy b in the agent’s local state
remains unchanged. The interesting case is if ¢ = 1; this is when the agent can reconsider
his strategy. There are now two subcases, depending on the notion of time consistency:

e For PR and gt time consistency, the agent can actually switch strategies. If the
agent switches to strategy b, he then performs an action according to the distribu-
tion determined by b’. Thus, for each strategy b', the set A'(g) contains a unique
distribution over actions of the form (¥, a), for a € A(z). The probability of the
action (V',a) is just the probability that &’ assigns to a at x, that is, b (a). Per-
forming action (', a) in global state ((z,Y, by), (X, b,1)) results in the unique global
state in G of the form ((a(x),Y,bo), (X', ',0)). We encode the fact that the agent
remembers his strategy after switching by placing &' in the agent’s local state.

e For modified multi-self time consistency and ms time consistency, the agent does
not switch strategies when reconsidering, but may deviate from the strategy in his
local state when ¢ = 1. Thus, A?(g) consists of all distributions over actions in
A(z).1° The effect of performing an action a € A(z) in global state g is just as was
defined above. In particular, note that the strategy does not change.

Given a strategy b, let G, consist of all the states in G of the form ((x,{y},b), (X, b,1)),
where x is the root of the tree. We can capture the intuition that nature chooses a node
y at which the agent may reconsider at random by putting the uniform distribution on
Gp. Let G; consist of all states in G of the form ((z,Y,), (X, b,t)), where x is the root of
the tree and Y is an information set.

0The definition of modified multi-self consistency allows only the deviation of performing a particular
action, with probability 1. Thus, it may seem that to capture modified multi-self consistency, we should
take A(g) to consist only of distributions that give probability 1 to an action in A(x). However, it is
easy to see that nothing would change if we allowed a deviation by some distribution over actions in the
definition of modified multi-self consistency.

20

Theorem 4.1:

(a) Strategy b is PR time consistent if and only if the protocol that never switches

strategies 1s optimal in context (G, Gy, A'), assuming a uniform distribution on the
initial states in Gy.

(b) Strategy b is modified multi-self consistent if and only if the protocol that never
switches strategies is optimal in context (G, Gy, A%), assuming a uniform distribution
on the initial states in Gy.

(c) The following are equivalent:

(i) Strategy b is ms time consistent.

(11) The protocol that never switches strategies is optimal in context (G,G;, A?),
assuming a uniform distribution on the states in G.

(1ii) The protocol that never switches strategies is optimal in context (G, G, A?) for
every distribution on the initial states that assigns positive probability to every
state in Gj.

(d) The following are equivalent:

(i) Strategy b is gt time consistent.

(11) The protocol that never switches strategies is optimal in context (G,G;, A'),
assuming a uniform distribution on the states in G.

(111) The protocol that never switches strategies is optimal in context (G, G;, A') for
every distribution on the initial states that assigns positive probability to every
state in Gj.

The proof of Theorem 4.1 is completely straightforward. The theorem essentially
translates the definitions of these notions of time consistency into the systems framework.
Several points are worth mentioning though.

e Although the use of the uniform distribution is crucial in parts (a) and (b) of the
theorem, any distribution that assigns positive probability to all the initial states
suffices for parts (c¢) and (d). This result stresses the role of the uniform distribution
in PR and modified multi-self time consistency. As I observed earlier, the use of
the uniform distribution is far from innocuous here.

e The fact that the agent performs the same action whenever he deviates in an
information set X follows from the fact that we are using a protocol and the agent’s
local state is the same at all the global states in X where he deviates.

21

e The assumptions underlying all the notions of time consistency are all of the form
“The agent believes ...”. In the systems constructed here, these beliefs become
knowledge, in the sense that they are true at all the points the agent considers pos-
sible. Thus, these systems can be viewed as encoding the agent’s beliefs. Although
these systems could be embedded in systems where the agent’s beliefs might be
false, nothing in the analysis would change if this were done. It is worth stressing
that, in any case, the use of local states makes the agent’s beliefs explicit.

e There is no difficulty in finding systems corresponding to the notion of constrained
time comnsistency and the other notions alluded to in Section 3.5, and proving a
result analogous to Theorem 4.1 for them.

