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Abstract—This paper describes a new peer-to-peer
protocol that integrates DHT routing, aggregation, all-
to-all multicast, as well as both topic- and content-based
publish/subscribe. In spite of this extensive set of features,
the Willow protocol is simple, scalable, balances the load
well across the members, is proximity-aware, adapts to
network conditions, and recovers quickly and gracefully
from network partitions and subsequent repairs.

I. INTRODUCTION

In recent years, many application-level protocols have
been designed for resource location, point-to-point and
multicast routing, publish/subscribe, and aggregation.
This paper introduces a new protocol, Willow, that
provides all of these features. More specifically, Willow
supports DHT-based routing, standing SQL aggregation
queries on attributes of the nodes, Application-Level
Multicast (ALM), and multicast filtering capabilities
strong enough to support topic- and content-based
pub/sub and more.

As with previous protocols, memory requirements
on the nodes grow O(logN ), while latency grows
O(logN ) (O(log2 N ) for aggregation). Willow is
proximity-aware, and prefers short hops over long ones.
Other than many previous proximity-aware protocols,
Willow adapts to link latencies changing over time. A
particularly important feature in the Willow protocol is
its zippering mechanism by which separate Willow in-
stances can be merged efficiently (in O(logN ) parallel
steps) into a single instance. The zippering mechanism
is an important factor to Willow’s stability both in the
face of network partitions and in the face of churn.

Willow borrows some of its design from Astro-
labe [1], [2]. While Astrolabe was intended to do
aggregation only, Astrolabe can in fact be configured
to function as a DHT as follows. Rather than manually
assigning the Astrolabe domain names, they would
be generated by concatenating, say, 32 4-bit digits.
DHT routing can then be performed by walking the
Astrolabe hierarchy in a straightforward manner. Using
the SelectCast protocol [3] that runs on Astrolabe,
pub/sub can be supported on this infrastructure as well.
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Willow, however, is closer in design to a traditional
DHT. At the heart of the Willow protocol is a standard
Plaxton-routing [4] infrastructure much like that of
Kademlia [5]. But where other Plaxton-based DHTs
hide aggregation facilities such as supported by Plax-
ton’s original design, Willow exposes them. Compared
to Astrolabe, Willow can support more queries, and
answers them more quickly. Most importantly, Willow
spreads load evenly across the members.

In this overview of the Willow protocol, we dis-
cuss related work in Section II, the Willow model in
Section III, and the implementation in Section IV. A
short look at results from simulation experiments are
presented in Section V, and Section VI concludes.

II. RELATED WORK

Due to space limitations, we limit ourselves to dis-
cussing only the most closely related projects.

Aggregation is important for supporting queries more
complex than DHT lookup operations, as well as for
scalable monitoring applications. In the area of peer-
to-peer aggregation protocols, the most closely related
projects besides Astrolabe are DASIS [6], Cone [7],
SDIMS [8], SOMO [9], and PIER [10]. DASIS uses
a Kademlia-like structure and aggregates information
about the members in a way quite similar to Willow. In
DASIS, information thus collected is used in the join
algorithm to balance the P2P topology better than is
typically achieved through random placement.

Cone augments a ring-based DHT with a trie, one
for each attribute and aggregation operation. Cone can
then support range queries over those attributes.

The SDIMS design exploits the fact that each key
in Plaxton-based DHT identifies a tree consisting of
the routes from each other node to the root node for
that key. In SDIMS, each attribute and aggregation
operation is hashed onto a key and then the aggregation
is performed along the corresponding tree. The SDIMS
implementation extends the Pastry protocol. In order to
allow for an administrative hierarchy as in Astrolabe,
Pastry was modified to have a leaf set for each admin-
istrative domain, rather than a single one.

Rather than augmenting a DHT, SOMO layers over
a DHT. Even though Willow is an augmented DHT,
SOMO aggregates information up a tree and then



multicasts the results back down using the same tree
much like in Willow. While Willow uses only a single
tree, SOMO has a tree per key like in SDIMS.

In PIER, a DHT is used as a database index, and
maps database keys to nodes that store the correspond-
ing tuples. The DHT is augmented in order to allow for
enumeration of tuples at nodes so that selection queries
can be implemented. Most of the work in PIER so far
has focussed on distributed joins rather than on how to
support aggregation queries efficiently.

