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Abstract

We show that a 0-1 law holds for propositional modal logic, both for structure validity
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known 0-1 law for first-order logic. However, our proof gives considerably more information.
It leads to an elegant axiomatization for almost-sure structure validity and to sharper com-
plexity bounds. Since frame validity can be reduced to a I} formula, the 0-1 law for frame
validity helps delineate when 0-1 laws exist for second-order logics.
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1 Introduction

Glebskii et al. [GKLT69] and, independently, Fagin [Fag76] established a fascinating connection
between asymptotic probability and logical definability. They showed that every property P
expressible in first-order logic without function symbols is either almost-surely true or almost-
surely false in finite structures: more precisely, if u,( P) is the fraction of structures with domain
{1,...,n} in which P is true, then pu(P) = lim, o pt,(P) is either 0 or 1. This remarkable
property is known as a 0-1 law. Grandjean [Gra83] showed that the problem of deciding whether
a formula is almost-surely true is PSPACE-complete for bounded underlying vocabularies, that
is, vocabularies with an a priori bound on the arities of the predicates in the vocabulary. This
forms a sharp contrast to Trakhtenbrot’s classical theorem that says that the set of formulas
which are valid in all finite structures is co-r.e., assuming that the vocabulary contains at least
one binary predicate.

It is well known that first-order logic has rather limited expressive power (cf. [AUT79, Fag75]).
Thus, researchers have investigated asymptotic probabilities in logical languages that go beyond
first-order. (See [Com88]| for an overview and references.) Of most interest to us here are results
for existential second-order logic (X1). The interest in X1 stems in part from a result of Fagin
[Fag74] showing that a property is ¥ definable if and only if it is NP-computable. Full ¥} does
not have a 0-1 law [Fag76]; in fact, neither does monadic X1, where the existential quantification
is over monadic predicates [Kau87]. A 0-1 law does hold for certain fragments of existential
second-order logic, whose structure is characterized by the pattern of first-order quantifiers.
If ¥ is a class of first-order formulas, let ¥1(¥) consist of the set of ¥] sentences where the
first-order part is in W. Kolaitis and Vardi considered first-order formulas ¥ defined by their
quantifier prefix. There are exactly two prefiz classes of first-order formulas with equality for
which the validity problem is decidable [DG79]: the Bernays-Schénfinkel class, consisting of
formulas with quantifier prefixes of the form 3*V* (i.e., a possibly empty string of existential
quantifiers followed by a possibly empty string of universal quantifiers) and the Ackerman class,
consisting of formulas with quantifier prefix 3*V3*. The results of [KV87, KV90a, PS89] show
that a 0-1 law holds for ¥1(¥), where ¥ is the set of first-order formulas defined by some prefix
class, iff ¥ is either the Bernays-Schonfinkel class or the Ackermann class. In addition, Kolaitis
and Vardi show that if ¥ is either the Bernays-Schonfinkel class or the Ackermann class, the
problem of deciding whether a formula in X}(¥) is almost-surely true is NEXPTIME-complete
if we restrict to bounded vocabularies [KV87, KV90a].

We focus here on 0-1 laws for (propositional) modal logic. Modal logic is a natural logic to
investigate, given the attention it has received in the philosophical literature and the fact that
various modal logics have been shown to be of great relevance to computer science, including
temporal logic [MP81] and epistemic logic (i.e., reasoning about knowledge) [Hal87]. In order
to explain our results, we briefly review the syntax and semantics of modal logic. The syntax
is quite simple: we start with primitive propositions and close off under negation, conjunction,
and application of the modal operator O. The standard semantics for modal logic is possible-
worlds semantics. A frame F is a pair (5, R), consisting of a set of possible worlds (or states)
and a binary relation R (called the possibility relation) on S. A (Kripke) structure M is a tuple
(S, R, ) consisting of a frame (5, R) and a truth assignment 7, which assigns a truth value to
each primitive proposition in each state in 5. We say that the structure (S, R, 7)is based on the
frame (5, R). (M,s) = ¢ (g is true in state s of structure M) is defined in a straightforward



way by induction on the structure of ¢. (We use the relation R to define the semantics of
O formulas). Modal logicians have historically been interested in properties of both frames
and structures [Ben85, HC84]. A formula ¢ is said to be valid in structure M = (S, R,x) if
(M, s) = ¢ for every state s € S. We say ¢ is valid in frame I if ¢ is valid in every structure
M based on F. Finally, we say that ¢ is structure (resp., frame) valid if ¢ is valid in every
structure (resp., frame). It is immediate from the definitions that a formula is structure valid
if and only if it is frame valid. It is also well-known that deciding structure/frame validity is
PSPACE-complete for K and S4, and co-NP-complete for S5 [Lad77].

When it comes to 0-1 laws, there are two questions we can investigate: almost-sure structure
validity and almost-sure frame validity. That is, we can consider all structures with state space
{1,...,n} and consider in what fraction of them a formula ¢ is valid, or we can consider all
frames with state space {1,...,n} and ask in what fraction of them ¢ is valid. In both cases a
0-1 law holds: that is, a formula is valid in almost all structures (resp., frames) with state space
{1,...,n} or almost none of them. However, although structure validity and frame validity
coincide, almost-sure structure validity and almost-sure frame validity do not.

There is a well-known translation from a modal logic formula ¢ to a first-order logic formula
¢/ with one free variable z. (See, for example, [Ben85] for an exposition.) This translation
has the property that the fraction of structures with state space {1,...,n} for which ¢ is valid
is precisely the same as the fraction of relational structures with domain {1,...,n} for which
Yzl is true. For future reference, we note that ¢/ has one unary predicate P corresponding
to each primitive proposition p in ¢ and one binary predicate R corresponding to the possibility
relation R. The 0-1 law for structure validity thus follows immediately from the 0-1 law for
first-order logic in light of this translation. Our proof of the 0-1 law for structure validity does
not proceed via this translation; instead, it uses the relatively straightforward observation that
if ¢ is a consistent propositional formula, then $ ¢ is almost-surely structure valid (where < is
the dual of O). Using this observation, we can show that deciding if a formula is almost-surely
structure valid is in A} (AL =4t PNP ie., P with an NP oracle, and is in the second level
of the polynomial time hierarchy [Sto77]). This suggests that almost-sure modal validity is
easier than both modal validity and the problem of deciding if an arbitrary first-order formula
is almost-surely true. Finally, we show that we can axiomatize the set of formulas that are
almost-surely structure valid in a straightforward way.

The proof of the 0-1 law in the case of frame validity is far more difficult. An argument
analagous to that used in the case of structure validity shows that for any modal formula ¢
which uses the propositional letters py, ..., pg, the fraction of frames with state space {1,...,n}
for which ¢ is valid is precisely the same as the fraction of relational structures with state
space {1,...,n} for which the IIi formula VP;...PV2¢/ is true. Recasting this in terms
of satisfiability, the fraction of frames with state space {1,...,n} for which ¢ is satisfiable is
precisely the same as the fraction of relational structures with domain {1,...,n} in which the
E% formula 3P .. .PkEImcpfo is true. Let MDL be the set of first-order formulas that arise as
the translation of modal formulas. We take 32 MDL to consist of all formulas of the form Jz ¢,
with ¢ € MDL; VaMDL is defined analogously. Our results can thus be interpreted as showing
that the class ¥1(32 MDL) has a 0-1 law. It is easy to show that 3z MDL is incomparable in
expressive power to both the Ackermann class and the Bernays-Schénfinkel class. We conjecture
that X1(3x MDL) is incomparable in expressive power to both ¥1(Ackermann) and Xi(Bernays-



Schénfinkel), although we have not proved this. We can show that %}(32 MDL) can capture
NP-complete properties. The techniques that we use to prove that a 0-1 law holds for frame
validity involve rather delicate combinatorial arguments, and are quite different from those used
by Kolaitis and Vardi. Note that ¥{(32 MDL) is actually a fragment of monadic 1. Thus, our
results help delineate when 0-1 laws exist for second-order logics.

We also show that the problem of deciding whether a formula is almost-surely frame valid
is hard for deterministic exponential time, and thus is harder than the frame validity problem
(assuming PSPACE # EXPTIME). Notice that the vocabulary for MDL is bounded, since it
involves only unary and binary predicates. To the best of our knowledge, this is the first time
that deciding if a formula is almost-surely valid with respect to a class of structures has been
shown to be harder than showing it is valid with respect to that class.

The rest of the paper is organized is follows. In the next section, we give the necessary
technical preliminaries on modal logic and measures. In Section 3, we examine the expressive
power of X1(3z MDL), and show that it can capture NP-complete properties. In Section 4, we
consider almost-sure structure validity, and in Section 5, we consider almost-sure frame validity.

2 Preliminaries

As we mentioned in the introduction, the formulas of propositional modal logic are those ob-
tained by starting with primitive propositions in some set ® and closing off under negation,
conjunction, and application of the modal operator O. We call the resulting language £(®). As
usual, we write ¢ V 9 for =(m¢ A =9), ¢ = ¥ for =p V1, and O for ~O-p. We give semantics
to these formulas via Kripke structures. A Kripke structure M over ® is a tuple (S, R,7), as
defined in the introduction. We use 7 to give the semantics for primitive propositions in ®; the
semantics of the Boolean connectives is as in propositional logic; finally, we define O¢ to be
true at a state s if ¢ is true in all worlds reachable from s via the R relation. Thus, we have

M,s) = pforape & iff n(s)(p) = true.

— iff (M, s) & ¢

M,s) =
EeApiff (M,s) =g and (M,s) = 9.

[
=
V2]

)
)
M,s) = Og iff (M,t) |5 ¢ for all ¢t such that (s,t) € R.

As usual, we say a formula ¢ is valid (resp., satisfiable) in model M = (S, R,7)if M,s |= ¢
for all (resp., some) s € S. We write M |= ¢ if ¢ is valid in M We say that ¢ is structure valid
if it is valid in all structures, and structure satisfiable if it is satisfiable in some structure. A
formula ¢ is valid in frame F' if it is valid in all models based on F’; ¢ is satisfiable in F if it is
satisfiable in some model based on F. Finally, we say ¢ is frame valid if it is valid in all frames,
and frame satisfiable if it is satisfiable in some frame.

The logic just defined, known as K, can be axiomatized as follows [HC68]:

A1. All instances of tautologies of propositional calculus

A2. (D A D(p = ) = DY



R1. From ¢ and ¢ = 9 infer » (Modus ponens)

R2. From ¢ infer O¢ (Generalization)

Modal logicians have considered numerous modal logics other than K. The ones of most
interest to us here are those that have been called T, S4, and S5. All these logics satisfy the
axioms of K. T is characterized by the axioms of K together with

A3. Op = ¢

S4 is characterized by the axioms of T together with:

A4. Op = O0¢

Finally, S5 is characterized by the axioms of 54 together with:
A5, —Op = O-0gp

Let M consist of all Kripke structures, and let M” (resp., M""; M"$") consist of all Kripke
structures where the R relation is reflexive (resp., reflexive and transitive; reflexive, symmetric,
and transitive, i.e., an equivalence relation). The following result is well known (see, for example,

[HC68] for a proof).

Theorem 2.1: K (resp., T; S4; S5) is sound and complete with respect to the structures in M
(/resp., Mr; .MTt; Mrst).

We can similarly define F to consist of all frames, and F” (resp., F'*; F"*') to consist
of all frames where the R relation is reflexive (resp., reflexive and transitive; and equivalence
relation). It is trivial to check that structure validity and frame validity coincide, thus K (resp.,
T; S4; S5) is also sound and complete with respect to the frames in F (resp., F"; F"t; Frst),

Let @ be a set of primitive propositions and let M,, ¢ (resp., F,, ) be the set of Kripke
structures (resp., frames) over ® with state space {1,...,n}. Notice that M, ¢ and F, ¢ are
finite if ® is finite. If @ is finite, then we take v, ¢ to be the uniform probability distribution
on M,, ¢ and take p, ¢ to be the uniform probability distribution on ¥, ¢. Although the main
interest in 0-1 laws has been for finite structures, for technical reasons, we also allow @ to
be infinite. There are a number of ways to proceed in this case, all of which turn out to be
equivalent for our purposes (see [GHK92] for further discussion of this issue). If ® is infinite,
we consider the o-algebra over M,, ¢ generated by M,, ¢/ for all finite subsets ® of ®. That
is, given a structure M € M,, g/, we consider the subset Ap; of M, ¢/ consisting of structures
that agree with M on the propositions in @', and consider the o-algebra generated by all sets
of the form Aps. We define v, ¢ on this o-algebra so that v, (Aaxr) = v,,0/(Aar). It is easy to
check that this is a well-defined measure. We similarly define a measure y, ¢ on F, . lor a
formula ¢ € L(®), we write v, ¢(¢) as an abbreviation for v, o({M € M, 6 : M |= ¢}), and
similarly for p,(¢). It is easy to see that if ¢ € L(®) and &’ O @, then py, 6(¢) = pn,0(¢), and
similarly v, 6(¢) = v,.e/(¢). Thus, without loss of generality, we need to consider only finite
sets ® when computing asymptotic probabilities. We omit the subscript ® in the rest of the
paper if its role is unimportant.



