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Abstract. We present a novel translation of systems that are tolerant
of crash failures to systems that are tolerant of Byzantine failures in an
asynchronous environment, making weaker assumptions than previous
approaches. In particular, we assume little about how the application is
coded. The translation exploits an extension of the Srikanth-Toueg pro-
tocol, supporting ordering in addition to authentication and persistent
delivery. We illustrate the approach by synthesizing a version of the Cas-
tro and Liskov Practical Byzantine Replication protocol from the Oki
and Liskov Viewstamped Replication protocol.
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1 Introduction

Developing applications that span multiple administrative domains is difficult if
the environment is asynchronous and machines may exhibit arbitrary failures.
Yet, this is a problem that many software developers face today. While we know
how to build replicated data stores that tolerate Byzantine behavior (e.g., [4]),
most applications go well beyond providing a data store. Tools like Byzantine
consensus may help developing such applications, but most software developers
find dealing with arbitrary failures extremely challenging. They often make sim-
plifying assumptions like a crash failure model, relying on careful monitoring to
detect and fix problems that occur when such assumptions are violated.

We are interested in techniques that automatically transform crash-tolerant
applications into Byzantine-tolerant applications that do not require careful
monitoring and repair.

This paper makes the following contributions. First we present a novel or-
dered broadcast protocol that we will use as a building block. The protocol is
an extension of the Srikanth and Toueg authenticated broadcast protocol of-
ten used in Byzantine consensus protocols [11], adding consistent ordering for
messages from the same sender even in the face of Byzantine behavior. Second,
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we present a new way of translating a distributed application that is tolerant
of crash failures into one that tolerates the same number of Byzantine failures,
while imposing fewer restrictions on how the application is constructed than
previous approaches. Third, we show how a version of the Castro and Liskov
Practical Byzantine Replication protocol [4] can be derived from the Oki and
Liskov Viewstamped Replication protocol [10] using our translation technique,
something not possible with previous approaches.

We present background in Sect. 2. After describing a system model in Sect. 3,
we introduce three mechanisms used for translation: Authenticated Reliable
broadcast (Sect. 4), Ordered Authenticast Reliable broadcast (Sect. 5), and the
translation mechanism itself (Sect. 6). Correctness proofs for these appear in the
appendix. In Sect. 7 we demonstrate the translation mechanism.

2 Background

The idea of automatically translating crash-tolerant systems into Byzantine sys-
tems can be traced back to the mid-eighties. Gabriel Bracha used a translation
similar to ours to generate a consensus protocol tolerant of t Byzantine failures
out of 3t+1 hosts [3]. Brian Coan also presents a translation [6] that is similar to
Bracha’s. The most important restriction in these approaches is that input proto-
cols are required to have a specific style of execution, and in particular they have
to be round-based with each participant awaiting the receipt of n − t messages
before starting a new round. These requirements exclude, for example, protocols
that designate roles to senders and receivers such as the primary role used in
Viewstamped Replication [10]. Our approach makes no such assumptions, and
we will demonstrate our approach for Viewstamped Replication.

Toueg, Neiger and Bazzi worked on an extension of Bracha’s and Coan’s ap-
proaches for translation of synchronous systems [9, 2, 1]. Their approach takes
advantage of synchrony to detect faulty hosts and eliminate them from the pro-
tocol. The extension can be applied to our scheme as well.

Most recently, Mpoeleng et al. [8] present a translation that is intended for
synchronous systems, and transforms Byzantine faults to so-called signal-on-
failure faults. They replace each host with a pair, and assume only one of the
hosts in each pair may fail. They require 4t+2 hosts, but the system may break
with as few as two failures no matter how large t is chosen.

3 System Model

In order to be precise we present a simple model to talk about machines, pro-
cesses, and networks. The model consists of agents and links. An agent is an
active entity that maintains state, receives messages on incoming links, per-
forms some processing based on this input and its state, possibly updating its
state and producing output messages on outgoing links.

Links are abstract unidirectional FIFO channels between two agents. Agents
can interact across links only. In particular, an agent can enqueue a message on



one of its outgoing links, and it can dequeue messages from one of its incoming
links (assuming a message is available there).

