Cooperative Equilibrium

ABSTRACT

Nash equilibrium (NE) assumes that players always make a
best response. However, this is not always true; sometimes
people cooperate even it is not a best response to do so. For
example, in the Prisoner’s Dilemma, people often cooper-
ate. Are there rules underlying cooperative behavior? In
an effort to answer this question, we propose a new equilib-
rium concept: perfect cooperative equilibrium (PCE). PCE
may help explain players’ behavior in games where cooper-
ation is observed in practice. A player’s payoff in a PCE
is at least as high as in any NE. However, a PCE does not
always exist. We thus consider a-PCE, where « takes into
account the degree of cooperation; a PCE is a 0-PCE. Every
game has a Pareto-optimal maz-perfect cooperative equilib-
rium (M-PCE); that is, an o-PCE for a maximum «. We
show that M-PCE does well at predicting behavior in quite
a few games of interest. We provide further insight into M-
PCE, at least in two-player games, by considering another
generalization of PCE called cooperative equilibrium (CE),
which takes the possibility of punishment into account. We
show that a Pareto-optimal M-PCE must be a CE.
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1. INTRODUCTION

Nash Equilibrium (NE) assumes that players always make
a best response to what other players are doing. However,
this assumption does not always hold. Consider the Pris-
oner’s Dilemma, in which two prisoners can choose either to
defect or cooperate with payoffs as shown in the following
table:
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‘ Cooperate Defect
Cooperate (3,3) (0,5)
Defect (5,0) (1,1)

Although the only best response here is to play Defect
no matter what the other player does, people often do play
(Cooperate, Cooperate). There are a number of other games
in which Nash equilibrium does not predict actual behavior
well.

In the Traveler’s Dilemma [1, 2], two travelers have identi-
cal luggage, for which they both paid the same price. Their
luggage is damaged (in an identical way) by an airline. The
airline offers to recompense them for their luggage. They
may ask for any dollar amount between $2 and $100. There
is only one catch. If they ask for the same amount, then
that is what they will both receive. However, if they ask for
different amounts—say one asks for $m and the other for
$m/, with m < m/—then whoever asks for $m (the lower
amount) will get $(m + 2), while the other traveler will get
$(m — 2). A little calculation shows that the only NE in
the Traveler’s Dilemma is (2,2). (Indeed, (2,2) is the only
strategy that survives iterated deletion of weakly dominated
strategies and is the only rationalizable strategy; see [8] for a
discussion of these solution concepts.) Nevertheless, in prac-
tice, people (even game theorists!) do not play (2,2). Indeed,
when Becker, Carter, and Naeve [3] asked members of the
Game Theory Society to submit strategies for the game, 37
out of 51 people submitted a strategy of 90 or higher. The
strategy that was submitted most often (by 10 people) was
100. The winning strategy (in pairwise matchups against all
submitted strategies) was 97. Only 3 of 51 people submitted
the “recommended” strategy 2. In this case, NE is neither
predictive nor normative; it is neither the behavior that was
submitted most often (it was in fact submitted quite rarely)
nor the strategy that does best (indeed, it did essentially the
worst among all strategies submitted).

Note that in both Prisoner’s Dilemma and Traveler’s Dilemma,

people display what might be called “cooperative” behavior.
This cannot be explained by the best-response assumption
of NE. Are there rules underlying cooperative behavior?

In this paper, we propose a new equilibrium concept, per-
fect cooperative equilibrium (PCE), in an attempt to char-
acterize cooperative behavior. Intuitively, in a two-player
game, a strategy profile (i.e., a strategy for each player) is a
PCE if each player does at least as well as she would if the
other player were best-responding. In Prisoner’s Dilemma,
both (Cooperate, Cooperate) and (Defect, Defect) are PCE.



To see why, suppose that the players are Amy and Bob. Con-
sider the game from Amy’s point of view. She gets a payoff of
3 from (Cooperate, Cooperate). No matter what she does,
Bob’s best response is Defect, that gives Amy a payoff of
either 0 or 1 (depending on whether she cooperates or de-
fects). Thus, her payoff with (Cooperate, Cooperate) is bet-
ter than her payoff with any strategy, if Bob best-responds.
The same is true for Bob. Thus, (Cooperate, Cooperate) is
a PCE. The same argument shows that (Defect, Defect) is
also a PCE.

This game already shows that some PCE are not NE.
In Traveler’s Dilemma, any strategy profile that gives each
player a payoff above 99 is a PCE (see Section 2 for details).
Thus, both (99, 99) and (100, 100) are PCE. Moreover, the
unique NE is not a PCE. Thus, in general, PCE and NE are
quite different. Note that in both examples, PCE explains
the cooperative behaviors which NE does not. We can in
fact show that, if a PCE exists, the payoff for each player
is at least as good as it is in any NE. This makes PCE an
attractive notion, especially for mechanism design.

This leads to some obvious questions. First, why should
or do players play (their part of) a PCE? Second, does a
PCE always exist? Finally, how do players choose among
multiple PCE, when more than one exists?

With regard to the first question, first consider (one of)
the intuitions for NE. The assumption is that players have
played repeatedly, and thus have learned other players’ strate-
gies. They thus best respond to what they have learned. A
NE is a stable point of this process: every players’ strategy
is already a best response to what the other players are do-
ing. This intuition focuses on what players have done in the
past; with PCE, we also consider the future. In a PCE such
as (Cooperate, Cooperate) in Prisoner’s Dilemma, players
realize that if they deviate from the PCE, then the other
player may start to best respond; after a while, they may
well end up in some NE, and thus have a payoff that is guar-
anteed to be no better than (and is often worse than) that of
the PCE. Although cooperation here (and in other games)
gives a solution concept that is arguably more “fragile” than
NE, players may still want to play a PCE because it gives a
better payoff. Of course, we are considering one-shot games,
not repeated games, so there is no future (or past); neverthe-
less, these intuitions may help explain why players actually
play a PCE. (See Section 7 for a comparison of PCE and
NE in repeated games.)

It is easy to see that a PCE does not always exist. Con-
sider the Nash bargaining game [7]. Each of two players
suggests a number of cents between 0 and 100. If their total
demand is no more than a dollar, then they each get what
they asked for; otherwise, they both get nothing. Each pair
(z,y) with x+y = 100 is a NE, so there is clearly no strategy
profile that gives both players a higher payoff than they get
in every NE.

We define a notion of «-PCE, where s is an a-PCE if,
playing s, each player can do at least o better than she
would if the other player were best-responding (note that «
may be negative). Thus, if a strategy is an a-PCE, then it
is an o/-PCE for all o’ < a. A strategy is a PCE iff it is
a 0-PCE. We are most interested in maz-perfect cooperative
equilibrium (M-PCE). A strategy is an M-PCE if it is an
a-PCE, and no strategy is an o'-PCE for some o’ > a.
We show that every game has an M-PCE; in fact, it has a
Pareto-optimal M-PCE (so that there is no other strategy

profile where all players do at least as well and at least one
does better). We show that M-PCE does well at predicting
behavior in quite a few games of interest. For example, in
Prisoner’s Dilemma, (Cooperate, Cooperate) is the unique
M-PCE; and in the Nash bargaining game, (50,50) is the
unique M-PCE. As the latter example suggests, the notion
of an M-PCE embodies a certain sense of fairness. In cases
where there are several PCE, M-PCE gives a way of choosing
among them.

Further insight into M-PCE, at least in two-player games,
is provided by considering another generalization of PCE,
called cooperative equilibrium (CE), which takes punishment
into account. It is well-known that people are willing to
punish non-cooperators, even at a cost to themselves (see,
for example, [6, 11, 9] and the references therein). CE is
defined only for two-player games. Intuitively, a strategy
profile s in a two-player game is a CE if, for each player ¢
and each possible deviation s; for 4, either (1) 7 does at least
as well with s as she would do if the other player j were
best-responding to sj; or (2) all of j’s best responses to s;
result in j being worse off than he is with s, so he “punishes”
i by playing a strategy s} that results in ¢ being worse off.
(Note that by punishing ¢, j may himself be worse off.)

It is almost immediate that every PCE is a CE. More
interestingly, for our purposes, we show that every Pareto-
optimal M-PCE is a CE. Thus, every two-player game has a
CE. While CE does seem to capture reasoning often done by
people, there are games where it does not have much predic-
tive power. For example, in the Nash bargaining game, CE
and NE coincide; all strategy profiles (z, y) where z+y = 100
are CE. CE also has little predictive power in the Ultimatum
game [4], a well-known variant of the Nash bargaining game
where player 1 moves first and proposes a division, which
player 2 can either accept or reject; again, all offers give a
CE. In practice, “unfair” divisions (typically, where player 2
gets less than, say, 30% of the pot, although the notion of
unfairness depends in part of cultural norms) are rejected;
player 2 punishes player 1 although he is worse off.

This type of punishment is not captured by CE, but can
be understood in terms of M-PCE. For example, a strat-
egy in the ultimatum game might be considered acceptable
if it is close to an M-PCE; that is, if an M-PCE is an a-
PCE, then a strategy might be considered acceptable if it
is an o’-PCE, where o — o’ is smaller than some (possibly
culturally-determined) threshold. Punishment is applied if
the opponent’s strategy precludes an acceptable strategy be-
ing played.

To summarize, M-PCE is a solution concept that is well-
founded, has good predictive power, and may help explain
when players are willing to apply punishment in games.

The rest of the paper is organized as follows. In Section 2,
we introduce PCE, prove a number of properties of PCE, and
give some examples. In Sections 3 and 4, we do the same
for M-PCE and CE, respectively. In Section 5 we prove
that, in two-player games, both a PCE and an M-PCE can
be found in polynomial time, using bilinear programming.
(We can also determine in polynomial time whether a PCE
exists.) This is a contrast to Nash equilibrium, which is
PPAD complete even in two-player games [?].

In Section 6, we compare M-PCE to the coco value (cooperative-

competitive value), a notion introduced by Kalai and Kalai
[?] that is also intended to cpature cooperative behavior in
two-player games. Although the definition of the coco value



is very different from that of M-PCE, it turns out that they
are closely related if we consider games with trasnferable
utility, that is, games where players can make side payments
to other players. When defining the coco value, Kalai and
Kalai implicitly assume that side payments are allowed. To
enable us to do the comparison, we provide a technique to
convert an arbitrary game to one that allows side payments
that may be of independent interest, and characterize the
M-PCE value in such games (that is, the payoff obtained in
an M-PCE), both axiomatically and by providing a formula
for the M-PCE value. We also provide a formula for the
coco value, while Kalai and Kalai [?] provide an axiomatic
characterization for it. These characterizations make it clear
how closely related the two notions are.