Let v(p) = im0 vu() and p(@) = lim, oo in(@). We say that a 0-1 law holds for
structure validity if for all modal formulas ¢, we have v(¢) = 0 or v(¢) = 1; we say that ¢ is
almost-surely structure valid if v(¢) = 1. Similar definitions can be made for frame validity.

Although we are mainly interested in computing v(¢) and p(e), in the process we need
to apply ¢ and v to events other than those defined by formulas. We are also interested in
computing the asymptotic limits when we restrict to structures in M”, M"!, and M"!, and
similarly for frames. We can make the obvious analogous definitions, for example, taking F,
to be the set of frames with state space {1,...,n} in which the R relation is reflexive, defining
pr (@) to be the fraction of frames in F), in which ¢ is valid and defining p"(¢) = lim,—oo ], ().

3 The expressive power of modal formulas

We begin this section by reviewing the translation from modal logic to first-order logic men-
tioned in the introduction. We then show that (32 MDL) can capture some NP-complete
properties, in particular satisfiability of propositional formulas.

Suppose the primitive propositions in the modal language are py, po,.... Consider the first-
order vocabulary @ consisting of the unary predicates Pj, Py,... and the binary predicate R.
We now show how to translate a modal formula ¢ to a first-order formula ¢/°(z) with one free
variable z over the vocabulary ®. We proceed by induction on structure:

e p/* = P(z) if p is a primitive proposition
o (P A=l Ay

o (—p) =(e")

o (Bp)* =Vy(R(z,y) = ¢[2/y)),

where ©f°[z/y] is the result of replacing all free occurences of z in ¢/ by y. Let MDL be the
set of first-order formulas that are of the form ¢/ for some modal formula ¢. Tt is easy to see
that when formulas in M DL are put into prenex form, we can have arbitrarily deep alternation
of quantifiers. Thus, MDL is syntactically distinct from the Ackermann class and the Bernays-
Schonfinkel class. Although we do not go into details here, we remark that the results of van
Benthem [Ben85] characterizing MDL show that in fact it is inequivalent in expressive power
to both of these classes.

Given a Kripke structure M = (S, R,7), let M/ be the relational structure over ® with
domain 5, where the interpretation of P; is the set of states in S where p; is true according to
7 and the interpretation of R is R. As we said in the introduction, the following result is well
known (see [Ben85] for a proof):

Proposition 3.1: ¢ is valid in M iff Vo' is true in M7,

The translation from modal formulas to MDIL uses an unbounded number of distinct vari-
ables in the quantification: For each occurrence of O, we have to quantify over a fresh variable
y. There has been interest recently in restricted languages where only a bounded number of



distinct variables appear (e.g., [[K89, KV90b]). Taking ® as above, let £2_(®) consist of all
first-order formulas over the vocabulary ® where at most 2 variables are used. As van Ben-
them has observed [Ben85], we can actually translate modal formulas into £2_(®), by cleverly
reusing variables. Using c,ofo’ to denote the new translation, the only different clause is in the
translation of O formulas:

o (O0p)" =Vy(R(z,y) = Va(z =y = /)

For example, while

(0O0p)/° = Vz(R(z,2) = Vy(R(z,y) = P(y))),

we have

(00p)" = Yy(R(z,y) = Ya(z = y = Yy(R(z,y) = P(y))))-

Although we do not pursue this issue further here, this observation shows at least one way in
which modal formulas are less expressive than full first-order formulas.

We take IT}(Vz MDL) (resp., ©}(3z MDL)) to consist of formulas of the form VP Yz (resp.,
3P Jzp), where ¢ is a first-order formula in MDL with unary predicates in P and binary
predicate R. Given a frame I/ = (5, R), let F° be the relational structure over R with domain
S, where the interpretation of R is R. It immediately follows from Proposition 3.1 that

Proposition 3.2: ¢ is valid in F iff VPVzo/® is true in F, where P includes the unary
predicates that appear in o°.

Thus, frame validity can be expressed by formulas in I1} (V2 MDL); analogously, frame satis-
fiability can be expressed by formulas in ¥1(3z MDL). This leads us to consider the expressive
power of X1 (JzMDL). It is well-known that ¥1(3z MDL) is incomparable in expressive to first-
order logic [Ben85]. We conjecture that ¥1(3zMDL) is incomparable in expressive power to
both ¥1(Ackermann) and %}(Schonfinkel), but have no proof of this. Of more interest to us
here is that, just like ¥](Schénfinkel) [KV87] and %}(Ackermann) [KV90a], ¥1(FzMDL) can
express NP-complete properties. In particular, we now give a construction (due to Moshe Vardi)
showing that %}(32 MDL) can express satisfiability of CNF formulas.

With every propositional formula a in CNF, we construct a frame F,; we then define a
modal formula ¢gsr such that @gar is satisfiable in F,, iff a is a satisfiable propositional
formula. This gives us the result we want.

Given a, we think of F,, as a rooted dag. From the root, we construct one successor for
each clause in a. We also have a leaf node for each primitive proposition that appears in a.
Suppose that § is one of the clauses in a. If the primitive proposition p is one the disjuncts
that appears in 3, then there is a path of length one to the node representing p. If —p is one
the disjuncts in 3, then there is a path of length two from the node representing 3 to the node
representing p. Finally, we add a path of length 3 starting at the root. (This will allow us to
distinguish the root from all other nodes in F,, none of which are at the beginning of paths
of length longer than 2.) This completes the description of Fi,. Thus, for example, if a is the
formula (p1 V =p2 V p3) A (p2 V —=p3 V pa), the frame F), is shown in Figure 1 below. We take
psar to be OOOtrue A O((Og A Ofalse) vV OO—g).



Figure 1: The frame F,

Theorem 3.3: If a is a propositional formula in CNF, then pgat is satisfiable in F, iff the
CNF formula a is satisfiable.

Proof: Suppose that a is satisfiable. Let v be a truth assignment satisfying a. Consider
the structure M = (54, R4, T, ) based on F,, where 7, is defined so that, for each primitive
proposition p that appears in a, if s € S, is a leaf node representing p, then 7,(s)(q) = v(p).
That is, ¢ is true at the state s according to m, iff p is true according to ». The truth value
that 7, assigns to ¢ at non-leaf nodes is irrelevant. It is easy to check that, if so is the root of
F,, then (M,,s0) |= @sar; thus @gsar is satisfiable in F,.

Conversely, suppose that ¢g47 is satisfiable in F,. Thus, thereis a model M, = (5., Ra, 7o)
and a state s € S, such that (M,,s) = @sar. In particular, that means that (M,,s) =
OOOtrue. It is easy to see that this forces s to be the root. Let v be the truth assignment to
the primitive propositions in a such that v(p) = true iff ¢ is true according at 7, at the node
in S, corresponding to p. We leave it to the reader to check that @ must be true under truth
assignment v, and hence that a is satisfiable. 1

This shows that satisfiability of CNF formulas is expressible in %1 (32 MDL).

4 0-1 laws for structure validity

It is easy to see that the mapping M — M/ gives a one-to-one correspondence between Kripke
structures with state space {1,...,n} and relational structures over ® with domain {1,...,n}.
Thus, the following corollary to Theorem 3.1 is immediate.

Corollary 4.1: The fraction of Kripke structures with state space {1,...,n} for which ¢ is
valid is the same as the fraction of relational structures over ® for which Vzp!® is true.

Putting this together with the 0-1 law for first-order logic, we get

Corollary 4.2: There is a 0-1 law for structure validity.



This translation does not give us the other results claimed in our introduction. These all
follow from the following simple observation. Recall that < is the dual of O, so that Oy is an
abbreviation for =O-¢p. Thus, (M,s) |= O if there is some state ¢ such that (s,¢) € R and

(M,t) = .

Proposition 4.3: If ¢ is a consistent propositional formula, then Oy is valid in almost all
structures.

Proof: Suppose that ¢ mentions k primitive propositions. There are 2% possible assignments
of truth values to these primitive propositions. Since ¢ is consistent, then at least one of
these truth assignments makes ¢ true. Thus, given states s and ¢ in a Kripke structure, the
probability that ¢ is a successor of s satisfying ¢ is at least 1/2%+1. The probability that a given
state in a structure with state space {1,...,n} does not have any R-successors where ¢ is true
is thus at most (1 — 1/2%*1)". Hence, the probability that some state in such a structure does
not have any R successors where ¢ is true is at most a(n) = n(1 — 1/28+1)". Tt is easy to see
that lim,, ., a(n) = 0. Thus, for almost all structures, Gy is valid. I

We now provide a translation from an arbitrary modal formula ¢ to a propositional formula
", with the property that ¢ < ¢" is almost-surely valid. We proceed by induction on the
structure of formulas:

e p" = p for a primitive proposition p

o (pAY) =¢"AY"

T

o (mp) =y

o (Og) = {

true if " is valid
false otherwise.

Proposition 4.4: The formula ¢ < ¢" is valid in almost all structures.

Proof: The only nontrivial case is if ¢ is of the form O%. By the inductive hypothesis, we
know that @ < 9" is valid in almost all structures. If ¥" is valid, it follows that % is valid in
almost all structures, and hence O is valid in almost all structures. Thus, O < true is valid
in almost all structures. But (Ow)" =qe¢ true in this case, so Ot < (O%)" is valid in almost
all structures. If ¥” is not valid, then —%" is satisfiable. By Proposition 4.3, we know that
&= is valid in almost all structures. From the inductive hypothesis, it follows that G- is
valid in almost all structures, and hence that Ov < falseis valid in almost all structures. Since
(O9)" =ger false in this case, again we get that Oy < (Ov)" is valid in almost all structures. 1

We now immediately get:

Theorem 4.5: For all modal formulas ¢, we have v(p) = 1 iff the propositional formula ¢” is
valid; otherwise v(p) = 0.



We next consider the complexity of computing whether a formula is almost-surely valid.
The situation is surprisingly subtle. For one thing, it turns out to matter if we take ® to be
finite or infinite. Notice that if we take ® to be finite, the complexity of computing satisfiability
for propositional formulas over ® is linear time. We get to NP only by allowing an unbounded
number of propositions. An analogous situation occurs here (which is precisely why we allowed
® to be infinite in general).

There is another subtlety involving how we represent formulas. Typically, when we compute
upper or lower bounds on complexity for the satisfiability problem, bounds are given as functions
of the length of the formula, represented as a string of symbols. Of course, there are other ways
of representing the formula. We could represent it as a tree, with the leaves labeled by primitive
propositions and the interior nodes labeled by operations such as conjunction, negation, or O.
With each interior node we can associate the formula that results from applying the operation
labeling the node to the formulas represented by the nodes of its successors. It is easy to see
that the size of the tree (i.e., the number of nodes in the tree) is proportional to the length of
the original formula. Thus, choosing between these two representations is a matter of taste.

Rather than representing the formula as a tree, we could represent it as a dag (directed
acyclic graph), so that a node can be the successor of more than one node. The dag represen-
tation can be exponentially more succinct than the tree representation. For example, if ¢ is
a complex formula, then the representation of ¢ = ¢ A =0y as a dag requires only two more
nodes than the representation of ¢, since the node representing ¢ can be “reused”, although the
length of 7 is more than twice the length of ¢. Because the dag representation is more succinct
than the tree representation, a lower bound is stronger if it is proved for the tree representation,
while an upper bound is stronger if it is proved for the dag representation. To distinguish the
two representations, we use ||¢|| to denote the length of ¢ under the tree representation and
|| to denote the length of ¢ under the dag representation.