4.4 The effect of being able to recall strategies

To capture all the notions of time consistency considered here, I assumed that the agent
(believes that he) remembers his initial strategy up to the point that he reconsiders.'!
In addition, one of the assumptions underlying PR time consistency (and gt time con-
sistency) is that the agent remembers his new strategy if he reconsiders and changes.
As the game in Figure 2 illustrates, the latter assumption is very powerful; it can allow
us to simulate perfect recall. As I now show, if we drop the assumption made in PR
and gt time consistency that the agent reconsiders only once, and allow the agent to
reconsider arbitrarily often and remember the most recent strategy used, then we can
come arbitrarily close to simulating perfect recall in any game. Intuitively, the ability to
remember the most recent strategy used gives the agent a significant amount of encoding
power.

One advantage of the framework presented here is that the distinction between strate-
gies and protocols allows us to make precise the intuition that the agent is using a protocol
that makes use of his ability the remember the most recent strategy used. Given a game
[, let Gr consist of all global states of the form (x, (X, b)), where x is a node in the tree,
X is the information set containing z if € D, and {z} otherwise, and b is a strategy.
(The environment state no longer has a set Y where the agent reconsiders, since the agent
can always reconsider; for similar reasons, there is no need to encode the agent’s original
strategy in the environment state, nor is there a need for the bit ¢ in the agent’s local
state.) At a global state (z, (X, b)), the agent can perform any action of the form (¥',a),
where b is a strategy and a is given positive probability according to b,. Performing
action (¥, a) in global state (z, (X, b)) results in the unique global state in Gr of the form
(a(z), (X', 0")). Formally, we take AT (z, (X, b)) = A'((z, {z},b),(X,b,1)), where A! is as
defined in the previous section.

With this setup, consider the absentminded driver example. Let b, be the strategy
where the driver continues (i.e., does not exit) with probability «. Suppose the driver

11 Actually, it would have sufficed to assume that the agent’s beliefs were consistent with his strategy.

22

uses the following protocol: If his local state is (X, b,), a # 1, he performs the action
(b1, B). That is, he switches to the strategy of always playing B and performs action
B (the only one allowed according to this strategy). On the other hand, if his state is
(X, b1), he performs the action (by, £/). That is, he switches to strategy by and performs
action E (again, the only choice). Unless he starts with initial state (X, b1), this protocol
is guaranteed to get him home, with payoft 4, just as if he had perfect recall. Essentially
what is going on here is that, as long as the driver does not start with strategy b;, then
the driver always knows exactly where he is: at node ey, he knows he is at node e; (from
the fact that his current strategy is not b), and at node es, he knows he is at node e,
(from the fact that his current strategy is b;). This is also what is going on in the analysis
of the game in Figure 2.

This situation essentially holds in general. To make this precise, we need a few
definitions. Given a game [, let I'?" be the game that is identical to I' except for the
agent’s information sets. These are given as the coarsest refinement of his information
sets in I' that gives him perfect recall. Of course, if I' is a game where the agent has
perfect recall, then I'?" =T

An information set X in a game I' is nontrivial if there are at least two actions in
A(X). Let g, be the unique global state (x, (X, b)) such that z is the root of T'.

Theorem 4.2:

(a) If T is a game with at least two nontrivial information sets, or if T' has only one
nontrivial information set, but no path in I' has more than two nodes in that in-
formation set, then there is a deterministic protocol * and a strateqy b such that
the expected utility of m* in context (Gr,{gs}, Ar) is equal to that of the optimal
strategy in I'P".

(b) If T' has only one nontrivial information set, then there is a strategy b such that
for all € > 0, there is a protocol w¢ such that the expected utility of ©¢ in context
(Gr,{gv}, Ar) is within € of that of the optimal strategy in ['?".

Proof: See the appendix. I

The proof of Theorem 4.2 just generalizes the arguments given earlier for the ab-
sentminded driver example. The ability to recall the last strategy used gives the agent
encoding power sufficient to simulate perfect recall. This theorem is not terribly interest-
ing insofar as telling us how games should be played. However, it does show the power

of the assumption of being able to switch strategies while still recalling the last strategy
used.!?

12Tn [Halpern 1995], a variant of this result is proved: Roughly speaking, define a level-0 protocol to
be a strategy, and a level-(k+1) protocol to be one which allows changes in level-k protocols. It is shown
that, for a sufficiently large k, there is a level-k protocol that simulates the optimal protocol in I'P".
Under the assumptions of part (a) of Theorem 4.2, we can take k = 1, so the two results coincide in this
case. Under the assumptions of part (b) of Theorem 4.2, we may have k > 1, but the k-level protocol is
deterministic.