We discuss further related work in Section 7, and con-
clude in Section ?? with some discussion of the notion of
cooperation in games and some open problems.

2. PERFECT COOPERATIVE EQUILIBRIUM

In this section, we introduce PCE. For ease of exposition,
we focus here on finite normal-form games G = (N, A, u),
where N = {1,...,n} is a finite set of players, A = A; x
... X Ay, A; is a finite set of possible actions for player i,
u = (u1,...,up), and u; is player i’s utility function, that
is, ui(a1,...,an) is player i’s utility or payoff if the action
profile a = (a1,...,an) is played. Players are allowed to
randomize. A strategy of player ¢ is thus a distribution over
actions in Aj;; let S; represent the set of player i’s strategies.
Let Ui(s1,...,sn) denote player i’s expected utility if the
strategy profile s = (s1,...,8,) is played. Given a profile
x = (r1,...,%n), let x_; denote the tuple consisting of all
values z; for j # 4.

Definition 1. Given a game @, a strategy s; for player
i in G is a best response to a strategy s_; for the players
in N — {i} if s; maximizes player ¢’s expected utility given
that the other players are playing s—;, that is, U;(si, s—;) =
sup,scg. Ui(si,s—i). Let BR{(s_;) be the set of best re-
spoanes to s—; in game GG. We omit the superscript G if the
game is clear from context.

We first define PCE for two-player games.

Definition 2. Given a two-player game G, let BUS denote
the best utility that player ¢ can obtain if the other player j
best responds; that is,

BUY = sup Ui(s).
{si€5;,5;€BR% (s;)}

(As usual, we omit the superscript G if it is clear from con-
text.)

Definition 3. A strategy profile s is a perfect cooperative
equilibrium (PCE) in a two-player game G if for all i €
{1, 2}, we have

Ui(s) > BUY.

It is easy to show that every player does at least as well
in a PCE as in a NE.

Theorem 1. If s is a PCE and s* is a NE in a two-player
game G, then for all i € {1,2}, we have U;(s) > Ui(s¥).

PROOF. Suppose that s is a PCE and s* is a NE. Then,
by the definition of NE, s3_; € BR(s}), so by the definition
of PCE, U;(s) > U;(s*). 1

It is immediate from Theorem 1 that a PCE does not al-
ways exist. For example, in the Nash bargaining game, a
PCE would have to give each player a payoff of 100, and
there is no strategy profile that has this property. Neverthe-
less, we continue in this section to investigate the properties
of PCE; in the following two sections, we consider general-
izations of PCE that are guaranteed to exist.

A strategy profile s Pareto dominates strategy profile s’
if U;(s) > U;(s') for all players i, strategy s strongly Pareto
dominates s' if s Pareto dominates s’ and U;(s) > U;(s’)
for some player j; strategy s is Pareto optimal if no strategy
profile strongly Pareto dominates s; s is a dominant strategy
profile if it Pareto dominates all other strategy profiles.

A dominant strategy profile is easily seen to be a NE; it
is also a PCE.

Theorem 2. If s is a dominant strategy profile in a two-
player game G, then s is a PCE.

PROOF. Suppose that s is a dominant strategy profile
in G. Then for all i € {1,2}, all s; € S; and all s5_; €
BR3_;(s;), we have that U;(s) > U;(s"). Thus, U;(s) > BU;
for all 4, so s is a PCE. i

The next result shows that a strategy profile that Pareto
dominates a PCE is also a PCE. Thus, if s is a PCE, and
s’ makes everyone at least as well off, then s’ is also a PCE.
Note that this property does not hold for NE. For example,
in Prisoner’s Dilemma, (Cooperate, Cooperate) is not an
NE, although it strongly Pareto dominates (Defect, Defect),
which is an NE.

Theorem 3. In a two-player game, a strategy profile that
Pareto dominates a PCE must itself be a PCE.

PROOF. Suppose that s is a PCE and s* Pareto dominates
s. Thus, for all ¢ € N, we have

Thus, s* is a PCE. i

Corollary 4. If there is a PCE in a two-player game G,
there is a Pareto-optimal PCE in G (i.e., a PCE that is
Pareto optimal among all strategy profiles).

PrOOF. Given a PCE s, let S™ be the set of strategy
profiles that Pareto dominate s. This is a closed set, and
hence compact. Let f(s) = Ui(s) + Uz(s). Clearly f is a
continuous function, so f takes on its maximum in S*; that
is, there is some strategy s* € S* such that f(s*) > f(s')
for all s’ € S*. Clearly s* must be Pareto optimal, and since
s* Pareto dominates s, it must be a PCE, by Theorem 3. il

We now want to define PCE for n-player games, where
n > 2. The problem is that “best response” is not well
defined. For example, in a 3-player game, it is not clear what
it would mean for players 2 and 3 to make a best response to
a strategy of player 1, since what might be best for player 2
might not be best for player 3. We nevertheless want to keep
the intuition that player 1 considers, for each of her possible
strategies s1, the likely outcome if she plays s1. If there is
only one other player, then it seems reasonable to expect
that that player will play a best response to s1. There are
a number of ways we could define an analogue if there are
more than two players; we choose an approach that both
seems natural and leads to a straightforward generalization



of all our results. Given an n-player game GG and a strategy
s; for player i, let G, be the (n —1)-player game among the
players in N — {¢} that results when player ¢ plays s;. We
assume that the players in N — {4} respond to s; by playing
some NE in Gs,. Let NEG(Si) denote the NE of G,. Again,
we omit the superscript G if it is clear from context. We now
extend the definition of PCE to n-player games for n > 2
by replacing BR(s;) by NE(s;). Note that if |N| = 2, then
NE(s;) = BR(s;), so this gives a generalization of what
we did in the two-player case. As a first step, we extend the
definition of BUY to the multi-player case by using NE (s;)
instead of BR®(s;); that is,

BU¢ = sup Ui(s).
{s€S;,5s_;ENEF (s;)}
(As usual, we omit the superscript G it if it is clear from

context.)

Definition 4. A strategy profile s is a perfect cooperative
equilibrium (PCE) in a game G if for all i € N, we have

Ui(s) > BUY.

With this definition, we get immediate analogues of The-
orems 1, 2, 3, and Corollary 4, with almost identical proofs.
Therefore, we state the results here and omit the proofs.

Theorem 5. If s is a PCE and s* is a NE in a game G,
then for all i € N, we have U;(s) > U;(s™).

Theorem 6. If s is a dominant strategy profile in a game
G, then s is a PCE.

Theorem 7. A strategy profile that Pareto dominates a
PCFE must itself be a PCE.

Corollary 8. If there is a PCE in a game G, there is a
Pareto-optimal PCE in G.

We now give some examples of PCE in games of interest.

Example 1. A coordination game: A coordination game
has payoffs as shown in the following table:

‘ a b

a (klka) (07
b (0,00 (1,1)

It is well known that if k1 and k2 are both positive, then
(a,a) and (b,b) are NE (there is also a NE that uses mixed
strategies). On the other hand, if k1 > 1 and k2 > 1, then
(a,a) is the only PCE; if k1 < 1 and k2 < 1, then (b, b) is the
only PCE; and if k&1 > 1 and k2 < 1, then there are no PCE
(since, by Theorem 1, a PCE would simultaneously have to
give player 1 a payoff of at least k1 and player 2 a payoff of
at least 1).

Example 2. Prisoner’s Dilemma: Note that, in Prisoner’s
Dilemma, BU1 = BU2 = 1, since the best response is al-
ways to defect. Thus, a strategy profile s is a PCE iff
min(U1(s),Uz2(s)) > 1. It is immediate that (Cooperate,
Cooperate) and (Defect, Defect) are PCE, and are the only
PCE in pure strategies, but there are other PCE in mixed
strategies. For example, (%Cooperate+%Defect, Cooperate)
and (%Cooperate—F%Defect, %Cooperate—F%Defect) are PCE
(where aCooperate + (1 —a)Defect denotes the mixed strat-
egy where Cooperate is played with probability a and Defect
is played with probability 1 — «).

Example 3. Traveler’s Dilemma:  To compute the PCE
for Traveler’s Dilemma, we first need to compute BU; and
BUj. By symmetry, BU1 = BU>. We now show that BU;
is between 98% and 99. If player 1 plays %100 + %99 + %98 +
é97, then it is easy to see that player 2’s best responses are
99 and 98 (both give player 2 an expected payoff of 98%);
player 1’s expected payoff if player 2 plays 99 is 98%. Thus,
BU; > 98%. To see that BU; is at most 99, suppose by
way of contradiction that it is greater than 99. Then there
must be strategies s1 = p100100 4 pgg99 + - - - 4+ p22 € 53
and s2 € BRa2(s1) such that Ui(s1,s2) > 99. It cannot be
the case that s2 gives positive probability to 100 (for then s2
would not be a best response). Suppose that s2 gives positive
probability to 99. Then 99 must itself be a best response.
Thus, U2(81, 99) 2 []2(517 98), SO 101]?100 + 99p99 + 96])98 2
100(p1oo + po9) + 98pgs, SO P1o0 > Pog + 2pgs. Since a best
response by player 2 cannot put positive weight on 100, the
highest utility that player 1 can get if player 2 plays a best
response is if player 2 plays 99; then Ui(s1,99) < 97pioo +
99pg9+100p9s+99(1—p100o —po9—pos). Since Ui (s1,99) > 99,
it follows that pgs > pi0o. This gives a contradiction. Thus,
s2 cannot give positive probability to 99. This means that
s1 does not give positive probability to either 100 or 99. But
then Ui(s1,s2) < Ui(s1,98) <99, a contradiction.

Since s is a PCE if U;(s) > BU;(s), for i = 1,2, it fol-
lows that the only PCE in pure strategies are (100, 100) and
(99,99). There are also PCE in mixed strategies, such as
(3100 + 599, £100 + 399) and (100, 3100 + 399).