Typically not much issue is made of the representation of a formula. This is because for all
logics that we are aware of, the complexity of validity is independent of whether we use a tree
or dag representation. In particular, it is easy to see that this is true for propositional logic
and all standard modal logics. Essentially, any upper bound for complexity that is based on
considering subformulas will typically be independent of the representation. The situation is
different if we consider the complexity of evaluating the truth of a propositional formula. This
is known to be complete for polynomial time if we take the dag representation [Lad75] and
complete for alternating logarithmic time if we use the tree representation [Bus87].

If ® is finite, it is easy to show that deciding almost-sure structure validity for formulas in ®
is in polynomial time. (Of course, the constants are exponential in |®|.) If ® is infinite, then it
is easy to show that the problem of deciding almost-sure structure validity is in A} = PNP,
the second level of the polynomial hierarchy [Sto77]. This is true whether we use the tree or dag
representation. Moshe Vardi has proved a matching A% lower bound for the dag representation;
techniques independently developed by Gottlob [Got95] can also be used to prove that for the
dag representation, the problem of deciding almost-sure structure validity is Ab-complete. On
the other hand, using Gottlob’s techniques, it can be shown that for the tree representation,

(n)

at

the problem of deciding almost-sure structure validity is Ag’log -complete. (The complexity
class Ag’log(n) corresponds to languages where on input size n, we are allowed to ask only log(n)

queries of the NP oracle.) Thus, there is almost surely a gap between the complexity of deciding



almost-sure structure validity for the the tree representation and the dag representation.

Theorem 4.6: If ¢ is finite, then deciding almost-sure structure validity for formulas in L(®)
is in polynomial time (for both the dag and tree representations). If ® is infinite, then deciding
almost-sure structure validity is Ab-complete for the dag representation of formulas, and is
Ag’log(n)-complete for the tree representation.

Proof: We can reduce the formula ¢ to ¢" by querying an oracle for satisfiability no more than
|| times. One more query will determine if ¢" is valid. These are polynomial time queries if ®
is finite, whether ¢ is represented as a tree or a dag; they are NP queries if ® is infinite. Thus,
it follows that almost-sure validity is in polynomial time if @ is finite and in A} if ® is infinite,
for both representations.

We now present a modification of Vardi’s proof of the Al lower bound for the dag rep-
resentation. Consider a pair (o, ®’) consisting of a propositional formula a and a sequence
&' = (p1,...,p,) of primitive propositions such that all the primitive propositions that appear
in a are contained in ®’. We can order the truth assignments to the propositions in @ in lexi-
cographic order, where we write v < v’ for two valuations if for some 7, we have v'(p;) = true,
v(p;) = false, and v(p;) = v'(p;) for j < 4. Let the language L consist of all pairs (a, ®’)
such that a is satisfiable, and if v is the maximum satisfying assignment for a (with respect
to the lexicographic order just defined), we have v(p,) = true. This language is known to be
Ab-complete [Kre88]. We now show how to reduce checking membership in this language to
checking whether a modal formula is almost-surely structure valid.

Given (a, (p1,...,pn)), we define modal formulas aq,...,a,, ¢1,...,q,, inductively. The
goal is to define ¢, so that ¢, is almost-surely structure valid iff a is satisfiable and the
maximum satisfying assignment for a makes p,, true. We take ag = a. Suppose we have
defined ayg,...,a, and ¢,..., ¢y, for m < n. We define ¢,41 = O(Pmy1 A ) and a4 to
be o with all occurences of p;, 7 < m 4 1, replaced by ¢;. If we use the tree representation of
a, then it is not hard to show that, in the worst case, ||a,,|| can grow exponentially large. As
we now show, there is a succinct dag representation of these formulas.

We can assume without loss of generality that all the p;’s actually appear in a (for if p;
does not appear, we can always add a conjunct of the form p; V —p; to a). It is thus easy
to see from the definition of a,, and ¢, that if m < n, then the dag representation of both
Gm+1 and a,, contain as subdags representations of ¢i,...,¢,. Given a dag representation
for a,,, there is clearly a dag representation of ¢,,4+1 such that |g,+1| = |am| + 3: we simply
take the dag representation for a,, and add nodes for p,,4+1, A, and <. There is also clearly a
dag representation of a,,+1 such that |ay,4+1] < |a| + |gn41]|. We simply write down the dag
representation of a and ¢,4+1, and then replace all edges in the dag for a leading to p;, for
j < m+ 1, with edges leading to the node representing ¢; in the dag representation for ¢, 41.
Now an easy inductive argument shows that, with this representation, we have |¢,,| < m(|a|+3)
and |a,| < (m+ 1)|a| + 3m. In particular, it follows that |¢,| < n(|a] + 3).

Finally, we show by induction on m that if m > 1 then p, A a],_; is satisfiable iff « is
satisfiable and the maximum satisfying assignment for & makes p,, true (where the superscript
7 on a,;,—1 denotes the reduction of Proposition 4.4).

First suppose m = 1. Observe ag = a is a propositional formula, so o, = ag. Clearly p; A
is satisfiable iff a is satisfiable and the maximum satisfying truth assignment for a makes p;

10



true.

For the general case, suppose that p,, A a] _; is satisfiable. It is easy to see from the
definition of a,,—1 that aj,_; is a with p; replaced by ¢j, 7 = 1,...,m — 1. It is immediate
that if a7, _; is satisfiable, then so is a. By the definition of the reduction relation, ¢; is
true if p; A aj_q is satisfiable, and false otherwise. Since a is satisfiable, from the induction
hypothesis it follows that ¢ is true iff the maximum satistying assignment for a makes p; true.
Thus, ¢; is the truth value of p; under the maximum satisfying assignment to a for j < m.
It follows that any truth assignment to p,,,...,p, that satisfies a] _; can be extended to a
truth assignment satisfying a that agrees with the maximum truth assignment satisfying a on
the truth values of py,...,pn—1. This means that p,, A a,_; is satisfiable iff there is a truth
assignment satisfying a that agrees with the maximum truth assignment satisfying a on the
truth values of pq,...,pn_1, and makes p,, true. It follows that p,, A o] _, is satisfiable iff the
maximum truth assignment to a makes p,, true. For the converse, suppose that the maximum
truth assignment satisfying a makes p,, true. Similar arguments to those just used show that
this truth assignment must satisfy p,, A @], _;. This completes the inductive step of the proof.

Notice that, by Proposition 4.4, ¢, is almost-surely structure valid iff p, A o] _ is sat-
isfiable. By what we have just shown, it follows that ¢, is almost-surely structure valid iff
(a,(p1,...,pn)) € L. Thus, deciding almost-sure structure validity is A} hard.

1 .
°8(") lower bound for the tree representation, we use an argument due to

To prove the AY
Larry Stockemeyer: Given a Turing machine A with an oracle for SAT that runs in polynomial
time and asks only log(n) queries, we can describe its computation by a tree with polynomially
many branches, each of polynomial length. (Each branch corresponds to one possible sequence
of outcomes of queries to the oracle.) Using standard techniques, we can easily encode this tree
in a modal formula, using & formulas to represent queries to the oracle. Thus, given A and an
input z, we can effectively find a modal formula ¢4 , such that ¢ is almost-surely satisfiable
(i.e., v(~pA ) = 0) iff A accepts input z. This gives us the lower bound. Note for future

reference that wp , has no nested occurrences of O.

The Ag’log(n) upper bound for the tree representation follows from Gottlob’s results; we
refer the reader to [Got95] for further details. 1

Finally, we can use our techniques to get a complete axiomatization for almost-sure validity.
Consider the following axiom:

C. O, if ¢ is a consistent propositional formula.!

Let K¢ be the axiom system resulting from adding axiom C to K. It turns out that the logic
characterized by K¢ was introduced by Carnap [Car47]. It is not a “logic” in the traditional
sense, in that it is not closed under uniform substitutions. For example, $p is provable in
K¢, where p is a primitive proposition, but if we substitute ¢ A ¢ for p, the resulting formula,

1Of course, checking whether a given formula is an instance of this axiom scheme is NP-complete. We can get
an axiom that is simpler to check (and also gives us completeness, with a little extra work) as follows. As usual,
we say that a literal is either p or —p, where p is a primitive proposition. A consistent conjunction of literal
is a conjunction of literals that does not contain both p and —p as conjuncts for some primitive proposition p.
Rather than considering <¢¢ for any consistent propositional formula ¢, it is not to hard to show that it suffices
to consider Oy where @ is a consistent conjunction of literals.
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&(gA—q), is not provable. Nevertheless, as we now show, K¢ characterizes almost-sure structure
validity.

Theorem 4.7: K¢ is a sound and complete aziomatization for almost-sure structure validity.

Proof: The soundness of axiom C follows immediately from Proposition 4.3. For completeness,
it suffices to show that the validity ¢ < ¢ is provable in K¢. We proceed, as usual, by induction
on the structure of ¢. The only nontrivial case is if ¢ is of the form O%. By the induction
hypothesis, we can assume that 1 < 1" is provable. Using Axiom A2 and straightforward modal
reasoning, we can show that O & 01" is provable. Now there are two cases to consider. If 3"
is valid, then 9" is provable (by A1), and hence (by R1) so is O%". It follows that Ov¢" < true
is provable as well. Since (O%)" = true in this case, we are done. If %" is not valid, then =" is
satisfiable. By axiom C, &—1%)" is provable. But this is just an abbreviation for -O--%". Again,
using straightforward modal reasoning, it follows that =O%" is provable. Thus, O¢" & false is
provable. Since (O%)" = false in this case, we are done. 1

As Fagin showed [Fag76], there is one (infinite) relational structure U., with the property
that a first-order formula (without constant or function symbols) is true in Uy, iff it has asymp-
totic probability 1. From Proposition 3.1, a similar result holds for structure validity. The
following result characterizes this structure, and gives further information.

Given a set @ of primitive propositions, we define the canonical asymptotic Kripke structure
over ®, Mg, as follows: Let Ilg consist of all the truth assignments to the propositions in
® which make only finitely many propositions true. Let Mg = (Ilg,R,7), where R is the
universal relation, and if v € Ilg, then 7(v) = .

Theorem 4.8: For all formulas ¢ € L(®), we have v(¢) = 1 iff ¢ is valid in Mg.

Proof: Left to the reader. (We remark that that we could have taken Ilg to consist of all the
truth assignments to the primitive propositions in @, and the same construction would have
worked. Our construction shows that if ¢ is countable, then we can take Mg to be countable.)

We have now settled the questions regarding 0-1 laws for structure validity for the modal
logic K. We can ask the same questions for the modal logics T, 54, and S5; that is, we can
consider limiting probabilities with respect to M”", M"*, or M"5,

It is easy to see that the 0-1 law for M” coincides with that for M. This follows immediately
from the fact that Propositions 4.3 and 4.4 hold (with essentially no change in proof) even if
we restrict to structures in M”. Thus, we get

Theorem 4.9: For all modal formulas ¢, we have v" (@) = 1 iff the propositional formula
¢" is valid; otherwise v"(p) = 0. Moreover, K® is a sound and complete aziomatization for
almost-sure validity with respect to M.

Things change significantly if we consider M"* and M”*t.?2 We start with M”*!. Since there
are fewer structures in M"*! than in M, there are more formulas valid when we restrict to M"*!

?In a preliminary version of this paper, which appears in the Proceedings of the Seventh Annual IEEE
Symposium on Logic in Computer Science, 1992, we claimed that K¢ is also a sound axiomatization for almost-
sure validity with respect to M"" and M"*'. As the material below shows, this claim is false. We thank Moshe
Vardi for pointing out the potential problems in our earlier proof.
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than M. On an axiomatic level, there are more axioms in S5 than in K. We might expect that
more formulas (or, at least, no fewer) would be almost-surely valid when we restrict to M”*!
than if we consider M. As we now show, this is false.

First observe that if ¢ is an axiom of S5, then v(¢)) = 1. For example, consider the axiom
—0¢ = O-0¢. By definition, we have that either (Op)” = true or (Op)" = false. 1t is easy to
check that, in either case, we have (-O¢ = O-0¢)" = true. Similarly, it is easy to show that,
for any formula ¢, we have (Op = ¢)" = true and (Op = O0¢p)" = true. The fact that all
the axioms of S5 hold with probability 1 now follows immediately from Proposition 4.4. This
is true despite the fact that, in almost all structures of M, the relation R is not an equivalence
relation.