All DHT-based multicast protocols that we are aware
of, such as Bayeux [11] and SplitStream [12], are
layered on top of a DHT. In those systems, a key
is associated with each multicast group, and one or
more trees are build on a per-key basis, and these
trees follow the DHT routes for those keys. Willow,
in contrast, does not associate any keys with groups,
but uses filtering in order to send messages to particular
subsets of members. This leads to two advantages. Wil-
low has many more routing options for multicast than
do previous DHT-based multicast schemes, potentially
resulting in better performance and load balancing, and
more addressing options, strong enough to support even
content-based publish/subscribe.

III. WILLOW MODEL

Before we show how the Willow protocol is imple-
mented, we will first describe what Willow looks like
once deployed.

A. Willow Tree

Each agent chooses a random 128-bit identifier. For the
remainder of this paper, we assume that this results in
each agent having a unique identifier, although agents
can easily detect if their identifiers conflict and resolve
this situation by choosing a new random identifier. The
identifier determines a path in a virtual binary tree of
129 levels. Starting at the first bit of the identifier and
the root of the tree, a 0 bit determines the left child,
and a 1 bit the right child, and so on. Vice versa, each
node in the tree can be named using a bit string. For
example, the root is named by the empty bit string, and
its right child is named “1”. We call each node in the
tree a domain, and all the agents whose identifiers start
with the domain’s identifier are considered members of
that domain. In particular, all agents are members of
the root domain, and each agent is a member of the
leaf domain consisting of only the agent.

Each domain has attributes in addition to its identi-
fier. In the case of a leaf domain, these attributes and
their values are written directly by its corresponding
agent. In the case of non-leaf domains (aka. internal
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Fig. 1. Willow tree with four agents using three bit identifiers.
The maximum load in each domain is indicated between braces.

domains), the attributes are determined by the two child
domains. If both the left and right child domains are
empty (contain no agents), then the set of attributes of
the parent domain is empty as well. If only one of the
child domains is empty, the attributes are the same as
those of the non-empty child domain.

The interesting case is when a domain has two non-
empty child domains. We call such domains branch-
ing domains. The attributes of the parent domain are
then determined by an aggregation function over the
attributes of the child domains. In Willow this is done
using SQL. Imagine the two sets of attributes forming
two rows in a relational table. One or more SQL
aggregation queries over the table are used to compute
the attributes of the parent domain. For example, the
aggregation query might be “SELECT MAX(maxload)
AS maxload.” This specifies that the parent domain
will have an attribute maxload which is computed by
taking the maximum of the maxload attributes of both
child domains. All nodes share the same aggregation
functions, and therefore the root domain will have an
attribute maxload containing the global maximum load.
Figure 1 shows an example Willow tree.

Each time the attributes of a leaf domain change, all
the attributes of domains on the path up from the leaf
domain to the root are recalculated automatically, much
like in dependent cells in a spreadsheet. The aggregates
are also recalculated in case of membership changes, or
when aggregation functions are installed, updated, or
removed, all of which can be done on the fly. We note
that such updates are not instantaneous, in that there
is a latency involved in the dissemination of queries
and attribute updates to the various agents. Willow also
does not guarantee consistency between the attributes
that different agents observe, but all converge quickly
to the same state in the absence of updates.

B. Willow Operations

Willow supports the following operations:

• DHT routing: route a message to an agent with an
identifier nearest to a specified key in terms of the
XOR metric [5];



• monitoring: using a JDBC query, specify what data
needs to be reported by the agents into the Willow
tree, and using an SQL query, how the data should
be aggregated;

• publish/subscribe: route a message down the (logi-
cal!) Willow tree to all domains satisfying an SQL
predicate specified within the header.

Monitoring is guided by two queries. (Both are installed
and aggregated themselves as “executable attributes”
within the Willow tree.) Once an agent installs such
queries, it will take some time for them to propagate
to all agents, and then some time before all the nec-
essary information has been retrieved, reported, and
aggregated. In order to determine when a query has
completed, Willow has a permanent query installed that
reports the total number of members of a domain in the
nmembers attribute.