Example 4. Centipede game: In the Centipede game
[10], players take turns moving, with player 1 moving at
odd-numbered turns and player 2 moving at even-numbered
turns. There is a known upper bound on the number of
turns, say 20. At each turn ¢ < 20, the player whose move it
is can either stop the game or continue. At turn 20, the game
ends if it has not ended before then. If the game ends after
an odd-numbered turn ¢, then the payoffs are (2° + 1, 2“1);
if the game ends after an even-numbered turn ¢, then the
payoffs are (271, 2% 4-1). Thus, if player 1 stops at round
1, player 1 gets 3 and player 2 gets 1; if player 2 stops at
round 4, then player 1 gets 8 and player 2 gets 17; if player
1 stops at round 5, then player 1 gets 33 and player 2 gets
16. If the game stops at round 20, both players get over
500,000. The key point here is that it is always better for
the player who moves at step ¢ to end the game than it is
to go on for one more step and let the other player end the
game. Using this observation, a straightforward backward
induction shows the best response for a player if he is called
upon to move at step t is to end the game. Not surprisingly,
the only Nash equilibrium has player 1 ending the game right
away. But, in practice, people continue the game for quite
a while.

To compute the PCE for the game, we need to first com-
pute BU; and BU.. If player 1 continues to the end of the
game, then player 2’s best response is to also continue to the
end of the game, giving player 1 a payoff of 2'° (and player
2 a payoff of 220 4-1). If we take g; ; to be the strategy where
player ¢ quits at turn j and ¢;,c to be the strategy where
player i continues to the end of the game, then a straight-

forward computation shows that g2,c continues to be a best

3x2'8
3x 21841 " It

and player 2 best responds by play-

response to aqi,19 + (1 — a)qi,c as long as o >

_ _3x2!8
we take a = et T



ing g2,c, then player 1’s utility is 210 4 3%1281?_1. It is then
straightforward to show that this is in fact BU;. A similar
argument shows that, if player 1 is best responding, then

the best player 2 can do is to play SBg2,18 + (1 — 8)q2,c,

where § = 3i§1271jrl With this choice, player 1’s best re-

sponse is ¢1,19. using this strategy for player 2, we get that

BU, =2 + 3%127111

It is easy to see that there is no pure strategy profile s
such that Uy (s) > BU: and Uz(s) > BU2. However, there
are many mixed PCE. For example, every strategy profile
(q1,c,82) ;v;fhere S2 = ﬁlgg,lg + (1 - B)ge,c and B € [1 —
(3x217flx)%3x218+1)7 3§§128+1] is a PCE.

3. o-PERFECT COOPERATIVE EQUILIB-
RIUM

In this section, we consider a more quantitative version of
PCE called a-PCE, which intuitively takes into account the
degree of cooperation exhibited by a strategy profile.

Definition 5. A strategy profile s is an a-PCFE in a game
G if Ui(s) > a+ BUS for alli € N.

Clearly, if s is an a-PCE, then s is an o/-PCE for o’ < a,
and s is a PCE iff s is a 0-PCE. Note that an a-PCE imposes
some “fairness” requirements. Each player must get at least
a more (where « can be negative) than her best possible
outcome if the other players best respond.

We again get analogues of Theorems 1 and 3, and Corol-
lary 4, with similar proofs.

Theorem 9. If s is an a-PCE and s™ is a NE in a game
G, then for all i € N, we have U;(s) > a + U;(s™).

Theorem 10. A strategy profile that Pareto dominates an
a-PCE must itself be an a-PCE.

Corollary 11. If there is an a-PCE in a game G, there is
a Pareto-optimal a-PCE in G.

Of course, we are interested in a-PCE with the maximum
possible value of a.

Definition 6. The strategy profile s is an mazimum-PCE
(M-PCE) in a game G if s is an o-PCE and for all o' > a,
there is no o/-PCE in G.

A priori, an M-PCE may not exist in a game G. For
example, it may be the case that there is an a-PCE for
all @ < 1 without there being a 1-PCE. The next theorem,
which uses the fact that the strategy space is compact, shows
that this cannot be the case.

Theorem 12. Every game G has a Pareto-optimal M-PCE.

PROOF. Let f(s) = minsen(Ui(s) — BUY). Clearly f
is a continuous function; moreover, if f(s) = «, then s is
an a-PCE. Since the domain consists of the set of strategy
profiles, which can be viewed as a closed subset of [0, 1]‘A‘ XN
the domain is compact. Hence f takes on its maximum at
some strategy profile s*. Then it is immediate from the
definition that s* is an M-PCE. The argument that there
is a Pareto-optimal M-PCE is essentially the same as that
given in Corollary 4 showing that there is a Pareto-optimal
PCE; we leave details to the reader. il

The following examples show that M-PCE gives some very
reasonable outcomes.

Example 5. The Nash bargaining game, continued: Clearly
BUy = BU2 = 100; (50,50) is a (—50)-PCE and is the
unique M-PCE.

Example 6. A coordination game, continued: If k1 > 1
and k2 > 1, then (a,a) is the unique M-PCE; if k1 < 1
and k2 < 1, then (b, b) is the unique M-PCE. In both cases,
a=0. If k1 > 1 and k2 < 1, then the M-PCE depends on
the exact values of k1 and ka. If k1 —1 > 1 — ko, then (a,a)
is the unique M-PCE; if k1 —1 = 1— k2, then both (a, a) and
(b,b) are M-PCE; otherwise, (b, b) is the unique M-PCE. In
all three cases, « = —min(k; — 1,1 — k2) < 0.

Example 7. Prisoner’s Dilemma, continued: Clearly
(Cooperate, Cooperate) is a 2-PCE and (Defect, Defect) is
a 0-PCE; (Cooperate, Cooperate) is the unique M-PCE.

Example 8. The Traveler’s Dilemma, continued: (100,100)
is easily seen to be the unique M-PCE; since there is no
strategy profile that guarantees both players greater than
100 (since for any pair of pure strategies, the total payoff
to the players is at most 200, and the total payoff from a
mixed strategy profile is a convex combination of the payoff
of pure strategy profiles).

Example 9. The centipede game, continued: A straight-
forward computation shows that the M-PCE in this game is
unique, and is the strategy profile s* of the form (agi,c +
(1 — a@)gqi,19,¢2,c), where « is chosen so as to maximize
min(Uy(s*) — BU1,Uz(s*) — BU32). This can be done by

3x2'7
(3x21842)(3x21841)(3x2174+1) "

. _ 1 _
taking o = 3X3T553

4. COOPERATIVE EQUILIBRIUM

We can gain further insight into M-PCE (and into what
people actually do in a game) by considering a notion that
we call cooperative equilibrium, which generalizes PCE by
allowing for the possibility of punishment. We define CE for
two-player games. (As we discuss below, it is not clear how
to extend the definition to n-player games for n > 2.)

Definition 7. A strategy profile s is a cooperative equilib-
rium (CE) in a two-player game if, for all ¢ € {1,2} and all
strategies s; € S;, one of the following conditions holds:

(a) for all s5_; € BR3_i(s;), we have U;(s) > U;(s');

(b) for all s5_; € BR3_;(s}), we have Us_;(s") < Us—;(s),
and, for some s3_; € S5_;, we have U;(s) > U;(s').

If we considered only the first condition, then the defi-
nition would be identical to PCE. The second condition is
where punishment comes in. Suppose that there is no re-
sponse that the other player can make to s; that makes the
other player better off than he is with s. Then, intuitively,
the other player becomes unhappy, and will seek to punish
i. If there is some way to punish ¢ that leads to ¢ being no
better off than he is with s, then i will not deviate to s;.

We are not sure how to generalize CE to arbitrary games.
We could, of course, replace BR3_;(s;) by NE_;(s;) in the
first clause. The question is what to do in the second clause.
We could say that if each player in N — {i} is worse off in
every Nash equilibrium in the game G, , they punish player
i. But punishment may require a coordination of strategies,
and it is not clear how the players achieve such coordination,
at least in a one-shot game. Not surprisingly, the examples



in the literature where players punish others are two-player
games like the Ultimatum game. In general, the intuition of
punishment seems most compelling in two-player games.

Our main interest in CE is motivated by the following
result, which shows that every Pareto-optimal M-PCE is a
CE.

Theorem 13. Every Pareto-optimal M-PCE is a CE.

PROOF. Suppose that s is a Pareto-optimal M-PCE. To
see that s is a CE, consider the maximum « such that s is an
a-PCE. If a > 0, then s is a PCE, and hence clearly a CE.
So suppose that a < 0 and, by way of contradiction, that s is
not a CE. Then one of the players, say 1, has a deviation to a
strategy s} such that either (1) player 2 has a best response
s to s such that Uy (s") > Ui(s) and Uz(s’) > Ua(s) or (2)
for all sh € S2, it must be the case that Usz(s’) < Uz(s) and
Ui(s) < Ui(s'); that is, player 2 does worse than Usz(s) no
matter what he does, and cannot punish player 1. In case
(1), it is immediate that s is not a Pareto-optimal M-PCE.
So suppose that case (2) applies.

By definition, U;(s) > a + BU;, for ¢ = 1,2. By com-
pactness, there must be a strategy profile s* such that s7 €
BRi(s5) and Ua(s3) = BUz. We claim that s* is an o'-
PCE for some o’ > a. Since s} € BR1(s5), we must have
Ui(s*) > Ui(sh, s5) > Ui(s). Since Ui(s) > a + BU1, there
must be some o’ > « such that Us(s) > o'+ BU;. By defini-
tion, Uz(s*) = BU3. Thus, s* is an o/-PCE. This completes
the proof. il

We can also prove the following analogues of Theorem 3
and Corollary 4. Since the proofs are quite similar to proofs
of Theorem 3 and Corollary 4, we omit them here.

Theorem 14. A strategy profile that Pareto dominates a
CE must itself be a CFE.

Corollary 15. There is a Paret-optimal CFE in every game.

We now consider how CE works in the examples consid-
ered earlier.

Example 10. The Nash bargaining game: Recall that the
Nash bargaining game does not have a PCE, and that every
profile of the form (a,100 — a) is a NE. We now show that
these profiles are all CE as well. To see this, first observe
that U1 (s) + Uz(s) < 100 for any strategy profile s. (This is
clearly true for pure strategy profiles, and the total expected
utility for a mixed strategy is just a convex combination of
expected utilities from pure strategies.) Now suppose that
player 1 deviates from (a, 100 — a) to some strategy s1, and
that player 2’s expected utility from a best response s, to
s1 is b. If b > 100 — a, then Ui(a,s5) < a, and the first
condition of CE applies. If b < 100 — a, then player 2 will
punish player 1 by playing 100 (i.e., the second condition of
CE applies). The same considerations apply to a deviation
by player 2 from 100 — a. Thus, (a,100 — a) is a CE. Of
course, only one of these CE is an M-PCE: (50, 50).