Clearly the formulas provable in S5 are valid in all (and hence almost all) structures in M"*%.
We now show that v"*'(¢) = 1 iff ¢ is provable in S5. We need the following result, which is
an easy consequence of a more general result due to Compton [Com87]. Compton shows that
if a class of relational structures is closed under disjoint unions and components and satisfies
some other properties, then, for any given component type and any £, the probability that in a
random structure there are at least £ components of this type approaches 1. The components in
the case of equivalence relations are the equivalence classes. For each k, the size k equivalence
classes form a component type. Equivalence relations are easily seen to satisfy all of Compton’s
conditions. Thus, in particular, we get

Theorem 4.10: For all k and £, we have

lim v ({M = (S, R, 7)€ M. : there are at least { R-equivalence classes of size k}) = 1.

n—od

Theorem 4.11: For all modal formulas ¢, we have v"(

I/TSt(QO) =0.

) = 1 iff ¢ is provable in S5; otherwise

Proof: Clearly if ¢ is provable in S5, then v"*'(¢) = 1. For the converse, suppose that ¢ is

not provable in S5. Thus, —¢ is consistent with S5. By a result of Ladner [Lad77], it follows
that = is satisfiable in a frame M = (S, R,7) € M"* such that |S| = k& < |=p| and R is the
universal relation on 5. Fix € > 0. Clearly there is some £ > 0 so that if we define the truth
assignment at random in ¢ frames in F"*' of size k, then the probability that at least one of
them will result in a structure isomorphic to M, and hence satisfying —¢, is at least 1 —e. From
Theorem 4.10, it follows that lim,, . v.**({M € M5 : - is satisfied in M}) > 1 — e. Since

T

this is true for all € > 0, we have that v"**(¢) = 0. I

It immediately follows that S5 is a sound and complete axiomatization for almost-sure
structure validity with respect to M”*!. In particular, that means that a formula such as Op
(where p is a primitive proposition) which is almost-surely valid with respect to M, is not
almost-surely valid with respect to M"*¢,

The following complexity results are also immediate from the result of [Lad77] mentioned
above.

Corollary 4.12: If ® is finite, then deciding almost-sure validity with respect to M”' for
formulas in L(®) is in polynomial time; if ® is infinite, it is co-NP-complete (for both the dag
and tree representations).
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We now turn our attention to M™. To characterize almost-sure structure validity with
respect to M, we need to obtain asymptotic properties of structures where the possibility
relation is reflexive and transitive. While there does not seem to be too much known about
this case, a great deal is known about the case where the possibility relation is a partial order.
In particular, we have the following result, due to Kleitman and Rothschild [KR75]. Given
a partial order < on a set 5, we say that an element s € § is an immediate successor of an
element s’ € §if s > &', and forall tin S, if s >¢ > s, thent = 5.

Theorem 4.13: [KR75] There are 2(n*/4)+(3n/2)+0(log(n)) partial orders on a set of n elements.
In addition, with asymptotic probability 1, they can be partitioned into 3 levels: Lg, the set of
“maximal” elements which have no immediate successors, L1, the set of elements all of whose
immediate successors are elements in Lo, and Lg, the set of elements all of whose immediate
successors are elements in Ly. Moreover, |Lo| = |L2| = n/44o0(n), |L1| = n/2+4 o(n), and each
element in L;, 1 = 1,2, has as immediate successors (asymptotically) half the elements in L;_4.

We now show that, almost surely, every reflexive transitive relation is in fact a partial order,
so that the results of Kleitman and Rothschild apply to reflexive transitive relations as well.

Theorem 4.14: lim,,_, v;/({M = (9,R,7) € M"™ : R is a partial order on S} = 1.

n

Proof: Given a reflexive transitive relation R on S, define the equivalence relation ~ via s ~ ¢t
iff both (s,7) € R and (¢,s) € R. If ~ partitions S into k equivalence classes, then the quotient
relation R/ ~ is a partial order on these k equivalence classes. Clearly R is a partial order iff
~ is the trivial relation, where all the equivalence classes are singletons.

Let Py be the number of partial orders on a set of k£ elements and let {Z} be the number of
ways of partioning n elements into exactly k equivalence classes. ({Z} is the Stirling number
of the second kind; see [GKP89]). Thus, the number of reflexive transitive relations which are
partial orders is P,, while the number of reflexive transitive relations which are not partial
orders is 3, Pr - {}}. To prove the result, it suffices to show

lim Zk<n Py - {Z} _

n—00 Pn

0.

In order to do this, we need a good estimate on {}}. We begin by showing that (})n!is
an overestimate for {Z} To see this, consider any partition, and order the equivalence classes
by the minimal elements appearing in them, and order the elements in an equivalence class
in increasing order. This gives us an ordering of the n elements in the domain. Suppose the
equivalence classes (listed in this order) have size ny,...,ng. This corresponds to choosing
elements n1,m1 + no,...,n1 + --+ + ng from the domain. Thus, with each partition into &
equivalence classes, we can associate a unique pair consisting of a permutation and a choice of
k elements out of n.

This estimate suffices for values of k£ which are smaller than n — 4log(n). We use a finer
estimate for {7} if & > n —4log(n). In this case, at least k —4log(n) > n — 8log(n) equivalence
classes must have size 1. The remaining 4log(n) equivalence classes come from n — (k —
4log(n)) < 8log(n) elements. Thus, using our earlier estimate, a bound on {7} in this case is
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given by

_ 28 log(n)(log(n)+1) ]

By Theorem 4.13, we can safely approximate Py by 2K*/4 in our asymptotic estimates. Using
our estimates for {7}, we obtain

n—1 n ) n—4log(n) n / n—1 n /
Loki/4 _ Cok%/4 _ok?/4
] i R I e

k=1 k=1 k‘:n—4log

n—4log(n) n—1
< n! 9(n—4log(n))?/4 ( Z (Z)) + 98log(n)(log(n)+1) Z ok?/4

k=1 k=n—4log(n)+1
< it 2(n—1l0g(m)* agn | g8log(m)(og(m)+1)5((n=1/4)+1
< 2(n2/4)—nlog(n)+n+4 log? n + 2(n2/4)—(n/2)—}-1610g2 n+8log(n)+2 )

The theorem now immediately follows. I

Using Theorems 4.13 and 4.14, we can prove a 0-1 law for structure validity with respect to
M" and characterize those formulas that are almost-surely structure valid. Our first step is to
get an analogue to Theorem 4.8.

We define the canonical po-structure over ® to be the structure M3” = (S, R, n) defined
somewhat analogously to the canonical asymptotic Kripke structure over ®. Rather than
having one state correspond to each truth assignment in Ilg, we have three states corresponding
to each truth assignment. Thus, we take S = {s,,t,,u, : v € llg}. We define 7 so that
T(sy) = 7(ty) = 7(u,) = v. Finally, we define R so that for all v € Ilg, the only R-successor
of u, is u,, the R-successors of t, are t, itself and u,, for v’ € Il, and the R-successors of
s, are s, itself, and t,/, u, for v’ € Ilg. If we think of a partial order on S defined via s < ¢
if (s,t) € R then, in terms of the partition described in Theorem 4.13, the nodes s,, v € 1lg,
are in Ly (we henceforth call these root nodes), the nodes t,, v € llg, are in Ly (we call these
intermediate nodes), and the nodes u,, v € Ilg, are in Lo (we call these leaf nodes).

Theorem 4.15: For all modal formulas ¢ € L(®), we have vi (@) = 1 iff ¢ is valid in M§’,
and vy () = 0 otherwise (i.e., vy (p) = 0 iff ~¢ is satisfiable in Mg’ ).
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Proof: By Theorems 4.13 and 4.14, it suffices to show that ¢ is valid (resp. satisfiable) in Mg’
iff ¢ is almost-surely valid (resp. almost-surely satisfiable) in structures M = (5, R, ) such
that R is a partial order satisfying the properties described in Theorem 4.13. These properties
guarantee, among other things, that there are O(n) states in each of Lg, L1, and Lz, and that
the states in L; and Ly have O(n) R-successors. Suppose & is finite. Given such a structure
M = (S,R, ), it is almost surely the case that for each pair of truth assignments v, v’ to the
primitive propositions in ®, there is a state s such that n(s) = v, and if s is not in Lg, then
there is a state ¢ such that (s,t) € R and 7(¢) = v’. With these obervations, the result is almost
immediate. We leave details to the reader.

If & is infinite, given a formula ¢ € L(®), let &' be a finite subset of ® such that ¢ €
L(®). It is easy to see that lim, o vpa(@) = lim,—oo v, ¢/(¢). By the arguments above,
limy, o0 V00 () = 1iff ¢ is valid in M}/, and lim,_ v, ¢/(¢) = 0 otherwise. Finally, it is
easy to see that ¢ is valid (resp. satisfiable) in MJ; iff ¢ is valid (resp. satisfiable) in M3’. The
result now follows. Il

Theorem 4.15 not only shows that there is a 0-1 law for structure validity with respect to
M" but gives us the necessary tools to get a complete axiomatization for almost-sure validity.

Consider the following axioms:
DEP2. —|(Q01 A <>(—|991 Ao A <>(—|§02 AN @3 A <>(—|303))))

FULL. (o1 AO(mp1 Apa AO(mp2)) = O(pa A Ows), if ¢a and @5 are consistent propositional
formulas.

C'. (Y= 0y) Vv Opif ¢ is a consistent propositional formula.

The axiom DEP2 (which stands for depth 2) captures the fact that there cannot be “paths”
of length 3 in the canonical po-structure. The axiom FULL captures the fact that all paths
starting at root nodes of the canonical po-structure have length 2. Note that the antecedent
of FULL holds only at root nodes; the conclusion clearly holds at root nodes as well. Axiom
C’, a weakening of axiom C, says that either a state is a leaf of the canonical po-structure, in
which case ¥ = O holds, or every satisfiable propositional formula is satisfied in one of its
successors. of them. Let S41 consist of S4 together with the axioms DEP2, FULL, and C’.

Theorem 4.16: S/T is a sound and complete aviomatization for almost-sure structure validity
with respect to M"t.

Proof: Since every formula ¢ is in £(®) for some finite ®, soundness is immediate from
Theorems 4.15. Completeness follows using Theorem 4.15 and a standard “canonical model”
construction, which goes back to [Mak66] (see, for example, [HM92] for examples of its appli-
cation in modal logic). Indeed, for finite @, the canonical model construction can be shown to
give precisely the canonical model MJ°. We omit details here. I

Finally, we consider complexity.

Theorem 4.17: If ® is finite, then deciding almost-sure validity with respect to M for for-
(n)

mulas in L(®) is in polynomial time; if ® is infinite, it is Ag’log -complete for the tree repre-
log(n)

sentation, Ay -hard for the dag representation and in AY for the dag representation.
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Proof: The result is immediate for the case that  is finite, since then Mg’ is finite and it can
easily be checked whether a given formula ¢ is valid in Mg°. Suppose that @ is infinite.

For the upper bound, we show that, given a formula ¢, we can effectively find a formula
©* whose length is polynomial in that of ¢ such that ¢ is almost-surely structure valid with
respect to M" iff ¢* is almost-surely structure valid with respect to M. The upper bound
then follows from Theorem 4.6.

Given a formula ¢, we actually construct three formulas, ©°, ¢!, and ©?, with the property
that ¢ is valid iff ¢ is true at the leaves of the canonical po-structure, ¢? is valid iff ¢ is
true at all the root nodes of the canonical po-structure, and ¢! is valid iff ¢ is true at all the
intermediate nodes of the canonical po-structure. We can then take ¢* = ©® A ! A 2.

We define the mapping ¢ — ¢*, i = 0,1,2 by induction on structure, with the only inter-
esting clause being the one involving O:

e p' = p for a primitive proposition p
o (pAY) =¢ N
[ ] (—W‘O)Z = —|§0i
0 . .
; @ ife=20
* (O¥) {gol/\Dapl_l ifi=1,2.

The following facts are now easy to prove:

1. (a) ¢° is a propositional formula, (b) [¢°| < |¢|, and (c) if u is a leaf node in M%’, then
M ulE o= ¢

2. (a) ¢! has no nested occurrences of O, (b) if there are k occurrences of O in ¢, then
|0t < || + k|¢°] (the proof is by induction on k); it follows that |¢!| < |¢]?, and (c) if ¢
is an intermediate node in MY, then M’ t |= ¢ = .