For example, say a user wants to determine which
machine has the least load. Rather than reporting just
the identifier and load of an agent, the user’s query
would really report (agent, load, count), where agent
and load are the least loaded agent for the correspond-
ing domain, and count is total number of agents that
have reported their load for this query. The user waits
until count approaches nmembers. (Note that unless
continuous updates are required, he or she should also
remove the query at this time.)

There are queries that do not lend themselves well
to aggregation. For example, the agent with the median
load would be impossible to determine in the way
described above. Such queries will require more than
one pass to answer. Any query may be answered
simply by collecting all the necessary information of
all agents, but often more efficient approaches exist. In
the example above, the agent with the median load can
be determined using a binary search.

Willow also supports multicast and publish/subscribe.
Given any domain, Willow supports a mechanism to
forward a message to both child domains. When applied
recursively, this mechanism multicast the message to
all agents in the domain. The message may contain an
SQL condition which is applied to the attributes of each
child domain in order to determine whether to forward
the message to the child domain or not. For example,
it would be possible to send a message to all agents
with a load less than 3, as long as a query is installed
that reports the minimum load in each domain. Using
a Bloom filter, traditional topic-based publish/subscribe
can be efficiently supported this way, but the Willow
mechanism is quite powerful and can support content-
based publish/subscribe as well (both are based on the
work in [3] and described in detail there).

level friend child contact candidate maxload

0 101 0 001 010 5
(root) 1 100 101 4

1 010 0 001 001 5
1 010 010 2

2 0
1 001 001 5

Fig. 2. Data maintained by agent 001 in Figure 1. In actuality, not
the identifiers of other agents are stored, but their IP addresses and
boot times.

For this, each agent would specify a query as one
of its attributes which is applied to attributes of mes-
sages. The queries are aggregated using logical OR. The
Willow SQL query engine supports an EVAL function
that allows such queries to be evaluated. In order for
this to scale, the queries have to be conservatively
simplified. For example, if there are too many terms
in an aggregated query, the query can be replaced with
TRUE. This has the effect that the message is broadcast
in the higher levels of the Willow tree, and filtered in
the lower levels. (Note that the same thing happens with
Bloom filters, which also conservatively simplify the
membership, leading to harmless false positives in the
higher levels of the tree.)

IV. WILLOW IMPLEMENTATION

The internal architecture used by Willow is close to
that of Kademlia [5], even though the tree maintenance
is very different. As the Willow tree itself is virtual,
each Willow agent maintains domain information for
each of the 128 domains that it is a member of.
Given a particular domain 〈d〉 (a prefix of the agent’s
identifier of length d bits), the domain information for
〈d〉 contains the following:

• a small (possibly empty) set of friends, which are
the “fingers” or “neighbors” used for P2P routing.
The friends are members of 〈d〉0 if the agent is in
〈d〉1, or 〈d〉1 if the agent is in 〈d〉0;

• the attributes of both the left and right child
domains, 〈d〉0 and 〈d〉1 respectively, one of which
(the one that the agent is not in) may be empty;

Figure 2 shows the data maintained by agent 001 in the
example of Figure 1.

DHT routing uses friends for DHT routing exactly
as in Kademlia. But in Willow, friends are also used
for multicast routing as follows. Multicast messages
contain an integer specifying in which domain they
need to be forwarded. Initially, this integer is zero. To
forward a multicast message with integer d, an agent
considers all the branching domains that it is a member
of with a name of d bits or longer. For each such



domain, it forwards the message to one of the friends
in the corresponding peer child domain (assuming they
satisfy the SQL condition attached to the message),
replacing the integer to contain the length of the child
domain’s identifier.

Note that the branching factor of the resulting mul-
ticast dissemination tree is O(logN ), and thus the
number of hops O(logN/ log log N ). Also note that
in spite of there being only one logical tree, there is a
different physical multicast tree from every agent, and
this contributes to good load balancing. Most impor-
tantly, if agents are connected to the Internet with only
a single link, and can only send one message at a time,
the approach can be shown to maximize parallelism for
relatively long messages.

A. Attribute Propagation

Consider an agent and some domain 〈d〉. The agent is
either in the left or right child domain, say 〈d〉0. In that
case, the agent derives the attributes of 〈d〉0 from the
attributes in the domain information of 〈d + 1〉, while
it learns the attributes of 〈d〉1 through communication
with other agents. This proceeds as follows.