23

On the other hand, if we assume that the agent can remember his initial strategy,
is it so unreasonable to assume that he can also remember his later choices? Perhaps
it might be more reasonable to assume that the agent can remember neither his initial
choice nor his later choices. This would truly correspond to absentmindedness. However,
if we do not assume that the agent can recall his initial choice, then none of the notions
of time consistency considered in the literature seem appropriate.

Ambrus-Lakatos [1995] introduced what he called extended strategies—which are es-
sentially protocols where the local state encodes the previous strategy used, and the agent
has actions which allow him to switch strategy—and used them to as a tool to investigate
strategy recall in games of imperfect recall. Notice that the notion of protocol used here
is far more general than his notion of extended strategy, since the local state can do
much more than just encode the previous strategy used. Ambrus-Lakatos independently
proved a theorem similar in spirit to Theorem 4.2.3

5 Discussion

What should we make of the various definitions of time consistency? How reasonable are
they? That depends on how appropriate the underlying assumptions are; this is up to
the modeler to decide. However, the results of the earlier sections shed some light on the
impact of the various choices.

The results of Section 4.3 make it clear that the various notions of time consistency
involve playing a game different from the original game. This “reconsideration” game
involves assuming that the agent remembers the last strategy he chose (in the case of
PR and gt time consistency) and some assumptions about when the agent is able to
reconsider. In the case of PR time consistency and modified multi-self consistency, the
reconsideration game is quite sensitive to the nature of the process that chooses where
reconsideration may occur. Here I have focused on the process that may be characterized
as choosing the node where reconsideration occurs uniformly at random among all the
decision nodes; this process leads to the same subjective beliefs u, as considered by
PR and Aumann, Hart, and Perry. As the game in Figure 2 and the modification of
the absentminded driver game considered in Section 3.3 show, this choice results in
reconsideration games for which the optimal strategy may be different from that of the
original game, and may even result in a higher payoff.!* Only in the case of ms consistency
are the optimal strategies in the reconsideration game the same as the optimal strategies
in the original game.

It should not be surprising that changing the game may result in possibly different

13His theorem is not quite correct as stated, since it only has an analogue to part (a) of Theorem 4.2,
and thus does not apply to games with only one nontrivial information set and a path that includes
more than two nodes from that information set.

14 Grove and I [1997] provide a characterization of a class of random processes for which the optimal
strategies in the reconsideration game and the original game are the same.

24

behavior. Perhaps what makes these observations surprising is that in the case of perfect
recall, all the reconsideration games are in fact equivalent to the original game.

The other moral that should come out of these results is the importance of carefully
modeling what is going on. In principle, (the games corresponding to) all the notions
of time consistency could have been modeled using (rather complicated) game trees.
However, it is not clear that they would have been the best tool. To quote Myerson
[1991], “the general form or structure of the models we use to describe games must
be carefully considered. A model structure that is too simple may force us to ignore
vital aspects of the real games we want to study.” It is all too easy, using game trees,
to draw information sets without thinking about whether they really are appropriate
representations of an agent’s knowledge. Typically, issues such as what an agent knows
about his strategy are not modeled by information sets.

In the systems framework I have described here, an agent’s information is described
explicitly at each point in time by his local state, and his behavior is described by means
of a protocol, a function from local states to actions. The framework forces on the
modeler the discipline of making clear exactly what an agent knows at any time. Thus,
it allows a modeler to make an independent argument as to when a game tree is an
adequate representation of an agent’s knowledge.

That leads to an obvious question: Just when is the standard game tree model ad-
equate? The pat answer is that it is adequate when the information set is an adequate
description of the agent’s information and we do not want to allow actions that can
modify the agent’s state as well as the environment. In general, adequacy depends on
what we are trying to analyze. Clearly the game tree model is perfectly adequate for
many analyses involving games of perfect recall, otherwise it would not have survived so
long. On the other hand, PR’s examples show that when it comes to analyzing time con-
sistency in games of imperfect recall, information sets are inadequate. The difficulty of
using game trees to analyze games of imperfect recall may be one reason that they have
received relatively little attention in the game theory literature. (By way of contrast,
games of imperfect recall are the norm in the computer science literature. Note that
any game played by finite automata that is sufficiently long (in particular, that goes on
for more steps than the automata have local states), will be a game of imperfect recall,
indeed, one that exhibits absentmindedness. Thus, games of imperfect recall arise quite
often in practice.) Even in games of perfect recall, game trees cannot be used easily to
represent information that players have about other players’ strategies. I believe the sys-
tems representation could prove useful here as well, especially when it comes to analyzing
issues of rationality. I hope to return to this issue in future work.