There are also Nash equilibria in mixed strategies; for
example, (%25 + %75, %25 —+ %75) is a NE. However, it is
not hard to show that there are no nontrivial CE in mixed
strategies. For suppose that s is a CE where either s or sg
are nontrivial mixed strategies. It is easy to see that Uy (s)+
Uz(s) < 100. That means that there is pair (a, 100 — a) such
that @ > Ui (s) and 100 — a > Uz(s). So if player 1 deviates
to a and player 2 deviates to 100 — a, neither of the two
conditions that characterize CE hold.

Example 11. A coordination game, continued: If k1 > 1
and k2 > 1, then (a,a) is the only CE; if k1 < 1 and k2 < 1,
then (b,b) is the only CE; if k1 > 1 and k2 < 1, then the
two NE, (a, a) and (b,b), are both CE (although neither is a
PCE). There is one other NE s in mixed strategies; s is not
a CE. To see this, note that in s both players have to put
positive probability on each pure strategy. It easily follows
that Uz(s) = U2(s1,b) < 1 (since s1 puts positive probability
on a); similarly, Uy (s) < 1. Hence, if player 1 plays b instead
of s1, player 2 has a unique best response of b, which strictly
increases both players’ payoffs. Thus, s is not a CE.

Example 12. Prisoner’s Dilemma, continued: Clearly all
the PCE in Prisoner’s Dilemma are CE. We now prove that
there are no other CE. Suppose, by way of contradiction,
that s is a CE that is not a PCE. Then some player must
get a payoff with s that is strictly less than 1. Without
loss of generality, we can suppose that this player is player
1. Suppose that Ui(s) = r1 < 1. But then if player 1
plays Defect, he is guaranteed a better payoff—at least 1—
no matter what player 2 does, so s cannot be a CE.

Example 13. The Traveler’s Dilemma, continued: Of course,
all the PCE in Traveler’s Dilemma are also CE. There are
other CE as well. For example, (100,99) is a CE but not a
PCE. To see this, note that with (100,99), player 1 gets a
payoff of 97 and player 2 gets 101, the maximum possible
payoff. Suppose that there exists some strategy s that gives
player 1 a payoff strictly greater than 97 when player 2 best
responds. This strictly decreases player 2’s payoff. However,
player 2 can punish player 1 by playing 2, so that player 1
gets at most 2, strictly less than what he gets originally.
It easily follows that (100, 99) is a CE. A similar argument
shows that all other Pareto-optimal strategy profiles are also
CE.

Recall that (100, 100) is the unique M-PCE of this game.
Intuitively, M-PCE has fairness requirements that CE does
not have.

Example 14. The centipede game, continued: Again, all
the PCE are CE. In addition, all Pareto-optimal strategies
are CE. Thus, for example, the strategy profile where both
players continue to the end of the game is a CE (although it
is not a PCE), as is the profile where player 2 continues at
all his moves, but player 1 ends the game at his last turn.
To see that Pareto-optimal strategies are CE, let s be a
Pareto-optimal strategy profile and, by way of contradiction,
suppose that s is not a CE. Then there must be a strategy s;
for some player ¢ such that either (1) there is a best response
s5_; to s} such that Ui(s) > Ui(s') and Us—;(s") > Us—s(s)
or (2) for all s5_; € S3_;, it must be the case that Us_;(s’) <
Us_i(s) and U;(s) < U;(s'); that is, player 3 — i does worse
than Us—;(s) no matter what he does, and cannot punish
player i. In case (1), it is immediate that s is not Pareto
optimal; and case (2) cannot hold, since player 3 — i can
always punish player ¢ by exiting at his first turn.

5. THE COMPLEXITY OF COMPUTING A
PCE AND M-PCE

In this section, we show that in two-player games, both
a PCE and an M-PCE can be found in polynomial time.
The first step in the argument involves showing that in two-
player games, for all strategy profile s, there is a strategy
profile s’ = (s, s5) that Pareto dominates s such that both



s1 and s5 have support at most two pure strategies (i.e., they
give positive probability to at most two pure strategies). We
then show that both the problem of computing a PCE and
an M-PCE can be reduced to solving a polynomial number
of “small” bilinear programs, each of which can be solved in
constant time. This gives us the desired polynomial time
algorithm.

Notation: For a matrix A, let AT denote A transpose, let
Ali,-] denote the ith row of A, let A[,,j] denote the jth
column of A, and let A[i, j] be the entry in the ith row, jth
column of A. We say that a vector x is nonnegative, denoted
x > 0, if its all of its entries are nonnegative.

We start by proving the first claim above. In this discus-
sion, it is convenient to identify a strategy for player 1 with
a column vector in IR"™, and a strategy for player 2 with a
column vector in IR™. The strategy has a support of size at
most two if the vector has at most two nonzero entries.

Lemma 16. In a two-player game, for all strategy profiles
s*, there exists a strategy profile s' = (s1,s5) that Pareto
dominates s* such that both si and sh have support of size
at most two.

PROOF. Let A and B be the payoff matrices (of size
n x m) for player 1 and player 2 respectively. Given a strat-
egy profile s* = (s7,s3), let U1(s™) = r{ and Uz(s™) = r3.
We first show that there exists a strategy s5 for player 2
with support of size at most two such that (s}, s3) Pareto
dominates s*. We then show that there exists a strategy
s} for player 1 with support of size at most two such that
(s, s5) Pareto dominates (s}, s5), and hence s*.

Consider the following linear program P;, where y is a
column vector in IR™:

maximize (s7)Ay

subject to  (s7)TBy =13
2ty =1
y 2> 0.

As usual, an optimal solution of P is a vector y that maxi-
mizes the objective function ((s7)Ay) and satisfies the three
constraints; a feasible solution of P; is one that satisfies the
constraints; finally, an optimal value of P; is the value of
the objective function for the optimal solution y (if it ex-
ists). We show that P has an optimal solution y* with at
most two nonzero entries.

Since all constraints in P; are equality constraints except
for the nonnegativity constraint, P; is a standard-form linear
program [?]. We can rewrite the equality constraints in P;

as
T*
Dy = { L }7

where D is an (m x 2) matrix whose first row is (s7)"B
and whose second row has all entries equal to 1. In geo-
metric terms, the region represented by the constraints in
P is a convex polytope. Since P; is a standard-form linear
program, it is well-known that y is a vertex of the polytope
(i.e., an extreme point of the polytope) iff all columns ¢ in
D where y[i] # 0 are linearly independent [?]. Since the
columns of D are vectors in IR?, at most two of them can be
linearly independent. Thus, a vertex y of the polytope can
have at most two nonzero entries.

Clearly s5 is a feasible solution of P;. Since (s7)Ass = r{,
by assumption, the optimal value of P is at least r7. More-
over, since the objective function of P; is linear, y > 0, and

> yli] = 1, the optimal value is bounded. Therefore, the
linear program has an optimal solution. By the fundamental
theorem of linear programming, if a linear program has an
optimal solution, then it has an optimal solution at a ver-
tex of the polytope defined by its constraints [?]. Let s be
the strategy defined by an optimal solution at the vertex of
the polytope. As we observed above, s5 has at most two
nonzero entries. It is immediate that Uy ((s],s3)) > ri and
Us((si,5b)) > 75.

This completes the first step of the proof.

The second step of the proof essentially repeats the first
step. Suppose that Ui ((s],s5)) = r1 and Uz((s3, s5)) = ra.
Consider the following linear program P,, where x is column
vector in IR™:

T ’
' Bsy
2T Ash =

S alil =1

z > 0.

maximize
subject to

Since s is a feasible solution of P, and (s})TBsh > 75, the
optimal value of P, is at least r5. As above, if we take s5 to
be an optimal solution of P, that is a vertex of the polytope
defined by the constraints, then s, has support of size at
most two, and (s], s5) Pareto dominates s*. I

The rest of the section makes use of bilinear programs.
There are a number of slightly different variants of bilinear
programs. For our purposes, we use the following definition.

Definition 8. A bilinear program P (of size n x m) is a
quadratic program of the form

maximize zTAy+azTc+yTd
subject to xTBly > di

BQI‘ = d2

B3y = d3

x>0

y =0,

where A and B are n X m matrices, z,c € IR", y,¢’ € R™,
B, is a k x n matrix for some k, and B3 is a k' x m matrix
for some k’. P is simple if By and B3 each has one row,
which consists of all 1’s. (Thus, in a simple bilinear program,
we have a bilinear constraint 7By > di, non-negativity
constraints on x and y, and constraints on the sum of the
components of the vectors x and y; that is, constraints of
the form 377", afi] = d" and 37", y[j] =d".) 1

Lemma 17. A simple bilinear program of size 2 X 2 can be
solved in constant time.

PROOF. See Appendix. Il

We can now give our algorithm for finding a PCE. The
idea is to first find BU1 and BUsz, which can be done in poly-
nomial time. We then use Lemma 16 to reduce the problem
to (3)(5*) = O(n*m?) smaller prolems, each of a which is a
simple bilinear program of size 2 x 2. By Lemma 17, each
of these smaller problems can be solved in constant time,

giving us a polynomial-time algorithm.

Theorem 18. Given a two-player G = ({1,2}, A, u), we
can compute in polynomial time whether G has a PCE and,
if so, we can compute a PCE in polynomial time.



PROOF. Suppose that G = ({1,2}, A, u), where A = A; X
Az, |A1] = n, |A2| = m, uy is characterized by the payoff
matrix A, and wus is characterized by the payoff matrix B.

In order to compute a PCE for the game, we need the val-
ues of BU; and BU>. These can be computed in polynomial
time, as follows. For BUq, for each i € {1,...,m}, we solve
the following linear program P;:

maximize s (A[,1])
subject to  s7 (B[-,4]) > sT (B[, 4]) for all j € {1,...m}
Yisilll=1

8120.

Suppose that r; is the optimal value of P;. Since P; is a
linear program, r; can be computed in polynomial time. In-
tuitively, r; is the maximum reward player 1 gets when ac-
tion b; is a best response for player 2. (The first constraint
ensures that, given s1, action b; is a best response for player
2.) BU; = maxjX;r;, so can be computed in polynomial
time. BU; can be similarly computed.

After computing BU; and BUa2, we can compute a PCE.
Recall that a strategy profile s is a PCE iff Ui(s) > BU:
and Uz(s) > BU,. Suppose that game G has a PCE s*. By
Lemma 16, there must exist a strategy profile s’ = (s, s5)
that Pareto dominates s*, where both s and s5 have sup-
port of size at most two. By Theorem 7, s’ is also a PCE. We
call such a PCE a (2 x 2)-PCE. Our arguments above show
that G has a PCE iff it has a (2 x 2)-PCE. Thus, in order
to check whether G has a PCE, it suffice to check whether
it has a (2 x 2)-PCE.