3. (a) ¢? has depth of nesting of O of at most two, (b) if there are k occurrences of O in
o, then |@?| < |p| + k|@'; it follows that |¢?] < |¢|?, and (c) if s is a root node in M,
then M5’ s = ¢ = 2

It is also easy to see that

4. if ¢ is a propositional formula, then Mg, v |= ¢ iff Mg°, u, |= ¢.

5. if there are no nested occurrences of 0 in ¢, then Mg, v = ¢ iff M}’ t, E .
6. if the depth of nesting of O in ¢ is at most 2, then Mg, v |= ¢ iff M3’ s, |= ¢.

Putting these facts together, we see that ¢ is valid in MJ” iff ¢° A ! A ? is valid in Mg. From
Theorems 4.7 and 4.16, it follows that K¢ F % A ' A 2 iff S41 F . From Theorem 4.6, it
follows that deciding almost-sure validity with respect to M"* is in A} for the dag representation

and in Ag’log(n) for the tree representation.
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For the lower bound in the case of the tree representation, recall that in the proof of the
corresponding lower bound in Theorem 4.6, given an oracle Turing machine A that, on input
of size n, asks only log(n) queries of the NP-oracle, and an input z, we constructed a formula
©A, such that A accepts z iff 4 , is almost-surely satisfiable with respect to M. Moreover,
©A,; had no nested occurrences of O. Let ¢ be a primitive proposition not appearing in ¢4 ,.
Notice that ¢ A O—g cannot be satisfied at a leaf node in M}°. From facts (5) and (6) above,
it follows that @4 . A g A O is satisfiable in Mg iff oa . A g A O—g is satisfiable in Mg. It
is also easy to see that pa , A ¢ A O—q is satisfiable in Mg iff ©p , is satisfiable in Mg. By
Theorem 4.8, @4 . is satisfiable in Mg iff ¢4 , is almost-surely satisfiable with respect to M.
The lower bound now follows. Clearly the same lower bound holds for the dag representation.

Our proof shows that checking for almost-sure validity with respect to M’ reduces to
checking for almost-sure validity of formulas where O is nested to depth 2. We do not know if
this is any easier than the general problem. In particular, we have not been able to close the
(n)

gap between Ag’log and Al in the case of almost-sure validity with respect to M.

5 0-1 laws for frame validity

Our main goal in this section is to prove the 0-1 law for frame validity.
Theorem 5.1:  For every modal formula ¢, either u(p) = 0 or u(p) = 1.

Our approach to proving Theorem 5.1 is similar to the standard tableau technique for modal
satisfiability [HC68]. We define a class of frames called the special frames, and reduce almost-
sure frame satisfiability to satisfiability in special frames. This is made precise in Theorem 5.5
below. In order to define special frames, we first need to define a few other notions.

Definition 5.2: Given a frame /' = (5,R), s € S and A C 5, define R(s) = {t : (s,1) € R}
and R(A) = UieaR(t). Similarly, define R™!(s) = {t: (¢,5) € R} and R™1(A) = UseaR™(¥).
If BC S, wesay B R-covers Aif ACR™YB). 1

Definition 5.3: A labeling of a frame (5, R) is a function f that assigns each state in S a
non-negative real number. The labeling f is e-safe for € > 0 if for every subset S’ of states such
that mingess f(s) > € we have

> () > > f(s)- ().

ses’ (s,5")€((8'xS")=R)

Definition 5.4: A frame I’ = (5, R) is e-special (for € > 0) with respect to So C S and labeling
fif

SP1. f is e-safe.

SP2. For all T C 5 — So, if X oie((s-50)-1) [(t) < 1 — € then R(s) N (S — ) = T for some
s € 5p.
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SP3. Forall T C S — S8p, if 3 ;e f(1) > 1+ € then T R-covers Sj.

A structure M = (S5, R, w)is e-special for ¢ with respect to So C S and f if (a) ¢ is satisfiable
in M, (b) the underlying frame (5, R) is e-special with respect to Sp and f, and (c) for all
subformulas of ¢ of the form O and all s € 5, we have:

SP4. If (M, s) = =0O%, then (M,t) |= —7 for some t € § — Sg such (s,t) € R.

SP5. If (M, s) |= O, then (M,t) |= 9 for all ¢ € 5.

A frame (resp., structure) is e-special if it is e-special with respect to some subset Sy and labeling
f. A frame (resp., structure) is special (with respect to So and f) if it is 0-special (with respect
to So and f). Similarly, we say that a labeling is safe if it is 0-safe. Il

Our interest in special structures is motivated by the following result, from which Theo-
rem 5.1 immediately follows.

Theorem 5.5: For any modal formula ¢,

(a) if ¢ is not satisfied in a finite special structure, then u(y) =0,

(b) if ¢ is satisfied in a finite special structure, then p(¢) = 1.

Most of the rest of this section is devoted to proving Theorem 5.5. Before we get into
the details of the proof, let us consider more carefully the definition of special structures.
Unfortunately, we cannot provide much intuition here; the details of the definition are best
motivated by the proofs we are about to present. The set Sy in a special structure can be
thought of as the set where all subformulas of ¢ of the form O are satisfied. As we shall see,
So corresponds in a precise sense to a set of size O(n) in almost every frame satisfying ¢. Now

suppose that there is a finite set of formulas =0, ..., ~0O% such that at least one of these
formulas is true in every state in Sg. Let B; be the set of states § — Sy where —1t; is true,
i =1,...,k. Tt is easy to see (using SP4) that UL, B; must cover Sy. Morever, we can show

that any set that covers Sy must have size at least log(n) — o(log(n)). (We use log to represent
logarithm base 2; later we use In to represent the natural logarithm.) Thus, if | B;| = b;log(n),
then 37, b; > 1. We think of a node with label b according to the safe labeling as corresponding
to a set of size blog(n), a set where a formula of the form -0 which is true at some subset
of states in S is satisfied. Under this correspondence, it turns out that properties SP1-SP3
correspond to three properties that hold with probability 1 in almost all frames. We hope that
further details of the definition of special structures will become clearer in the course of the
proof.

Fix an integer & > 0 and 6 € (0,1]. Consider the following properties of a frame F' = (5, R):

F'1(k,6). For all disjoint sets By,..., B; C S such that [ < k and |B;| > élog(n), we have

log(n) > |Bil> > |Bil-|Bjl.

1<i<l R(B;)NB,=0
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F2(k,6). For all states uq,...,ux, € S and all nonempty subsets T1,...,7T%,, B,C C S such
that ki, ko <k, T; N B =0 for 1 <i < kg, |B| < (1-246)log(n), and |C| > n — klog(n),
we have

(CNR(u)N...NR(ug,) N RU(T)N...n R (Tx,)) — R7Y(B))| > k.
F3(k,6). For all C C § with |C| > (1 + 6)log(n), it is the case that C' R-covers S.

Lemma 5.6: For all k > 0 and § € (0,1],

lim p,(F € F, : I satisfies F1(k,6), k=1,2,3)=1.

Proof: We first consider F1. For each | < k and each set J C {1,...,{} x {1,...,1}, let
EL(1,J,6) be the expected number of ways of choosing By, ..., B; such that |B;| > §log(n) for
i=1,...,, R(B;)N B; = { for all (i,5) € J, and

log(n) > Bl < > |Bil-|Bjl.

1<i<l (t,5)eT

It suffices to show that lim,—., EL(l,.J,8) = 0, for each | < k and choice of .J. Notice that if
|B;| = b; fori = 1,...,[, then the number of ways of choosing the sets By,..., B; is bounded by
I!_, (). For each fixed choice of B; and Bj, the probability that R(B;) N B; = 0 is (1/2)%".

Let By = {(b1,...,b;) : dlog(n) < b; < log(n), i = 1,...,1, log(n) Zi»:l b; < Z(m-)ejbib]‘}.
Since (') < n™/m!, it is straightforward to check that

RICEREDY (H (b)) ( )3 <%>bz‘bﬂ)
(b1,.sb)EB; \1<i<T \7° (i,5)€T
< B (b)) ( 3 (%)bib])

(b1,-sbr)EBy (i.5)ed
< 3 ARt Rne ([alog(n)])
(b1,...b1)EB;
<a'f(([61og(n)])!)".
It easily follows that lim, ., EL(l,J,6) = 0, as desired.

For F2, we first note that if t € T then R™'(¢) C R™!(T), so it suffices to prove the result
for singleton T;’s. For kq, ko < k let Eg(kl, k2,0) be the expected number of ways of choosing
ULy woyUhyy T1y- -y th,, and B, C C S such that |B| < (1 —48)log(n), |C| > n — klog(n),t; ¢ B
for 1 < v < kg, and

(CNR(u)N...NR(ug, ) NR™HT1)N...n R™HTy,)) — R™(B)| < k.

If |[B] = b and |C| = ¢, then the number of ways of choosing B, C, uy,...uk,t1,. ..,k
satisfying these conditions is bounded by

n AV < prrtketbd(n—c) < pki+ka+(1-5+k)log(n)
kl kg b cl -
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For fixed B, C, uy,...,ug,,t1,..., 1, the probability that a given element is the R-successor
of each of uy,...,ug,, is the R-predecessor of ¢;,...,%,, and is not the R-predecessor of any
element in B is (%)k1+k2+b. Thus, the probability that all but at most k£ elements in C' satisfy
this property is

(1 . (%)k1+k2+b)c—k < (1 . (%)2k+(1—5)10g(n))n—klog(n)—k‘

Recall that 2¥ = e¥™®) and In(1—2) = —2—2?/2—2%/3—- - .. Tt follows that In(1—z) < —z and,
for sufficiently small z, In(1 —2) > —3z/2. This means that an upper bound for the probability

above is e~ (n—klog(n)—k)/22E+ (=00 sufficiently large n, we have that n—klog(n)—k > n/2
and this probability is at most e~ /2 Thus, for sufficiently large n, we get that
(1-6)log(n) n
Ei(ky k2, 8) < Y0 ST (SR log(n) a2

b=0 c=n—klog(n)
< (14 (1= 8)log(n))(1 + klog(n))n2k+(1=8+k)log(n) c—n/221

Since § > 0 it follows that lim,_ ., E2(ky,kq,6) = 0.

C| > (14 6)log(n), then the probability that C' R-covers §
is at least (1 — 1/n(1+5))”. By the arguments above, this is at least e=3/27" for sufficiently large
n. Since § > 0, this value approaches 1 as n — oc. 1

For '3, it is easy to see that if

Lemma 5.7: Given 6 > 0 and a modal formula ¢, let k = 219l and let F € F, be a frame
satisfying F1(k,6), F2(k,¢), F3(k,6), and the formula ¢. Then we can construct a structure
M¥¢ = (5%, R¥,n%) which is 6-special for ¢ with respect to Sy C S¥ such that |S¥| < 92141+
and |S¥ — So| < 21¢l,

Proof: Suppose that F' satisfies the hypotheses of the lemma and let M = (5,R,7) be a
structure based on F in which ¢ is satisfiable. Roughly speaking, the idea is that we can
partition S into N subsets, where N < 921%1+lel " All the states in each subset agree on the truth
values that they assign to subformulas of . Fach of these subsets of states will correspond to
a node in a special structure M¥ = (5%, R¥,1¥) for ¢. We proceed as follows.

We define the closure of ¢, written cl(¢), to be the set of subformulas of ¢ and their
negations. We say that states s and ¢ in S are equivalent with respect to cl(p), written s =, ¢,
if, for every formula ¢ € cl(y), we have (M,s) E ¢ iff (M,t) = . We use [s] to denote the
equivalence class {t : s =, t}. Let § be the set of equivalence classes. Note that || < 24l = £.