Although it is beyond the scope of this paper to go into extensive discussion about
the systems approach to modeling games, it has some other advantages that are worth
pointing out.

e There is no need to assume that agents move sequentially. An “action” may well
consist of a tuple of actions, one for each of the agents. (Indeed, this is pre-

25

cisely what is assumed in the more general framework presented in [Fagin, Halpern,
Moses, and Vardi 1995].) For example, if we are considering prisoners’ dilemma,
where a prisoner may either cooperate (C) or defect (D), and we view these ac-
tions as happening simultaneously, then the allowed actions could be (C,C), (C, D),
(D,C), or (D, D).

e Using standard semantics of knowledge [Fagin, Halpern, Moses, and Vardi 1995],
there is no difficulty in this model of making sense out of one agent knowing that
another agent knows something, or there being common knowledge, at any point
in the system.

o [have largely ignored the question here of how an agent should assign probabilities
to events in systems. This issue is discussed and formalized in some detail in
[Halpern and Tuttle 1993|, at least for systems that correspond to games with
perfect recall. (The philosophical issues of what is an “appropriate” distribution in
systems corresponding to games of imperfect recall is also briefly discussed.) In any
case, once we associate with each agent a probability distribution that characterizes
his beliefs, there is no difficulty in making sense out of statements such as “I know
now that if I reach the second intersection, I will place probability 1/10 on being
at the first intersection”.

e There is no difficulty capturing the multiself approach in this framework. Each
“self” just becomes another agent.

Of course, given a systems representation of a finite game, it can be viewed as a
collection of game trees. By adding a dummy root node, we get a single game tree back.
Thus, at some level, it can be argued that the standard game tree model can deal with
all the issues I have raised (once we allow an agent’s information sets to form a partition
of all the nodes in a game tree, not just the nodes where the agent moves). As I tried to
suggest earlier, this does not always seem to be the best way of looking at things. There
are times when it seems useful to distinguish the external game from what is going on in
the agent’s head. For such situations, the systems representation can be a useful addition
to a modeler’s arsenal. To back up this argument requires further examples, especially
ones showing that the system approach really helps in the analysis of games. This too is
something I hope to explore further.

A Appendix: Proofs

In this section, I prove the results stated in Sections 3 and 4. The results are restated
here for the reader’s convenience.

To prove Theorem 3.9, the following characterization of gt time consistency is useful.

26

Definition A.1: If Y is a set of nodes in D, then a strategy b’ is identical to b off Y,
written b =y V', if b(x) = V(x) for all x € D — Y. A strategy b is optimal on Y if
EU(b) > EU(Y) for all b such that b~y b'.

Lemma A.2: A strategy b is gt time consistent in I' iff for each information set X such
that py(X) > 0, b is optimal on R(X), where R(X) consists of all the agent’s nodes
reachable from some node in X.

Proof: The proposition follows immediately once we show that, for all information sets
X with py(X) > 0 and for all strategies by and b; that are identical to b off R(X), we
have

EU(by) < EU(by) (1)
iff
Z uo(z| X)EU (b; 7) < Z (x| X)EU (by;). (2)

Given an information set X with p,(X) > 0, let Zx consist of all nodes in Z that are
preceded by some node in X; ie., Zx = {z € Z : x < z for some z € X}. Since by and
by differ only in the probability of reaching terminal nodes in Zx, (1) holds iff

> Pro(2)ulz) < D i (2)ulz). (3)

ZEZX ZEZX

For each node z € Zx, there is a unique node =, € X such that z, < z. Since b; is
identical to b off of R(X), it is immediate that py,(2) = ps,(z]2.)ps(x,), for i« = 0, 1.