We do this exhaustively. For all i1,i2 € {1,2,...,n}
with i1 # 42 and all ji,j2 € {1,2,...,m} with j1 # jo,
we check whether G has a (2 x 2)-PCE in which player 1
places positive probability only on strategies ¢; and i2, and
player 2 places positive probability only on strategies j; and
j2. For each choice of 41,12, j1, j2, this question can be ex-
pressed as the following 2 x 2 simple bilinear programming
problem P;, i5.5,,j2, Where Aj, i, 5,5, 1S the 2 x 2 matrix

A[ilvjl] A[i17j2

Aliz, j1]  Aliz, j2

] }, and By, i, j;,5. is the 2 X 2 matrix
{ Bli1,j1] Bli1, jo
] B[

|

(21 T2] Adyig o (Y1 Y2
subject to  [z1 2] Biy,is.j1.52 Y1 yg}T > BU»
1 +x2 =1

y1+y2=1

>0, y>0.

Bliz, j1 i2, J2

maximize 1T

The first constraint ensures that player 2’s reward is at least
BUs, the remaining constraints ensure that player 1 puts
positive probability only on strategies i1 and ¢2, while player
2 puts positive probability only on j; and j2. If the optimal
value of P;, s, ;.55 for some choice of of (i1,42,7j1,72) is at
least BU1, then the corresponding optimal solution (x,y)
is a PCE of G. (Recall that a strategy profile s is a PCE
if Ui(s) > BU1, and Uz(s) > BU;.) On the other hand,
if the optimal value for each P, i, j,,j, is strictly less than
BU, then G does not have a (2 x 2)-PCE and so, by the
arguments above, GG does not have a PCE.

The algorithm above must solve (3) X (3*) simple 2 bilin-
ear programs. By Lemma 17, each can be solved in constant
time. Thus, the algorithm runs in polynomial time, as de-
sired. |

The argument that an M-PCE can be found in polynomial
time is very similar.

Theorem 19. Given a two-player G = ({1,2}, A, u), we
can compute an M-PCE in polynomial time.

ProOF. We start by compute BU; and BU2, as in The-
orem 18. Again, this takes polynomial time.

Recall that an M-PCE is an a-PCE such that for all o’ >
a, there is no o’-PCE in G. Clearly, a strategy that Pareto
dominates an a-PCE must itself be an a-PCE. Thus, using
Lemma 16, it easily follows that there must be an M-PCE
for G such that the support of both strategies involved is of
size at most 2. Call such an M-PCE a (2 x 2)-M-PCE.

Thus, to compute an M-PCE, for each tuple (i1, i2, j1, j2),
we compute the optimal « for which we can get an a-PCE
when player 1 is restricted to putting positive probability
on actions ¢1 and i2, while player 2 is restricted to putting
positive probability in j; and j2. Using the notation of The-
orem 18, we want to solve the following problem Qs iy, 1,52,
where di (1, %2,y1,y2) = [#1 22] Ay iz g1 go [1 y2]” — BUL
and dz (21,22, y1,92) = [21 @2] Biy iz 1o (Y1 y2)" — BU2:

maximize — min(di (21, 2,1, Y2), d2(21, T2, Y1, y2))
subject to z1+x2=1

y1+y2=1

z >0, y=>0.

The objective function maximizes the o for which the strat-
egy profile determined by [z, , zs,] and [yi, , ¥i,] is an a-PCE
(recall that s is an a-PCE if a = min(Ui(s) — BU1, Ua(s) —
BU3)). The problem here is that since the objective function
involves a min, this is not a bilinear program. However, we
can solve this problem by solving two simple bilinear pro-
grams of size 2 x 2, depending on which of [z, i, | As} is.i1 40
[Wirvia]" — BUL and [z, iy Aiy iz 1 g2 [V via] T — BU2 s
smaller.
Let Q}, iy .j1.j» De the following simple bilinear program,

maximize  di(z1,%2,Y1,Y2)
subject to  di(z1,22,y1,y2) < d2(21,22,91,92)
T1+x0 =1
y1+y2=1
z>0, y>0.
Let Q7 i5.51.5» e the same bilinear program with the roles

of di and ds reversed. It is easy to see that the larger of
: ! 1" . .

the solutions to Q;, ;, i, .5, and Q3] 4, j, j, is the solution to

Qi1 ,iz,j1,jo- 1t thus follows that an M-PCE can be computed

in polynomial time.

6. M-PCE AND COCO VALUE

Kalai and Kalai [?] have introduced a solution concept for
two player games that they call the cooperative-competitive
(coco) value. As the name suggests, it also attempts to cap-
ture some of the cooperative behavior in games. As we show
by example, the coco value is an M-PCE value (i.e., the
payoffs that the players get in an M-PCE) in many games
of interest. This motivates us to look more carefully at the
relationship between the coco value and the M-PCE value.
We start with a review of the coco value. The coco value is
defined only for two-player games where side payments are
possible. Intuitively, it is best to think of the outcome of the
game being expressed in dollars, assume that money can be
transferred between the two players, and that each player



values money the same way (so if player 1 transfers $5 to
player 2, then player 1’s utility decreases by 5, while player
2’s increases by 5). The coco value is viewed as a fair and
efficient outcome in such games.

In the rest of this section, we make use of the following
definitions. In a two-player game G, we say that (r1,r2) is an
M-PCE value of G if there is an M-PCE s such that Uy (s) =
r1 and Uz(s) = rz. Let MSW (@) be the maximum social
welfare of G; formally, MSW (G) = maxscs(Ui(s) + Ua(s)).
Finally, the minimaz value of game G for player i, denoted
mm;(G), is the best payoff that ¢ can guarantee himself;
formally,

mm;(G) = min max Ui(s1, s2).
s3-;€S53-; 8;€S;

The coco value is computed by decomposing a game into
two components, which can be viewed as a purely coopera-
tive component and a purely competitive component. The
cooperative component is a team game, a game where both
players have identical utility matrices, so that both play-
ers get identical payoffs, no matter what strategy profile is
played. The competitive component is a zero-sum game,
that is, one where if player 1’s payoff matrix is A, then
player 2’s payoff matrix is —A.

As Kalai and Kalai [?] observe, every game G can be
uniquely decomposed into a team game G; and a zero-sum
game G, where if (A,B), (C,C), and (D,—D) are the
utility matrices for G, G¢, and G, respectively, then A =
C+D and B = C—D. Indeed, we can take C = (A+B)/2
and D = (A — B)/2. We call G; the team game of G and
call G, the zero-sum game of G.

Using this decomposition, we can define the coco value.
Given a game G, let ¢ be the largest value obtainable in the
team game G (i.e., the largest value in the utility matrix for
G+), and let z be the minimax value for player 1 in the zero-
sum game G . Then the coco value of G, denoted coco(G), is
(a+z,a—z). Note that the coco value is attainable if utilities
are transferable: the players simply play the strategy profile
that gives the value c¢ in Gy; then player 2 transfers z to
player 1 (z may be negative, so that 1 is actually transferring
money to 2). Clearly this outcome maximizes social welfare.
Kalai and Kalai [?] argue that it is also fair in an appropriate
sense.

The coco value and M-PCE value are closely related in a
number of games of interest, as the following examples show.

Example 15. The Nash bargaining game, continued: Clearly,
the largest payoff obtainable in the team game correspond-
ing to the Nash Bargaining game is (50,50). Since the
game is symmetric, the minimax value of each player in the
zero-sum game is 0. in the zero-sum game, so mm1(G,) =
mma(G.) = 0. Thus, the coco value of the Nash bargaining
game is (50, 50), which is also the unique M-PCE value.

Example 16. Prisoner’s Dilemma, continued: Clearly,
the largest payoff obtainable in the team game correspond-
ing to Prisoner’s Dilemma (given the payoffs shown in the
Introduction) is (3,3). Since the game is symmetric, again,
the minimax value in the corresponding zero-sum game is
0. Thus, the coco value is (3,3), which is also the unique
M-PCE value.

"Without the assumption that players value money the same
way, the intuition behind the coco value breaks down.

Example 17. The Traveler’s Dilemma, continued: Clearly,
the largest payoff obtainable in the team game correspond-
ing to the Traveler’s Dilemma is (100,100) . And again,
since the game is symmetric, the minimax value for each
player in the zero-sum game is 0. Thus, the coco value is
(100, 100), which is also the unique M-PCE value.

On the other hand, in some games, the coco value and
M-PCE value differ.

Example 18. The centipede game, continued: It is easy to

see that the largest payoff obtainable in the team game cor-
(219+220+1 219+220+1 .

responding to the centipede game is ,

both players play to the end of the game aQnd split th2e total
payoff. It is also easy to compute that, in the zero-sum game
corresponding to the centipede game, player 1’s minimax
value is 1, while player 2’s minimax value is —1, obtained
when both players quit immediately. Thus, the coco value
219+§20+1 J’» 17 219+§20+1

is ( — 1). This value is not achiev-
able without side payments, and is higher than the M-PCE
value.

Although, as the centipede game shows, the coco value
and the M-PCE value may differ, it is worth noting that
the coco value of a game is the sum of the M-PCE values
of its decomposed games. Clearly c is the unique M-PCE
value of G4, since it is the unique Pareto-optimal payoff;
moreover, the unique M-PCE value of a zero-sum game can
easily be shown to be the payoffs in NE, which are given by
the minimax values. But we can say more. Part of the
problem in the centipede game is that the computation of
the coco value assumes that side payments are possible. The
M-PCE value does not take into account the possibility of
side payments. Indeed, once we extend the centipede game
to allow side payments in an appropriate sense, it turns out
that the coco value and the M-PCE value are the same. To
do a fairer comparison of the M-PCE and coco values, we
consider games with side payments, which we define next.

6.1 Two-player games with side payments

As we have observed, the coco value makes sense only
if players can make side payments. The ability to make
side payments is not explicitly modeled in the description of
the games considered by Kalai and Kalai [?]. Since the M-
PCE value calculation does not assume side payments are
possible, we do need to explicitly model this possibility if
we want to do a reasonable comparison of the M-PCE value
and coco value.