We use agents and links to model various activities and interactions. Pro-
cesses that run on hosts are agents, but the network is also an agent—one that
forwards messages from its incoming links to its outgoing links according to some
policy. Agents are named by lower-case Greek letters α, β, .... For agents that are
processes, we will use subscripts on names to denote which hosts they run on.
For example, βi is an agent that runs on host hi.

Hosts are containers for agents, and they are also the unit of failure. Hosts
are either honest, executing programs as specified, or Byzantine [7], exhibiting
arbitrary behavior. We also use the terms correct and faulty, but not as alter-
natives to honest and Byzantine. A correct host is honest and always eventually
makes progress. A faulty host is a Byzantine host or an honest host that has
crashed or will eventually crash. Honest and Byzantine are mutually exclusive,
as are correct and faulty. However, a host can be both honest and faulty.

We do not assume timing bounds on execution of agents. Latency in the
network is modeled as execution delay in a network agent. Note that this prevents
hosts from accurately detecting crashes of other hosts.

Fig. 1. An agent model and a refinement.

Figure 1 depicts an example of
an agent model and a refinement.
Agents are represented by circles,
links by arrows, and hosts by rect-
angles. The top half models two ap-
plication agents β1 and β2 running
on two hosts h1 and h2 communi-
cating using a FIFO network agent
φ. The bottom half refines the FIFO
network using an unreliable network
agent ν and two protocol agents φS

1

and φR
2 that implement ordering and retransmission using sequence numbers,

timers, and acknowledgment messages. This kind of refinement will be a com-
mon theme throughout this paper.

4 The ARcast Mechanism

The first mechanism we present is Authenticated Reliable broadcast (ARcast).
This broadcast mechanism was suggested by Srikanth and Toueg, and they
present an implementation that does not require digital signatures in [11]. Their
implementation requires n > 3t. As shown below, it is also possible to develop
an implementation that uses digital signatures, in which case n only has to be
larger than 2t.

4.1 ARcast Definition

Assume βi, ... are agents communicating using ARcast on hosts hi, .... Then
ARcast provides the following properties:



1. bc-Persistence. If two hosts hi and hj are correct, and βi sends a message
m, then βj delivers m from βi;

2. bc-Relay. If hi is honest and hj is correct, and βi delivers m from βk, then
βj delivers m from βk (host hk is not necessarily correct);

3. bc-Authenticity. If two hosts hi and hj are honest and βi does not send m,
then βj does not deliver m from βi.

Informally, ARcast ensures that a message is reliably delivered to all correct
receivers in case the sender is correct (bc-Persistence) or in case another honest
receiver has delivered the message already (bc-Relay). Moreover, a Byzantine
host cannot forge messages from an honest host (bc-Authenticity).

4.2 ARcast Implementation

We assume there is a single sender βi on hi. We model ARcast as a network
agent ξi, which we refine by replacing it with the following agents (see Fig. 2):

Fig. 2. Architecture of the ARcast imple-
mentation if the sender is on host hi.

ξS
i sender agent that is

in charge of the send-
ing side of the ARcast
mechanism;

ξR
∗ receiver agents that are

in charge of the receive
side;

φ FIFO network agent
that provides point-
to-point authenticated
FIFO communication
between agents.

The mechanism has to be instantiated for each sender. The sending host hi

runs the ARcast sender agent ξS
i . Each receiving host hj runs a receiver agent

ξR
j . There have to be at least 2t + 1 receiving hosts, one of which may be hi.

When ξS
i wants to ARcast a message m, it sends 〈echo m, i〉i, signed by hi using

its public key signature, to all receivers. A receiver that receives such an echo
message for the first time forwards it to all receivers. On receipt of t+1 of these
correctly signed echoes for the same m from different receivers (it can count an
echo from itself), a receiver delivers m from i.

Due to space considerations, we omit the (simple) correctness proof.

5 The OARcast Mechanism

ARcast does not provide any ordering. Even messages from a correct sender
may be delivered in different orders at different receivers. Next we introduce a
broadcast mechanism that is like ARcast, but adds delivery order for messages
sent by either honest or Byzantine hosts.