Suppose |S1| = k' < k and let uq,...,up be representatives of each equivalence class. For
future reference, we call these the canonical representatives. Note that each equivalence class
[s] € S contains a unique canonical representative. Define A = R(uq) N ...N R(up’). From
F2(k,6) (taking k2 = 0 and B = (), it follows that A # (). We partition A as follows: For each
nonempty subset [1] of 57 and equivalence class [s] € S1, let Ap,) 7] denote the set of all states
in [s] N A whose successors consist of precisely the states in [T]; that is

A = A{s" 5" € [s] N AN [(NermR ™ (1) — (VpgermR ™ (11)13-
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Define
So = {([s], [T]) : Apgpmy # 0}

We take S¢ = S; U Sy, Clearly |§¢ — Sy| = [51] < 24l and |§,] < 2"”'(22“"I 1), so
|5¢| < 22¥1+1el | Let

R? = {([sl, [t]) = [s], [1] € 51, (s,1) € RYUA(([s], [T1]), [u]) : [u] € [T}

Finally, we define 7%([s]) = 7%([s],[T']) = m(s). This completes the description of M*¥.
We next show, by induction on the structure of formulas, that if ¢ € cl(¢) and s € 5, then

(¥) (M, s) |= o iff (M?,[s]) |= ¢, and
(k) if ([s],[T]) € S, then (M, s) |= ¥ iff (M%,([s],[T])) E ¢

The only nontrivial case is if ¢ is of the form Ov’. Suppose (M, s) |= Ov'. Thus, (M, s') =
Oy’ for all s’ € [s]. Then (M,t) = ¢’ for all ¢ such that (s',¢) € R for some s’ € [s]. By
the inductive hypothesis, it follows that (M?,[t]) = ¢’ for all ¢ such that (s',¢) € R for some
s € [s]. This means that (M¥,[t]) | ¢’ for all [t] such that ([s],[t]) € R¥ and, if ([s],[T]) € S,
that (M%,[t]) | ¢ for all [¢{] € [T]. Thus, (M%,[s]) E O¢" and, if ([s],[T]) € Sz, then
(M?,([s],[T]) = o9’

Now suppose (M¥,[s]) = Oy'. Thus, (M%,[t]) = ¢’ for all [t] such that ([s],[t]) € R¥.
From the inductive hypothesis and the definition of R¥ it follows that (M,t) |= ¢’ for all ¢ such
that (s,t) € R, and hence (M, s) |= O¢'.

Finally, suppose that ([s], [T]) € Sg and (M %, ([s],[T])) | O¢'. It follows that (M %, [t]) = ¢
for all [t] € [T]. Since Apg ] # 0, there is some state s’ € [s] N A such that (s',#') € R implies
that [¢'] € [T]. By the inductive hypothesis, it follows that (M, ") |= ¢’ for all ¢’ such that
(s',t") € R. Thus, (M,s") = O%¢'. Since s’ € [s], it follows that (M, s) = 0.

We can now show that M¥ is a (k4 1)é-special structure for ¢ with respect to S3. The fact
that ¢ is satisfiable in M ¥ is immediate from (k) and the fact that ¢ is satisfiable in M. For SP4,
suppose that (M¥,[s]) | —-0O%. By (%), it follows that (M,s) = -0%. Thus, for some ¢ such
that (s,t) € R, we have (M,t) = —¢. By the definition of R¥, it follows that ([s],[t]) € R¥,
and by (%) again, we have that (M¥,[t]) E —¢. Now suppose that (M¥,([s],[T])) E —O%.
By construction, there is some s’ € [s] N A such that (s/,t') € R implies that [¢'] € [T]. Since
[s'] = [s], by (%%), we have that (M,s") |= =0O. Thus, for some ¢’ such that (s',t') € R, we
must have (M, t') = =3. From (%), we have that (M¥,[t']) = —~9; since [t'] € [T], the definition
of R¥ guarantees that (([s],[T]),[t']) € R¥. This shows that SP4 holds.

For SP5, suppose that (M¥,[s]) E Ow. Let u be the canonical representative in [s]. By
construction of A, we know that (u,t) € Rforallt € A. Thus, (M,t) |E ¢ forall t € A. By (%),
it follows that for all states ([t],[T]) € Sz, we have (M%, ([t],[T])) E ¥. If (M¥,([s],[T]) | O,
by (*) and (%), it follows that (M ¥, [s]) = O, and again we get that for all states ([t], [T]) € Sq,
we have (M%,([t],[T])) E . This proves SP5.

We now must prove SP1-SP3. Define the function f on 5% by

{ S([s]) = |[s]l/ log(n) if [s] € Sy
F(([s),[T])) = if ([s],[T]) € S
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We claim that f is é-safe. For suppose S’ C S% is such that min;ess f(¢) > 6. We want to
show that Y ;.o f(t) > E(m;)e((slxsl)_nv)f(t) - f(#'). The definition of f guarantees that
S" C S1. Suppose S" = {[s1],. [qz]} By construction, |[s:]] > élog(n) for i =1,...,1. From
F1(k,¢), it follows that log(n) > |[ Al > YR —gl[s:]] - |[s;]]. Note that ([s;],[s;]) € R¥
iff R([s;]) N [s;] = 0. Thus, log( ) it |[sd]| > E is,)¢re | [sil] - [[s;]]. Dividing both sides
of this inequality by log(n)? and using the fact that f([s D) = |[si]|/ log(n), we get the desired
result. Thus, f is §-safe, proving SP1.

For SP2, suppose that [T] C 51 and Y pges,—ir f([s]) < 1 —46. Let B = Upge(s,—plsl-
From the definition of f, we have that |B| < (1 —é)log(n). From F2(k, ), it follows that

(R(uq) N ... N R(ug) N (NpgempR (1)) — R™(B) # 0,

where uq,...,u, are the canonical representatives, as chosen above. But this means that for
some s € A we have Ay # 0. Thus, ([s], [T]) € S3. By definition, R¥(([s],[T]) = [T]. This
proves SP2.

For SP3, suppose that [T] C S1 and > e f([s]) > 1+ 6. Let €' = Upgerlt]. From the
definition of f we have that |C'| > (14 ¢)log(n). Thus, from F3(k, ), we get that C' R-covers
S. It easily follows that [T R¥-covers S3. This proves SP3.

Thus, we have shown that M¥ is a é-special structure for ¢. 1

We have just shown that under appropriate assumptions, there exists a é-special structure
for ¢. Now we want to strengthen this to get a special (i.e., a 0-special) structure for ¢. We
first need a technical result about safe labelings.

Given an e-safe labeling f of (5,R) and 7' C 5, define

brr =Y flt) - > F@)f).

teT (t,t)e((TxT)-R)

Let 7y = {T C S : minyer f(t) > €} and let éy = minye7, 67 7. Finally, let vy = max(0, {f(s) :
(s,s) ¢ R}). Note that v5 < 1, for if f(s) = 1 and (s,s) ¢ R, then {s} provides a counterex-
ample to the fact that f is ¢-safe.

Lemma 5.8: Ife > 0, f is an e-safe labeling of (S, R) and f' < f (so that, for all s € S, we
have f'(s) < f(s)), then f" is an e-safe labeling of (S, R). Moreover, for all T € T/, we have

1
6f’,T Z min <6f, ( 87f 7f E f )

teT

Proof: Suppose that f is e-safe and S = {s1,...,8,,}. For i =0,...,m, define

(o) = d [lsg) i<
fl(sf)—{ flsp) it 5>
Clearly f; < ffori=0,...,m, fo = f, and f,, = f'. We show that the conclusions of the

lemma hold for f; by induction on ¢. If ¢ = 0, the result is immediate, since fy = f. Suppose the
result holds for f; and 7 < m. We now show that it holds for f;41. So, suppose that 5’ € 7y,_,.
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a2 1
We want to show that 65, , s > min(éy, %, ! ;f Yoses fix1(8)). I 5,49 ¢ 57, then f 1 and
fi agree on S, so the result follows immediately from the inductive hypothesis. If s;41 € 57,

let T=5"—{s;41} and let
+

K= ) Fi(t) + ) filt).

(si+1,1)€(({5541}xT)=R) (tsit1)€((S"x{si41})—R)

Notice that 64, ¢ = 67 4+ (1 — K)fi(s41). Since f; and f;41 agree on T, it follows that
0fipr,st 2 05, 7+ (1= K)fit1(si41). (The reason we write > rather than = in this last expression
is that if (s;41,8i+1) € R, then fi(s;41) is one of the terms in K, whereas for equality this term
should be fiy1(si41).) If K > 1 then, since fiy1(sit1) < fi(siq1), we get that 65, 5 > 0y, 57,
and the result follows from the induction hypothesis. On the other hand, if K < 1, then
601,58 = b7 I T # (), then it is easy to see that T € 7y, since S’ € Ty, ,. In this case, if
(l_gf)2 )

0f, 7 > min(dy, , then the result follows immediately from the inductive hypothesis. If

2
not, then by the inductive hypothesis, we have that % > b1 > 1_2’” >oier fi(t), so that

Yoier fi(t) < (1 —nv¢)/4. Clearly K < 23 ;cr fi(t) + 2, where z = 0 if (s;41,8i41) € R and
t = fi(sit1) if (Si41,541) ¢ R. The definition of 74 guarantees that z < 75, so K < (1 —
v¢)/24+7¢. Thus, 1- K > 1_% It follows that ¢y, | s > I_%ZtET fit)+ (1= K) fix1(siy1) >
1_% Y ses Ji+1(s). This gives us the desired result in this case.

It remains only to check the case that 7 = (). But in this case, " = {s;11}. If (8i31,8i+1) €
R,then és,,, s = fix1(sit1). I (Siv1,8i41) € R, then fiy1(siv1) < 75,8065, 50 = fir1(Siv1)—
(fi+1(8i41))* > (1 = 75) fisr(si41)- B

Lemma 5.9: If F' is e-special with respect to Sy and f, then F is also e-special with respect to
S and f', where f'(s) = min(f(s),1) for s € 5 — Sy and f'(s) =0 for s € Sp.

Proof: It follows immediately from Lemma 5.8 that f’ is safe. We leave to the reader the easy
verification that properties SP2 and SP3 still hold using f’. 1

Part (a) of Theorem 5.5 now follows immediately from the following result.

Proposition 5.10: If u(¢) # 0, then there is a special structure M = (S, R) for ¢ with respect
to a set So C S such |S| < 221+l gnd 1§ — So| < 2.

Proof: Suppose u(¢) # 0. Then there exist infinitely many n such that
pn({# € F, : some structure based on F satisfies ¢})

is strictly greater than 0. From Lemma 5.6 and the hypotheses of the proposition, it follows
that there exists an increasing sequence nq,ng, ... such that for all m, there exists a frame with
n,, states such that the hypotheses of Lemma 5.7 hold with § = 1/m. Thus, corresponding
to each n,, there exists a (1/m)-special structure M,, = (Sy, Ry, T ) for ¢ with respect to a
subset S/ C 5,, and a safe labeling f,, such that |5,,| < 22I+lel and |51 — S| < 2l¢l. Since
there are only finitely many structures satisfying ¢ with at most 921¢1+¢| states, there must
exist one structure M = (5, R,7) and a subset Sg C S such that M = M,, and So = 5], for
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infinitely many m. Thus, M is a (1/m)-special structure for ¢ with respect to Sy and f,, for
all m. We want to show that M is in fact special.

By Lemma 5.9, we can assume without loss of generality that f,,(s) <1 for all s € S. Sup-
pose that S = {s1,...,sn}. The sequence of tuples (fo(s1),. .., fo(sn)),(fi(s1),..., fi(sn)), ...
is a sequence in the compact space [0,1]V. Thus, the sequence has an accumulation point
(ai,...,an); i.e., a subsequence of this sequence converges to (ai,...,ayx). Now consider the
labeling defined by f(s;) = a;. Straightforward continuity arguments show that M is a special
structure of ¢ with respect to f. We leave details to the reader. 1

In order to prove Part (b) of Theorem 5.5, we show that a special structure can be embedded
in almost every frame in such a way as to preserve satisfiability.

Suppose that ' = (S, R) and F' = (5, R’) are two frames such that |5| < |S’|, and suppose
So C 5. We say that F is Sg-embeddable in I’ if there is an onto mapping v : S’ — S such that

P1. if (s,t) € R and t ¢ So, then y7(¢) R-covers y7'(s)
P2. if (s,t) ¢ R and ¢ ¢ So, then R'(y7(s))N~y~1(¢) = 0.

Lemma 5.11: If ' = (S,R), So C S, M is a special structure for ¢ with respect to Sy based
on F, and F is So-embeddable in F', then ¢ is satisfied in F'.