In this subsection, we decribe how an arbitrary two-player
game without payments can be transformed into a game
with side payments. There is more than one way of do-
ing this—we focus on one, and briefly discuss a second al-
ternative. Our procedure may be of interest beyond the
specific application to coco and M-PCE. We implicitly as-
sume throughout that outcomes can be expressed in dollars
and that players value the dollars the same way. The idea
is to add strategies to the game that allow players to pro-
pose “deals”, which amount to a description of what strat-
egy profiles should be played and how much money should
be trasferred. If the players propose the same deal, then
the suggested strategy profile is played, and the money is
transferred. Otherwise, a “backup” strategy is played.

Given a two-player game G = ({1,2},A,U), let G* =
({1,2}, A*,U") be the game with side payments extending



G, where S*™ and U* are defined as follows. S* extends S by
adding a collection of strategies that we call deal strategies.
A deal strategy for player i is a triple of the form (s,r,s}) €
S X IR x S;. Intuitively, this strategy proposes that the
players play the strategy profile s and that player 1 should
transfer r to player 2; if the deal is not accepted, then player
i plays s;. Given this intuition, it should be clear how U*
extends U. For strategy profiles s € S, U*(s) = U(s). The
players agree on a deal if they both propose a deal strategy
with the same first two components (s, 7). In this case they
play s and r is transferred. Otherwise, players just play the
backup strategy. That is, for s,s’ € S, t; € S;, and r,7 € IR

o Ut(s) = U(s);

U(s
° Ul ((sy7,t1), (8,7, t2)) = Ui(s) —
S((s,m,t1), (8,7, t2)) = Ua(s) + 5
(s,m,t1), (

o U*( s'r' t2)) = Ulta, t2) if (s,7) #£ (s',7");
[ ] U*((S,T,tl),tz) = U*(th (8’,7”’7152)) = U(tl,tz).

We call G* the game with side payments eztending G, and
call G the game underlying G*.

Intutively, we can think of both players as giving their
strategies to a trusted third party. If they both propose the
same deal strategy, the third party ensures that it is carried
out and the transfer is made. Otherwise, the appropriate
backup strategies are played.

In our approach, we have allowed players to propose arbi-
trary backup strategies in case their deal offers are not ac-
cepted. We also considered an alternative approach, where
if a deal is proposed by one of the parties but not accepted,
then the players get a fixed default payoff (e.g., they could
both get 0, or a default strategy could be played, and the
players get their payoff according to the default strategy).
Essentially the same results as those we prove hold for this
approach as well; see the end of Section 6.2.

6.2 Characterizing the coco value and the M-
PCE value

At first glance, the coco value and the M-PCE value seem
quite different, although both are trying to get at the notion
of fairness. However, we show below that both have quite
similar characterizations. We show this in two ways. In
this section, we characterize the two notions using two sim-
ilar formulas involving the maximum social welfare and the
minimax value. In the next section, we compare axiomatic
characterizations of the notions.

Before proving our results, we first show that, although
they are different games, G and G* agree on the relevant
parameters (recall that G* is the game with side payments
extending G).

Lemma 20. For all two-player games G, MSW (G) =
and mm;(G*) = mm;(G) fori=1,2.

PROOF. To see that MSW(G) = MSW(G™), observe To
see that MSW (G) = MSW (G™), observe that, by the defini-
tion of U™, for all strategies s* € S™, there exists a strategy
s € S and r € IR such that U*(s*) = (Ui(s) + r,Uz(s) — 1),
so Uy (s™) + Us(s*) = Ur(s) + Ua(s).

To see that mmi(G*) = mm1(G), observe that for all
t € Sz, we have that U7 ((s,7,s1),t) = Ui(sh,t), so

max U; (s},t) = max Ui (s1,1).
shes

shesy

MSW(G™) ¢ 1

Thus,
min max Ui (s},t) = min max U (s1,1).
teS2 siesy teS2 s esy
Therefore,
mm1(G”) = mingesy maxy esy UT (s1,t)

< minges, maxy egr U (s1,t)  [since S5 O o]
= min¢es, max es, Ui(sh,t)

= mmi(G).

Thus, mm1(G*) < mm1(G). Similarly, for s; € S1, we have
mingegy Uf(s1,t) = mines, Ur(s1,t). Thus,

min max U; (s},t) = min max Ui (sh,t).
teSS shesy teS2 s esy

It follows that
mmq (G*) mine sy maxy egr Ut (s1,1)

(
minge sy Max, eg, Ui (s1,1)

v Il

. /
minge s, maxy cs, Un (s1,t)

mm1(G).

Thus, mm1(G*) = mm(G). A similar argument shows that
mma(G*) = mm2(G). I

‘We now characterize the coco value.

Theorem 21. If G is a two-player game, then coco(G) =
2

( MSW (G)+mmi(G,)—mms(G.) 7 MSW(G)—mm12(Gz)+mm2(GZ) ) More-

over, coco(G) = coco(G™).
PROOF. It is easy to see that the Pareto-optimal payoff

profile in G is (MS+<G), MS+(G>) Thus, by definition,

coco(G)

M M)+(mm1(G ), mm2(G-))
MSW(G)+2mm1(G ) MSW(G)+2mm2(G ))

(MSW(G)+mm1(G 2)— mn12(G ) MSW(G)—mml(G )+mma (G ))

The last equation follows since G is a zero-sum game, so
mm1(G.) = —mma2(G.).

The fact that coco(G) = coco(G*) follows from the char-
acterization of coco(G) above, the fact that MSW(G) =
MSW(G") (Lemma 20), and the fact that (G.)" = (G¥):,
which we leave to the reader to check. I

The next theorem provides an analogous characterization
of the M-PCE value in two-player games with side payments.
It shows that in such games the M-PCE value is unique
and has the same form as the coco value. Indeed, the only
difference is that we replace mm;(G.) by mm;(G).

Theorem 22. If G is a two-player game, then the unique

M-PCE value of the game G* with side payments extending
( MSW (G)+mm1(G)—mmo(G) MSW(G)—mmi(G)+mmso(G) )
2 ) 2 .

PRrOOF. We first show that BUS™ = MSW (G) —mm2(G)
and BUS" = MSW (G) — mm1(G). For BUS", let s* be a
strategy profile in G that maximizes social welfare, that is,
Ui(s*)+U2(s*) = MSW(G), and let (s7, s5) be a strateg pro-
file in G such that s5 € BRY(s}) and Uz (s}, s5) = mma(G).
(Thus, by playing s, player 1 ensures that player 2 can get

20f course, mm1(G) = —mma2(G.), since G is a zero-sum
game; however, we write the expression in this form to make
the comparison to the M-PCE value easier.



no more utility than mm2(G), and by playing s5, player
2 ensures that she does get utility mm2(G) when player 1
plays si.

Let s = (s1,82), where s1 = (s, mma(G) — Ua2(s*), s1)
and s2 = (s, mma(G) — Usz(s*),s5). By definition, if s is
played, the players agree to the deal, so s* is played in G
and player 1 transfers mm2(G) — Uz2(s™) to player 2. Thus,
Ui (s*) = Ur(s") — (mm2(G) = Us(s")) = Ur(s") 4+ Uz(s") —
mmz2(G) = MSW(G) — mm2(G), and Us(s*) = mma(G).
Player 2 gets the same payoff if she plays any strategy of
the form (s*, mma(G) — Uz2(s*),t). On the other hand, if
player 2 plays a strategy ' not of this form, then U5 (s1,t) =
Us(sh,t') < mma(G). Thus, if player 1 plays s1, then player
2 gets a utility of at most mm2(G) no matter what she plays,
0 s2 € BRS (s1). This shows that BUF > MSW(G) —
mmaz(G).

To see that BUS < MSW(G) — mma(G), consider a
strategy profile s” = (5'1' s4) € §* with s§ € BRS (s}).
Since mma(G*) = mma(G), it follows that Us (s”
Since MSW (G*) = MSW (G) by Lemma 20, it follows that
Ui (s")+ Us(s") < MSW(QG). Thus, Uy (s”) < MSW(G) —
mma(G), so BUY" < MSW (@) — mma(G). Thus, BU§™ =
MSW(G) — mm2(G), as desired.

The argument that BUS = MSW (G) —
ilar.

Now suppose that we have a strategy s™ € S* such that
Ur(st) > BUY" + a and Us(st) > BUS + a. Since
MSW(G*) =

mm1(G) is sim-

and BU2(G"), we get that o < —MEW(G)rmmi(G)fmmz(C),
Takmg /B = _MSW(G)+mm1(G)+mm2(G)

, we now show that we
can find a - PCE It follows that thls must be an M-PCE.
Let s* and s” be the strategy profiles in S as defined above;
in particular, s* maximizes social welfare. (The choice of
s’ is not so relevant; the role of s’ below could be played

by any strategy profile in S.) Let st = (s, s]), where

Sf — (s*,Ul(s*) _ MSW(G)-&-mm;(G)—mmg(G)
(s*,Us(s") — MSW(GH’M"QI(G)*T"W?(G),3'2). Thus, s is a
variant of s above, where the transfers are modified. It is

. _ MSW(G)+mmi (G)— G
easy to check that U;(st) = Q) m”zl( )—mm2(G)
U2( ) _ MSW(G)— mml(G)+mm2(G)

,s1) and s§ =

, and

It can easﬂy be checked that Ul( )= BU; + B fori=
1,2, so st is indeed a B-PCE. Moreover, st must Pareto
dominate any other B-PCE. Therefore, s* is an M-PCE,
and its value is an M-PCE value, as desired. Since Uy (s™)+
Us(sT) = MSW(G), it follows that the M-PCE value is
unique. N

As Theorems 21 and 22 show, in a two-player game G*
with side payments, the coco value and M-PCE value are

characterized by very similar equations, making use of MSW (G*)

and minmax values. The only difference is that coco value
uses the minimax value of the zero-sum game G, while the
M-PCE value uses minimax value of G. It immediately fol-
lows from Theorem 21 and 22 that the coco value and the
M-PCE value coincide in all games where

mm1(G.) — mma(G.) = mmi(G) — mm2(G).

Such games include team games, equal-sum games (games
with a payoff matrices (A4, B) such that A+ B is a constant
matrix, all of whose entries are identical), symmetric games
(games where the strategy space is the same for both players,

) > mma(G).

MSW (G), it follows that BU1(G*)+BU2(G*)+
2a0 < MSW(G). Plugging in our characterizations of BU1(G™)

that is, S1 = Sz, and Ui(s1, s2) = Ua2(s2,s1) for all s1,s2 €
S1), and many others. We could also use these theorems to
show that the M-PCE value and the coco value can differ,
even in a game where side payments are allowed.