5.1 OARcast Definition
OARcast provides, in addition to the ARcast properties, the following:

4. bc-FIFO. If two hosts hi and hj are honest and βi sends m1 before m2, and
βj delivers m1 and m2 from βi, then βj delivers m1 before m2;

5. bc-Ordering. If two hosts hi and hj are honest and βi and βj both deliver
m1 from βk and m2 from βk, then they do so in the same order (even if hk

is Byzantine).

As a result of bc-Ordering, even a Byzantine sender cannot cause two honest
receivers to deliver OARcast messages from the same source out of order. bc-
FIFO ensures that messages from honest hosts are delivered in the order sent.
OARcast does not guarantee any order among messages from different sources,
and is thus weaker than consensus.

5.2 OARcast Implementation

Fig. 3. Architecture of the OARcast implementa-
tion if the sender is on host hi.

We describe how OAR-
cast may be implemented
using ARcast. Again, we
show the implementation
for a single sender βi on
host hi. With multiple
senders, the implementa-
tion has to be instantiated
for each sender separately.
We refine the OARcast
network agent ωi by re-
placing it with the follow-
ing agents (see Fig. 3):

ωS
i sender agent that is in charge of the sending side of the OARcast mechanism;

ωO
∗ orderer agents that are in charge of ordering;

ωR
∗ receiver agents that are in charge of the receive side;
φ FIFO network agent that provides point-to-point authenticated FIFO com-

munication from the sender agent to each orderer agent;
ξ∗ ARcast network agents each provides ARcast from a particular orderer agent

to all receiver agents.

We need to run 3t + 1 orderers on separate hosts, of which no more than t
may fail. A host may end up running a sender, a receiver, as well as an orderer.
A receiver ωR

j maintains a sequence number cj , initially 0. An orderer ωO

k also
maintains a sequence number, tk, initially 0.

To OARcast a message m, ωS
i sends m to each orderer via φ. When an orderer

ωO

k receives m from ωS
i , it ARcasts 〈order m, tk, i〉 to each of the receivers, and

increments tk. A receiver ωR
j awaits 2t+1 messages 〈order m, cj , i〉 from different

orderers before delivering m from ωS
i . After doing so, the receiver increments cj .

We prove the correctness of this implementation in Appendix A.



6 The Translation Mechanism

In this section, we describe how an arbitrary protocol tolerant only of crash
failures can be translated into a protocol that tolerates Byzantine failures.

6.1 Definition

Below we use the terms original and translated to distinguish the system before
and after translation, respectively. The original system tolerates only crash fail-
ures, while the translated system tolerates Byzantine failures as well. The original
system consists of n hosts, each of which runs an actor agent, α1, . . . , αn. Each
actor αi is a state machine that maintains a running state si, initially si

0, and,
upon receiving an input message m, executes a deterministic state transition
function F i: (mo, s

i
c+1) := F i(m, si

c) where

– c indicates the number of messages that αi has processed so far;
– si

c is the state of αi before processing m;
– si

c+1 is the next state of si
c as a result of processing m (called F i(m, si

c).next);
– mo is a finite, possibly empty set of output messages (called F i(m, si

c).output).

The state transition functions process one input message at a time and may have
no computational time bound.

Actors in the original system communicate via a FIFO network agent φ. Each
actor maintains a pair of input-output links with the FIFO network agent. When
an actor αi wants to send a message m to another actor αj (may be itself), αi

formats m (detailed below) and enqueues it on αi’s output link. We call this
action αi sends m to αj . φ dequeues m from the link and places it into the
message buffer that φ maintains. Eventually φ removes m from its buffer and
enqueues m on the input link of αj . When αj dequeues m we say that αj delivers
m from αi. The original system assumes the following of the network:

1. α-Persistence. If two hosts hi and hj are correct and αi sends m to αj , then
αj delivers m from αi.

2. α-Authenticity. If two hosts hi and hj are honest and αi does not send m to
αj , then αj does not deliver m from αi.

3. α-FIFO. If two hosts hi and hj are honest and αi sends m1 before m2, and
αj delivers m1 and m2 from αi, then αj delivers m1 before m2;

Note that in the original system all hosts are honest. However, for the translation
we need to be able to generalize these properties to include Byzantine hosts.