Proof: Suppose the hypotheses of the theorem hold and F' = (5, R’). Let M’ = (5", R/, n’),
where 7'(s")(p) = 7(7(s))(p). We show, by induction on the structure of 1, that (M’,s') = ¢
iff (M,~(s")) |E v, for all subformulas 1 of ¢. The case where % is a primitive proposition,
conjunction, or negation are straightforward and left to the reader. We consider the case that
¥ is of the form Ov’. Suppose (M',s") | O¢'. If (M,~(s")) £ O%’, then by SP4, there is some
state ¢ € 5 — Sg such that (y(s'),#) € R and (M,t) [~ ¢. By P1 there is some t' € v7'(¢)
such that (s',%') € R'. It follows by the induction hypothesis that (M’,t') £ ¢, which is a
contradiction. Thus, (M,v(s)) | Ov', as desired. For the converse, suppose (M,~(s')) = O’
and (s',t") € R'. If v(t') € So, then (M,~y(t")) E ¥’ by SP5. Thus, by the induction hypothesis,
(M, t) = o' If (') ¢ So, then from P2 it follows that (y(s’),v(t')) € R. Thus, we must
have that (M,~y(t')) = ¢ and by the induction hypothesis, (M’ t') |= . It now follows that
(M, s") |= O, as desired. I

Part (b) of Theorem 5.5 now follows immediately from the following result.

Proposition 5.12: If F' is a finite special frame with respect to Sy, then

lim w,(F' € F, : F is So-embeddable in F') = 1.

n—oo

Proof: Suppose I' = (9, R)is special with respect to Sy C 5 and the labeling f. By Lemma 5.9,
without loss of generality, we can assume that f(s) < 1forall s € 5. Let 51 = 5 —55. Our first
step is to show that for almost all frames I’ = (5/,R’) we can find an onto function v : " — §
such that

P1'. if (s,t) € ((S1 x S1)NR), then y~71(t) R-covers 77 !(s)
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P2 if (s,4) € ((S1 x S1) — R), then R'(y~1(s)) ny~1(t) = 0

P3. if s € S; and f(s) > 0, then [y=1(s)| = | f(s) log(n)]

P4. if f(s) = 0 then [y~1(s)| = 1

P5. if T C Sy and Y,ep £(1) > 1, then y~1(T') R'-covers 7~1(S).

Notice that P1’ and P2’ are weaker variants of P1 and P2, respectively, where we only focus on
pairs (s,t) in 57 x 55.

To prove this we use the second moment method, a standard technique in random graph
theory [Bol85]. Let X be a random variable on F such that X (/") is the number of mappings
v from F' to F satisfying P1’, P2/, P3, P4, and P5. We want to show

(1) iMoo pn({F' € Fr s X(F') > 0}) = 1.

Let F,(X) be the expected value of X (F”) in F,,. According to the second moment method,
to prove (1), it suffices to show that lim,, ., F,(X) = oo and lim, ., F,(X?)/E.(X)? = 1.

To compute E,(X), we must count the number of ways of choosing the sets y71(s) for
s € 57 satisfying the constraints P3 and P4, and for each such way, compute the probability
that it satisfies P1’, P2/, and P5. Suppose S1 = {s1,...,5,}. Let K = {k: f(sx) > 0} and
let J ={(i,j) € K x K : (s;,s;) ¢ R}. It turns out to be convenient to split many of our
calculations into two parts, one for the case of elements in K and one for the m — | K| elements
not in K. Let d; = |y~!(s;)| and let d = >_7, d;. Notice that if i € K, then d; = | f(s;)log(n)].

Clearly, a lower bound on the number of ways of choosing v so that it satisfies P3 and P4
in a structure of size n is (n — d)?/d!, since this is a lower bound on (7)), the number of ways of
choosing the d elements in y71(51).

Suppose v satisfies P3 and P4; we want to compute the probability that it satisfies P1’,
P2, and P5. Let p, be the probability that v satisfies P1’, P2’, and P5. The properties are
easily seen to be independent, so p, = plp2p3, where p. (resp., p2, p>) is the probability that
7 satisfies P1" (resp., P2, P5).

We start with P5. Let Ti,...7T; be all the subsets of S7 such that ZseTj f(s) > 1. The
probability that y=1(T;) R'-covers y~1(Sp) is (1 — (%)'7_1(TJ)|)|’Y_1(S°)|. Since |[771(S0)] < n and
(by P3) |[y~Y(T;)| > log(n) — m, this probability is at least (1 — 2" /n)". Now using arguments
nln(1-2"/n) > 2—2’""'1 f

similar to those of Lemma 5.6, we can see that this probability is e or

n sufficiently large. Since there are at most 2™ subsets T; to consider, we have that p3 >
(1/2)*™*" for sufficiently large n.

We next consider P1'. If (s;, s;) € R, then we want v~ '(s;) to cover y7!(s;). The probability
of that is easily seen to be (1—(1/2)%)%. If s; ¢ K, then d; = 1, and this probability is (1/2)%.
If s; € K then lim,_ (1 — (1/2)%)% = limn_,oo(e_di/de) = 1 (since d; is O(log(n))). Thus,
(1 = (1/2)%)% > 1/2 for sufficiently large n. It follows that p. > (1/2)(n-IKDd+mIK] fo;
sufficiently large n.

Finally, for P2, suppose that (s;,s;) ¢ R. We want to compute the probability that
R(y~Ys:)) N y~Y(s;) = 0. Tt is easy to see that this probability (1/2)%%. It follows that
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o, d;d . e . -
p2 = (1/2)2{“’”““5])@” . Since d; = 1if i ¢ K, we have

L)) gRy Dy < D (i gyagry Gidi + 2 qigpiercy Gidi + 2qigery did
< 2(m = |K|)d+ Yo jyery did;-
Thus, p2 > (1/2)2(m_|K|)d+Z(w)eJdid].
Putting all this together, it follows that

Ea(X) > ((n— dy!/d)(1/2)" " F0m DRI e i

for sufficiently large n.

There are now two cases to consider. If |K| = 0, then |J| = 0 and d = m. In this case,
we get that E,(X) > ((n —m)™/m!)(1/2)27'+3%%  Since m is a constant, we clearly have
limy,—co En(X) = 0.

Now suppose |K| > 0. Since d is O(log(n)), for sufficiently large n, we have n —d > n/2.
Thus, for sufficiently large n,

En(X) 2 (nd/dt)(1/2)" " O EDAmIED e dids,

Since d; = | f(s;)log(n)| for ¢ € J, we get that d > (log(n) Y ;cx f(s:)) — m. Thus, using the
notation ¢y x introduced just prior to the statement of Lemma 5.8, we have

Ep(X) 3 202 b Kbl Ky i) g

5 o’ (Sien F60-Te sy 76 5(5)) ) = log(m)+4227 4 43— | K]+l ]

— 25]‘,}( log(n)?—(m log(n)+d+227"+1 +3d(m—|K|)+m|K]) /d'

/d!

Since [’ is special, f is 0-safe, and hence 67 x > 0. Since d is O(log(n)), it is easy to see that
lim,,—co En(X) = 00, as desired.

We now show that that F,(X?)/E,(X)? —1 — 0. It is easy to see that X%(F”) is just the
number of ordered pairs of mappings (7,7’) from F’ to F' such that both v and 7' satisfy P1’,
P2, P3-P5. Let Yy (F") be the number of such ordered pairs (7, 7’) satisfying these properties
such that [y71(57) Ny/71(S1)| = d'; in this case we say that v and 4’ have overlap d'. Clearly
X2(F') = Y4 _o Yo (F'). Arguments along the same lines as those used to compute E,(X)
show that F,(Yy) ~ E,(X)?, where, for two functions F(n) and G(n), we write F'(n) ~ G(n)
if lim, o F(n)/G(n) = 1. We leave details to the reader. Thus, it remains to show that
1imy, oo 3% (En(Ya)/ En(Yo)) = 0. Since d is O(log(n)), it suffices to show that if 1 < d’ < d,
we have lim,, .o, £,(Yy)log(n)/E,(Yy) = 0.

To compute F,(Yy), we must again count the number of ways of choosing pairs (7,7’
satisfying the constraints P3 and P4 and having overlap d’, and for each such way, compute
the probability that it satisfies P1’, P2’, and P5. Since we actually want to compare E,(Yy)
to F,(Yp), it is more useful to compute the ratio R, of the number of ways of choosing pairs
(7,7") satisfying P3 and P4 having overlap d’ to the number of ways of choosing such pairs
with overlap 0 in a frame of size n, and the ratio ¢, of the probability that a given pair (v,7')
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with overlap d’ satisfies P1’, P2/, and P5, to the probability that a pair with overlap 0 satisfies
these properties. It is easy to see that £, (Yy)/E.(Yo) = Rnqn.

There are clearly more ways of choosing pairs with no overlap then there are of choosing
pairs with overlap d’; straightforward counting arguments of the type used above show that
R, < d2d//(n—2d)d'. To see this, let d} = |”/1_1(5i)ﬂ”/2_1(8i)|, for1 <i¢<m. Then R, = A,/ B,,

where
n!

A, =
T2y A2 (di — di)12(n — 2d + d)!

and
n!

[T, di'?(n — 2d)t
The bound given from R,, then follows from simple manipulations, using the fact that d; < d,
1< <m.

While there are fewer ways of choosing pairs with overlap d than with overlap 0, the prob-
ability of such a pair satisfying P1’, P2’, and P5 is higher. We need to compute by how much.
Again, since the properties are independent, we have ¢, = ¢l¢2q), where ¢l (vesp., ¢2, ¢3) is
the ratio of the probabilities that these pairs satisfy P1’ (resp., P2/, P5').

B, =

Suppose that (7y1,72) is a pair with overlap d’ satisfying P3 and P4, and (73,74) is a pair
with overlap 0 satisfying P3 and P4. We start by computing the possible increase in P5. We
saw above that the probability that P5 holds for a particular choice of v is at least 1/222m+2.
Thus, the probability that P5 holds for the pair (s, 74) is at least 1/222m+2. The probability
that it holds for the pair (y;,72) is clearly at most 1. Thus, ¢} is at most 22" We now
consider P1’. Given a pair (s;,s;) € R/, then P1’ requires that v, '(s;) R'-covers 7; '(s;), for
h =1,...,4. We want to compute the ratio of the probability that this holds for the pair
(71,72) to the probability that this holds for the pair (vs,74). It is clear that this ratio is
maximized if y; (s;) = 75 '(s;). Since, by assumption, v3'(s;), 71 (i), 73 '(s;), and ;' (s;)
are all disjoint, it is easy to check that the ratio at most 1/(1 — (1/2)%)%. If s; ¢ K, then the
ratio is at most 2%, while if s; € K, then similar arguments to those used above show that the
ratio is at most 2, for sufficiently large n. It follows that ¢! < 2(m=IKNI'+IK| for p sufficiently
large.

Finally, we consider P2'. Suppse that (s;,s;) ¢ R. Then P2’ requires that R'(v; '(s;)) and
7;1(.%) are disjoint, for h = 1,...,4. We want to compute the ratio of the probability that this
holds for the pair (71, 72) to the probability that this holds for the pair (y3,74). Straightforward

) .o g . d;d’ .
calculations show that the ratio is exactly 2% . Thus, ¢2 = 24={()02)€RY Y% Uging argu-

K ] / !
ments similar to those used in calculating p?, we can show that ¢2 < 9 m=IK])d +E(67J)€Jd‘dﬂ.

Putting this together, we see that for n sufficiently large,
En(Ya)/ En(Yo) = Raghalel < (a2 /(n — 2a)" 2" DIHREET e 1,
Since n — 2d > n/2 for sufficiently large n, we get that for n sufficiently large,
Eo(Ya) ] En(Yo) < 22 DA HIKILRM 45T o did oty

Again, we first consider the case where |K| = 0. In this case, since J = () and d',d < m,
we get that F,(Yy)/E.(Yo) < 93m 4 m+22m+2 QO/nd’ for sufficiently large n. It follows that
lim,, oo £,(Yy)log(n)/E,(Yo) = 0 in this case.
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Now consider the case that |[K| > 0. Let f’ be the labeling such that f'(s;) = d’/log(n) if
i € K and f/(s;) = 0if i ¢ K. Since d: < |y7"(si)| = |f(si)log(n)] if i € K, it immediately
follows that f' < f. Thus, by Lemma 5.8, f’ is a safe mapping. Moreover, if we set d’ =
YK d!, then

(1—7s)? (A= p)(d - d"))
g8 7 2log(n) '

(5fl7]( Z min ((5]‘,
Straightforward manipulations show that, for n sufficiently large,

En( fd')/En(YO)
23(m_|K|)dl+d/+|K|+22m+2+E(i,J)GJ d;d; d2d’/nd“+(2¢e;< d;)

23(m—|I&"|)d’+d’+|f(|+22m+2+2d' log(d)—d" log(n)—log(n) Zz‘e}( dH—Z(i,J)EJ déd;

)+ +IC 42274 24 log(d)—d og(n) ~log(n)? (Sier £/60= sy £16005°651))

23(m—|I&"|)d’+d’+|]&"|+22m+2+2d' log(d)—d" log(n)—log(n)25f/7}(

Since d' is O(log(n)), it easily follows from the lower bound on 6 x that

lim E,(Y;)log(n)?/E.(Yo) = 0,
as desired. Thus, by the second moment method, we can conclude that, with probability
approaching 1, we can find a mapping v satisfying P1’, P2’, P3, P4, and P5.