Example 19. Let G be the two-player game described by
the payoff matrix below, and let G* be the game with side
payments extending G.

‘ a b
c ‘ (3,2) (1,0)

Let player 1 be the row player, and player 2 be the column
player. It is easy to check that MSW (G) =5, mm1(G) = 1,
and mmz(G) = 2, Thus, by Theorem 19, the M-PCE value
of G* is (2H=2,3=1%2) = (2,3). On the other hand, it is
easy to check that coco(G) = coco(G™) = (3,2).

It seems somewhat surprising that the M-PCE here should
be (2,3), since player 1 gets a higher payoff than player 2
no matter which strategy profile in G is played. Moreover,
BUY = 3 and BUS = 2. But things change when trans-
ferred are allowed. It is easy to check that it is still the
case that BU?* = 3; if player 1 plays ¢, then player 2’s
best response is to play a. But BUg* = 4; if player 2 plays
((c,a),2,b), offering to play (c,a), provided that player 1
transfers an additional 2, player 1’s best response is to agree
(for otherwise player 2 plays b), giving player 2 a payoff of
4. The possibility that player 2 can “threaten” player 1 in
this way (even though the moves are made simultaneously,
so no actual threat is involved) is why mma(G) > mm.(G).

We conclude this subsection by considering what happens
if a default strategy profile is used instead of backup strate-
gies when defining games with side payments. Let the de-
fault payoffs be (di,d2). Then a similar argument to that
above shows that the M-PCE value becomes

MSW(G) +dy —d2) MSW(G) —di + d2
( 2 ’ 2 ):
Thus, rather then using the minimax payoffs in the formula,
we now use the default payoffs. Note that if the default
payoffs are (0,0), then the M-PCE amounts to the players
splitting the maximum social welfare. We leave the details
to the reader.

6.3 Axiomatic comparison

In this section, we compare M-PCE value to coco value
axiomatically. Before jumping into the axioms, we first ex-
plain the term “axiomatize”. Given a function f : A — B,
we say a set AX of axioms aziomatizes f in A, if f is the
unique function mapping A to B that satisifies all axioms
in AX. Recall that every two-player normal form game has
a unique coco value. We can thus view the coco value as a
function from two-player normal form games to IR?. There-
fore, a set AX of axioms axiomatizes the coco value if the
coco value is the unique function that maps from the set to
IR? that satisfies all the axioms in AX.

Kalai and Kalai [?] show that the following collection of
axioms axiomatizes the coco value. We describe the axioms
in terms of an arbitrary function f. If f(G) = (a1, a2), then
we take fi(G) = a;, for i =1,2.

1. Maximum social welfare. f maximizes social wel-

fare: fi1(G) + f2(G) = MSW(G).



2. Shift invariance. Shifting payoffs by constants leads
to a corresponding shift in the value. That is, if a =
(a1,a2), G = ({1,2},5,U) and G* = ({1,2},5,U%),
where Uf(s) = U;(s) + a; for all s € S, then f(G®) =
(f1(G) + a1, f2(G) + az).

3. Monotonicity in actions. Removing a pure strategy
of a player cannot increase her value. That is, if G =
({1,2}, 51 x S2,U), a1 is a pure strategy of player 1,
and G" = ({1,2}, 51 x S2,Ulgs xs,), where S1 = S1 —
{a1}, then f1(G") < f1(G), and similarly if we replace
S2 by S5 C Ss.

4. Payoff dominance. If, for all pure strategy profile
s € S, a player’s expected payoff is strictly larger than
her opponent’s, then her value should be at least as
large as the opponent’s. That is, if U;(s) > Us—i(s)
for all s € S, then fi(G) > f3—i(G).

5. Invariance to replicated strategies. Adding a mixed
strategy of player 1 as a new pure strategy for her does
not change the value of the game; similarly for player 2.
That is, if G = ({1,2}, S1 x S2,U), s1,s1 € A1 (recall
that A, is the set of pure actions of player 1) , t ¢ Ay,
and « € [0,1], let G’ = ({1,2}, 5] x S2,U’), such that
Ay = A U{t}, U'(t, 52) = aU(s1,52)+(1—a)U(sh, s2)
for all s2 € S2, and U'(s) = U(s) for all s € S (so that
G’ extends G by adding to S1 one new strategy, that
is a convex combination of two strategies in S1). Then
f(G) = f(G"). The same holds if we add a replicated
strategy to So.

Theorem 23. [?] Azioms 1-5 characterize the coco value
in two-player normal-formal games.>

Proor. See [7]. 1

We prove that the M-PCE value in two-player games with
side payments satisfies all axioms 1-5 except payoff domi-
nance. Now we apply the function f only to games of the
form G*. We state the assumptions in terms of G, but could
equally well state them in terms of G*. Thus, for Axiom 1,
it is irrelevant whether we require fi1(G*) + f2(G™) to be
MSW(G) or MSW (G™), since they are the same. Similarly
, for shift invariance, it is easy to check (G%)* = (G*)%, so it
does not matter whether we apply the shift before or after
transforming the game to one that allows side payments.

The fact that the M-PCE value does not satisfy payoff
dominance was already observed in Example 19. The fol-
lowing result shows that it satisfies all the other axioms.

Theorem 24. The function mapping 2-player games with
side payments to their (unique) M-PCE value satisfies maz-
imum social welfare, shift invariance, monotonicity in ac-
tions, and invariance in replicated strategies.

ProOF. We consider each property in turn:

e The fact that the function satisfies maximum social
welfare is immediate from the characterization in The-
orem 22.

3Kalai and Kalai actually consider Bayesian games in their
characterization, and have an additional axiom that they
call monotonicity in information. This axiom trivializes in
normal-form games (which can be viewed as the special case
of Bayesian games where players have exactly one possible
type). It is easy to see that their proof shows that Axioms
1-5 characrerizes the coco value in normal-forml games.

e It is easy to see that MSW (G®) = MSW (G) + a1 + az,
mm1(G?*) = mm1(G)+ a1 and mmz(G®*) = mma(G)+
ao. It then follows from Theorem 22 that the M-PCE
value of (G*)* is the result of adding a to the M-PCE
value of G*.

e Let G’ be as in the description of Axiom 3 (Mono-
tonicity in actions). It is almost immediate from the
definitions that MSW(G') < MSW(G), mm1(G') <
mm1(G), and mm2(G’) > mma(G). The result now
follows from Theorem 22.

e Let G’ be the result of adding a replicated action to Si,
as described in the statement of Axiom 4 (Invariance
of replicated actions). Clearly MSW (G') = MSW (G),
mm1(G') = mm1(G), and mm2(G') = mm2(G). (For
the latter two equalities, note that if ¢ = as] + (1 —
a)s?, then the expected utility if player 1 plays ¢ is
always between the expected utility if player 1 plays
st and if player 1 plays s/, so adding ¢ does not change
the minimax value of the game.) Again, the result now
follows from Theorem 22.

Our goal now is to axiomatize the M-PCE value in games
with side payments. Since the M-PCE value and the coco
value are different in general, there must be a difference
in their axiomatizations. Interestingly, we can capture the
difference by replacing payoff dominance by another simple
axiom:

6. Minimax dominance. If a player’s minimax value
is no less than her opponent’s minimax value, then
her value is no less than her opponent’s. That is, if
mml(G) 2 mmg_i(G), then fz(G*) 2 fg_i(G*).

It is immediate from Theorem 22 that the M-PCE value
satisfies minimax dominance; Example 19 shows that the
coco value does not satisfy it. We now prove that the M-
PCE value is characterized by axioms 1, 2, and 6. (Although
axioms 3 and 5 also hold for the M-PCE value, we do not
need them for the axiomatizaion.)

Theorem 25. Azioms 1, 2, and 6 characterize the M-PCE
value in two-player games with side payments.

PrOOF. Theorem 24 shows that the M-PCE value satis-
fies axioms 1 and 2. As we observed, the fact that the M-
PCE value satisfies axiom 6 is immediate from Theorem 22.

To see that the M-PCE value is the unique mapping that
satisfies axioms 1, 2, and 6, suppose that f is a mapping
that satisfies these axioms. We want to show that f(G*) is
the M-PCE value for all games GG. So consider an arbitrary
game G such that the M-PCE value of G* is v = (v1, v2).
By shift invariance, the M-PCE value of (G™")" is (0, 0). By
axiom 1, MSW(G) = v1 + v2. and MSW(G™") = 0. Note
that it follows from Theorem 22 that 0 = MSW(G™") +
mm1(G~") — mma(G~"). Since MSW (G™") = 0, it follows
that mm1(G~") = mma(G~"). Suppose that f((G™")") =
(vi,v3). By axiom 1, we must have v{ + vy = 0. By axiom
6, since mm1(G~") = mma(G~"), we must have v = vj.
Thus, f((G7Y)*) = (0,0). By shift invariance, f(G*) =
FUG™")") + v = (v1,v2), as desired. I



Again, we end this subsection by considering what hap-
pens if a default payoff is used instead of backup strategies
when defining games with side payments. It is still the case
that the M-PCE value satisfies axioms 1, 2, 3, and 5 and
does not satisfy axiom 4 (payoff dominance). To get an ax-
iomatization of the M-PCE value in such games with side
payments, we simply need to change the minimax domi-
nance axiom to a default value dominance axiom: if the
default value of a player is no less than the default value
of the opponent, then the player’s value is no less than the
opponent’s value. Thus, variations in the notion of games
with side payments lead to straightforward variations in the
characterizaiton of the M-PCE value.

7. RELATED WORK

In this section, we compare PCE to other solution con-
cepts in the literature.

We have already seen the PCE is incomparable to NE.
There are games (like Traveler’s Dilemma) where the NE
is not a PCE, and no PCE is a NE. Of course, the same
will be true for refinements of NE. Rationalizability [8] is a
solution concept that generalizes NE; every NE is rational-
izable, but the converse is not necessarily true. Intuitively,
a strategy of player ¢ is rationalizable if it is a best response
to some beliefs that player ¢ may have about the strate-
gies that other players are following, assuming that these
strategies are themselves best responses to beliefs that the
other players have about strategies that other players are
following, and so on. Again, the Traveler’s Dilemma shows
that the notion rationalizability is incomparable to PCE—
the only rationalizable strategy profile in Traveler’s Dilemma
is (2,2). Similarly, in Prisoner’s Dilemma (Cooperate, Co-
operate) is not rationalizable since Cooperate is not a best
response to any action. Thus, rationalizability is not getting
at the notion of cooperation in the way the PCE is.