Messages in the original system are categorized as internal or external. In-
ternal messages are sent between actors and are formatted as 〈d, i, j〉, where d
is the data (or payload), i indicates the source actor, and j indicates the des-
tination actor. External messages are from clients to actors and are formatted
as 〈d,⊥, j〉, similar to the format of internal messages except the source actor is
empty (⊥). Internal and external messages are in general called α-messages, or
simply messages when the context is clear.



In the original system all actors produce output messages by making transi-
tions based on input as specified by the protocol. We call such output messages
valid. We formalize validity below.

External messages are assumed to be valid. For example, we may require that
clients sign messages. An internal message m sent by actor αi is valid if and only
if there exists a sequence of valid messages mi

1, . . . ,m
i
c delivered by αi such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output. The ex-

pression means that actor αi sends m after it has processed the first c input
messages, be they internal or external. Note that external input forms the base
case for this recursive definition, as actors produce no internal messages until at
least one delivers an external message.1

Fig. 4. Translation: the original system (left) is simulated at each host in the trans-
lated system (right). Dark circles are master actors. Dashed lines represent OARcast
communication.

In order for the original system to work correctly, each actor needs to make
transitions based on valid input. More formally,

4. α-Validity. If hi is honest and αi delivers m from αj , then m is valid.

The property is granted to the original system by default, because it is in an
environment where faulty hosts follow the protocol faithfully until they crash.

Besides the four α–properties, the original system requires no other assump-
tions about communication among actors. However, the original system may
require non-communication assumptions such as “up to t hosts can fail.”

The Translation mechanism transforms a crash-tolerant system in which all
hosts require the four α-properties into a Byzantine-tolerant system that pre-
serves the α-properties.

6.2 Implementation

In the original system, each actor αi runs on a separate host hi. In the translated
system each host simulates the entire original system (see Fig. 4). That is, a host

1 We model periodic processing not based on input by external timer messages.



runs a replica of each of the n actors and passes messages between the actors
internally using a simulated network agent, called coordinator, that runs on the
host. We denote the coordinator running on host hi as κi.

Fig. 5. Anatomy of host hi in
the translated system.

To ensure that the different hosts stay syn-
chronized, the coordinators agree on the order
in which messages are delivered to replicas of
the same actor. The replica of αi on host hj

is called αi
j . We designate αi

i as the master
replica and αi

j (i 6= j) as slave replicas. On
honest hosts, the replicas of each actor start
in the same initial state.

Each coordinator replaces φ of the origi-
nal system by OARcast, i.e., OARcast is used
to send messages. OARcast guarantees that
coordinators agree on the delivery of mes-
sages to replicas of a particular actor. Coordi-
nators wrap each α-message in a κ-message.
κ-messages have the form 〈tag m, i〉, where
tag is either internal or external, m is an α-
message, and i indicates the destination actor.

// Message from external client
On receipt of msg m = 〈x,⊥, i〉:

κi.send(〈external m, i〉);

// Message from actor j to actor k

On αj
i .send(〈d, j, k〉):

Bi.add(〈d, j, k〉);
if k = i then

κi.send(〈internal 〈d, j, i〉, i〉);

// κ-message from j
On κi.deliver(〈tag m, j〉):

Qj
i .enqueue(m);

// Head of queue matches msg in bag
When ∃j : Qj

i .head() ∈ Bi:
m = Qj

i .dequeue();
Bi.remove(m);
αj

i .deliver(m);

// Head of message queue is external
When ∃j, d : Qj

i .head() = 〈d,⊥, j〉:
m = Qj

i .dequeue();
αj

i .deliver(m);

Fig. 6. Pseudo-code of the Translation
Mechanism for coordinator κi.

Each coordinator maintains an
unordered message bag and n per-
actor-replica message queues. By Bi

we denote the message bag at host i
and by Qj

i we denote the message
queue for actor αj

i at host i (see
Fig. 5). The pseudo-code for a co-
ordinator κi appears in Fig. 6. κi

intercepts messages from local ac-
tors, and it receives messages from
remote coordinators. κi places α-
messages sent by local actor repli-
cas in Bi, and places α-messages re-
ceived within κ-messages from κj in
Qj

i . When there is a match between
a message m in the bag and the head
of a queue, the coordinator enqueues
m for the corresponding actor.