We are now almost done. Choose € so that for all T C 5y, if 37,7 f(t) < 1, then in
fact Y ;er f(t) < 1 —¢€. Let N = |50|21°1]. By Lemma 5.6, the asymptotic probability that
a frame satisfies F2(NV,¢) is 1. Consider a frame I’ = (5’,R’) satisfying F2(N,¢) such that
there is a mapping v : F' — F satisfying P1’, P2’ P3, P4, and P5. Let S}, = 77 1(50) and let
S1 = v71(S1). Notice that S = S’ = S]. We now show that, in fact, by possibly redefining v
on S(, we can get a map 7' : F' — F satisfying P1 and P2. This shows that F' is embeddable
in F'.

For each T C 5y, let S7 consist of all the states in Sy with R-successors in T" and no R
successors in S7 — T’; similarly, let 57 consist of all the states in S with R’-successors in 77(¢)
for t € T and no R’ successors in y~!(¢) for t € 51 — T. That is,

St = (80N (NierR™H(1))) = Ures, ~1R (1)

and

St = (56 N (NeerR' ™ (771(1)) = Utes, ~TR'™H (v 7' (1)).
If Y ies,_7 f(t) < 1, then by SP2, ST # 0, and by F2(N,¢) and the choice of N, we have
|ST] > N > |So|. If 3-ies,_ f(t) > 1, then by SP3, ST = 0, and by P5, S = 0.

It is straightforward to redefine v on S{ to get an onto map 7’ : F/ — F that agrees with v
on S} such that v'~'(S7) = 5%. We now show that 7' satisfies P1 and P2. We start with P1.
If (s,t) € R and both s,t € Sy, since 7" agrees with v on S, it follows from P1’ that v/~1(¢)
covers 7’_1(5). Suppose that s € Sg. Then s € S7 for some T" C 57 such that ¢ € T. By
construction, y'71(s) € S4 and 7'71(t) covers 7'~!(s). This shows that P1 holds.
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For P2, suppose that (s,) ¢ R. If both s,¢ € 5, then it follows from P2’ that R(y'~!(s))N
R(y'7Y(t)) = 0. If s € So, then s € St for some T C S; such that ¢ ¢ 7. By construction,
v'71(s) € 5%, and so R/(y'~Y(s)) N v'~1(¢) = 0. This shows that P2 holds.

Thus, we can embed F' into a frame that satisfies F'2( N, €) for which there is a mapping v
satisfying P1’, P2’, P3, P4, and P5. Since these are both properties that hold with asymptotic
probability 1, it follows that lim, . pn({F’ € F,, : I’ is Sp-embeddable in F'}) = 1. 1

We have now completed the proof of Theorem 5.5. The theorem and its proof gives us a
great deal of information, which we can now exploit. For one thing, we get an analogue of
Theorem 4.8 for frames:

Theorem 5.13: Given ®, there is an infinite frame F., such that for all formulas ¢ € L(P),
w(p) =1 iff ¢ is valid in F.

Proof: Just take F, to be the disjoint union of all special frames. Note that F, is infinite,
even if ® is finite. 1

Turning our attention to complexity, we can show

Theorem 5.14: For both the dag and the tree representations and for both finite and infinite
sets of propositions ®, deciding almost-sure frame-validity of formulas in L(®) is in double-
exponential space and is exponential-time hard.

Proof: The lower bound follows much the same lines as the exponential time lower bound of
Fischer and Ladner [FL79] for one-letter PDL. In their proof, Fischer and Ladner show how,
given a polynomial-space alternating Turing machine A and an input z, there is a formula @4 ,
in one-letter PDL such that ¢p , is satisfiable iff A accepts . The Fischer-Ladner argument
requires ® to be infinite, since they use the primitive propositions to represent the states of A
and there is no bound on the number of states. We return to this point below. We can replace
all occurrences of [a] in their formula with O, all occurrences of (a) by <, and all occurrences
of [@*] by OO, giving us a modal formula 991,&71?. Let R? be the result of composing R with
itself, so R?* = {(s,t) : Ju((s,u) € R,(u,t) € R}. A straightforward argument shows that
p({F = (S,R) : R? is the universal relation on S§}) = 1; with asymptotic probability 1, all
states are connected by a path of length two. It follows that, with asymptotic probability 1, if
O is true at some state, then ¢ is true at all states. Thus OO essentially acts like ¢* in PDL.
A straightforward argument now shows that ¢4 . is satisfiable iff ‘PiA,m is satisfiable in a special
structure iff gofA@ is satisfiable in almost all frames. Thus, deciding if a formula is satisfiable
(or valid) in almost all frames is exponential-time hard provided @ is infinite. It is not hard to
show that we can find an unbounded collection of independent formulas using only primitive
proposition (and unbounded nesting of O and <), and use thus prove the same result even for
finite ®. We leave details to the reader.

For the upper bound, the problem reduces to deciding whether there is a special structure
for ¢. We know that if there is one at all, then there is a special structure M = (5, R, 7) for ¢
with respect to Sg such that |.§] < 22¥1+1¢l and |S—So| < 2¥l. For each structure M = (S, R, )
and subset Sy C S satisfying these constraints, we can easily check (in double-exponential time)
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if ¢ is satisfiable in M and properties SP4 and SP5 hold. We now need to check properties
SP1-SP3. This amounts to checking whether there is a safe labeling satisfying SP2 and SP3.
Without loss of generality (using Lemma 5.9), we can assume that the safe labeling assigns
value 0 to all the states in S¢. Thus, all that matters is the value assigned to the (at most
exponential number of)) states in 5 — S5. We can find a formula in the language of arithmetic
(i.e., over +, X, 0, 1) whose length is at most double-exponential in || that is valid in the theory
of real closed fields iff such a safe mapping exists: If S — S = {s1,...,sy} (where N < 2l¢]),
then we simply say there exist numbers z4,..., 25 such that the appropriate properties hold,
where the “appropriate properties” can easily be expressed by a double-exponential length
quantifier-free formula in x4, ...,z (that depends on the R relation in M). Since this formula
has only existential quantifiers, by a result of Canny [Can88], we can check whether it is true in
double-exponential space. Thus, in double-exponential space, we can check whether a special
structure for ¢ exists. 1

Just as for structure validity, we can also ask whether a 0-1 law holds for frame validity if we
consider frames in F”, "', or 75!, The answer in all cases is yes. Define a depth-2 frame to be
one whose longest paths have length at most 2. Thus, /' = (5, R) is a depth-2 frame if there do
not exist states sg, s1, s2, s3 such that s; # s;41 fori € {0, 1,2} and (s, s1), (51, 52), (82, 53) € R.
Notice that Theorems 4.13 and 4.14 guarantee that almost all frames where R is reflexive and
transitive are actually depth-2 frames.

Theorem 5.15: For every modal formula ¢

(a) W (p) =1 if ¢ if there is a special modal structure M = (S, R, =) for ¢ such that R is
reflexive; otherwise p’ (@) = 0.

(b) (@) =1 if ¢ is valid in all reflexive, transitive depth-2 frames; otherwise u"*(¢) = 0.
(¢) (@) =1 if ¢ is S5-valid; otherwise u"**(yp) = 0.

Proof: The proof for part (a) follows similar lines to that of the proof of Theorem 5.5; we omit
details here.

For part (b), since from Theorems 4.13 and 4.14 it follows that almost all frames where
R is reflexive and transitive are actually reflexive, transitive, depth-2 frames, we have that if
¢ is valid in all reflexive, transitive, depth-2 frames, then p*(¢) = 1. If ¢ is not valid in all
reflexive, transitive, depth-2 frames, then there must be some structure M = (5,R,7) such
that (5,R) is a depth-2 frame and M, sq |= —¢ for some so € 5. It is easy to see that we can
find a set ' of states in S including sg such that each state in S” has less than |¢| immediate
successors and for all subformulas 9 of ¢ and all s € S/, we have (M',s) |= ¥ iff (M,s) E v,
where M' = (5',R',x"), and R’ and 7’ are the restrictions of R and 7, respectively, to 5’
Intuitively, each state s € S’ has enough R’-successors to ensure that all subformulas of the
form &1 that are satisfied at state s in M are also satisfied at state s in M’. In particular, note
that (M',sg) |= . Note for future reference that |S’| < |¢|%. Now suppose that F' = (5", R")
is a depth-2 frame in F'' such that each non-leaf state in 5" has at least k successors. By
Theorem 4.13, if n is sufficiently large, almost all frames in F! will satisfy this property. We can
construct an onto function v : $” — 5’ such that (s',¢') € R" iff (v(s'),7(t')) € R’. Moreover,
we can define a function 7” such that 7”(s") = 7'(y(s")). Let M" = (S”,R",x"). An easy
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induction on structure shows that for all formulas ¢, we have (M”,s) |= ¢ iff (M',7(3)) |E .
In particular, it follows that —¢ is satisfiable in F”’. Thus, —¢ is satisfied in almost all frames
in F"*, so p"t(¢) = 0.

For part (c), clearly if ¢ is provable in S5, then p"**(¢) = 1. If ¢ is not provable in S5 then,
as we have already observed, by results of Ladner [Lad77], there is some structure M = (5, R, 1)
such that R is the universal relation on 5, -y is satisfiable in M, and |S| = k < |-¢|. By
Theorem 4.10, almost every frame F' = (S, R’) € F"*' contains an equivalence class of size k.
Clearly we can define a truth assignment 7’ such that -y is satisfiable in that equivalence class
in (9',R', 7). Hence, — is satisfied in almost all frames in F", so u"*'(p) = 0. I

rst(

We next consider axiomatizability. Although the set of formulas that are almost-surely
frame valid with respect to F is decidable, and thus does admit a recursive axiomatization, it
appears that there is no elegant axiomatization for almost-sure frame validity in this cases. It
is clear from the previous theorem that we can obtain an axiomatization for almost-sure frame
validity with respect to F” by adding the axiom Og = ¢ to a complete axiomatization for
almost-sure frame validity with respect to F. Of course, the previous theorem shows that S5
is a complete axiomatization for almost-sure frame validity with respect to F7*!. Finally, for
F't, it is easy to see that the following axiom, a weakening of the axiom DEP2, characterizes
depth-2 frames:

DEP2'. =(pA O(=pA O(p A O-p)))

Let S4* consist of the axioms of S4 together with DEP2’. From the previous theorem we
immediately obtain:

Theorem 5.16: 5/* is a sound and complete axiomatization for almost-sure frame validity
with respect to F'*.

Finally, we consider complexity issues. Deciding almost-sure frame validity with respect
to F7 is easily seen to satisfy the same complexity bounds as almost-sure frame validity with
respect to F. Since S5 is a complete axiomatization for almost-sure frame validity with respect
to F"s!, the problem of deciding if a formula is almost-surely frame valid in this case is complete
for co-NP if @ is infinite and is in polynomial time if ® is finite. As we now show, this is also
the case for almost-sure frame validity with respect to F’.

Theorem 5.17: If ® is finite, then deciding almost-sure validity with respect to F'* for formulas
in L(®) is in polynomial time; if ® is infinite, it is co-NP-complete (for both the dag and tree
representations).

Proof: We consider the satisfiability problem. As we saw in the proof of Theorem 5.15, given
a formula ¢, if it is satisfiable in a reflexive, transitive, depth-2 frame, it is satisfiable in one
with at most |¢|? states. Thus, if ® is infinite, we can simply guess a satisfying structure of the
right type and verify that it does indeed satisfy . If ® is finite, it is easy to check that there
are only finitely many inequivalent reflexive, transitive, depth-2 frames. We can simply check
each one of them to see if any satisfy ¢. 1
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