Although PCE is meant to apply to one-shot games, our
motivation for it involved repeated games. It is thus inter-
esting to compare Cooperative Equilibrium to solutions of
repeated games. The well-known Folk Theorem [8] says that
any payoff profile that gives each player at least his minimax
utility is the payoff profile of some NE in the repeated game.
Moreover, the proof of the Folk Theorem shows that if s is
a strategy in the underlying normal-form game where each
player’s utility is higher than the minimax utility in the re-
peated game, then there is a NE in the repeated game where
s is played at each round. Thus, playing cooperatively re-
peatedly in the repeated game will typically be an outcome
of a NE. However, so will many other behaviors. Because
so many behaviors are consistent with the Folk Theorem, it
has very little predictive power. For example, in repeated
Traveler’s Dilemma, a player can ensure a payoff of at least
2 per iteration simply by always playing 2. It follows from
the Folk Theorem that for any strategy profile s in the one-
shot game where each player gets at least 2, there is a NE
in the repeated game where each player ¢ plays s; in each
round. By way of contrast, as we have seen, in a PCE of the
single-shot game, each player gets more than 98. More gen-
erally, we can show that, for each PCE s in a normal-form
game, there is a NE of the repeated game where s is played
repeatedly.

Perhaps the solution concept that gives results closest to
PCE is the recently-introduced notion of iterated regret min-
tmization (IRM) [5]. As its name suggests, IRM iteratively

deletes strategies that do not minimize regret. Although
it based on a quite different philosophy than PCE or its
variants, IRM leads to quite similar predictions as PCE in
a surprising number of games. For example, in Traveler’s
Dilemma, (97, 97) is the unique profile that survives IRM.
In the Nash bargaining game, (50, 50) is the unique pro-
file that survives IRM and is also the unique M-PCE of the
game. There are a number of other games of interest where
PCE and IRM either coincide or are close.

There are also games in which they behave differently. For
example, consider a variant of Prisoner’s Dilemma with the
following payoff matrix:

Cooperate Defect
Cooperate | (10000,10000) (0,10001)
Defect (10001,0) (1,1)

It can be shown that, in general, if there are dominant ac-
tions in a game, then these are the only actions that survive
IRM. Since defecting is the only dominant action in this
game, it follows that (Defect, Defect) is the only strategy
profile that survives IRM, giving a payoff (1, 1). On the
other hand, the unique M-PCE is (Cooperate, Cooperate)
with payoffs (10000, 10000) (although (Defect, Defect) is
also a PCE). In this game, M-PCE seems to do a better job
of explaining behavior than PCE.

Nevertheless, the fact that PCE and IRM lead to similar
answers in so many games of interest suggests that there
may be some deep connection between them. We leave the
problem of explaining this connection to future work.

8. CONCLUSION

APPENDIX

LEMMA 17. A simple bilinear program of size 2 X 2 can
be solved in constant time.

PrOOF. Let P be the following simple bilinear program,
where z = [z1 22]7, y = [y1 vo]”:

maximize zTAy+azTc+yTd
subject to zTBy > dy

T1 + a2 = d2

Y1 +y2 = ds

x>0

y =0,

where A and B are 2 x 2 matrices.

We show that P can be solved in constant time. That is,
we either find an optimal solution of P, or find that P has
no optimal solution in constant time. The idea is to show
that P can be reduced into eight simpler problems, each of
which can more obviously be solved in constant time.

Suppose that A = { a1 a2 ] and B = { bu biy ] .

a1 a2 b21 b22



Then we can write P as the following quadratic program Q:

maximize a11Z1y1 + a12T1Y2 + a21T2y1 + a22x2y2 + c[l]zi+
2z + [y + ¢ [2]ye
subject to bi1z1y1 + bi2x1y2 + b21x2y1 + baozoys —di > 0
1+ T2 = d2
Y1+ y2 =ds
x1,T2,Y1,Y2 > 0.
After replacing zo with (d2 —z1) and y2 with (ds —y1), then
rearranging terms, the objective function of ) becomes
(a11 — a12 — az1 + az2)z1y1 + (ar2ds — az22dz + c[1] — c[2])z1+
(a21d2 — azads + c'[1] — ' [2])y1 + (az2dads + c[2]dz + ¢'[2]d3),

and the first constraint becomes

(b11 — b1z — ba1 + ba2)x1y1 + (biads — boads)z1+
(ba1da — baad2)yr + (baadads — dy).

We can get an equivalent problem by removing the con-
stant terms az2dads +c[2]d2 +c’[2]ds from the objective func-
tion, since adding or removing additive constants from a
function that we want to maximize does not affect its op-
timal solutions (e.g., “maximize z” has the same optimal
solutions as “maximize (z + 1)”).

Thus, @ is equivalent to the following quadratic program
/

Q"
maximize yiz1y1 + Y221 + Y3y1
subject to yar1y1 + Y521 + Yey1 + 7 > 0
z1 € [0, d2]
Y1 € [07d3]7
where

Y1 = Q11 — @12 — Q21 + Q22

Y2 = arzds — az2d3 + c[1] — c[2]
Y3 = az1dz — agedz + ¢'[1] — '[2]
Y4 = b11 — b1z — ba1 + bao

v5 = biads — b2ads

Yo = ba1d2 — baado

Y7 = baadads — di.

(Note that y;—y7 are all constants.)

The first step in solving @’ involves expressing the values
of y1 that make (z1,y1) a feasible solution, that is, one that
satisfies the constraint

Yaz1Y1 + Y521 + Yey1 = (Yay1 + v5)x1 + Y51 + Yey1 > 0.
For each y1 € [0,ds], let W1 (y1) be the set of z1 such that

(z1,41) a feasible solution of Q'. The characterization of
W1 (y1) depends on the sign of v4y1 + 5. Specifically:
Ui(y) = [w dz] N[0, d2],

Yay1+ys

if yay1 + 5 >0,% <d>
Wi(y) = [0, 2= 1[0, d), (1)
if'y4y1+75 <0 —6Y1 -7 ZO

g 7 yayi+s
Ui (y1) = [0,d2], if vayr +v5 = 0,76y1 +v7 > 0
Uy (y1) =0, if yay1 +v5 = 0,v6y1 + 7 < 0.

Note that the first three regions are intervals.
Let f(z1,y1) = 1Ty + Y2x1 + Y351 be the objective
function of Q. We want to maximize f over all feasible

pairs (z1,y1). Taking the derivative of f with respect to 1,
we get

8f($17y1) _
071 = vy + 2,

which is a linear function of y;. Because the derivative is
linear, for each fixed value of y1, the value that maximizes
f(x1,y1) must lie at an endpoint of the interval appropriate
for that value of 1. Whether it is the left endpoint or the
right endpoint depends on whether the derviative is nega-
tive or positive. For example, if y; satisifes the constraints
corresonding to the first interval in (1) (i.e., if yay1 +75 > 0
and ﬁ < d2) and yiy1 + v2 > 0, then z1 = do
(i.e., the right endpoint of the interval of Psii(y1)) max-
imizes f(z1,y1); the problem of maximizing f(z1,y1) re-
duces to that of maximizing f(d2,y1) (see Q1 below). On
the other hand, if v1y1 + 72 > 0, then maximizing f(x1,y1)

reduces to maximizing f(0,y1) or f (713;1;5 ,y1), depending

on whether W is negative (see @5 and Qs below.

These considerations show that to find that value (x1,y1)
that maximizes f(x1,y1), it suffices to find the value of y;
that maximizes each of the expressions below, and take the

one that is best among these:

Q1 : maximize f(d2,y1), subject to

Yay1 + 5 > 0, % <dz2,my1 +v2 > 0,y1 € [0,ds]

Q2 : maximize f(d2,y1), subject to

Yay1 + 5 < 0, UL > dy, iy + 92 > 0,91 € [0, ds]
Qs : maximize f(ﬁ,yl), subject to
Yayr + 5 < 0,0 < ZIBZI <y yiy1 + 2 > 0,41 € [0, ds]

Q4 : maximize f(d2,y1), subject to

Yay1 + 5 = 0,76y1 + 7 > 0,711 + 72 > 0,41 € [0, d3)
Q5 : maximize f(0,y1), subject to
Yayr + 5 > 0, LI < 0,191 + 92 < 0,41 € [0, ds]

Qs : maximize f(%,yl), subject to

Yayr + 5 > 0,0 < BT < dy yay1 + 92 < 0,91 € [0, ds]
Q7 : maximize f(0,y1), subject to

Yayr + 95 < 0, ZEUIE > 0,711 + 72 < 0,51 € [0, ds]

Qs : maximize f(0,y1), subject to

Yay1 + 95 = 0,%y1 + 77 > 0, v1y1 + 2 < 0,1 € [0,d3].

Note that @1, Q2, and Qs describe the possibilities for the
first interval in (1), Q4, @5, and Qg are the possibilities for
the second subinterval, and Q7 and Qs are the possibilities
for the third subinterval.

Each of Q1, Q2, Q4, Qs, Q7, and Qs can be easily rewrit-
ten as linear programs of a single variable (y1), so can be
solved in constant time. With a little more effort, we can
show @3 and Qs can also be solved in constant time. We
explain how this can be done for Q3. The argument for Qg
is similar and left to the reader. All the constraints in Q3
can again be viewed as linear constraints; the set of feasible
values of y; is thus an interval, whose endpoints can clearly
be computd in constant time. Now the objective function is

—Y6y1 — 7 ~ y(=veyr — )y v2(—vey1 — v7)
) 1) - +
Yay1 + 5 Yay1 + Vs Yay1 + 5
To find the maximum value of the objective function among
the feasible values, we need to take its derivative (with re-
spect to y1). A straightforward calculation shows that this
derivative is

(=27176y1 — 1177 — Y2¥6) (Yay1 + ¥5) — ya(Yey1 + v7) (M1y1 + 72)

+y3y1-

(yay1 +75)?



This derivative is 0 when its numerator is 0 (since the con-
straints in @3 guarantee that the denominator is positive).
The numerator is a quadratic, so can be solved in constant
time.

Thus, to find the optimal value for Y3, we must just check
f at the endpoints of the interval defined by the constraints
(which, as we observed above, can be computed in constant
time) and at the point where the derivative is 0 (which can
also be computed in constant time). Thus, @3 can be solved
in constant time.

This completes the argument that () can be solved in con-
stant time. i
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