The translated system guaran-
tees α-Persistence, α-Authenticity,
α-FIFO, and α-Validity to all mas-
ter actors on honest hosts. Ap-
pendix B contains a proof of correct-
ness.



(a) before translation (b) after translation

Fig. 7. A normal case run of (a) the original system and (b) the translated system.
Dashed arrows indicate the archive message from the primary. Between brackets we
indicate the corresponding BFT message types.

7 Illustration: BFT

In 1999 Castro and Liskov published “Practical Byzantine Fault Tolerance,”
a paper about a replication protocol (BFT) for a Byzantine-tolerant NFS file
system [4]. The paper shows that BFT is indeed practical, adding relatively
little overhead to NFS. In this section we show, informally, that a protocol much
like BFT can be synthesized from the Viewstamped Replication protocol by
Oki and Liskov [10] and the transformations of the current paper. The main
difference is that our protocol is structured, while BFT is largely monolithic. In
our opinion, the structure simplifies understanding and enhances the ability to
scrutinize the protocol. The BFT paper addresses several practical issues and
possible optimizations that can be applied to our scheme as well, but omitted
for brevity.

Viewstamped Replication is a consensus protocol. A normal case execution is
shown in Fig. 7(a).2 A client sends a request to a server that is elected primary.
The primary server sends an archive message to each server in the system. If a
quorum responds to the client, the request is completed successfully. In the case
of failures, a possibly infinite number of rounds of this consensus protocol may
be necessary to reach a decision.

If we were to apply translation literally as described, we would end up with a
protocol that sends significantly more messages than BFT. The reason for this is
two-fold. First, our translation does nothing to group related information from
a particular sender to a particular receiver in single messages. Instead, all pieces
of information go out, concurrently, in separate small messages. While explicit
optimizations could eliminate these, FIFO protocols like TCP automatically
aggregate concurrent traffic between a pair of hosts into single messages for

2 Slightly optimized for our purpose by sending decide messages back to the client
instead of the primary.



efficiency, obviating the need for any explicit optimizations. Note that while
these techniques reduce the number of messages, the messages become larger
and the number of rounds remains the same.

Second, the translation would produce a protocol that solves uniform Byzan-
tine consensus [5], guaranteeing that if two honest servers decide on an update,
they decide on the same update. In a Byzantine environment, one may argue
that this property is stronger than needed. We only need that if two correct
servers decide on an update, they decide the same update. The reason for this is
that clients of the system have to deal with the results from Byzantine servers,
and because Byzantine and crashing hosts are both counted towards t it is not
usually a problem that an honest server makes a “mistake” before crashing. Such
servers would be outvoted by correct servers.

BFT does not provide uniform consensus, but Viewstamped Replication does.
Our translation maintains uniformity. This arises in the bc-Relay property, which
requires that if an honest host delivers a message, then all correct hosts have to
do the same. For our purposes, it would be sufficient to require that if a correct
host delivers a message, all correct hosts have to follow suit.

If we revisit the ARcast implementation, we see that the protocol maintains
the original uniform bc-Relay property by having a receiver await t + 1 copies
of a message before delivery. Doing so makes sure that one of the copies was
sent by a correct receiver that forwards a copy to all other correct receivers as
well. For non-uniform bc-Relay this is unnecessary because the receiver itself, if
correct, is guaranteed to forward the message to all other correct receivers, and
thus a receiver can deliver the message as soon as the first copy is received. The
echo traffic can be piggybacked on future traffic.

Using this modification, Fig. 7(b) demonstrates a normal run of the trans-
lated system for t = 1. The figure only shows the traffic that is causally prior
to the reply received by the client and thus essential to the latency that the
client experiences. In this particular translation we used t additional hosts for
OARcast only, but a more faithful translation would have started with 3t + 1
servers. Nevertheless, the run closely resembles that of a normal run of BFT (see
Figure 1 of [4]).