Each domain elects one of its agents to be the
contact of its domain. The default election strategy
favors older, presumably more stable, agents to rep-
resent larger domains. This is done using the Willow
aggregation facility, which elects both a contact and a
candidate for each domain. The contact of a branching
domain is the younger one of the candidates of its
child domains, while the candidate of a domain is
the older of the candidates of its child domains. The
contact and candidate of leaf domains are both the agent
itself. Note that all agents are contacts of exactly one
internal domain, except for the oldest agent which is
contact only of its leaf domain. The election strategy
can be changed as needed simply by installing another
aggregation query.

The contact of a domain is responsible for sending
the attributes of the domain to the corresponding peer
domain. That is, the contact of domain 〈d〉0 sends
updates of its corresponding attributes to a friend in
〈d〉1, which then disseminates the update in its domain
through multicast. Although higher level contacts have
usually more attributes to aggregate and disseminate,
the variance of higher level attributes tends to be low
and so updates are often significantly less common than
those of lower level domains. This depends of course
on the choice of aggregation queries, but in practice we
have seen relatively little load on higher level contacts.

A2

B2 C2

A1

B1 C1

Fig. 3. Two distinct Willow trees are merged recursively and in
parallel.

B. Efficiency

An important aspect of the Willow protocol is how
friends are determined, as these determine how well
Willow exploits network locality. Currently, Willow
maintains only a single friend per peer domain. At
regular intervals (currently, once a minute), each agent
probes a random agent in each peer domain (determined
using a DHT lookup to a random key in that domain). If
the random agent exhibits better latency than the current
friend, the friend is replaced with the new agent. In
Section V we show that this is an effective strategy.

In the Willow implementation, all communication is
through TCP. As TCP connections do not lose any data,
only diffs need to be exchanged over these pipes, which
reduces communication overhead. TCP takes care of
congestion control. Willow further limits the rate of
sending updates in order to control load on the network.
If a TCP pipe is full or the maximum rate has been
exceeded, diffs can be “saved up.” Newer updates will
typically overwrite parts of older updates, and therefore
the amount of backlog that builds up this way is limited.
Note that each agent only has to maintain one TCP
connection per friend, plus at most two for each of the
domains the agent is contact of. Thus the total number
of TCP connections per agent is O(logN ).

C. Tree Maintenance

So far we have tacitly assumed that there are no mem-
bership changes. Willow supports a Tree Maintenance
Protocol (TMP) to maintain a single instance of the
Willow tree in which all agents have a consistent view
of this tree. The TMP is a recursive protocol in which
left and right child branches of a domain are repaired
in parallel. Even disjoint trees merge quickly once
communication between any two agents in the respec-
tive trees is established. Such initial contact between
separated trees can be established through a rendez-
vous host, IP multicast or broadcast. This is also how
new agents join the Willow tree. Most other DHTs
use DHT routing in order to add new agents, but this
does not work efficiently when merging trees or fixing
broken DHT structures.
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A2

G2E1D2G2F1E1

Sync Conflict Update

Fig. 4. Example of the zippering protocol.

In Figure 3 we show two disjoint Willow trees (or
subtrees). In order to merge domains A1 and A2, we
first recursively merge B1 and B2 first in parallel with
C1 and C2, and then fix the top-level domains. The
TMP uses two types of messages. A sync message
contains the name of a (non-leaf) domain and the
attributes of both child domains as known by the sender
of the message (which is an agent in that domain). It
is used when one agent discovers another agent with
a different top-level contact. A conflict message
contains the level of a domain and the address of a
contact, and is used to repair inconsistencies.

On receipt of a sync message, agent R determines
if it is in the specified domain. If not, R returns to
the sender a normal update message containing the
attributes of the smallest common domain. If R is in
the domain, it compares both the attributes of the left
child domain and the right child domain with those of
its own. Both cases are handled in the same way, so we
look at just the left child domain. If the attributes of the
left child domain were null, or if the existing attributes
share the same contact, then R adopts the attributes into
its corresponding domain information. If the contact in
the domain information is different from the contact
in the message, R sends a conflict message to
one of the two contacts, containing the address of the
other one. On receipt of a conflict message, the
agent determines the branching domain from which the
contact was calculated, and sends a sync message for
that domain to the conflicting contact.