Thus, for + = 0,1,
> pe(2)ulz) = 3 po(x) EU(bis). (4)

zEZx zeX

It easily follows from the definitions that (2| X) = py(z)/ps(X), 50 ps(2) = (2] X)ps(X).
The equivalence of (1) and (2) now follows. I

Theorem 3.9: IfT is a game of partial recall, then b is optimal iff b is gt time consistent.

Proof: Let Xi,..., X, be the information sets in I' such that there is no decision node
preceding some node in X;, ¢+ = 1,...,k. Since I' is a game of partial recall, it follows
that the sets R(X;) are pairwise disjoint, and that their union is all of D. It now easily
follows that b is optimal iff b is optimal on each R(X;) such that py(X;) > 0. The result
now follows immediately from Proposition A.2. (Notice that this argument fails if the
sets R(X;) are not disjoint, and hence fails for arbitrary games.) I

Theorem 4.2:

27

(a) If T is a game with at least two nontrivial information sets, or if T' has only one
nontrivial information set, but no path in I' has more than two nodes in that in-
formation set, then there is a deterministic protocol ™ and a strateqy b such that
the expected utility of m* in context (Gr,{gv}, Ar) is equal to that of the optimal
strategy in I'P".

(b) If T' has only one nontrivial information set, then there is a strategy b such that
for all € > 0, there 1s a protocol w¢ such that the expected utility of m¢ in context
(Gr,{gp}, Ar) is within € of that of the optimal strategy in T'?".

Proof: Let b* be the optimal strategy in I'?". Since I'?" has perfect recall, we can assume
without loss of generality that b* is deterministic. For ease of exposition, assume that
there are no chance nodes in I'. This means that each information set in I'?” is a singleton.
Let x1,...,2y be the decision nodes on the path of the unique play of the b*, where z;
is the root of I'?". Suppose b*(z;) = a;, for j=1,..., N.

For part (a), first suppose that there are at least two nontrivial information sets in
I'. Let Yy and Y; be nontrivial information sets. Suppose a’ € A(Y;) and o” € A(Y7). 1
now show how to construct a protocol 7* that simulates b*.

~Let ¥/, j =1,...,N, be a strategy such that (1) if z; is in information set X, then

Vx(a;) =1, (2) if X # Yo, then by, (a’) = j/N and, if X # Y, by, (a”) =1, (3) if X =Yj,
then b}, (a”) = j/N. Intuitively, &’ is used to encode of the fact that the agent is at node
xj11. If the agent is at node x;, then he should use strategy »’*!, since it agrees with b*
at node x;;;. For the purposes of this part of the proof, a strategy is special if it is in
{bl’...’bN}.

Bearing this intuition in mind, the protocol 7* is defined as follows. Since 7* is
deterministic, I take 7*(X,b) to be an action (rather than the probability distribution

that assigns probability 1 to an action). There are three cases to consider in defining
(X, b):

1. If b is not special and X does not contain x; (the root node), then 7*(X,b) = (b, a),
where a is some fixed action in b(X) (it does not matter which one).

2. If b is not special and X contains 1, then 7*(X,b) = (b', ay),
3. If b= 1, then Tix.p) = (b7 ajyq).

This completes the definition of 7*.

Let b be any nonspecial strategy. I leave it to the reader to show that in any run
r such that r(0) = g, the actions performed by 7* at any global state (z, (X, ")) that
arises in r are precisely those performed by b* at the node x. That is, 7* started in g,
simulates b*, and thus has the same expected utility as b*.

Next suppose that there is only one nontrivial information set in I', say Y. If there
is only one node of Y on the path xy,..., 2y, say y, then an agent a can trivially follow

28

b* in I', by performing the unique action possible at each information set other than Y,
and performing the action bv*(y) at Y.

If there are two nodes of Y on the path zq,...,zy, then we can proceed much as
in the discussion of the absentminded driver example in Section 4.4. Suppose that the
nodes of Y on the path are y; and ¥, and y; precedes y,. Let b, 7 =1,2, be the unique
strategy such that b}, assigns probability 1 to b*(y;). (Note that b’ is determined at all
other information sets, since every other information set is trivial.) We now define 7 as
follows

o forall X #Y, 7*(X,b) = (b,a), where a is the unique action possible at x;
o if b # bl, then 7*(Y,b) = (b, 0" (11));
o (Y, 01) = (b, 0%(32)).

Again, it is easy to see that b # by, then in any run r such that r(0) = g, the actions per-
formed by 7* at any global state (z, (X, b)) that arises in r are precisely those performed
by b* at the node z.