8 Conclusion

We presented a mechanism to translate a distributed application that tolerates
only crash failures into one that tolerates Byzantine failures. Few restrictions are
placed on the application, and the approach is applicable not only to consensus
but to a large class of distributed applications. The approach makes use of a novel
broadcast protocol. We have illustrated how the approach may be used to derive
a version of the Castro and Liskov Practical Byzantine Replication protocol,
showing that our translation mechanism is pragmatic and more powerful than
previous translation approaches.
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A Correctness of OARcast

Lemma 1. Say hi and hj are honest and m is the cth message that ωR
j delivers

from ωS
i , then m is the cth message that ωS

i sent.

Proof. Say m is not the cth message sent by ωS
i , but it is the cth message delivered

by ωR
j . ωR

j must have received 2t+1 messages of the form 〈order m, c−1, i〉 from
different orderers. Because only t hosts may fail, and because of bc-Authenticity
of ARcast, at least one of the order messages comes from a correct orderer.
Because communication between ωS

i and this orderer is FIFO, and because the
sender does not send m as its cth message, it is not possible that the orderer
sent 〈order m, c− 1, i〉. ut

Lemma 2. Say m is the cth message that a correct sender ωS
i sends. Then all

correct receivers receive at least 2t + 1 messages of the form 〈order m, c − 1, i〉
from different orderers.



Proof. Because the sender is correct, each of the correct orderers will deliver m.
As all links are FIFO and m is the cth message, it is clear that for each orderer
ωO

k , tk = c − 1. Each correct orderer ωO

k therefore sends 〈order m, c − 1, i〉 to
all receivers. Because at least 2t + 1 of the orderers are correct, and because of
ARcast’s bc-Persistence, each correct receiver receives 2t+1 such order messages.

ut

Theorem 1. OARcast satisfies bc-Persistence.

Proof. Assume the sending host, hi, is correct, and consider a correct receiving
host hj . The proof proceeds by induction on c, the number of messages sent by
ωS

i . Consider the first message m sent by ωS
i . By Lemma 2, ωR

j receives 2t + 1
messages of the form 〈order m, 0, i〉. By Lemma 1 it is not possible that the first
message that ωR

j delivers is a message other than m. Therefore, cj = 0 when ωR
j

receives the order messages for m and will deliver m.
Now assume that bc-Persistence holds for the first c messages from ωS

i . We
show that bc-Persistence holds for the (c+1)st message sent by ωS

i . By Lemma 2,
ωR

j receives 2t+1 messages of the form 〈order m, c, i〉. By the induction hypoth-
esis, ωR

j will increment cj at least up to c. By Lemma 1 it is not possible that
the cth message that ωR

j delivers is a message other than m. Therefore, cj = c
when ωR

j receives the order messages for m and will deliver m. ut

Theorem 2. OARcast satisfies bc-Authenticity.

Proof. This is a straightforward corollary of Lemma 1. ut

Theorem 3. OARcast satisfies bc-Relay.

Proof. By induction on the sequence number. Say some correct receiver ωR
j de-

livers the first κ-message m from ωS
i . Therefore, ωR

j must have received 2t + 1
messages of the form 〈order m, 0, i〉 from different orderers when cj = 0. Because
of the bc-Relay property of ARcast, all correct receivers receive the same order
messages from the orderers. By Lemma 1 it is not possible that a correct receiver
ωR

j′ delivered a κ-message other than m, and therefore cj′ = 0 when ωR

j′ receives
the order messages. Thus ωR

j′ will also deliver m.
Now assume the theorem holds for the first c κ-messages sent by ωS

i . Say
some correct receiver ωR

j delivers the (c + 1)st κ-message m from ωS
i . Therefore,

ωR
j must have received 2t + 1 messages of the form 〈order m, c, i〉 from different

orderers when cj = c. Because of the bc-Relay property of ARcast, all correct
receivers receive the same order messages from the orderers. Because of the
induction hypothesis, the correct receivers deliver the first c κ-messages. By
Lemma 1 it is not possible that a correct receiver ωR

j′ delivered a κ-message
other than m, and therefore cj = c when ωR

j′ receives the order messages. Thus
ωR

j′ will also deliver m. ut

Lemma 3. Say m is the cth message that an honest receiver ωR
j delivers from

ωS
i , and m′ is the cth message that another honest receiver ωR

j′ delivers from ωS
i .

Then m = m′ (even if hi is Byzantine).