For example, in Figure 4, A1’s contact sends a sync
message to A2’s contact. Then, after comparing the
attributes of its child domains with those of A1’s child
domains, A2’s contact detects conflicts in both child
domains. It then sends a conflict message to the
contacts of both B1 and C2, starting two parallel
merges. The message to B1’s contact contains B2’s
contact, and on receipt B1’s contact transmits to B2’s

contact the attributes of E1 using another sync mes-
sage. On the receipt of the sync message, B2’s contact
adopts E1 as its right child domain. In parallel with all
this, C1’s contact adopts G2 as its right child. After
this, the normal update protocol fixes all attributes for
all the agents involved.

When applied to two separate Willow trees, the
TMP protocol zippers both trees together in O(logN )
parallel steps. But the TMP protocol also fixes internal
inconsistencies between agents. In particular, when an
update message arrives from a peer domain with a
conflicting contact, the TMP protocol is started to fix
the inconsistency.

Not all inconsistencies can be detected this way. For
example, it is possible for an agent in a domain X to
know about a peer domain Y , while the contact for X
does not. The agents in the peer domain may not know
about X , or even if they did, the contact for Y may
not. Thus there is no communication between domains
X and Y .

The problem is resolved as follows. The Willow
attribute update protocol periodically sends update mes-
sages at configured intervals, even in the absence of
updates (in which case the message will have an empty
set of diffs). Currently, Willow is configured to do so
every 10 seconds. If an agent in X has not received an
update (either directly from an agent in Y , or through
multicast in the local domain) for more than 20 seconds,
it sends an update for X to a friend in Y . This friend
will multicast the attributes in Y , and so the contact for
Y will learn about X . That contact in turn will send an
update to the contact of X , which will then multicast
the attributes of Y within X . After this, all agents in
X and Y will know about each other.

An agent that has not received an update for more
than 20 seconds will continue to sends updates to the
peer domain every 10 seconds. However, if more than
60 seconds have passed, the agent will remove the
attributes for the peer domain, and considers it failed.

V. EVALUATION

A fully operating Java implementation of Willow is
currently available. In order to investigate the scaling
issues of Willow, we conducted a study of Willow on
a simulated network. In each experiment we placed
nodes uniformly at random on a 250x250 millisecond
Euclidean plane. The network latency between any two
nodes is determined by their Euclidean distance. In
these simulations we assume that the bandwidth is
constant across the network.

In Figure 5 we show the maximum end-to-end de-
lay of multicasting a small message from a random
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Fig. 5. Multicast latency as a function of the number of agents
for different friend selection strategies. The error bars denote 99%
confidence intervals.
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Fig. 6. Update latency as a function of the number of agents for
different friend selection strategies.

node to all other nodes, which we expect to grow
O(logN/ log logN ). We used five different strategies
for agents selecting friends in peer domains. They are

• random: use a random agent in the peer domain.
• best/2: use the closest of two random agents.
• best/5: use the closest of five random agents.
• optimal: use the closest agent in the peer domain.

The optimal friend selection strategy is not practical,
as there is no cost-effective way for all agents to
determine their nearest-by peer agent, but serves as a
base line. (In fact, the simulation study was limited by
investigating this aspect.) We can see, however, that
trying random peer agents over time and maintaining
the one with the lowest latency converges fairly quickly
to an optimal latency.

In Figure 6 we show the end-to-end delay of updates,
that is, how long it takes between the time that an
update is made at a random agent and the time at
which all other agents have learned the new root-level
aggregate. We simulate a worst-case scenario in which
the root-level aggregate indeed changes. Depending on
the application this can in fact be a rare event. From a
complexity analysis study we expect the latency to grow
O(log2 N/ log2 logN ). Load studies omitted here show
that load is well balanced across the agents.

VI. CONCLUSION

The Willow protocol represents two contributions over
previous work. First, Willow supports all of DHT
routing, multicast, publish/subscribe, and aggregation in
one simple, location-aware protocol. The aggregation
facilities allow for a wide range of queries over the
data. Second, Willow includes an efficient tree merging
protocol that allows disjoint trees to merge in O(logN )
parallel steps, and also repairs Willow trees efficiently
when damaged by churn.

Willow is implemented in 2300 lines of Java code,
excluding the SQL parser and engine (representing
close to 10,000 lines of Java). Initial experience and
simulation results indicate that Willow scales well.
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