If there are more than two nodes of Y on the path zq,...,zy, then we are in case
(b). Let yo,...,yx be the nodes in Y that occur on this path, in that order, and suppose
Y; = Ty, so that b*(y;) = a;;, j = 1,...,k. Let o’ and a” be two of the actions in A(Y).
(Since Y is nontrivial, we know that A(Y') has at least two actions.) Fix N > 2k and
0 € {0,...,k}. Let bV be the unique strategy such that (1) 53" (a;;) = 1 — (j/N), (2)
v (a') = j/N if ' # ai;, and (iii) N (a") =j/Nifa = a;;. Essentially, we want to use
strategy bV if the agent is at y;, and use b1V to encode the fact that the last node in
Y that the agent was in was y; ;. Note that " does not exactly simulate b* at y;, since
according to bV, the action a;; is performed with probability only 1 — (j/N), not with
probability 1, as it is by b*. However, we can make the outcomes as close as we like by
taking N sufficiently large. A strategy is N-special if it is of the form 5", for some j.

Define protocol 7y as follows:
e Forall X # Y, mn(X,b) assigns probability 1 to (b, a), where a is the unique action
possible at X;

bO’N

e If b is not N-special, then 7y (Y,b) assigns probability 1 to (6”7, a;,),

o If b =0"", then my(Y,b) = (VTN a4,).

Choose b such that b is not N-special for any N. Fix €. I leave it to the reader to check
that we can choose N sufficiently large so that 7y approximates b* sufficiently well so as
to make the expected utility of 7y in context (Gr,{gs}, Ar) be within € of that of b*. I

29

Acknowledgments

I would like to thank Robert Aumann, Adam Grove, Sergiu Hart, David Kreps, Bart
Lipman, Ariel Rubinstein, and Moshe Vardi for useful discussion and their comments on
an earlier version of this paper.

References

Ambrus-Lakatos, L. (1995). Decision theory, imperfect recall, and the concept of strat-
egy. mimeo, Princeton University.

Aumann, R. J. (1976). Agreeing to disagree. Annals of Statistics 4(6), 1236-1239.

Aumann, R. J.; S. Hart, and M. Perry (1997). The absent-minded driver. Games and
Economic Behavior. This issue.

Battigalli, P. (1995). Dynamic consistency and imperfect recall. Mimeo, Princeton
University.

Battigalli, P. and G. Bonanno (to appear, 1996). Synchronic information, knowledge
and common knowledge in extensive games. In M. Bacharach, L. A. Gerard-Varet,
P. Mongin, and H. Shin (Eds.), Epistemic Logic and the Theory of Games and
Decisions. Dordrecht, Netherlands: Kluwer.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning about Knowl-
edge. Cambridge, Mass.: MIT Press.

Grove, A. J. and J. Y. Halpern (1997). On the expected value of games with absent-
mindedness. Games and Economic Behavior. This issue.

Halpern, J. Y. (1995). On ambiguities in the interpretation of game trees. Research
Report RJ 9995, IBM.

Halpern, J. Y. and R. Fagin (1989). Modelling knowledge and action in distributed
systems. Distributed Computing 3(4), 159-179. A preliminary version appeared in
Proc. Jth ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.
Journal of the ACM 40(4), 917-962. A preliminary version appears in Proceedings
of the 8th ACM Symposium on Principles of Distributed Computing, 1989, pp. 103—
118.

Halpern, J. Y. and M. Y. Vardi (1986). The complexity of reasoning about knowledge
and time. In Proc. 18th ACM Symp. on Theory of Computing, pp. 304-315.

Hintikka, J. (1962). Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

30

Myerson, R. B. (1991). Game Theory. Cambridge, Mass.: Harvard University Press.

Piccione, M. and A. Rubinstein (1997). On the interpretation of decision problems
with imperfect recall. Games and Economic Behavior. This issue.

Rasmusen, E. (1989). Games and Information: An Introduction to Game Theory.
Oxford, U.K. and Cambridge, Mass.: Basil Blackwell.

Rubinstein, A. (1991). Comments on the interpretation of game theory. Economet-
rica 59, 909-924.

Strotz, R. H. (1956). Myopia and inconsistency in dynamic utility maximization. Re-
view of Economic Studies 23, 165—180.

31