Proof. Say not. ωR
j must have received 2t+1 messages of the form 〈order m, c−

1, i〉 from different orderers, while ωR

j′ must have received 2t + 1 messages of the
form 〈order m′, c−1, i〉 from different orderers. As there are only 3t+1 orderers,
at least one correct orderer must have sent one of each, which is impossible as
correct orderers increment their sequence numbers for each new message. ut

Theorem 4. OARcast satisfies bc-Ordering.

Proof. Corollary of Lemma 3. ut

Theorem 5. OARcast satisfies bc-FIFO.

Proof. Evident from the FIFOness of messages from senders to orderers and the
sequence numbers utilized by orderers and receivers. ut

B Correctness of Translation

We prove correctness of the Translation mechanism assuming the bc-properties.
In particular, we show that the collection of coordinators and slave replicas
that use the Translation mechanism preserves the α-properties: α-Persistence,
α-Authenticity, α-FIFO, and α-Validity, for the master replicas {αi

i}.
For convenience, we combine bc-Relay and bc-Ordering to state that coor-

dinators on correct hosts deliver the same sequence of κ-messages from any κk,
even if hk is Byzantine. This is put more formally in the following lemma:

Lemma 4. For any i, j, and k, if hi and hj are correct, then κi and κj deliver
the same sequence of messages from κk.

Proof. bc-Relay guarantees that κi and κj deliver the same set of messages from
κk. bc-Ordering further guarantees that the delivery order between any two
messages is the same at both κi and κj . ut

In the proof we need to be able to compare states of hosts. We represent the
state of host hi by a vector of counters, Φi = (c1

i , . . . , c
n
i ), where each ck

i is the
number of messages that (the local) actor αk

i has delivered. As shown below,
within an execution of the protocol, replicas of the same actor deliver the same
sequence of messages. Thus from ck

i and ck
j we can compare progress of replicas

of αk on hosts hi and hj .

Lemma 5. Given are that hosts hi and hj are correct, αk
i delivers m1, . . . ,mc,

and αk
j delivers c′ ≤ c messages. Then the messages that αk

j delivers are m1, . . . ,mc′ .

Proof. By the Translation mechanism, the first c′ messages that αk
i and αk

j

deliver are the contents of the first c′ κ-messages that κi and κj delivered from
κk, resp. By Lemma 4, the two κ-message sequences are identical. This and
the fact that links from coordinators to actors are FIFO imply that the first c′

messages that αk
i and αk

j deliver are identical. ut

In the remaining proof we use the following definitions and notations:



– hi reaches Φ = (c1, . . . , cn), denoted hi  Φ, if ∀j cj
i ≥ cj ;

– Φ = (c1, . . . , cn) precedes Φ′ = (c′1, . . . , c
′
n), denoted Φ < Φ′, if (∀i ci ≤

c′i) ∧ (∃j cj < c′j);
– Φ = (c1, . . . , cn) produces m if m ∈

⋃n
i=1

⋃ci

c=1(F
i(mi

c, s
i
c−1).output),

where mi
c is the cth message to αi and si

c−1 is the state of αi after it processes
the first c− 1 input messages.

Corollary 1. If Φ produces m on a correct host, Φ produces m on all correct
hosts that reach Φ.

Proof. By Lemma 5 and because replicas of the same actor start in the same
state and are deterministic, if Φ produces m on a correct host, Φ produces m on
all correct hosts that reach Φ. ut

We now show that if a correct host is in a particular state then all other
correct hosts will reach this state.

Lemma 6. If there is a correct host hi in state Φ, then, eventually, all correct
hosts reach Φ.

Proof. By induction on Φ. All correct hosts start in state Φ0 = (0, . . . , 0), and
∀Φ 6= Φ0 : Φ0 < Φ.
Base case: All correct hosts reach Φ0 by definition.
Inductive case: Say that correct host hi is in state Φ = (c1, . . . , cn), and the
lemma holds for all Φ′ < Φ (Induction Hypothesis). We need to show that any
correct host hj reaches Φ.

Consider the last message m that some actor replica αp
i delivered. Thus, m

is the cth
p message that αp

i delivered. The state of hi prior to delivering this
message is Φ′ = (c1, . . . , cp − 1, . . . , cn). It is clear that Φ′ < Φ. By the induction
hypothesis hj  Φ′.

By the Translation mechanism we know that 〈tag m, p〉 (for some tag) is the
cth
p κ-message that κi delivers from κp. Lemma 4 implies that 〈tag m, p〉 must

also be the cth
p κ-message that κj delivers from κp. Since hj  Φ′, αp

j delivers
the first cp−1 α-messages, and thus κj must have removed those messages from
Qp

j . Consequently, m gets to the head of Qp
j . (1)

Now there are two cases to consider. If m is external, then κj will directly
remove m from Qp

j and enqueue m on the link to αp
j . Because αp

i delivered m
after delivering the first cp−1 messages (Lemma 5), and αp

i and αp
j run the same

function F p, αp
j will eventually deliver m as well, and therefore hj  Φ.

Consider the case where m is internal. By definition, Φ′ = (c1, . . . , cp −
1, . . . , cn) produces m at host hi. By Corollary 1, Φ′ produces m at host hj .
Thus, eventually κj places the message in the message bag Bj . (2)

(1) and (2) provide the matching condition for κj to enqueue m on its link
to αp

j . Using the same reasoning for the external message case, hj  Φ. ut

We can now show the first two communication properties. (The proof for
α-FIFO has been omitted for lack of space.)



Theorem 6. (α-Persistence.) If two hosts hi and hj are correct and αi
i sends

m to αj, then αj
j delivers m from αi.

Proof. Suppose hi is in state Φi when αi
i sends m to αj . By Lemma 6, hj  Φi.

Thus, αi
j sends m to αj as well. By the Translation mechanism, κj places m in

Bj and OARcasts 〈internal m, j〉. By bc-Persistence, κj delivers 〈internal m, j〉
(from itself) and places m on its queue Qj

j . (1)
By the Translation Mechanism, each external message at the head of Qj

j is
dequeued and delivered by αj

j . (2)
Let us consider an internal message m′ at the head of Qj

j . Since hj is correct,
the Translation mechanism ensures that κj has delivered 〈internal m′, j〉 (the κ-
message containing m′ and from κj). bc-Authenticity ensures that κj has indeed
sent the κ-message. By the Translation mechanism, κj always puts a copy of m′

in Bj before sending 〈internal m′, j〉. Thus, m′ in Qj
j is matched with a copy in

Bj , and αj
j delivers m′. This together with (2) show that αj

j delivers all internal
messages in Qj

j . (3)
(1) shows that m sent by αi

i arrives in Qj
j , and (3) shows that αj

j delivers all
internal messages in Qj

j . Together they show that αj
j delivers m from αi. ut

Theorem 7. (α-Authenticity.) If two hosts hi and hj are honest and αi
i does

not send m to αj, then αj
j does not deliver m from αi.

Proof. Assume αj
j delivers m from αi, but αi

i did not send m to αj . By the
Translation mechanism, a necessary condition for αj

j to deliver m from αi is
that κj delivers 〈internal m, i〉. By bc-Authenticity of OARcast, κi must have
OARcast 〈internal m, i〉. Then by the Translation mechanism, αi

i must have sent
m, contradicting the assumption. ut

We introduce a lemma that helps us show α-Validity :

Lemma 7. Actor replicas on honest hosts only send valid messages.
Proof. Suppose not. Let m sent by αi

j be the first invalid message sent by an
actor replica on an honest host. Since hj is honest, there must be a sequence of
messages mi

1, . . . ,m
i
c that αi

j delivered, such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output

Since m is the first invalid message sent by an actor replica, all internal messages
in the sequence mi

1, . . . ,m
i
c must be valid. Moreover, external messages are valid

by definition. Thus, all messages mi
1, . . . ,m

i
c are valid. But then, m is valid by

definition, contradicting the assumption. ut

Theorem 8. (α-Validity.) If hi is honest and αi
i delivers m from αj, then m is

valid (even if j 6= ⊥ and hj is faulty.)
Proof. If m is an external message, then it is valid and unforgeable by definition.

If m is an internal message, the fact that αi
i delivers m from αj implies that

αj
i has sent m to αi. By Lemma 7, m is valid. ut


